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Abstract. Economic dispatch problems (EDPs) can be reduced to non-convex constrained optimization problems, and most
of the population-based algorithms are prone to have problems of premature and falling into local optimum when solving
EDPs. Therefore, this paper proposes a hybrid quantum-behaved particle swarm optimization (HQPSO) algorithm to alleviate
the above problems. In the HQPSO, the Solis and Wets local search method is used to enhance the local search ability of the
QPSO so that the algorithm can find solutions that is close to optimal when the constraints are met, and two evolution operators
are proposed and incorporated for the purpose of making a better balance between local search and global search abilities at
the later search stage. The performance comparison is made among the HQPSO and the other ten population-based random
search methods under two different experimental configurations and four different power systems in terms of solution quality,
robustness, and convergence property. The experimental results show that the HQPSO improves the convergence properties
of the QPSO and finally obtains the best total generation cost without violating any constraints. In addition, the HQPSO
outperforms all the other algorithms on 7 cases of all 8 experimental cases in terms of global best position and mean position,
which verifies the effectiveness of the algorithm.

Keywords: Constrained nonlinear optimization, Hybrid quantum-behaved particle swarm optimization, Economic dispatch
problem, Solis and Wets local search

1. Introductionl

Economic dispatch (ED) is of vital importance for effective operation of an electric power system.
Solving the ED problems properly can not only optimize the allocation of resources, but also can pro-
mote the transformation of the power company’s production scheduling mode to the greatest extent. In
addition, reducing the loss of resources can also effectively reduce environmental pollution to a cer-
tain extent. An ED problem can be mathematically formulated as a constrained nonlinear optimization

*Corresponding author. E-mail: sunjun_wx @hotmail.com.
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problem, the objective of which is to minimize the total short-term cost of operating the generators by
properly dividing the total load demand among the available generators [1]. In order to tackle such kind
of problems effectively, researchers have proposed many optimization methods, including traditional
gradient-based and metaheuristic methods.

The traditional gradient based methods such as linear programming, A-iteration method [2], quadratic
programming [3], branch and bound [4] and [5], have shown to perform well on the continuous ED
problems without prohibit operation zones. Since the thermal power systems need to consider the valve
point loading effects and the prohibited operating zones of the power system, practical ED problems
are generally non-smooth, non-convex and non-continues ones, so that the traditional gradient-based
methods inevitably encounter difficulties in solving such problems [6]. However, since the traditional
gradient descent based methods are fast in solving this problem, some modified algorithms also be
proposed [7].

Metaheuristic algorithms, particularly population-based random search techniques, are known to
be effective in solving complex nonlinear optimization problems [10]. They also had been used and
achieved promising performances in many machine learning tasks, the most typical filed is the feature
selection [13] [14]. In addition, two well-known classes of population-based search techniques, namely
evolutionary algorithms and swarm intelligence optimization algorithms, had shown effectiveness in
solving ED problems [15]. The most widely used optimizers of these kinds include particle swarm opti-
mization (PSO) [16], the bee colony Optimization (BCO) [17], firefly algorithm (FA) [18], artificial bee
colony algorithm (ABC) [19], Kho-Kho optimization (KKO) algorithm [20], whale optimization algo-
rithm [21], tunicate swarm algorithm [22], and some recently proposed metaheuristic algorithms [23].
Compare to the other metaheuristic algorithms, PSO is simpler, more robust, has fewer parameters to
be adjusted, and is easy to converge [28]. However, PSO is prone to fall into the local minimum, and
thus it is difficult to obtain a satisfying solution. Recently, various PSO modifications were presented.
For example, Maedeh et al. proposed a phasor particle swarm optimization (PPSO), which uses a phasor
angle to replace the control parameter of PSO to solve different types of ED problems [29]. The QPSO
algorithm is inspired by quantum mechanics and trajectory analysis of the canonical PSO [30], and its
motivation is to improve the search ability of PSO by designing new update equation of particle positions
different from that of the canonical PSO.

