
 

 

 

   

   
  

    
  

  
 
  

   
  
  

  
 

  

      
 

 
  

             
        

        
        

            
            

    
  

     
         
           
        

 

Entanglement in the quantum spherical 
model: a review 
Wald, S., Arias, R. & Alba, V 
Author post-print (accepted) deposited by Coventry University’s Repository 

Original citation & hyperlink: Wald, S, Arias, R & Alba, V 2023, 'Entanglement in the 
quantum spherical model: a review', The European Physical Journal Special Topics, vol. (In-
Press), pp. (In-Press). https://doi.org/10.1140/epjs/s11734-023-00891-9 

DOI 10.1140/epjs/s11734-023-00891-9 
ISSN 1951-6355 
ESSN 1951-6401 

Publisher: Springer 

The final publication is available at Springer via 
http://dx.doi.org/10.1140/epjs/s11734-023-00891-9 

Copyright © and Moral Rights are retained by the author(s) and/ or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This item cannot be 
reproduced or quoted extensively from without first obtaining permission in 
writing from the copyright holder(s). The content must not be changed in any way 
or sold commercially in any format or medium without the formal permission of 
the copyright holders. 

This document is the author’s post-print version, incorporating any revisions 
agreed during the peer-review process. Some differences between the published 
version and this version may remain and you are advised to consult the published 
version if you wish to cite from it. 

https://doi.org/10.1140/epjs/s11734-023-00891-9
http://dx.doi.org/10.1140/epjs/s11734-023-00891-9


Entanglement in the Quantum Spherical Model - a 
Review 

Sascha Wald1,2 , Raul Arias3 , and Vincenzo Alba4 

1Statistical Physics Group, Centre for Fluid and Complex Systems, Coventry 
University, Coventry, England 
2 L4 Collaboration & Doctoral College for the Statistical Physics of Complex 
Systems, Leipzig-Lorraine-Lviv-Coventry, Europe 
3Instituto de F́ısica La Plata - CONICET and Departamento de F́ısica, Universidad 
Nacional de La Plata C.C. 67, 1900, La Plata, Argentina 
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Abstract. We review some recent results on entanglement in the Quantum Spherical 
Model (QSM). The focus lays on the physical results rather than the mathematical 
details. Specifcally, we study several entanglement-related quantities, such as 
entanglement entropies, and logarithmic negativity, in the presence of quantum and 
classical critical points, and in magnetically ordered phases. We consider both the short 
as well as the long-range QSM. The study of entanglement properties of the QSM 
is feasible because the model is mappable to a Gaussian system in any dimension. 
Despite this fact the QSM is an ideal theoretical laboratory to investigate a wide 
variety of physical scenarios, such as non mean feld criticality, the efect of long-
range interactions, the interplay between fnite-temperature fuctuations and genuine 
quantum ones. 
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1. Introduction 

Quantifying entanglement in strongly interacting many-body systems has become an 
important research theme in recent years, and has provided useful insights to understand 
the structure of quantum correlations [1, 2, 3, 4, 5]. In principle, quantum states 
are entangled whenever they cannot be written as a product state. A plethora of 
entanglement witnesses has been introduced to quantify the extent to which quantum 
states are entangled. Widely used tools that play an important role in entanglement 
studies comprise, amongst others: Rényi entropies, the mutual information, the 
entanglement negativity, and the entanglement spectrum. We shall introduce these 
quantities in Sec. 3 in more detail. It is important to note that there is not a single 
entanglement quantifer that works for all setups and systems, refecting the intricacy 
of quantum entanglement in many-body systems. 

Crucially, the study of entanglement in many-body systems heavily relies on 
numerical simulations that are quite demanding, even with modern computing hardware. 
Thus, obtaining reliable scaling predictions or extracting qualitative behaviors in the 
thermodynamic limit is challenging and often not attainable. Similar to the study of 
continuous phase transitions, a viable option to overcome computational limitations is 
to study simplifed systems that allow for analytical investigations and predictions [6]. 
The spherical model [7, 8, 9, 10] has frmly established itself as a reference system 
whenever investigations in generic many-body systems prove to be challenging. The 
spherical model and its quantum formulation [9, 10, 11, 12, 13] are analytically solvable 
in a variety of scenarios, including arbitrary spatial dimension, temperature and external 
felds. Moreover, the model possesses a phase transition separating a paramagnetic from 
a ferromagnetic phase that is generally not in the mean-feld universality class. 

Not surprisingly, the QSM, and closely-related models, proved to be useful to 
understand entanglement properties of quantum many-body systems [14, 15, 16, 17, 
18, 19, 20, 21]. Crucially, the QSM allows to derive the precise fnite-size scaling of 
entanglement-related quantities, often analytically. This happens because the QSM 
is mappable to a Gaussian bosonic system with a constraint. This implies that 
entanglement properties are obtained from the two point correlation functions [22], 
which are accessible analytically [11, 13]. 

