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Simple Summary: Ovarian cancer is one of the most lethal female cancers. Numerous investigations 
into the development and progression of this disease have resulted in the creation of numerous 
three-dimensional culture models to better refect the natural microenvironment of these tumours. 
In this study, we leverage the available transcriptomics and clinical and novel experimental data to 
evaluate the impact of the growth conditions on various cancer cells and examine whether they better 
approximate the behaviour of tumour cells compared to the classical two-dimensional models. Our 
results show that variability in the growth conditions can impact key genes and biological processes 
that are hallmarks of cancer, highlighting the need for future studies to identify which is the most 

Citation: Kerslake, R.; Belay, B.; appropriate in vitro/preclinical model to study tumour microenvironments. 
Panflov, S.; Hall, M.; Kyrou, I.; 

Randeva, H.S.; Hyttinen, J.; Abstract: Three-dimensional (3D) cancer models are revolutionising research, allowing for the 
Karteris, E.; Sisu, C. Transcriptional recapitulation of an in vivo-like response through the use of an in vitro system, which is more 
Landscape of 3D vs. 2D Ovarian complex and physiologically relevant than traditional monolayer cultures. Cancers such as ovarian 
Cancer Cell Models. Cancers 2023, 15, 

(OvCa) are prone to developing resistance, are often lethal, and stand to beneft greatly from the 
3350. https://doi.org/10.3390/ 

enhanced modelling emulated by 3D cultures. However, the current models often fall short of the 
cancers15133350 

predicted response, where reproducibility is limited owing to the lack of standardised methodology 
Academic Editor: Dik C. van Gent and established protocols. This meta-analysis aims to assess the current scope of 3D OvCa models 

and the differences in the genetic profles presented by a vast array of 3D cultures. An analysis Received: 12 December 2022 

Revised: 1 June 2023 of the literature (Pubmed.gov) spanning 2012–2022 was used to identify studies with paired data 
Accepted: 14 June 2023 of 3D and 2D monolayer counterparts in addition to RNA sequencing and microarray data. From 
Published: 26 June 2023 the data, 19 cell lines were found to show differential regulation in their gene expression profles 

depending on the bio-scaffold (i.e., agarose, collagen, or Matrigel) compared to 2D cell cultures. The 
top genes differentially expressed in 2D vs. 3D included C3, CXCL1, 2, and 8, IL1B, SLP1, FN1, 
IL6, DDIT4, PI3, LAMC2, CCL20, MMP1, IFI27, CFB, and ANGPTL4. The top enriched gene sets 

Copyright: © 2023 by the authors. 
for 2D vs. 3D included IFN-α and IFN-γ response, TNF-α signalling, IL-6-JAK-STAT3 signalling, 

Licensee MDPI, Basel, Switzerland. 
angiogenesis, hedgehog signalling, apoptosis, epithelial–mesenchymal transition, hypoxia, and

This article is an open access article 
infammatory response. Our transversal comparison of numerous scaffolds allowed us to highlight distributed under the terms and 
the variability that can be induced by these scaffolds in the transcriptional landscape and identify key conditions of the Creative Commons 

Attribution (CC BY) license (https:// genes and biological processes that are hallmarks of cancer cells grown in 3D cultures. Future studies 
creativecommons.org/licenses/by/ are needed to identify which is the most appropriate in vitro/preclinical model to study tumour 
4.0/). microenvironments. 

Cancers 2023, 15, 3350. https://doi.org/10.3390/cancers15133350 https://www.mdpi.com/journal/cancers 

https://doi.org/10.3390/cancers15133350
https://doi.org/10.3390/cancers15133350
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-0039-5041
https://orcid.org/0000-0002-6997-3439
https://orcid.org/0000-0001-9371-0797
https://doi.org/10.3390/cancers15133350
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers15133350?type=check_update&version=1
https://Pubmed.gov
mailto:cristina.sisu@brunel.ac.uk
mailto:emmanouil.karteris@brunel.ac.uk


Cancers 2023, 15, 3350 2 of 21 

Keywords: ovarian cancer; high-grade serous ovarian cancer (HGSOC); monolayer; 2D; 3D; scaffold; 
tumour microenvironment (TME); extracellular matrix (ECM); collagen; Matrigel; agarose 

1. Introduction 

Ovarian cancer (OvCa) is one of the most lethal gynaecological malignancies of the 
21st century. Affecting over 313,000 women worldwide, OvCa typically presents at a late 
stage with non-specifc symptoms, causing a detriment to survival outcomes, which fall 
as low as 20% [1]. The metabolic processes involved in OvCa aetiology, however, remain 
poorly understood. There are three main histological types of OvCa. Epithelial OvCa 
accounts for 90% of all cases, with high-grade serous ovarian cancer (HGSOC-70%) being 
the most prevalent of the fve subtypes as well as the most lethal [1]. Other subtypes 
include low-grade serous ovarian cancer (LGSOC-5%), endometrioid adenocarcinoma of 
the ovary (EAC-10%), clear cell carcinoma (CCC-10%), and mucinous adenocarcinoma 
(MAC < 3%). The least common are germ-line and stromal sex cord tumours, which cover 
10% of cases [2]. 

In order to gain a better understanding of the events that take place within the tumour 
microenvironment (TME), a model capable of emulating the in vivo milieu is required. 
The use of conventional monolayer cell cultures (two-dimensional; 2D) allows for analysis 
using a controlled in vitro environment to investigate the physiological, morphological, 
and biochemical properties of biological systems [3]. Monolayer cultures have served 
as an integral foundation of biological research since the introduction of immortalised 
HeLa in 1951, paving the way for thousands of subsequent cell lines [4]. Cell models have 
since proven invaluable in the modelling of normal physiology and diseases, including 
cancer [5]. 

Nevertheless, monolayer cultures have translational limitations, with differences in 
gene expression, drug response, and cell signalling evident when compared to in vivo 
models [6]. Many processes related to tumorigenesis and metastasis are often over-
simplifed in monocultures [7]. As a result, monolayer cultures often fail to recapitulate 
the complex microenvironment, diffusion gradients, and cellular characteristics associated 
with in vivo systems, thus leading to variation from the predicted response in animal and 
computational modelling, as well as clinical testing [6,8]. 

As global research efforts strive to answer increasingly complex biological questions, 
there is a greater need for a representative system capable of physiological emulation. 
Many studies have shown that the complexities of tissue organisation, differentiation, 
and gene expression are demonstrated at higher levels in three-dimensional (3D) cell 
cultures [9,10]. This setup allows for cells to be grown in an environment that sustains 
spatial complexities representative of in vivo conditions, allowing cells to differentiate and 
interact in a tissue-specifc manner [11]. The key differences between monolayer and 3D 
cultures are summarised in Table 1 [5,12]. 