The QPSO performs well on many optimization problems, especially on continues and non-
constrained optimization problems [31]. However, for complex constrained optimization problems like
ED problems, the QPSO algorithm lacks strong local search capabilities, and the convergence speed is
slow, so that it still has room for improvement. For instance, in order to improve the convergence per-
formance of the QPSO, Zhao et al. proposed a DE-CQPSO (Differential Evolution-Crossover Quantum
Particle Swarm Optimization) algorithm, which utilizes the fast convergence of differential evolution and
controls the particle diversity by using crossover operators of genetic algorithms [33]. To maintain the
diversity of the particle swarm, the QPSO combined with cultural evolution mechanism named CQPSO
was proposed [34].

Recently, some hybrid metaheuristic algorithms, which combine their strengths with each other, are
presented and performed well in terms of improving the shortcomings of PSO when solving ED prob-
lems recently. To accelerate the convergence speed and reduce the total number of evaluations of the
algorithm when solving ED problems, Juan designed a hybrid optimization framework based on the
adaptive simulated annealing (ASA) and genetic operators [35]. The hybrid DE (differential evolution)
and PSO algorithm (DEPSO) designed was the relatively simple hybrid PSO algorithm, but performs
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well on eight optimization problems [36]. In the evolutionary particle swarm optimization (E-PSO) al-
gorithm, mutation, crossover, and selection in genetic algorithm are implemented to enhance the ability
of skipping local optimal points [28].

Therefore, in this work, we propose a hybrid QPSO (HQPSO) algorithm for solving ED problems,
by incorporating the Solis and Wets local search method and evolution operators into the QPSO. The
purpose of using the Solis and Wets local search method is to enhance the local search ability and fasten
the convergence of the QPSO algorithm, which is desirable for the algorithm to find a solution of higher
precision for the constrained optimization problem at the later stage of the search process. Although the
local search method on the one hand can enhance the solution precision of the problem, it can on the
other hand make the algorithm prone to be stuck into local optimal area of the search space. Thus, in
order to further improve the algorithmic performance, we propose to couple the algorithm with evolution
operators, namely, crossover and mutation, which can give some disturbance to the current positions of
the particles to help the particles escape the local optimal area. With the combination of the Solis and
Wets search and evolution operators, the HQPSO algorithm obtains a better balance between the local
search ability and global search ability. The rest of the paper are organized as follows. Section II is the
mathematical statement of ED problems. Section III presents the details of the proposed HQPSO algo-
rithm, and section IV describes the implementation of the HQPSO for ED problems. The experimental
results and analysis are given in section V, and some conclusions are provided in the final section.

2. The Economic Dispatch Problem1

The goal of an ED problem is to minimize the total fuel cost subjected to some constraints of a power
system [46]. The cost function of an ED problem can be generally formulated by:

Ng
Minimize Feo = > f7 (P;) W
=1
With
F;(Pj) =a;+b;P;+ c;P} @

where F;(P;) is the cost function of the j-th generator, P; is the power output of the j-th generator,
and N, is the total number of generators in the power system. where a;, b;, and c;are the coefficients
of the fuel cost function F';. For the ED problems with valve-point effects (VPE) considered, the cost
function of each generator is given by:

Fj(Pj):aj+bij+Cij2+ eisin[f,-(P;”i”—Pj)] (3)

where e; and f; are VPE coefficients of the n-th generator, and P;’”'" is the minimum output of j-th
generator. In addition, for the ED problems with both valve-point effects and multiple fuel options taken
into consideration, the cost function of each generator can be written as:
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1+ baPj+cnP?+ en sin[fil(P;f‘i” — Pj)] ,P’]’-“” < Pj < Pji, fuel type 1
F;(P;) = 2+ bpPj+ cngj2 + epm sin[ﬁg(P’}”" - Pj)], "' S Pj < Pp, fueltype 2

ik + b]kP] + CjkPj2 =+ e Sil’l[ﬁk(PTm — P])] P;n(l]? S P] < PT‘”, fuel type k
4)

where k denotes the total number of fuel types in the system. Simultaneously, four constraints should
be considered in the ED problems. They are constraints for active power balance, minimum and maxi-
mum power limits, ramp rate limits and prohibited operating zones.