The aim of this review is to give a few examples of the wide variety of physical 
scenarios where the behavior of entanglement can be addressed in the controlled setup 
of the QSM, yet retaining the complexity of a quantum many-body system. Hence, 
the common theme throughout this work is the study of entanglement in the QSM 
using diferent entanglement witnesses and diverse analytical and numerical techniques 
to evaluate these. The results that can be obtained in the QSM are remarkable since 
the complexity of the many-body physics is condensed into the solution of a single 
transcendental equation while the system is still Gaussian. This allows for much more 
straightforward analytical and numerical investigations of entanglement properties as 
compared to other strongly interacting systems. Specifcally, here we focus on the main 
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results of Refs. [15, 16, 17, 18] and devote an individual section to the three dimensional, 
the two dimensional and the one dimensional QSM. 

This review is organized as follows. In Sec. 2 we review relevant properties of the 
QSM. In particular, we highlight how the spherical model was conceived, how a quantum 
version is formulated, and sketch how to generally solve the model. Phase diagrams 
of all scenarios considered in this review are also discussed. In Sec. 3 we introduce 
all relevant entanglement-related quantities that we investigate in this work, such as 
the entanglement entropy, the negativity, the entanglement spectrum. We also briefy 
discuss how entanglement quantities are calculated in the QSM. Sections 4, 5, 6 and 7 are 
dedicated to the main results. In Sec. 4 we focus on the interplay between quantum and 
classical fuctuations at fnite temperature criticality in the three-dimensional QSM. 
In particular, we show that the logarithmic negativity is able to distinguish genuine 
quantum correlations from classical ones. In Sec. 5 we explore the entanglement gap 
(or Schmidt gap), which is the lowest laying gap of the so-called entanglement spectrum 
(ES). We consider the zero-temperature QSM in two dimensions. By using dimensional 
reduction, we compute the scaling behavior of the entanglement gap at criticality. In 
Sec. 6 we show that in the ferromagnetic phase the entanglement gap can be written 
in terms of standard magnetic correlation functions, due to the presence of a Goldstone 
mode. Finally, in Sec. 7 we study the entanglement gap in the one-dimensional QSM 
with long-range interactions and at zero temperature. In Sec. 8 we summarize and 
conclude our results. 

2. Quantum spherical model 

The Ising model, see Ref. [23] for an overview, has signifcantly contributed to our 
modern understanding of collective phenomena [6]. Despite its apparent simplicity it 
fnds applications in a wide variety of felds, see, e.g., [24, 25, 26, 27, 28] for a brief list 
that is by no means exhaustive. 

The classical Ising model is analytically solvable in one spatial dimension, see, 
e.g., [29], but it does not possess a phase transition. In two dimensions the model is still 
exactly solvable and it exhibits a fnite temperature transition. The Ising universality 
class of the transition is one of the most studied in statistical physics [30]. Alas, already 
the three dimensional Ising model is not solved analytically to date [31]. 

To overcome this problem, Berlin and Kac in 1952 suggested a generalization of the 
Ising model by replacing the discrete Ising spin degrees of freedom with continuous ones 
with an additional constraint that enforces some of the properties of the original Ising 
degrees of freedom [7]. Specifcally, since each Ising spin on a lattice L satisfes σ2

= 1, it i 

is obvious that ∑i∈L σ
2 
i = V with V being the system volume. Replacing the Ising spins 

→ Si ∈ R, while simultaneously enforcing the with continuous degrees of freedom, i.e., σi 
external constraint ∑i∈L S

2 
i = V yields the original formulation of the classical spherical 

model, see Fig. 1. This classical spherical model is exactly solvable in any dimension and 
supports a fnite temperature phase transition in more than two dimensions d > 2. After 



Entanglement in the Quantum Spherical Model - a Review 3 

++ 

−− 

−+ 

+− 

Ising model 

++ 

−− 

−+ 

+− 

Spherical model 

Figure 1. Illustration of confguration spaces: On the left we show all possible 
confgurations of two Ising spins (vertices of a square). On the right we show the 
extension of the confguration space to two spherical spins. 

the paper of Berlin and Kac, later in the same year it was shown that the strict spherical 
constraint can be relaxed to be only satisfed on average, i.e., ∑i∈L ⟨Si 

2
⟩ = V , without 

afecting the universal bulk behavior of the model [8]. Interestingly, the spherical model 
is related to more realistic spin systems like the O(N) Heisenberg model in the limit 
N →∞ of infnite spin dimensionality [32]. 

The spherical model with the average constraint admits also a quantum 
generalization [9, 10, 11, 12, 13]. The Hamiltonian of this quantum spherical model 
(QSM) reads 

(

g 2 
+ 
1 2H = ∑ pn ∑ unmxnxm) , with ∑ ⟨xn⟩ = V. (1)

2 2n∈L m∈L n∈L 

Here the classical spin degrees of freedom Si are replaced by position operators xi, and 
associate momentum operators pi were introduced which satisfy [xn, pm] = ihδ̵ 

nm. We 
consider L as a d dimensional hypercubic lattice. Hence, the QSM is formulated in terms 
of coupled quantum harmonic oscillators and it is the external constraint in Eq. (1) that 
diferentiates this model from a simple non-interacting system of coupled oscillators. 