Further evidence emphasises the importance of the TME for maintaining cancer 
stemness, exerting a signifcant effect on gene expression [13]. The integration of an 
extracellular matrix (ECM) i.e., a scaffold, provides the necessary environment for this 
3D cellular growth and differentiation [14]. Scaffolds emulate the tissue–tissue interfaces 
and chemical gradients required within a living system. Recent advancements include 
3D organoid systems capable of sustaining a vast array of tumour models, including 
glioblastoma, colon, lung, and ovarian [15–17]. 

Epithelial OvCa cells grown in 3D often present histological features characteristic 
of the original tumour in situ [18]. Three-dimensional epithelial OvCa cell lines also 
presenting with a reduced proliferative rate are thought to be enabled by a synthetic 
ECM [19]. An enhanced response to external stimuli is also evident in OvCa cultures. Thus 
far, 3D OvCa cultures have proven particularly useful as a model of therapeutic resistance, 
capturing developed resistance to platinum-based therapeutics similar to an in vivo OvCa 
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response. The OvCa cell line SKOV-3, for example, demonstrates a higher degree of 
chemoresistance to both cisplatin and paclitaxel when cultured in 3D [20]. Moreover, 
colorectal and pancreatic cancer cells grown in 3D exhibit differential gene expression, 
which is associated with augmented ATP production in 3D cultures. Subsequently, the 
amino acid production and metabolomic activity of glycolytic intermediates are increased 
when compared to monolayer substrates of the same cell line [21,22]. 

Table 1. Differences between 2D and 3D cell culture systems. 

2D Cultures 3D Cultures 

Cells form differentiated aggregates, spheroids, orCells grown in monolayers-biologically simple organoids-biologically complex 

Gene and protein expression differ from in vivo Expression closely mimics in vivo 

Nonuniform growth results in toxicity profles and diffusion gradients Uniform exposure to chemical stimuli; drugs often appear affective closely related to in vivo 

Oxygen diffusion is uniform and higher than many in vivo structures, Oxygen distribution varies and hypoxic cores are evident, closely 
thus augmenting mitochondrial function and ROS production mimicking in vivo variations of many complexes 

Long-term cultures can result in genetic drift, with epigenetic and Growth is typically short-term, minimising genetic drift morphological changes evident 

Can be cheaper and less complex, and therefore, easily Requires additional nutrients and biological scaffolds, and can therefore 
recapitulated in a lab be more expensive and time-consuming 

Established protocols Limited established protocols 

A wide array of scaffolds can be used to recapitulate the TME and support the dif-
ferentiation of 3D cultures, given that the TME is pivotal for the regulation of a diverse 
array of processes, including migration, proliferation, differentiation, and cell–cell com-
munication [23]. Often interchangeable in the literature, spheroids and organoids differ 
in complexity. Typically, spheroids are rounded and comprise cells grown initially in 2D, 
and as such, retain some simplicity of gene expression. Growth is often achieved using 
the hanging drop method or an ultra-low attachment plate and is ideal for the study of 
diffusion gradients and core hypoxia [24]. 

Given the current trajectory of 3D cancer models and their appeal to support the 
reduction of animal research, it is therefore safe to assume that a complex OvCa on a 
chip model will soon be achievable. This meta-analysis aims to evaluate the current 
landscape of OvCa cell models to elucidate differences presented in their genetic profle 
and associated signalling pathways when grown in 3D compared to 2D monolayer cultures, 
using published RNAseq and microarray datasets. 

2. Materials and Methods 
2.1. Study Design 

The data mining process was designed with the intent to search the current literature 
for studies modelling OvCa using 3D culture techniques alongside a 2D control and assess 
the differences in gene regulation between 2D and 3D cultures. The National Centre for 
Biotechnology Information (NCBI) PubMed database was searched for studies relevant 
to the scope of this work between the years 2012 and 2022 (Figure 1). No limitations to 
the original language were applied as long as English translations were available. The 
flter for human studies was utilised. The search terms applied included: “cancer” AND 
“ovar*” AND “3d” NOT “sound” NOT “ultra” NOT “imaging” NOT “ultrasound” NOT 
“review”. The literature that was inaccessible via the university institutional access was 
also removed. Additional searches through the NCBI, Sequence Read Archive (SRA), and 
Gene Expression Omnibus (GEO) accession platforms were also utilised. 

Inclusion criteria: Studies were included if they encompassed 3D OvCa models as 
well as 2D comparisons. In addition, those with associated data from sequencing arrays 
and RNA sequencing accessible through GEO or SRA were also sought. 
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pre-defned search terms. Articles were subjected to two rounds of screening by two independent 
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1 July 2022. Studies were split into two groups: those suitable for the background summary (N = 50) 
and those containing associated data (N = 5). Studies with associated data were then processed prior 
to functional enrichment analysis and biomarker identifcation. The “*” used in the search criteria is 
a wild card allowing for all words matching the associated string to be retrieved. 

Exclusion criteria: Studies were discarded if they did not meet the original search 
criteria. Additional studies that were excluded comprised those with a lack of comparative 
2D cultures, no open access, and no human samples, i.e., the use of animal (usually 
murine) cell lines. The fnal exclusion criteria for enrichment encompassed studies with no 
associated data. 

2.2. Cell Cultures and 3D Modelling 

Unless otherwise stated, all reagents were purchased from Thermo Fisher Scientifc. 
The serous ovarian adenocarcinoma cancer cell line SKOV-3 (European Collection of Au-
thenticated Cell Cultures (ECACC 91091004), Salisbury, United Kingdom) were seeded in 

Pubmed.gov


Cancers 2023, 15, 3350 5 of 21 

conventional culture-treated polystyrene T75 fasks. The cells were grown in Dulbecco’s 
Modifed Eagle’s Medium (DMEM) supplemented with 10% foetal bovine serum and 1% 
penicillin–streptomycin. The media were changed every 2–3 days, with experimental work 
proceeding after 3 passages. The cell suspension concentrations were calculated using the 
trypan blue exclusion method. For monolayer substrate comparison, the cells were seeded 
in triplicate at a density of 1.6 × 106 cells/mL in an Ibidi 8-well chamber (Ibidi, Munich, 
Germany) with complete medium. Three-dimensional cultures were generated using a 
1:12 ratio of cells suspended in medium mixed with GelTrexTM (batch: 2158356). Each well 
contained a fnal concentration of 300 µL. The chamber was left to incubate at 37 ◦C for 
30 min to allow for gelation. Then, 100 µL of media was added to each well. Media changes 
took place every 2–3 days up to day 10. Images were captured each day using a Nikon 
TS100 Inverted Phase Contrast light microscope (Nikon, Tokyo, Japan). 