2.1. Active Power Balance2

Active power balance can be expressed as the following equality constraint:

N,
{Zjil Pi=Pp+Pp 5)

N, N, N,
PL:Zjil ki1PijkPk+Zji1Pij0+BOO

Where P; is a function of the generator power outputs, which can be described by using B coefficient
[46], 1 < j,k < N, denotes the index of the generator, and Bjy, Bjx, Boo represents the transmission
network losses parameter or B parameter. Note that Bj is a N, x N, matrix. In addition, the total
generated power of the system Z;Vi 1 P; should be the same as the load demand Pp (in MW) of the
system plus the transmission network losses P, (in MW), when the lowest generation cost is obtained.

In addition, the total generated power of the system Z i1 Pj should be the same as the load demand
Pp(in MW) of the system plus the transmission network losses PL (in MW), when the lowest generation
cost is obtained.

2.2. Minimum and Maximum Power Limits2

The generation of each generator should be within the interval between its minimum bound P;-’”" and
maximum bound P’;"”. Mathematically, this constraint can be formulated as:

P < Pi < P1™, (j=1,2...,Ny) (6)
2.3. Ramp Rate Limits2
In the actual operation process of each generator, the operating range of each generator is restricted

by its ramp rate limits. The inequality constraints of the ramp rate limits are as follows.
(1) If the power generation increases

P;— P! < UR; (7)
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(ii) If the power generation decreases

0
P — Pj < DR; ()
where P?, UR;, DR; are the previous output level, the up-ramp limit, the down-ramp limit of the j-th
generator, respectively.

2.4. Prohibited Operating Zones2

In the actual power system, the entire operating range of a generator is not always available when
some cases like steam valve operating (i.e. vibrating) in a shaft bearing occur. In other words, the system
has some prohibited operating zones. Therefore, the feasible operating zones of the j-th generator can
be described as:

Pl}u’n < Pj < Pi’,l )
el KPP, k=23 n; (10)
P, <P <P (11)

where P;k andP', are the lower and upper bounds of the k-th prohibited operation zone of the j-th
generating unit, and 7; is the number of prohibited operation zones in the j-th generator.

2.5. The formulation of the ED problem2

Considering the constraints in Eq.(7) to Eq.(11), we get the feasible operation zones of the j-th gener-
ator as:

Max (P, P;— DR;) < P; < Min (P!, PY + UR;) (12)

Therefore, the ED problem can be formulated as the following constrained nonlinear optimization
problem:

Ng

ZCj:PD+PL (13)

=1
subject to:

Ng

Minimize Fooy = ) (‘ i (P)) (14)

j=1
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Max (P}", P; — DR;) 6 P; <P (15)
1 <SPS P k=23 n; (16)
‘1 < Py < Min (P, PY + UR;) ( (17)

3. The HQPSO Algorithm1
3.1. A Brief Introduction to the QPSO algorithm?2

The quantum-behave particle swarm optimization (QPSO) algorithm is a variant of PSO, with the
update equation of particle positions very different from the canonical PSO. In the QPSO with M in-
dividuals, each individual is treated as a volume-less particle in the N-dimensional search space, with
the current position of each particle presented as a candidate solution, and updated according to the
following equation:

) ~ . . 1
X{,z+1:P:,ia" C{—X{J eln > )( (18)
’ ui,H—l

where

M

a—z@ (19

i=1

p,{, = 90{,t ° P{, + (1 N 901{1) 6{ -

Withl <i<MI1<j<N.In (9),X{t represents the j-th component (1 < j < N) of the current
position of particle i at iteration t. p{ , » determined by (20) is the j-th component of the local attractor
of particle i at the #-th iteration. Pl’ . is the j-th component of the personal best position of particle i at
iterationt, and G{ is the j-th component of the global best position at iteration z. C;, whose component
in the j-th dimension is obtained by (19), is the mean of the personal best positions of all the particles at
iteration 7. ], | and ¢], are two different sequences of random numbers uniformly distributed on (0, 1).
a in (18) is known as the contraction-expansion (CE) coefficient which is a parameter used to control
the convergence of the particle. In the standard QPSO, the CE coefficient is set to linearly decrease from
1.0 to 0.5 over the whole search process. More details of the QPSO can be found in [30].
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3.2. The Hybrid QPSO algorithm?2