In addition to the fnite temperature transitions of the classical spherical model, the 
QSM supports a zero-temperature quantum phase transition [11, 13]. If unm is short-
ranged, e.g., nearest neighbor interaction, then the quantum phase transition exists for 
d > 1 only. This transition is generally in the same universality class as the thermal 
transition in the d + 1 dimensional classical spherical model [11]. Conversely, for long-
ranged interactions a quantum phase transition is also present for d = 1 [11]. The 
universality class depends on the long range exponent α (see below), although in a simple 
manner. Generally, unn = 2µ where µ is a Lagrange multiplier (chemical potential) that 
allows to enforce the spherical constraint. This µ plays the physical role of a mass for 
the model, or, equivalently, of the inverse correlation length. Hence, the critical line of 
the model is retrieved from the constraint for µ = 0 [11, 13]. 

Here, we only consider translation invariant systems with periodic boundary 
conditions such that the Hamiltonian generally decouples in Fourier space. Let us 
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Figure 2. Phase diagrams of the QSM in diferent dimension: In d = 3 (left 
panel) the QSM with nearest neighbor interactions exhibits a thermal critical line 
and a quantum phase transition at T = 0. In d = 2 (center panel) only a quantum 
phase transition is present. For long-range interactions in d = 1 (right panel) the zero-
temperature critical behavior depends on the long-range exponent α. For α < 2/3 the 
transition is mean-feld (purple). 

introduce the Fourier transformed operators as 

√

1 ikn 
√

1 −iknπkxn = ∑ e qk, pn = ∑ e (2) 
V k∈B V k∈B 

with the d dimensional Brioullin zone B. We recast the QSM Hamiltonian in the form 

g 
+ 
uk † 

+ 
1 

H = ∑ πkπ−k qkq−k = ∑ Ek (b bk ) (3)k2 2 2k∈B k∈B 

√ 
with uk being the Fourier transform of the interaction potential unm, Ek = guk the 
eigenenergies of the QSM, and bk, b

† 
k are adequately chosen bosonic ladder operators. 

This allows us to explicitly write the equilibrium correlation functions for a system at 
temperature T as 

g 1Xnm ∶= ⟨xnxm⟩ = ∑ ei(n−m)k coth ( 
Ek 

) , (4)
2V 2Tk Ek 

Pnm ∶= ⟨pnpm⟩ = 
1/g 
∑ e −i(n−m)kEk coth ( 

Ek 
) . (5)

2V 2Tk 

In the following sections we shall focus on entanglement quantities in the QSM. 
Specifcally we consider the following situations 

● QSM at fnite temperature T > 0 for d = 3 with nearest neighbor interactions, viz., 

u(k) = 2µ + 2(3 − cos kx − cos ky − cos kz) (6) 

● QSM at T = 0 for d = 2 with nearest neighbor interactions, viz., 

u(k) = 2µ + 2(2 − cos kx − cos ky) (7) 

● QSM at T = 0 for d = 1 with long-range interactions [33, 34], viz., 

u(k) = 2µ + (2(1 − cos k))α/2 
. (8) 
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Figure 3. Geometry of partitions: In panel a) a generic three-dimensional system 
is depicted. In panel b) the system is bipartitioned into two subsystems A and B with 
B the complement of A. In panel c) the subsystems A1 and A2 are non-complementary. 

In Eq. (8), α is the exponent governing the decay with distance of the long-range 
interactions. The phase diagrams for these systems are depicted in Fig. 2. An important 
ingredient for the further analysis is to understand the fnite-size scaling of the spherical 
parameter µ. Specifcally, we use that µ → 0 in the ferromagnetic phase and at criticality 
for L →∞. For fnite L conversely, µ is always fnite. A variety of works have considered 
this scaling in the classical spherical model, see, e.g., Refs. [35, 36, 37, 38]. 

3. Entanglement in the quantum spherical model 

In this section we introduce several relevant quantum-information-motivated quantities, 
which have attracted a lot of attention in the statistical and high energy theory 
communities in the last few years. Consider a many-body quantum system described 
by a Hilbert space H and a density matrix ρ = ∣ψ0⟩ ⟨ψ0∣ in the corresponding zero-
temperature ground state ∣ψ0⟩. Upon partitioning the system into two parts A and B, 
see Fig. 3, with corresponding Hilbert spaces H = HA ⊗HB we can defne the reduced 
density matrix ρA of subsystem A by tracing out subsystem B, viz., 

ρA = TrB (ρ). (9) 

Although ρ is pure, ρA is typically a mixed state because the zero-temperature ground-
state is not separable. In this scenario, the entanglement entropy 

SA = −TrρA log ρA (10) 

is a measure of entanglement between the two subsystems. In terms of the entanglement 
spectrum [4], i.e., the eigenvalues λi of the reduced density matrix ρA, we can express 
the entanglement entropy as [1, 2, 4, 39] 

SA = −∑ λj ln λj . (11) 
j 
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If conversely, the density matrix ρ is not pure, e.g., at fnite temperature, or if ρ is pure 
but one is interested in the entanglement between two non-complementary regions (see 
Fig. 3 c), then the von Neumann entropy is not a good entanglement witness. A useful 
quantifer in these cases is the logarithmic negativity [40, 41, 42, 43, 44, 45]. 