A certifcate of analysis and a declaration of mycoplasma-free cultures were provided 
upon receipt of the cells from the ECACC and validated in-house with DAPI staining; the 
cells were used following 3 passages from purchase. 

2.3. Immunofuorescent Imaging 

On day 10, the media was removed. Both the 2D and 3D cultures were fxed with 
4% paraformaldehyde in PBS for 10 and 30 min, respectively. The chambers were washed 
×3 with PBS following incubation with 0.1% triton-x for 10 min. The chambers were 
again washed prior to blocking with 10% bovine serum albumin (BSA) (Sigma Aldrich, 
Burlington, MA, USA) for 1 h at room temperature. The BSA was then removed for 
phalloidin (ATTO-TEC, Siegen, Germany) actin staining, using a 1:1000 dilution in 1% BSA 
for 30 min at room temperature. The chambers were again washed ×3 with PBS before the 
administration of a fnal DAPI (Invitrogen, Waltham, MA, USA) nuclear stain for 10 min. 
The samples were washed to remove residual DAPI and then kept hydrated in PBS prior 
to imaging. 

2.4. Laser Scanning Confocal Microscopy 

Laser scanning confocal microscopy (LSM780, Carl Zeiss, Oberkochen, Germany) 
was used for the 3D imaging of cells cultured in a glass substrate and encapsulated in 3D 
Geltrex hydrogel. The cell samples were subject to excitation/emission wavelengths at 
405 nm/410 nm–495 nm and 488 nm/495 nm–620 nm for imaging of the nuclei (DAPI) and 
actin (phalloidin), respectively. The emitted fuorescence signal was recorded using photo-
multiplier tube (PMT) detectors. The optical Z-stacks were acquired using a 63× objective 
(A plan-Apochromat 63×/1.4 Oil immersion, Carl Zeiss, Oberkochen, Germany). The laser 
power, detector gain, and scan speed were optimised to avoid photobleaching. The image 
size was 2048 pixels × 2048 pixels, with a voxel size of 40 nm × 40 nm in the XY-plane, 
and 250 nm in the Z-direction. The images were deconvoluted using the automatic decon-
volution mode with the theoretical point spread function in Huygens Essential software 
(Scientifc Volume Imaging, Hilversum, The Netherlands). Avizo software (Thermo Fisher 
Scientifc, Waltham, MA, USA) was used for 3D visualisation. 

2.5. RNA Sequencing-Sequence Read Archive (SRA) 

NIH Sequence Read Archive (SRA) data were found using the same search terms 
outlined in the study design. SRA data, in the form of RNA sequencing reads produced 
by Illumina NextSeq 500 and Illumina HiSeq 2500, were acquired for re-analysis, and the 
accession IDs are outlined below in Table 2. Briefy, the relevant data, in the form of FASTQ 
fles, were transferred from the SRA database via Amazon Web Services for in-house 
analysis (Table 2)-the full list can be seen in Supplementary Table S1. The corresponding 
scaffolds used in each study were as follows. PRJNA472611 3D cells were embedded in 
agarose; PRJNA564843 cells were grown upon a layer of omental fbroblasts embedded in 
collagen; PRJNA530150 3D cells were grown in Matrigel. 
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Table 2. Accession codes of RNA sequencing of 2D and 3D OvCa cell models. 

Accession Platform Paired Reads 

PRJNA472611 
PRJNA530150 
PRJNA564843 

Illumina HiSeq 2500 
Illumina NextSeq 500 
Illumina NextSeq 500 

24 
32 
36 

The raw RNAseq data were produced using the method previously described to 
standardise the results for comparison [25]. Briefy, TopHat2 (v.2.1.1) was applied to align 
reads to the reference human genome GRCH38 using the ultra-high-throughput short-read 
aligner Bowtie2 (v.2.2.6). Using Samtools (v.0.1.19), applicable replicates were merged 
according to a selection criterion, taking only high-quality mapped reads (<30). Subsequent 
transcript assembly and quantifcation followed using Cuffinks (v.2.2.1). Finally, differen-
tial expression profles were obtained for further analysis using Cuffdiff (v.2.2.1). The false 
discovery rate (FDR) used for the analysis was set at 0.2. 

2.6. RNA Sequencing-Statistical Analysis 

The expression data were analysed in R (v.4.1.0, The R Foundation for Statistical 
Computing, Vienna, Austria) with the R Studio desktop application (v.2022.07.2, RStudio, 
Boston, MA, USA), using specifc libraries for modelling, visualisation, and statistical anal-
yses for the identifcation of differentially expressed genes (DEGs). Similar to our previous 
work, the Pearson correlation coeffcient was applied for the estimation of gene expression 
patterns, and Student’s t-test was utilised to assess statistical signifcance between the 
expression profles (i.e., 2D vs. 3D). Signifcance thresholds were set for a p-value < 0.05. 
For the identifcation of enriched pathways in omics data, pathfndR was employed. For 
visualisation, volcano plots were generated using R package ggplot2 (v.3.3.5). DEGs were 
identifed and isolated for subsequent enrichment analysis. Furthermore, we used the 
OmicsPlayground (v2.8.14, BigOmics Analytics, Bellinzona, Switzerland) online applica-
tion for exploring the transcriptional landscape of ovarian cancer cells grown in 2D and 
various 3D systems using as scaffolds agarose, collagen, and Matrigel [26]. 

2.7. Gene Expression Omnibus (GEO) Array-Statistical Analysis 

Genomic datasets (accession numbers: PRJNA232817 and PRJNA318768) were down-
loaded from the NCBI public repository GEO archive. These OvCa cells were grown 
using the ultra-low attachment and hanging drop techniques. The GEO2R web application 
was accessed to re-analyse the expression data in line with the research questions in this 
study (control 2D samples vs. control 3D samples). The thresholds were again set at a 
p-value < 0.05, FDR = 0.2, and Log2FC > 1, applying the Benjamini and Hochberg proce-
dure for decreasing the false discovery rate. Volcano plots were generated using GEO2R 
(https://www.ncbi.nlm.nih.gov/geo/geo2r/ (accessed on 1 August 2022)). 

2.8. Functional Enrichment Analysis 

The differentially expressed genes (DEGs), identifed through GEO2R and SRA analy-
sis, were then subjected to functional enrichment analysis. Funrich (v.3.1.3) was accessed 
to provide a functional annotation, including associated sites of expression, biological 
processes, and pathways. Enrichment analysis was performed using Omics Playground for 
the functional comparison of the OvCa genes in 2D vs. 3D [26]. 