Since the constraints of the ED problem is highly complicated, it is difficult for the QPSO to find a
satisfied solution to the problem meeting all the constraints. In this work, in order to further improve
the performance of the QPSO for the ED problem, we propose a novel hybrid QPSO (HQPSO) algo-
rithm, which couple the QPSO with the Solis and Wets local search method and evolution operators. In
the HQPSO, the Solis and Wets local search method executes on a randomly selected particle at each
iteration, for the purpose of enhancing the local search ability of the QPSO algorithm. With the Solis
and Wets search, the QPSO can find a final solution of the ED problem at faster convergence speed.
However, the enhanced local search ability of the QPSO by the Solis and Wets search can results in a
swarm diversity loss of the algorithm in the later search stage, thus making the particles to be trapped
into the local optimal or sub-optimal solution. To address this issue, we propose to exert crossover and
mutation operators on the positions of randomly selected particles to bring them some disturbances so
that the particle swarm can get enhanced vitality to escape the local or sub-optimal solution. With the
combination of the Solis and Wets local search and the two evolution operators, the balance between the
local search and global search abilities at the later stage of search can be achieved so that the algorithmic
performance can be further improved. The rest of this subsection will focus on the detailed description
of the different components of the HQPSO.

(i) Solis and Wets local search

The purpose of using Solis and Wets local search in the proposed HQPSO is to enhance the local search
ability of the algorithm, which is desirable for the algorithm to obtain a relatively good solution with
fewer iterations at the early search stage and get a final solution with high precision at the later search
stage. This is particularly conducive to the constrained optimization problems with equality constraints,
like ED problems. The equality constraints are essentially the bounds of the feasible area of the ED
problems so that the solution with high precision is more likely to be on the bounds.

The Solis and Wets local search algorithm is a randomized hill climber with an adaptive step size,
without any reliance on the gradient information of the objective function [37]. The local search exe-
cutes on the current position of a selected particle for some steps during each iteration, with the search
direction of the current position generated by a normal distribution whose mean and standard deviation
are user-specified parameters. The algorithm of the Solis and Wets local search is described in Algo-
rithm 1.

As illustrated in Algorithm 1, during the local search steps for the current position X of a particle, a
move is made to the position and then the new position is evaluated according to the objective function.
Specifically, with D denoting the search direction vector for the particle position at a certain step, we
first get X+D as the new position. If the objective function value of X+D is better than the previous one,
a ‘success’ is recorded, that is, the value of ‘succ’ increases by one and the current position is updated
by X+D. Otherwise, we get X-D as the new position, and if the objective function value of X-D is better
than the previous one, a ‘success’ is recorded, namely, the value of ‘succ’ increases by one and the
current position is updated by X-D.

However, if either the temporary solution X-D or X+D performs worse or falls outside of the feasible
solution, then a ‘failure’ is recorded, that is, the value of “fail” increases by one. In addition, a bias term
gives a search momentum in the current search direction when a ‘success’ is recorded. In contrast, when
a ‘failure’ is recorded, the search domain should be reduced in the next step by decreasing the standard
deviation p of the normal distribution. Furthermore, when the value of ‘succ’ equals to succ,,, the p is
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Algorithm 1 An example for format For & While Loop in Algorithm

1: Solis and Wets local search = (the position of particle X;,, standard deviation p, maximum number

of success steps succyqy, maximum number of failure steps fail,, ., and maximum steps step,,,,);

2 bzﬁ,step=0,succ=0,fail:0;

3: while step<step,,,, and p is not too small do

4:  for each dimension j do

5: 8; = normrnd(bj,p;);
6:  end for
7.
8
9

max?