The negativity is defned from the so-called partially transposed reduced density 
matrix. Given a partition of A as A = A1 ∪ A2 (see Fig. 3 c)), the matrix elements of 
the partial transpose ρTA 

2 with respect to the degrees of freedom of A2 are defned as 

ρT2 ′ ′ ′ ′
⟨φ1φ2∣ ∣φ1φ ⟩ ∶= ⟨φ1φ ∣ρA∣φ1φ2⟩. (12)A 2 2 

Here, {φ1} and {φ2} are orthonormal bases for A1 and A2 respectively. In contrast 
to the eigenvalues of the reduced density matrix ρA, the eigenvalues ζi of ρ

T
A 
2 can be 

positive or negative. The logarithmic negativity is then defned as 

ρT2
EA1∶A2 = ln Tr∣ A ∣. (13) 

The behavior of the logarithmic negativity has been fully characterized in systems 
that are described by conformal feld theory at zero temperature [46] and at fnite 
temperature [47]. Generally, the negativity follows an area law scaling as observed in a 
variety of systems, see, e.g., Refs. [48, 49, 50, 14, 51, 15]. 

Finally, we introduce the entanglement spectrum (ES), viz., {ξi = − ln(λi) ∣ λi ∈ 
spec(ρA)}. The lowest entanglement gap (Schmidt gap) is defned by 

δξ = ξ1 − ξ0, (14) 

where ξ0 and ξ1 are the lowest and the frst excited ES level, respectively. 
The ES has received a lot of attention following the observation that it contains 

universal information about the edge modes in fractional quantum Hall systems [52]. 
Subsequently, the ES was investigated in a variety of setups, e.g., in conformal feld 
theory [53, 54, 55, 56], in quantum Hall systems [57, 58, 59, 60, 61, 62], in frustrated 
and magnetically ordered systems [63, 64, 65, 66, 20, 67, 68, 69, 70, 71, 72, 73, 74, 75] 
or systems with impurities [76]. 

The main topic of this review is to investigate the entanglement-related quantities 
introduced above in the QSM in d = 1, d = 2 and d = 3 spatial dimensions. 

Since the QSM is mappable to a Gaussian system of bosons (cf. Eq. (3)), 
entanglement-related quantities can be extracted from the position and momentum 
correlators (cf. Eqs. (4) and (5)) X ≡ ⟨xnxm⟩ and P ≡ ⟨pnpm⟩ (see [22] for a review). First, 
we consider the correlators restricted to subsystem A, denoting them as X[A] and P[A]. 
The single-particle eigenvalues ϵi, with i ∈ [1, ∣A∣], of the entanglement Hamiltonian HA, 
which is defned as ρA = exp(−HA), are readily related to the eigenvalues ei of the matrix 
product CA = X[A]P[A], viz., 

√ 
ei = 

1 
coth (

ϵi 
) . (15)

2 2 
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The eigenvalues of the entanglement Hamiltonian HA are constructed by flling the 
single-particle levels ϵi in all possible ways. This allows also to obtain the von Neumann 
entropy SvN in terms of the eigenvalues ej as 

SvN = ∑ [(
√ 
ej + 

1
) ln (

√ 
ej + 

1
) − (

√ 
ej − 

1
) ln (

√ 
ej − 

1
)] . (16)

2 2 2 2j 

Hence, diagonalizing CA allows us to deduce the full entanglement spectrum. In 
particular, assuming that the single-particle entanglement spectrum levels are ordered 
as ϵ1 ≤ ϵ2 ≤ ⋯ ≤ ϵ∣A∣, the Schmidt gap is simply given by δξ = ϵ1. For Gaussian bosonic 
systems, the logarithmic negativity can be constructed from the two-point correlation 
functions [77]. First, we defne the transposed matrix P[AT2 ] as 

P[AT2 
] ≡ R[AT2 

]P[A]R[AT2 
], (17) 

where the matrix R[AT2 ] acts as the identity matrix on A1 and as minus the identity 
matrix on A2. The eigenvalues ν2 of X[A]P[AT2 ] form the single-particle negativity i 

spectrum. In terms of them the negativity can be written as [77] 

E = ∑ max(0, − ln(2νi)). (18) 
i 

4. Quantum and classical fuctuations at fnite temperature criticality 

Understanding the interplay of classical and quantum fuctuations is an important but 
challenging task [78, 79, 75]. One way of approaching this question is by studying 
entanglement witnesses in the vicinity of a fnite temperature phase transition that is 
driven by classical fuctuations. It has been observed that a variety of entanglement 
witnesses are sensitive to classical criticality. For instance, it has been shown that 
the negativity develops cusp-like singularities [14, 51]. In this section we review our 
investigation from Ref. [15] of entanglement-related quantities at the fnite-temperature 
transition in the d = 3 dimensional QSM, see Fig. 2 (left panel). 