2.9. Presentation of Data and Statistical Analysis 

Global distribution infographics were generated using R (v.4.1.0) in R Studio (v.2022.07.2) 
along with ggplot2 (v.3.3.6), maps (v.3.4.0), and world map data from Natural Earth (0.1.0). 
Subsequent comprehensive background analysis and graphs pertaining to the publication data, 
cell-line frequency, and associated characteristics were generated using GraphPad Prism9® 

(v.9.4.1-GraphPad Software, Inc., San Diego, CA, USA). The statistical reliability of the Omics 

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://v.0.1.19
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Playground data was ensured through the incorporation of Spearman’s rank correlation, 
GSVA, ssGSEA, GSEA, and the Fisher exact test. 

3. Results 
3.1. Three-Dimensional Ovarian Cancer Models 
3.1.1. Literature Overview 

The geographical spread of the ffty studies selected suggests that the United States of 
America (USA) is the top publisher of 3D OvCa modelling, with over 50% of the research 
accessed originating from the USA. China, Italy, Korea, and the UK follow, with the majority 
of the work originating from Europe or North America (Figure 2A,B). 
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country 2012–2022. (C) Top cell lines used for 3D ovarian cancer (OvCa) in the literature. (D) Trends 
between the distribution of cell models against actual global rates (white) pertaining to OvCa subtype 
(grey). (E) Genome ancestry of cell lines used (grey), contrasted with actual global OvCa ethnicity 
rates (white) (2012–2022). (F) The ten most frequently used scaffolds for supporting the growth of 
OvCa cells (circa 2012–2022) selected from the publication corpus analysed. 
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To achieve 3D cultures, cell lines are grown in a fabricated ECM, also known as a 
scaffold. In the literature, the most commonly used scaffolds for 3D OvCa growth are pre-
coated low-attachment plates, followed by Matrigel, the hanging drop method, and plant-
based hydrogel (Figure 2F). Over 43 unique OvCa cell lines have been utilised throughout 
the studies (Figure 2C). The top 10 represent an array of OvCa subtypes (Figure 2D). The 
ovarian carcinoma cell line SKOV-3 is the most frequent in the literature, appearing in 
19 instances. The trend of studies focusing on OvCa subtypes was compared with the actual 
global incidence rates. For epithelial OvCa, the cell models used follow a similar trend 
of frequency to actual global incidences, with HGSOC being the most prevalent form of 
OvCa and also the most studied. Of note, stromal sex cord and granulosa OvCa comprise 
10% of global cases; however, no 3D models were found in the studied literature. The 
genomic ancestry of the cell lines is often overlooked; however, given the disparity in care, 
the backgrounds of the cell lines used were also sourced (Figure 2E). A disproportionate 
number of cell lines used are either White (N = 80) in origin or are considered unclassifed 
i.e., there are no available data (N = 30). 

3.1.2. Differentially Expressed Genes 

The data accessed through SRA and GEO were screened for OvCa cells grown in 
2D and 3D under similar conditions. Three separate studies were chosen, encompassing 
19 cellular models grown under normal conditions in agarose, Matrigel, and collagen-based 
scaffolds. All cell lines grown in 3D showed differential gene expression when contrasted 
with the same cell lines under the same conditions but grown in 2D (Figure 3). The number 
of statistically signifcant differentially expressed genes (DEGs) with p < 0.05 between the 
2D and 3D cultures ranged between 234 in PEO1 and 1429 in the OVCAR5 cell line. 

The HGSOC OVCAR8 appeared in all three studies with different accompanying 
scaffolds: Matrigel, agarose, and collagen. Additional analysis explored the effects of the 
different scaffolds on the genetic profle of these cells (Figure 4). All conditions infuenced 
the differential regulation of OVCAR8’s transcriptional profle. A total of 13 DEGs were 
identifed (Table 3) based on their common dysregulation among scaffolds when grown 
in 3D. Similarly, these genes were seen to feature highly in the other 3D models, e.g., the 
dysregulation of ANGPTL4 appeared in 12/19 of the studies. When comparing the DEGs 
identifed in the OVCAR8 cells grown in 2D and 3D, eight were found to be common 
regardless of their scaffold type (Figure 4 and Table 3). 

Table 3. OVCAR8 genes commonly differentially regulated in 3D conditions grown on agarose, 
collagen, and Matrigel compared to 2D cultures. 

Common 
3D vs. 2D Datasets Scaffold 

Specifc Datasets 

DDIT4 12 RP11-13K12.2 0 
ANGPTL4 15 EEF1A1P9 0 
SELENBP1 7 EEF1A1P12 0 
SULF1 6 TENM2 5 
GAL3ST1 7 RP11-297P16.4 3 
TNFAIP3 9 GGT1 1 
LLNLR-263F3.1 4 IFI44 5 
MUC12 4 CXCL2 3 

KIF1A 2 
AC003092.1 3 
INHBA 6 
RP13-143G15.4 7 
GREM1 3 
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OVCAR3 HGSOC; (F) OVCAR4 HGSOC; (G) OVCAR5 HGSOC; (H) OVCAR8 HGSOC; (I) 
OVCAR10 HGSOC; (J) PEO1 HGSOC; (K) SKOV-3 carcinoma; (L) UPN275 mucinous adenocarci-
noma (MAC); (M) Kuramochi HGSOC; (N) OVCAR4 collagen HGSOC; (O) OVCAR8 Matrigel 1 
HGSOC; (P) OVCAR8 Matrigel 2 HGSOC; (Q) OVCAR8 collagen HGSOC. (R) HEY HGSOC; (S) 
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The HGSOC OVCAR8 appeared in all three studies with different accompanying 
scaffolds: Matrigel, agarose, and collagen. Additional analysis explored the effects of the 
different scaffolds on the genetic profile of these cells (Figure 4). All conditions influenced 
the differential regulation of OVCAR8’s transcriptional profile. A total of 13 DEGs were 
identified (Table 3) based on their common dysregulation among scaffolds when grown 
in 3D. Similarly, these genes were seen to feature highly in the other 3D models, e.g., the 
dysregulation of ANGPTL4 appeared in 12/19 of the studies. When comparing the DEGs 