X,ew =X +D; D=[ 61, 02, - - |;

if X, ew is better than X then

: X = Xpew; succ = succ + 1; fail = 0;b = 0.4b + 0.2D;
10:  else

11: Xpew = X — D

12: if X,ew is better than X then

13: X = Xyen; succ = succ + 1; fail = 0;b = b — 0.4D;
14: else

15: X = Xpew; succ = 0; fail = fail + 1;b = 0.5b;

16: end if

17:  end if

18:  if succ=succ,,, then

19: p = 2p; succ = 0;

20: end if

21:  if fail =fail,,, then
22: p = 0.50; fail = 0;
23:  end if

24:  step=step+1;

25: end while

26: return X, ew;

doubled to increase the search step. Otherwise, the search step of the algorithm decreases by setting the
standard deviation to be 0.5p.

(ii)Diversity explosion of HQPSO

Since the Solis and Wets local search method in the HQPSO can enhance the local search ability of
the algorithm, it can make the particle swarm aggregate to the current global best position at a higher
speed. As mention in the above subsection, this local search method can make the algorithm find a
good solution rapidly at the early search stage and yield a final solution with high precision at the later
search stage. However, during the later stage, strong local search ability of the algorithm may lead
the algorithm to encounter premature convergence. Hence, in order to overcome this disadvantage, we
further propose to incorporate two evolution operators into the HQPSO to enhance the global search
ability of the algorithm at the later search stage so that the algorithm can has much chance to escape the
local optimal or sub-optimal solution, and we call it diversity explosion phase. As a result, with both
Solis and Wets local search and the two evolution operators, the HQPSO has better balance between
the global search ability and the local search ability than the QPSO with only Solis and Wets local
search. The evolution operators used in the HQPSO, the crossover and mutation, are different from the
ones generally used in evolutionary algorithms in that they are not executed on the whole position of
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the particle but on a certain dimension of the position. In the subsequent part of this sub-section, the
crossover and the mutation operators used in our proposed HQPSO are described in detail.

The Single Dimension Crossover: The goal of the crossover operation in the HQPSO is to exchange
the components in a randomly selected dimension of two randomly selected particles to obtain two
new particle positions. As mentioned above, the crossover operator employed here is different from
the one in most of real-coded evolutionary algorithms in that the crossover is operated on a certain
dimension instead of the whole position vector. Thus, such a crossover operation, named as the single
dimension crossover, can give the particle swarm a certain disturbance but not definitely declining the
swarm diversity as the traditional crossover operator does in other real-coded evolutionary algorithms.
Practically, it can provide the algorithm some chance to escape the local optimal or sub-optimal solution
and in turn to find a more promising area in the feasible region.

Specifically, at iteration t, we generated a random number uniformly distributed on (0,1). If this num-
ber is greater than the crossover probability p., the single dimension crossover is executed, which is
defined as:

e ) e
X1 = X, + (1= r)Xg

c cl,t
where particles ¢; and c¢2 are two randomly selected particles for the single dimension crossover oper-
ation and dimension c; is randomly selected for the purpose. In (21), r; is a random number uniformly
distributed on (0,1).

The Single Dimension Mutation: The mutation operation adopted for the HQPSO, called the single
dimension mutation, is implemented on the component in a randomly selected dimension of a randomly
selected particle. This mutation can definitely increase the swarm diversity of the particle swarm so
that the global search ability of the algorithm can be enhanced to trade off the strong local search abil-
ity brought by the Solis and Wets local search without explicitly decreasing the precision of the final
solution. With the above specification, the single dimension mutation can be formally expressed as:

L \2
- ( Ttl _P;nin) x (1— Q(m) ), if ra > 0.5

AS (22)

2
max _ Xl-,mtj) X (1—ry () ), otherwise
where ry is a random numbers generated according to the uniform distribution on (0, 1), and P%” and
Pp5* is the lower and upper bounds of the m j-th generating unit.

According to (22), for each particle at the #-th iteration, a number is randomly generated uniformly
distributed on (0,1) and if this number is greater than the mutation probability p,,, the particle is selected
for mutation. For the selected particle, a dimension mj is randomly selected, and then if ry is larger
than 0.5, the mj-th component of the particle position carries out the mutation according to the Eq.(22);
otherwise, the lower one is carried out.