First, we discuss the von Neumann entropy SvN for the bipartition of the system into 
two equal parts (see Fig. 3). As we mentioned in Sec. 3, SvN is not a valid entanglement 
witness at fnite temperature. In fact, the von Neumann entropy becomes the standard 
thermal entropy at fnite temperature. Indeed, as shown in Fig. 4 (left panel), SvN 

satisfes a standard volume-law scaling. Being sensitive to both quantum and classical 
correlations, the von Neumann entropy overestimates the amount of entanglement, 
which is expected to scale with the boundary between the two subsystems. Moreover, 
the von Neumann entropy does not show any singularity at the transition. This happens 
because singular terms, although they are present, vanish at the critical point, and are 
overshadowed by the analytic background. Singularities are more visible in the single-
particle entanglement spectrum, as illustrated in the right panel of Fig. 4. In the fgure 
we show the entanglement spectrum for two adjacent blocks of linear size ℓ embedded 
in an infnite system. The eigenvalues quickly decay upon increasing their index and 
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Figure 4. von Neumann entropy and entanglement spectrum: (Left 
panel) Volume-law scaling of the von Neumann entropy across the fnite-temperature 
transition in the three-dimensional QSM. Singular terms are present but they vanish 
at the transition and are overshadowed by the analytic background. Non-analytic 
contributions are more visible in the entanglement spectrum (notice the divergence of 
the largest negative single-particle ES level in the right panel). In the inset we show 
δn (cf. Eq. (19)), which measures the nonanalyticity of the levels across the transition. 
Here δn ≠ 0 signals nonanalytic behavior. 

most of them satisfy en ≈ 1/4. Clearly, only those eigenvalues with low index can yield 
potentially singular contributions. In the inset we investigate the singularity using the 
quantity 

δn = (en)
′
+ − (en)

′ (19)− 

that measures the diference of the right and left derivatives of en with respect to g at 
gc. Clearly δn ≠ 0 indicates a non-analyticity and we observe this for small n. 

Next, we discuss the entanglement negativity. As outlined in Sec. 3, the negativity 
is a proper entanglement witness, and as such obeys an area law, see center and right 
panel in Fig. 5. Crossing the thermal transition at fxed fnite T , i.e., changing the 
quantum driving parameter g the negativity decays slowly as 1/g for large g, see Fig. 5 
right panel. This is in contrast to the behavior when crossing the transition with the 
temperature T at fxed g, as depicted in the center panel of Fig. 5. Here, the negativity 
shows a sudden death after and remains exactly zero for increasing T . We also see that 
the negativity does not show any cusp singularity across the fnite temperature transition 
but develops a cusp when approaching low temperatures (see inset right panel in Fig. 5). 
This signals that singularities, although present, are strongly suppressed. Furthermore, 
in Fig. 5 (left panel), we map out the negativity in the full phase diagram. In the fgure 
the dashed line is the critical line separating the paramagnetic and the ferromagnetic 
phase. We observe that the negativity generally attains a maximum at the quantum 
phase transition, hinting at a strongly entangled quantum state. We also observe that 
the negativity increases upon lowering the temperature and is largest for T = 0. We also 
highlight the numerical death line in Fig. 5 (dotted line in the left panel) above which 
the negativity is zero. 
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Figure 5. Entanglement negativity in the three-dimensional QSM: The left 
panel is an overview of the negativity in the g − T plane, with T the temperature 
and g the quantum coupling (cf. Eq. (1)). Here we always consider the half-system 
negativity. The critical line is reported as black dashed line. The red-dashed line is 
the death line above which the negativity is exactly zero. The death line as extracted 
from the negativity between two adjacent spins is reported as red solid line. The

√ 
orange solid line is the behavior as g at small g. The centre (right) panel shows the 
negativity across the phase transition varying the temperature (quantum parameter). 
In the right panel the continuous line is the result in the thermodynamic limit. The 
inset shows the behavior of the negativity at T = 0.2, i.e., close to the quantum phase 
transition. 

Interestingly, most of these fndings can be quantitatively understood considering 
two adjacent sites embedded in an infnite system. This setup allows for analytic 
investigations as shown in Ref. [15]. For large g and constant T , this approach 
qualitatively predicts the slow negativity decay from Fig. 5 (right panel), viz., 

2
E = − ln (

g − 2
) 

g→
≃

∞ 
. (20) 

g g 

Similarly, it predicts the existence of the death line (continuous line in the fgure), and
√ 

correctly captures its onset for small g as g, see Fig. 5 (left panel). 

5. Entanglement gap at 2D quantum criticality 

As we have seen in Sec. 4 the low-laying entanglement spectrum encodes relevant 
information about the critical properties of the system. To further investigate this aspect 
we review in this section our studies in Refs. [16, 17] of the behavior of the Schmidt 
gap at quantum criticality and in the ferromagnetic phase in the two dimensional QSM. 
Interest in the behavior of the Schmidt gap has spiked in the last decade. 