Figure 3. Differentially expressed genes (DEGs) detected by RNA sequencing analysis of OvCa cell 
lines grown in 2D compared to 3D. (A–Q) show data extracted from RNAseq experiments; (R,S) show 
data extracted from microarrays. Signifcance thresholds for (A–Q) were set at NS > 0.05 = grey/black, 
* p < 0.05 = blue, ** p < 0.01 = red, *** p < 0.001 = green, and **** p < 0.0001 = purple. 
(R,S) p-value threshold = 0.05; NS data are shown in black. (A–L) have agarose as scaffold, (M,N) are 
Matrigel, (O–Q) are collagen, (R) is hanging drop, and (S) is low-attachment. (A) A1847 endometrioid 
carcinoma of the ovary (EAC); (B) A2780 EAC; (C) C30 carcinoma; (D) C70 carcinoma; (E) OVCAR3 
HGSOC; (F) OVCAR4 HGSOC; (G) OVCAR5 HGSOC; (H) OVCAR8 HGSOC; (I) OVCAR10 HGSOC; 
(J) PEO1 HGSOC; (K) SKOV-3 carcinoma; (L) UPN275 mucinous adenocarcinoma (MAC); (M) Ku-
ramochi HGSOC; (N) OVCAR4 collagen HGSOC; (O) OVCAR8 Matrigel 1 HGSOC; (P) OVCAR8 
Matrigel 2 HGSOC; (Q) OVCAR8 collagen HGSOC. (R) HEY HGSOC; (S) IGROV1 EAC. 
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3.1.3. The Impact of Scaffold and 3D Setup Compared to 2D Cultures on the Genetic Pro-
file of OvCa Cells 

We explored the transcriptional landscape of 2D and 3D cultures using three different 
scaffolds (agarose, collagen, and Matrigel) for the OVCAR8 cell lines. 

The cells grown in 3D on Matrigel and agarose and those grown on a basement layer 
of normal omental fibroblasts embedded in collagen were compared with standard 2D 
monolayer cultures (Figure 5). The expression profiles of the top 150 DEGs with respect 
to the growth conditions are shown in Figure 5A (Supplementary Table S2). This gene set 
shows a large variability across the four growth conditions. Initial observations revealed 

Figure 4. Differentially expressed genes seen in OVCAR8 grown in 3D. (A) Agarose vs. colla-
gen; (B) Matrigel vs. agarose; (C) Matrigel vs. collagen. Threshold set at p < 0.05. (D) Common 
genes differentially expressed in OVCAR8 grown in 3D vs. 2D. (E) Common genes among (A–C); 
M: Matrigel, C: collagen, A: agarose. * p < 0.05 = blue, ** p < 0.01 = red, *** p < 0.001 = green, and 
**** p < 0.0001 = purple. NS > 0.05 = grey/black. 

3.1.3. The Impact of Scaffold and 3D Setup Compared to 2D Cultures on the Genetic Profle 
of OvCa Cells 

We explored the transcriptional landscape of 2D and 3D cultures using three different 
scaffolds (agarose, collagen, and Matrigel) for the OVCAR8 cell lines. 

The cells grown in 3D on Matrigel and agarose and those grown on a basement layer 
of normal omental fbroblasts embedded in collagen were compared with standard 2D 
monolayer cultures (Figure 5). The expression profles of the top 150 DEGs with respect 
to the growth conditions are shown in Figure 5A (Supplementary Table S2). This gene set 
shows a large variability across the four growth conditions. Initial observations revealed a 
high degree of similarity in the gene expression between the samples grown in agarose and 
Matrigel. The collagen samples, however, show an expression profle that diverges from 
the 2D expression profle to a lesser extent than the OVCAR8 grown on other scaffolds. 
T-SNE analysis (Figure 5B) recapitulated these observations, showing a partial clustering of 
the 3D profles, with the collagen 3D cultures standing out and showing the highest level 
of similarity to the 2D culture experiments. The top functional groups of the differentially 
regulated genes included key metabolic pathways, such as glycolysis (Figure 5C). 

Next, we explored the genes’ transcriptional signatures in the three scaffolds and the 
2D control experiments. We clustered the genes based on their pairwise co-expression 
scores and visualised them using a uniform manifold approximation and projection di-
mensionality reduction technique (UMAP) (see Figure 6A). We found localised phenotypic 
clustering patterns in the OvCa embedded in collagen and agarose, with less variance in the 
phenotypic expression recorded for the samples grown in Matrigel when compared to 2D. 
Moreover, the Matrigel cultures showed an inverted gene expression signature compared 
to the 2D control experiments. Similarly, we analysed the cancer hallmark sets with the 
DEGs of OVCAR8 grown in 2D compared to 3D data (see Figure 6B). Processes with high 
covariance included: K-Ras signalling, angiogenesis, interferon alpha and gamma response, 
TNF alpha signalling, and epithelial-mesenchymal signalling. 
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bour embedding (T-SNE) plot of the genetic profiles of the HGSOC OVCAR8 grown in Matrigel (at 
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analysis of the top 150 differentially regulated genes between 2D and 3D growth conditions, show-
ing key biological pathways associated with them. 

Next, we explored the genes’ transcriptional signatures in the three scaffolds and the 
2D control experiments. We clustered the genes based on their pairwise co-expression 
scores and visualised them using a uniform manifold approximation and projection di-
mensionality reduction technique (UMAP) (see Figure 6A). We found localised pheno-
typic clustering patterns in the OvCa embedded in collagen and agarose, with less vari-
ance in the phenotypic expression recorded for the samples grown in Matrigel when com-
pared to 2D. Moreover, the Matrigel cultures showed an inverted gene expression signa-
ture compared to the 2D control experiments. Similarly, we analysed the cancer hallmark 
sets with the DEGs of OVCAR8 grown in 2D compared to 3D data (see Figure 6B). 

Figure 5. OVCAR8 transcriptional profile in 2D vs. 3D. (A) Top 150 differentially regulated genes from 
OVCAR8 grown under 2D and 3D conditions. Data originating from 3 unique studies, encompassing 
4 growth conditions. Three-dimensional cells grown in Matrigel, collagen, and agarose. Two-dimensional 
cells grown under standard lab conditions as matched controls to each 3D experiment. The gene name list 
is available in Supplementary Table S2. (B) T-distributed stochastic neighbour embedding (T-SNE) plot 
of the genetic profiles of the HGSOC OVCAR8 grown in Matrigel (at 7 and 14 days-triangle), collagen 
(square), agarose (circle), and monolayer (stars). (C) Functional analysis of the top 150 differentially 
regulated genes between 2D and 3D growth conditions, showing key biological pathways associated 
with them. 