(iii) The Procedure of the HQPSO algorithm

With the above specification, the procedure of HQPSO is shown in Fgi. 1. Empirically, the algorithm
strikes a balance between local search ability and global search ability when performing the two com-
bined evolution operators if the current iteration t is greater than half of maximum number of fitness
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evaluations (FEs). It should be noted that all the random selection operation in the crossover and muta-
tion are with equal probability.

| Initialize the particle swarm |

!

[ Initialize Py, Cip G, |

|

| Set1=0 |

|

The stopping criterion
is not met

Update particle’s positions

using QPSO by (18)
Yes
Perform crossover by (21) |
v

No | Perform mutation by (22) |
Solis and Wets local search by |

Algorithm 1

v

| Update P, Cy, Gy |

S Setr— 171 |

Fig. 1. The follow chart of HQPSO algorithm

With the above specification, the procedure of HQPSO is shown in Fgi.1. Empirically, the algorithm
strikes a balance between local search ability and global search ability when performing the two com-
bined evolution operators if the current iteration t is greater than half of maximum number of fitness
evaluations (FEs). It should be noted that all the random selection operation in the crossover and muta-
tion are with equal probability.

4. Solving the ED problem with the HQPSO1
4.1. Representations of the individual particle2

When solving the ED problem by the HQPSO, we represent the current position of each particle as a
candidate solution, with each component of the position vector denoting the power output of a generator.
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Put it in more detail, if the system with N, generators are needed to provide power to load demand, the
current position of the i-th particle can be described as:

Pij=[Pi1, Pio,.. ., Pinsi=1,2,.. M (23)

where Mdenotes the swarm size, and P;; represents the output power of the j-th generator of the i-th
particle.

4.2. The objective function and constraints handling2

We use a dynamic penalty method to deal with the equality constraints, and consequently the objective
function then can be given by:

N N
Mim'mizeF:ZFj(Pj)+Kn|ZCj—PD—PL| (24)
j=1 j=1

where K, is a positive value known as the penalty coefficient, which increases over the search process.
The penalty term 27:1 P; — Pp — Py is given by the equality constraint in (5).

The penalty method can control the candidate solution to approach gradually to the feasible search
space. On the one hand, when the candidate solution does not violate the equality constraints, the penalty
term equals to zero no matter how large the penalty coefficient is. On the other hand, according to (24),
a larger objective value is given to the candidate solution when it violates the equality constraint.

As for inequality constraints described in (15)-(17), we also employ a penalty method. Specifically, if
the particle’ position is within the feasible intervals, the objective value is given by (24); otherwise, the
objective function value of the particle’s position is penalized with a very large positive constant, which
is also a user-specified parameter.

5. Experiment results and analysis1

The HQPSO algorithm was tested on four actual power systems to verify its effectiveness in solving
ED problems. In these systems, the ramp rate limit, the prohibited zones, the valve-points and multi fuel
options of the equipment were taken into consideration in the corresponding experiment. For a compre-
hensive performance comparison, many optimization algorithms were evaluated on these four systems,
including, the standard PSO with shrinkage and inertia weight (SPSO) [38], the hybrid gradient de-
scent PSO (HGPSO) [38], the QPSO [39], the hybrid PSO with mutation (HPSOM) [38], the hybrid
PSO with wavelet mutation (HPSOWM)[38], the chaos PSO (CPSO) [40], artificial bee colony algo-
rithm with distance-fitness-based neighbor search (DFnABC) [41], enhanced self-adaptive global-best
harmony search (ESGHS) [42], diversity-based parallel PSO (DPPSO) [47]and differential evolution-
crossover QPSO (DE-CQPSO) [33]. For each system, all the tested methods used the same objective
function. Besides, we carried out an ablation experiment to verify the effectiveness of each incorpo-
rated operation in the HQPSO. That is, we made a further performance comparison between two dif-
ferent versions of the HQPSO, namely the HQPSO-t1 and HQPSO-t2, where the HQPSO-t1 only em-
ployed the Solis and Wets local search method and the HQPSO-t2 used both the Solis and Wets local
search method and the evolution operators. The source code of the HQPSO algorithm can be found in
https://github.com/russchen/HQPSO.git.
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5.1. The four power systems2

System 1: The system is a medium-scale system with 15 thermal units, the characteristics of which
can be found in [19]. The load demand of the system is 2630 MW, and the generating units 2, 5, 6, and
12 in the system have a total of 11 prohibited operating zones. Therefore, this system has inequality
constraints according to Eqgs.(15)-(17).