In the left panel of Fig. 6 we show the numerical fndings for the behavior of δξ 
across the phase diagram, see Fig. 2. Here, we consider a bipartition of the system into 
two equal halves. In the paramagnetic regime, we observe that the gap converges rapidly 
to a fnite number upon increasing the linear system size L. Hence, the gap remains fnite 
in the thermodynamic limit L → ∞. Conversely, the behavior at the critical point [16] 
and in the ferromagnetic phase [17] difers from that in the paramagnetic phase. In the 
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Figure 6. Overview of the entanglement gap in the two-dimensional QSM: 
The left panel shows the gap δξ across the whole phase diagram. We observe 
distinct behaviors in the paramagnetic phase (fnite gap) and the ferromagnetic phase 
(vanishing gap). We always consider the half-system entanglement spectrum. The 
continuous line in the left panel is the result in the thermodynamic limit [16]. In the 
center panel we show the rescaled gap δξ ln(L). At the critical point the gap decays 
as 1/ ln(L), which implies that the rescaled gap should exhibit a crossing. In the right 
panel we plot δξ ln(L) versus (g−gc)L1/ν . Upon approaching the thermodynamic limit 
L →∞ a data collapse is expected. The cross symbol is δξ ln(L) at g = gc and L →∞. 
Still, subleading terms are too large to observe the collapse, as confrmed in the inset. 

ferromagnetic phase, the entanglement gap scales as [17] 

Ω 
δξ ≃ √ (21) 

L ln(L)
, 

where the constant Ω is known analytically [17], and depends on low-energy properties 
of the QSM and on the geometry. For instance, Ω is sensitive to the presence of corners 
in the boundary between A and the rest. Hence, the gap closes algebraically, involving 
logarithmic corrections. At criticality we fnd that the Schmidt gap still closes, i.e., 
δξ → 0 albeit signifcantly slower. Precisely, the gap vanishes as [15] 

π2 

δξ ≃ (22)
ln(L)

. 

This result is obtained for the bipartition into equal halves as follows. Since we use 
periodic boundary conditions in both directions, and the bipartition does not introduce 
corners, the momentum ky remains a good quantum number also for the reduced density 
matrix. This allows to exploit dimensional reduction [80] mapping the problem to a one-
dimensional one. Hence, we may use the analytical result for a one dimensional massive 
harmonic chain [22] in order to obtain Eq. (22). Since the harmonic chain result is 
derived using the corner transfer matrix on two infnite halves, whereas we have periodic 
boundary conditions also along the x direction, Eq. (22) is exact only at leading order 
in L. Our results are numerically confrmed in Fig. 7. In the fgure we consider the 
largest eigenvalue e1 of CA (see Section 3). This is related to the entanglement gap via 
Eq. (15) and Eq. (14). In particular, a diverging e1 implies a vanishing entanglement 
gap. Fig. 7 shows that the leading behavior of e1 at large L is correctly captured by the 
analytic result (full line). Again, Fig. 7 confrms that the entanglement gap is fnite in 
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Figure 7. Scaling of the largest eigenvalue e1 of CA: The left panel shows 
the scaling of e1 in the paramagnetic and the ferromagnetic phase as well as at 
criticality in the 2d QSM. In the paramagnetic phase e1 converges to a fnite value 
and in the ferromagnetic phase e1 diverges (hence δξ → 0). At criticality we 
see a slower divergence than in the ordered phase. The full grey line is a ft to 
1/π4 ln(8L/γ2) + A0 + A1 ln(8L/γ2), with A0,A1 ftting parameters. The leading part 
∼ ln2(L) is obtained analytically. Here γ2 is a known constant [16]. In the right panel 
we investigate the subleading logarithmic term. 

the paramagnetic phase, whereas in the ordered phase a faster divergence is observed 
(cf. Eq. (21)). 

In the right panel of Fig. 7 we subtract the analytic prediction for the leading 
behavior of e1. The continuous line is a ft to A0 + A1 ln(L). The result of the ft 
confrms the presence of a logarithmic correction to the leading behavior. 

6. Entanglement gap and symmetry breaking in the QSM 

In the ferromagnetically ordered phase of the QSM, the dispersion develops a zero mode, 
which refects the Goldstone mode associated to symmetry breaking. This implies that 
the position correlation function (see Eq. (4)) diverges. Here we show that this fact is 
sufcient to fully determine the scaling of the entanglement gap. First, the divergence 
in Eq. (4) is refected in the fact that the eigenvector of CA associated with the largest 
eigenvalue becomes fat in the thermodynamic limit [16, 17]. Hence, we may rewrite the 
position correlator up to leading order as 