3.1.4. Functional Enrichment-2D vs. 3D 

A panel of genes was identifed as commonly dysregulated in 3D cultures compared to 
2D growth conditions. The cumulative 3D data encompassed OVCAR8 grown on Matrigel, 
agarose, and collagen, while the control data were composed of the experiments using 
2D growth conditions. The following genes showed statistically signifcant differential 
expression (p < 0.05): C3, CXCL1, CXCL8, IL1B, SLPI, FN1, IL6, DDIT4, PI3, LAMC2, CCL20, 
MMP1, IFI27, CFB, ANGPTL4, and CXCL2 (Figure 7). Furthermore, gene set enrichment 
analysis revealed that when grown in 3D, many processes associated with the hallmarks of 
cancer were also differentially regulated (Supplementary Figure S1). Key processes that 
often show enhanced presentation in 3D growth, such as angiogenesis, apoptosis, and 
hypoxia, all exhibited enrichment as well. 
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Figure 6. Gene and phenotypic hallmark signature profles. (A) UMAP clustering of genes coloured 
by relative log-expression in four growth conditions: agarose, collagen, Matrigel, and 2D controls. 
The distance metric is covariance. Genes that are clustered nearby have high covariance. (B) UMAP 
hallmark covariance using OVCAR8 grown in 2D and combined 3D data. Clustering of associated 
hallmarks. Processes upregulated in 3D are indicated in red. Downregulated are indicated in blue. 
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While these eight biomarker candidates showed the highest importance scores, a variety 
of other genes showed scaffold-specific expression as well (Figure 8H), suggesting that a 
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3.1.5. Scaffold-Specifc Biomarkers-2D vs. 3D 

Next, we examined the transcriptional landscape to identify the potential biomarkers 
of growth conditions (Figure 8). For this, we used a variety of machine learning algorithms 
as implemented in OmicsPlayground v2.8.10 to compute a cumulative importance score 
for all DEGs. The results highlight eight key genes that can be used as predictive scaffold 
biomarkers (Figure 8A). Specifcally, the cells grown in agarose showed condition-specifc 
expressions of four genes: C3, MMP1, IL1B, and CCL20. Three potential markers of the cells 
grown in collagen were identifed, namely the interferons IFI44L and IFI27, and COL3A1. 
Matrigel was represented with only one signifcant growth marker: DDIT4. While these 
eight biomarker candidates showed the highest importance scores, a variety of other genes 
showed scaffold-specifc expression as well (Figure 8H), suggesting that a number of gene 
panels can be created to evaluate the impact of growth conditions on the genomic biology. 
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expression-specifc profling for each condition. (I) Biomarker heatmap: expression heatmap of 
top gene features according to their variable importance score. Importance scores were calculated 
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extreme gradient boosting. 

3.1.6. Cell Line Specifcity Impact on Scaffold Selection 

Following the analysis of the impact of the scaffold and the 3D vs. 2D environment 
on the transcriptional landscape of ovarian cancer cell lines, we looked at the differential 
expression patterns among various cell lines grown on agarose and collagen scaffolds. As 
expected, we found a good separation of the cell line gene expression characteristics on 
both scaffolds (Figure 9A,B) using the top 150 differentially expressed genes. Most cell 
lines also showed fair discrimination between the 2D and 3D cultures on agarose and good 
segregation among the cancer subtypes (Figure 9C). However, A1847, OVCAR3, OVCAR4, 
and SKOV-3 on agarose and all cells on collagen (Kuramochi, OVCAR4, and OVCAR8) 
showed poor differentiation between the growth conditions, suggesting that these scaffolds 
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are potentially not optimal for recapitulating the tumour environment more accurately 
than the classical 2D cultures in these cell lines. 
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Figure 9. Cell-line-specific transcription in agarose and collagen. (A,B) T-SNE plot of the genetic 
profiles of cell lines grown in agarose and collagen, respectively, against a 2D control. (C) Umap 
plot of the transcriptional profile of cancer subtypes in agarose vs. 2D control. (D) Functional anal-
ysis of the top 150 differentially regulated genes between 2D and 3D growth conditions, showing 
key biological pathways associated with them for agarose and collagen; the list of genes is shown in 

Figure 9. Cell-line-specific transcription in agarose and collagen. (A,B) T-SNE plot of the genetic profiles 
of cell lines grown in agarose and collagen, respectively, against a 2D control. (C) Umap plot of the 
transcriptional profile of cancer subtypes in agarose vs. 2D control. (D) Functional analysis of the 
top 150 differentially regulated genes between 2D and 3D growth conditions, showing key biological 
pathways associated with them for agarose and collagen; the list of genes is shown in Supplementary 
Table S2. (E) Similarity of gene differential expression in OVCAR4 vs. OVCAR8 in collagen vs. agarose. 
(F–H) The top 8 environment biomarkers for cell lines grown in agarose (F,H) and collagen (G). 
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Functional analysis reflected the diversity of the cell lines grown on each scaffold 
(Figure 9D). With sex hormones, specific pathways characterised the agarose cultures, while 
cell growth, development pathways, and fatty acid metabolism were the dominant features 
of the collagen-grown cell lines. The scaffold impact on cell-line specificity was explored by 
comparing the differentially expressed genes between OVCAR4 and OVCAR8 in agarose and 
collagen (Figure 9E). We found that there was a good level of correlation between the gene 
expression fold changes of the two cell lines for agarose and collagen. Of the top differentially 
expressed genes, three, SLC34A2, LY6K, and BMP7, showed the same level of dysregulation 
between OVCAR8 and OVCAR4 in both growth conditions. However, we also identified 
13 genes that showed a scaffold-specific differential expression pattern between the two cell 
lines: MMP7, LAMA3, IGFL1, S100A14, ELF3, CYGB, ITGB6, DKK1, TACSTD2, IL7R, LGALS13, 
IFI6, and FOXD1 were collagen-specific, and IL1B, MMP1, CP, UBB, NUPR1, SCGB2A1, 
GPNMB, IGFBP2, GDF15, CCL20, CYP1A1, VTCN1, and KRT19 were agarose-specific. 

Finally, the differential expression patterns identifed a set of genes that showed a cell, 
a tumour subtype, and scaffold-specifc behaviour and can be used as growth environment 
biomarkers (Figure 9F–H). 

3.1.7. Recapitulation of 3D OvCa Using GelTrex 

Leveraging the lessons learned from the study of the transcriptional landscape of 
OvCa cell lines in different conditions, we attempted to capture the phenotypic changes 
in vitro between the 2D and 3D cultures. For this, we grew SKOV-3 cells in 3D using 
the hydrogel-based scaffold GelTrexTM. Hydrogel was chosen as it encompasses one of 
the most common scaffolds in the literature, and it is not animal-derived. In addition, 
this work sought to assess the ease of using a non-established methodology for in-house 
recapitulation. As such, hanging drop and ultra-low-attachment plates were not included, 
as their use with OvCa is well established in the literature. 

Figure 10 shows the growth of cells over the course of a 9-day period. Here, we adopted 
a simplistic approach and used a previously tried and tested gel known as GelTrexTM. 
Following the embedding process, the cells began to aggregate and form spheroid-like 
structures [27]. These structures maintained their circularity and continued to expand in 
volume as time progressed. 
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showing a single plane of cells across a flat glass substrate. (D-F) Three-dimensional cells: nuclei 
(pink), phalloidin (green), and overlay showing aggregated spheroids with multiple nuclei. The 
scale bar is 20 µm. Daily snapshots of the growth of SKOV-3 cells from day 2 to day 9 are shown in 
Supplementary Figure S2. 
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systems and the associated TME. In this meta-analysis, we examined the impact of various 
scaffolds on the transcriptomic landscape of ovarian cancer cell lines, as well as the differ-
ences arising from 3D cultures compared to the classical 2D approaches. 