System 2: The system contains 40 generating units in the actual Taipower system, which is a high-
scale hybrid power system with coal-fired, oil-fired, gas-fired, diesel and combined cycles presented.
The load demand of the system is 10500 MW. The details of this system such as the parameters and
loss coefficients of the generating unit can be found in [43]. This system has no prohibited zones with a
result that has fewer inequalities. However, it does not significantly reduce the difficulty of the problem,
since the characteristic of large size and the valve-point effects of this system make the corresponding
ED problem hard to solve.

System 3: The system consists of 140 generating units also known as Korean power system, which
is a large-scale hybrid power system with coal, LNG_CC, NUCLEAL and OIL presented. The Korean
power system is a non-convex problem with valve-points, prohibited operating zones as well as the ramp
rate limits considered. The total demand of the system is set to 49342MW, and the dimension of this ED
problem is 140. Since the valve point results in the ripples in this system, a cost function contains higher
order non-linearity that makes its corresponding ED problem the most difficult to solve among all the
four systems. Due to space limitation, one can refer to [44] for the details of the system.

System 4: This system has 320 generating units with both valve-point effect and multi fuel options
considered, which is built by duplicating the 10-units system 32 times. The total load demand is set to
86400 MW and the transmission loss is ignored. Due to the limited spaces, the details of the fundamental
10-units system, such as cost efficient and definition of fuel types, can be found in [45]. The cost function
of its ED problem is defined by Eq.(4) and Eq.(13).

5.2. Experimental configuration?2

The maximum number of FEs for solving the ED problem of the four systems using each of all
the tested algorithms was 20000 for the purpose of fair performance comparison, since the most of
computational consumption in the optimization task is spent on objective function evaluation. Each
algorithm was tested on each system with two different experimental configurations, one with the swarm
size M = 100 and the maximum generation number G,,,, = 200, and the other with the swarm size
M = 20 and the maximum generation number G,,,, = 1000. In addition, the minimum, mean and
maximum of total fuel costs were obtained by conducting 100 independent trail runs with the given
swarm size and the maximum generation number. Note that the experimental results are statistically
obtained on an intel core i5 based workstation.

For the former three systems, the penalty coefficient K, in the objective function was set to K, =
100+/7, where t is the current generation number, and for the System 4, the penalty coefficient K; is 0.55.
The penalty constant for inequality constraints was set to 105. Table 1 presents the parameters settings
of different operation in the proposed HQPSO-t2. Note that the parameters in the HQPSO-t1, namely
the parameters of the QPSO algorithm and Solis and Wets local search, are the same as those in the
HQPSO-t2. In Solis and Wets local search method, succyq andfail,,,, are two coefficients to control
the local search ability. The larger the value of these two coefficients, the stronger the local search ability.
p determines the convergence speed of the method, and the larger the value, the faster the search speed.
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The settings of these three parameters are the same as they set in the original paper. The coefficient
itery,, determines the maximum number of generation, since the maximum number of FEs is 20000.
Therefore, If the system is smaller, we will give this parameter a smaller value. In this paper, the iter,, .
for different ED problems are set empirically.

The main parameters of the other compared algorithms are described as follows. The maximum veloc-
ity of the SPSO was set to 0.2, the inertia weight of the CPSO was 0.9, the learning rate of the HGPSO
was 0.001, the probability of mutation of the HPSOM and the HPSOWM both was 0.1, the coefficient
parameter in the QPSO algorithms declined from 1 to 0.5, and the present number of times in DFnABC
equaled to the number of employed bees or onlooker bees times the dimension of the problem.