X ≃ χx 
∣1⟩ ⟨1∣ , with χx 

∝ L, (23) 

with ∣1⟩ being a normalized fat vector. First, we note that ⟨1∣ X ∣1⟩ = χx . Furthermore, 
it is easy to verify that ⟨1∣ P and ∣1⟩ are left and right eigenvectors of C. Both correspond 
to the largest (diverging) eigenvalue e1. Hence, it is straightforward to identify 

e1 = ⟨1∣ X ∣1⟩ ⟨1∣ P ∣1⟩ ∶= χxχt , (24) 

where χt 
∶= ⟨1∣P∣1⟩. Here we should observe that χx resembles a susceptibility for the 

position variables xi, whereas χt is the susceptibility of the pi. Eq. (24) establishes a 
remarkable correspondence between the entanglement gap and standard quantities such 
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Figure 8. Lowest eigenvector of CA: We show the overlap φ between the 
eigenvector of CA corresponding to the largest eigenvalue and the fat vector. In 
the ordered phase of the QSM one has that φ → 1 in the thermodynamic limit. This 
is not the case at the critical point and in the ferromagnetic phase. 

as χx and χt . A similar decomposition as in Eq. (24) was employed in Ref. [81] to treat 
the zero-mode contribution to entanglement in the harmonic chain. 

We now verify numerically that, as expected, the eigenvector of CA corresponding 
to its largest eigenvalue e1 becomes fat in the ferromagnetic phase, which ensures the 
validity of Eq. (24). Our results are reported in Fig. 8 where we show the overlap φ 
between the fat vector and the exact eigenvector of the correlation matrix. At criticality, 
the eigenvector is not fat in the thermodynamic limit L →∞ (see Fig. 8). On the other 
hand, below the critical point the eigenvector becomes fat in the thermodynamic limit. 

6.1. Entanglement gap in the ferromagnetic phase of the 2D QSM 

Let us now discuss the application of Eq. (24) in the ordered phase of the two-
dimensional QSM. To employ Eq. (24) we have to evaluate the fat vector expectation 
values of the position and momentum correlation matrix. The standard way is to 
decompose them in a thermodynamic and a fnite size part, i.e., 

⟨1∣ X ∣1⟩ = ⟨1∣ X(th) ∣1⟩ + ⟨1∣ X(L) ∣1⟩ (25) 

and similar for ⟨1∣ P ∣1⟩, using the Poisson summation formula 

b b ∞ b

∑ f(n) = 
f(a) + f(b)

+ ∫ f(x)dx + 2 ∑ f(x) cos(2πpx)dx. (26)∫ 
n=a 2 a p=1 a 

The FSS of these contributions is then obtained from the FSS of the spherical parameter 
µ and from standard methods such as stationary phase methods, Euler-Maclaurin 
formulas, and Mellin transform techniques. One fnds [17] 

⟨1∣ X(th) ∣1⟩ ∼ L2 , ⟨1∣ X(L) ∣1⟩ ∼ L2 , ⟨1∣ P(th) ∣1⟩ ∼ 
ln(L)

, ⟨1∣ P(L) ∣1⟩ ∼ 
ln(L)

. (27)
L L 
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Notice that χt vanishes at L → ∞. Thus, the entanglement gap scales as δξ ∼ 
1/

√ 
L ln(L). This is in agreement with our numerical simulations [17]. Furthermore, 

it has been suggested that for continuous symmetries, the gap should vanish as [20] 
δξ ∼ 1/(L ln(L)) which difers from our result. This could be specifc of the QSM, 
although the issue would require further clarifcation. 

Finally, one can assume that the decomposition in Eq. (24) also holds at the critical 
point [16]. This gives 

⟨1∣ X(th) ∣1⟩ ∼ L, ⟨1∣ X(L) ∣1⟩ ∼ L, ⟨1∣ P(th) ∣1⟩ ∼ 
ln(L)

, ⟨1∣ P(L) ∣1⟩ ∼ 
ln(L)

. (28)
L L 

This implies that the entanglement gap vanishes as δξ ∼ 1/
√ 
ln(L). Although this scaling 

is not correct, refecting that Eq. (24) does not hold at criticality, it still captures the 
logarithmic character of the entanglement gap. 

7. Entanglement gap in 1D QSM with long-range interactions 

Recently, there has been increasing interest in quantum systems with long-range 
interactions [82, 83], also due to signifcant experimental advances [84]. Since long-
range interactions afect the structure of quantum correlations between subsystems, it 
is interesting to study entanglement witnesses in these systems. Indeed, the study of 
entanglement in long-range systems has seen a signifcant surge of interest [85, 86, 87, 
88, 89, 90, 91, 92, 93, 94, 95]. 

Arguably one of the paradigmatic systems is the long-range QSM at T = 0 in one 
spatial dimension that we introduced in section 2. In terms of the long-range exponent 
α the interaction strength between two lattice sites behaves as unm ∼ ∣n − m∣

−(1+α). This 
is achieved by altering the dispersion relation of the QSM as shown in Eq. (8). Like this 
the interaction maps to a fractional Laplacian inducing efective long-range interactions 
in the model [34]. The parameter α satisfes 0 ≤ α < 2 where α = 2 would correspond to 
nearest-neighbor interaction and α = 0 is essentially an infnite range interaction. The 
zero temperature phase diagram is reported in Fig. 2 (right panel). For 0 < α < 2/3 the 
transition is of the mean-feld type, meaning that the phase transition is in the mean-feld 
universality class with the critical exponents being exactly those of a simple mean-feld 
theory. Conversely, for 2/3 < α < 2, the model shows a non-mean-feld transition [11, 18]. 