The initial literature survey pointed out the USA as the spearhead of 3D culture re-
search in cancer, covering over 50% of the published output in the field. Similar to what 
has been observed in 2D cultures, immortalised cell lines take the forefront with SKOV-3 
as the most frequently used option, while primary patient samples are used at a reduced 
rate. Additional cell lines used include OVCAR3, A2780, PEO1, and OVCAR8. The cell 
line distribution highlights a strong bias towards White European Ancestry. The percent-
age of East Asian 3D models in the literature is even lower despite the associations with 
early disease onset in Asian women [28], recapitulating the need for engaging ethnic pop-
ulations in cancer research. 

Further analysis showed that the associated subtypes of the cell lines used align 
closely with the trend seen in the actual global incidence rates of OvCa subtypes. HGSOC 
is the most frequent of the epithelial OvCa subtypes, encapsulating 70% of global cases 
[29], and making this subtype a prime dataset to study in this work assessing the variabil-
ity in 3D cultures with respect to classical 2D experiments. It must be noted, though, that 
in vitro work requires long-term investment, with relevant models, especially in OvCa, a 
commodity. With the advancement of tissue culture techniques towards more physiolog-
ically relevant systems, however, researchers must strive to use validated and up-to-date 

Figure 10. SKOV-3 cells grown for 9 days in conventional monolayer formation compared with 
those embedded in GelTrexTM. (A–C) Monolayer cells: nuclei (pink), phalloidin (green), and overlay 
showing a single plane of cells across a fat glass substrate. (D–F) Three-dimensional cells: nuclei 
(pink), phalloidin (green), and overlay showing aggregated spheroids with multiple nuclei. The 
scale bar is 20 µm. Daily snapshots of the growth of SKOV-3 cells from day 2 to day 9 are shown in 
Supplementary Figure S2. 
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4. Discussion 

As OvCa is one of the most lethal gynaecological malignancies, there is a clear need 
for robust models that will help uncover the molecular mechanisms underpinning the 
disease development, growth, metastasis, and even potential therapeutic responses. Cancer 
modelling over the decades has progressed from crude anatomy to in vitro cultures, in vivo 
animal models, and now, in vitro 3D cultures capable of recapitulating in vivo systems and 
the associated TME. In this meta-analysis, we examined the impact of various scaffolds on 
the transcriptomic landscape of ovarian cancer cell lines, as well as the differences arising 
from 3D cultures compared to the classical 2D approaches. 

The initial literature survey pointed out the USA as the spearhead of 3D culture 
research in cancer, covering over 50% of the published output in the feld. Similar to what 
has been observed in 2D cultures, immortalised cell lines take the forefront with SKOV-3 
as the most frequently used option, while primary patient samples are used at a reduced 
rate. Additional cell lines used include OVCAR3, A2780, PEO1, and OVCAR8. The cell line 
distribution highlights a strong bias towards White European Ancestry. The percentage 
of East Asian 3D models in the literature is even lower despite the associations with early 
disease onset in Asian women [28], recapitulating the need for engaging ethnic populations 
in cancer research. 

Further analysis showed that the associated subtypes of the cell lines used align closely 
with the trend seen in the actual global incidence rates of OvCa subtypes. HGSOC is the 
most frequent of the epithelial OvCa subtypes, encapsulating 70% of global cases [29], and 
making this subtype a prime dataset to study in this work assessing the variability in 3D 
cultures with respect to classical 2D experiments. It must be noted, though, that in vitro 
work requires long-term investment, with relevant models, especially in OvCa, a com-
modity. With the advancement of tissue culture techniques towards more physiologically 
relevant systems, however, researchers must strive to use validated and up-to-date cell 
lines or note their limitations in disease modelling to maintain reliable and repeatable data. 

In this study, we also demonstrated how scaffolds recapitulate the ECM necessary 
for cell differentiation and the growth of 3D structures [23]. In OvCa modelling, where 
a 2D counterpart has been used for comparison, the most frequent scaffolds utilised by 
researchers are Matrigel, hanging drop, low-attachment plates, and hydrogel. 

Hanging drop is particularly useful for assessing diffusion gradients in an accessible 
format [30]. In terms of OvCa, this method has been utilised in toxicity screening assays 
for monitoring chemoresistance in drugs, such as cisplatin and Niraparib [17,31]. Grown 
in ultra-low-attachment plates, OvCa cells show altered mitochondrial function through 
augmented extracellular acidifcation rates [32]. Re-sensitisation to treatments in cell 
lines previously thought resistant is also evident using this method, with a number of 
BRCA wildtype epithelial OvCa cell lines responding to platinum-based therapeutics 
and showing an increased rate in apoptosis [33]. Cultures such as those arising from 
ovarian malignancies and grown in Matrigel often maintain histological features, genetic 
profles, and intra-tumoral heterogeneity, similar to the in vivo tumour [34]. Matrigel has 
also proven to be an effective model of early-stage angiogenesis in an array of cancers, 
including HGSOC [16]. It must be noted that 3D cultures are often chosen to support the 
principles of replacement, reduction, and refnement (the 3Rs) towards the more ethical 
use of animals [35,36]. This was further underpinned by our in vitro studies, where we 
used a non-animal derivative (GelTrex) to grow SKOV-3 cells in 3D. Interestingly, OvCa cell 
migration, cell communication, and chemotherapeutic response have all been successfully 
modelled using hydrogel, a plant-based alternative to animal-derivative scaffolds. Here, 
cultures showed greater similarity to in vivo mouse models and clinical data than those of 
2D cultures [37]. 