Crucially, despite the long-range nature of the model, in the ordered phase Eq. (24) 
holds true. Thus, the study of the scaling of the entanglement gap proceeds as outlined in 
section 6. The susceptibilities χx and χt can be analyzed for L →∞ with regularization 
techniques involving the Mellin transform [96, 18] (details can be found in Ref. [18]). 

In Fig. 9 we present in the left and center panel a numerical analysis of the 
entanglement gap across the phase diagram. We observe that δξ remains fnite in 
the paramagnetic phase, whereas it shows a vanishing behavior in the ferromagnetic 
phase upon increasing L. As in the two dimensional QSM it is useful to decompose 
the correlation matrices into a thermodynamic and a fnite size part. Using Mellin 
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Figure 9. Entanglement gap in the long-range 1d QSM: The left and center 
panel show the entanglement gap for diferent values of the long-range exponent α 
(α = 1 and α = 1.5 respectively) across the phase transition. We observe a qualitative 
diference between the paramagnetic phase and the ferromagnetic phase. The right 
panel shows the closure of the entanglement gap for diferent values of α in the 
ferromagnetic phase. Symbols are numerical results from exact diagonalization and 
the continuous line corresponds to Eq. (24). Black dashed lines correspond to the 
analytical prediction. 

techniques we obtain [18] 

⟨1∣ X(th) ∣1⟩ ∼ L, ⟨1∣ X(L) ∣1⟩ ∼ Lα/2 , ⟨1∣ P(th) ∣1⟩ ∼ L−α/2 , ⟨1∣ P(L) ∣1⟩ ∼ L−α/2 . (29) 

Further details such as the precise prefactors, subleading contributions, the behavior at 
criticality and the numerical benchmarks for all these results can be found in Ref. [18]. 
These results allow us to deduce the entanglement gap using Eq. (24). We obtain 

δξ ∼ L−(1/2−α/4). (30) 

In the right panel of Fig. 9 we show a comparison of exact diagonalization results and 
Eq. (30), fnding perfect agreement. Note that the entanglement gap decays algebraically 
with L, and multiplicative logarithmic corrections are absent. This difers strictly from 
the logarithmic behavior encountered in the previous section. 

8. Summary and Conclusions 

We provided an overview of several results on the entanglement scaling in the QSM. 
In particular, we investigated a variety of scenarios comprising d = 1, 2, 3 dimensional 
quantum systems with long and short range interactions. 

Precisely, we discussed the interplay of classical and quantum fuctuations at 
thermal transitions in the 3d QSM. We presented results for the entanglement entropy, 
the entanglement negativity and the entanglement spectrum in Sec. 4. In particular, 
we mapped out the negativity across the whole phase diagram (see Fig. 5). A more 
detailed analysis can be found in our work in Ref. [15]. In Sec. 5 and Sec. 6 we focussed 
on the quantum phase transition and on the ferromagnetic phase at zero temperature 
in two spatial dimensions. We discussed the behavior of the entanglement gap in the 
diferent quantum phases and at criticality. We showed that the entanglement gap 
is capable of detecting criticality in the QSM, although logarithmic corrections are 
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present. We refer to Refs. [16, 17] for more details on the entanglement spectrum, the 
precise fnite-size scaling, and for the study of the efect of corners in the entanglement 
spectrum. Finally, we reviewed entanglement properties of a one dimensional spherical 
quantum chain with long-range interactions [18]. Again, we considered the behavior 
of the entanglement gap across the zero temperature quantum phase transition for 
diferent long-range interactions. Remarkably, the QSM allows for a detailed analytical 
investigation of the entanglement gap in the ordered phase of the model. In particular, 
it is possible to understand how the entanglement gap is afected by the long-range 
nature of the interactions. 

The spherical model - here in its quantum formulation - has again proven itself as a 
remarkably useful tool to study collective phenomena in strongly interacting many-body 
systems. Clearly, the QSM will continue to serve as a reference system for future studies 
of entanglement-related quantities. For example it would be interesting to further 
investigate the infuence of corners on the entanglement patterns. Furthermore, it 
would be enlightening to consider the QSM on quasi two-dimensional structures, such as 
ladders. It would also be interesting to study the infuence of disorder, or explore the full 
entanglement Hamiltonian explicitly. Moreover, it has been shown that the criticality 
in the QSM (in and out of equilibrium) can be exploited as a resource in quantum 
metrology [97]. It would be interesting to explore to which extend entanglement might 
afect and support quantum metrology protocols. Furthermore, non-equilibrium and 
relaxational quantum dynamics has been extensively studied in the QSM in the past 
years [98, 99, 100, 101, 102, 103]. It would be interesting to derive the spreading 
of entanglement in such scenarios in the QSM, possibly exploiting the results from 
Refs. [104, 105, 106, 103]. An intriguing idea is to study the entanglement using the 
Kibble-Zurek dynamics [107, 108]. 
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