Leveraging the data from the Gene Expression Omnibus (GEO) and the Sequence Read 
Achieve allowed us to create a detailed picture of the genomic landscape of ovarian cancer 
cell lines in 3D cultures using three distinct scaffolds: Matrigel, agarose, and collagen. All 
OvCa cell lines showed a high level of differential regulation, with an average of 551 DEGs 
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per dataset ranging from 234 DEGs as the minimum and 1429 DEGs as the maximum. The 
HGSOC cell line OVCAR8 used across multiple studies allowed us to identify key genes 
and biological processes that are hallmarks of 3D cultures as well as potential biomarkers of 
the growth environment for the examined scaffolds. Specifcally, our analyses highlighted a 
set of 8 genes, namely DDIT4, ANGPTLA, SELENBP1, SULF1, GAL3ST1, TNFAIP3, LLNLR-
263F3.1, and MUC12, which showed statistically signifcant differential expression patterns 
in the 3D systems compared to 2D, irrespective of the scaffold used. Furthermore, 13 genes 
showed an environment-specifc expression pattern. The top 16 DEGs between 3D and 2D 
OVCAR8 were also identifed. Of note, many of the genes identifed are key regulators of 
infammation and immune response, such as C3, CXCL8 (IL-8), SLPI, CXCL1, CXCL2, ILI 
beta, IL6, CCL20, IFI27, and CFB [38–40]. Furthermore, many of the top genes also show 
structural importance in the ECM, e.g., LAMC2, PI3, FN1, and MMP1. Dysregulation of 
the matrix metalloproteinase, MMP1, is associated with basement membrane degradation 
and subsequent peritoneal dissemination in OvCa and is correlated with poor patient 
prognosis [41]. The remaining DEGs, DDIT4 and ANGPTL4, were recently identifed 
as candidate genes for the prediction of survival outcomes in lung cancer and OvCa 
patients [42,43]. 

The functional enrichment scores of OVCAR8 cells grown in Matrigel, agarose, and 
collagen compared to the standard 2D monolayer controls presented a unique expression 
profle, with close relations seen among the 2D samples. However, the 3D collagen OVCAR8 
cells expressed a higher degree of variability compared to the other 3D OVCAR8 cells, 
which showed comparatively similar profles. An earlier study suggested that this model 
is more similar to the in vivo environment as it captures 3D growth alongside omental 
fbroblasts [44]. 

The top biological processes associated with the DEGs identifed between the 2D and 
3D include glycolysis, KRAS signalling, coagulation, TNF alpha signalling via NF-κB, and 
complementary and infammatory response. These processes are frequently altered in 
cancer and are often diffcult to model in 2D systems [21]. Glycolysis, in particular, is 
often augmented in cancer cells, with increased utilisation of this pathway indicative of the 
Warburg effect [45]. Similar metabolic changes are also evident in 3D colorectal cancer cells 
when compared to 2D [22]. The inclusion of these processes in the data verifes numerous 
studies where 3D cells have been shown to express more biological relevance to in vivo 
systems than 2D cell cultures through the expression of pathways typically associated with 
in vivo environments [22,46–48]. 

Furthermore, some cancer-related hallmarks were also highlighted as differentially 
regulated in the 3D OvCa cells when compared to the 2D samples. Hallmarks of partic-
ular interest include apoptosis, oxidative phosphorylation, MYC pathways, ROS, EMT, 
KRAS signalling, angiogenesis, and hypoxia. Numerous studies have shown that the 3D 
environment infuences these key cancer pathways [22]. Here, we show that regardless 
of the scaffold, the processes were still heavily infuenced when grown in 3D. Apoptosis, 
EMT, KRAS signalling, hypoxia, and angiogenesis were some of the key cancer-associated 
processes enhanced in 3D growth. Additional processes included complementary and 
infammatory response pathways, which are important factors of tumour immune evasion. 
Another pathway often seen in cancers is IL6-JAK-STAT3, which is a proliferative driver 
often implicit in OvCa angiogenesis and tumour metastasis [49]. 

Moreover, based on the expression profle of the OVCAR8 cells grown in 3D vs. 2D, we 
identifed a panel of genes specifc to OVCAR8 when grown in different gel-based scaffolds 
using the Omics Playground importance score ranking [26]. The expression profle of 
these genes was unique to the specifc scaffold when compared to the 2D OVCAR8. The 
biomarkers specifc to OvCa cells grown in agarose compared to 2D include: C3, MMP1, 
ILIB, and CCL20. The three biomarkers identifed for collagen include: IFI27, COL3A1, 
and IFI27. Matrigel, however, only showed one unique marker, DDIT4 a stress-included 
regulator of mTOR previously mentioned for its association with progression-free survival 
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in OvCa [43]. Future work should explore the relevance of these markers and the infuence 
they have on the OvCa TME. 

Next, we explored the impact of the cell line on various scaffolds and showed that 
there is a close relationship between the two, suggesting that in order to recover the tissue-
specifc behaviour in a model 3D culture, a lot of care must be given to the choices of 
cell line and scaffold in order to remove potential experimental biases. Furthermore, the 
condition-specifc gene expression patterns suggest that a number of genes can be used 
as environment biomarkers. Finally, we explored the impact of transcriptional changes 
in real time by looking at phenotypic changes in cells grown in 3D vs. 2D cultures. Our 
experiments have shown that SKOV-3 cells grown in hydrogel are clustering to form 
simple spheroids, precursors of higher-order organoid formations. Moreover, similar 
spheroid formations were also observed to be formed by malignant cells shed from ovarian 
tumours [50], highlighting the importance of studies on 3D cultures and spheroids in cancer. 

Regarding the in vitro study, it should be noted that there was an attempt to recreate 
the 3D cultures using our own experimental setup, in addition to the published in silico 
data. To the best of our knowledge, no study has used the SKOV-3 cell line and GelTrex as a 
scaffold for a 3D cell culture. Therefore, we provide further evidence that a serous ovarian 
cancer cell line that is mutant for P53 and exhibits ‘BRCAness’ can also form spheroid-like 
structures using GelTrex. However, there are certain limitations of this study, as it lacked 
changes in the differentially expressed genes in hydrogel-cultured 3D vs. 2D cells. Future 
studies should identify any changes in the expression of scaffold-specifc genes, EMT, 
cytokines, or DEGs that have been obtained from in silico studies. 

Overall, our research has shown that modelling ovarian cancer is a complex and 
diffcult task, and while 3D cultures have been shown to sometimes more closely refect 
the natural environment, our study shows that similar to earlier analyses in other female 
cancers [51], in ovarian cells, the choice of growth medium can indeed impact the genome 
function and activity. 

5. Conclusions 

In summary, this meta-analysis assessed the current landscape of 3D OvCa models in 
the literature and provided a complex expression profle of OvCa cells grown in 3D. Our 
transversal comparison of various scaffolds allowed us to highlight the variability that can 
be induced by various scaffolds in the transcriptional landscape and identify key genes and 
biological processes that are hallmarks of cancer cells grown in 3D cultures. Moreover, the 
identifcation of transcriptional signatures that show genes’ specifcity in cell lines, tumour 
subtypes, and scaffolds, and are defned as growth environment biomarkers will allow us 
to monitor, in the future, the suitability of 3D cultures to recapitulate tissue complexity. 
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expressed genes in OVCAR8 in all three grown media: grown on agarose, collagen, Matrigel. The 
differential expression in each of the growth media is with respect to 2D controls of the OVCAR8; (B) Top 
150 differentially expressed genes across the cell lines A1847, A2780, C30, C70, OVCAR3, OVCAR4, 
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