Table 1

The parameters setting in the hqpso-t2 algorithms for different systems

Different modules in The HQPSO-t2 | Parameters | Value
The QPSO algorithm a Declines from 1 to 0.5
. 0.1
Evolution operators Pe
Pm 0.1
SUCCmax 4
fail,, .. 4
P 1
Solis and Wets local search System 1 | 2
. System2 | 2
itermax
System 3 | 10
System 4 | 10
aas 0 T T T aa gl T !
— SWQPSO-type1 — SWQPSO-t1
o s ----SWQPSO-type2|1 © o ---SWQPSO-t2 |
2 —HPSOWM = ——HPSOWM
> eser —QPSO > sss —QPSO .
c C
Sl S ]
2 2
D ear L i
g 2
=2 =
8 329 8 —————
3.28 -

L L L L L L L L L L L L L L L L L L
0 20 40 60 80 100 120 140 160 180 200 0 100 200 300 400 500 600 700 800 900 1000

Number of Generations Number of Generations

Fig. 2. Convergence properties of the tested optimization methods with higher objective function values on the 15-Unit sys-
tem.(a) M = 100 and Gmax = 200 (b) M = 20 and Gmax = 1000

Table 2 gives the results obtained by each tested algorithm over 100 independently trail runs on the ED
problem of system 1. As can be observed from the table, the HQPSO-t2 not only found the best solution
(the minimum total fuel cost value is 32531.5860 $/h with M = 20, G,,,, = 1000), but also obtained the
smallest mean total fuel cost and standard deviation among all the tested algorithms under two different
experiment configurations. In addition, the ESGHS and DFnABC algorithms did not perform well on this
ED problem. The minimum total fuel cost value obtained by the HQPSO-t2 with M = 20, G,,,, = 1000
out of 100 runs of the algorithm is 32686.4338 $/h.
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Table 2

The results on system 1 (15-unit system)

M = 100, Gpax = 200

Algorithms Min.Cost Mean.Cost | Std.Cost Max.Cost | Time Cost
SPSO 32675.3597 | 32840.9538 | 93.5420 | 33049.5619 0.42
CPSO 32705.5390 | 32917.4052 | 111.2425 | 33138.0568 0.59
HGPSO 32970.7299 | 33127.2396 | 75.2538 | 33327.9679 1.49
HPSOM 32717.6562 | 32849.8113 | 86.2222 | 33085.7497 0.38
HPSOWM | 32696.9585 | 32805.7185 | 87.8689 | 33034.3413 0.39
QPSO 32685.9790 | 32825.4643 | 39.63134 | 32894.0091 0.38
ESGHS 32932.8918 | 33165.2630 | 86.5261 | 33510.1828 0.41
DFnABC 32696.9585 | 32805.7185 | 87.8689 | 33034.3413 1.21
DE-CQPSO | 32741.5275 | 32802.4608 | 65.3821 | 32904.9196 0.43
DPPSO 32767.8293 | 32832.4202 | 75.3425 | 33014.2185 0.38
HQPSO-tl | 32709.6485 | 32764.9474 | 33.9226 | 32844.3083 2.19
HQPSO-t2 | 32678.4298 | 32759.4641 | 38.4864 | 32850.6269 2.39

M = 20, Gmax = 1000

SPSO 32697.1431 | 32933.5688 | 137.8462 | 33399.6968 0.43
CPSO 32774.8653 | 32897.7110 | 112.1387 | 33372.1291 0.94
HGPSO 32963.0643 | 33148.3155 | 81.6494 | 33370.2925 1.81
HPSOM 32698.2917 | 32847.3980 | 123.6024 | 33245.2739 0.40
HPSOWM | 32692.1996 | 32837.3907 | 109.3634 | 33057.3898 0.42
QPSO 32663.1132 | 32732.8841 | 45.3794 | 32871.4257 0.42
ESGHS 32970.7345 | 33331.2792 | 148.1969 | 33726.3692 0.38
DFnABC 32940.3648 | 33186.2583 | 93.6921 | 33386.5677 1.29
DE-CQPSO | 32759.3216 | 32828.8773 | 48.7985 | 32933.0331 0.41
DPPSO 32712.5265 | 32802.4608 | 65.3821 | 32904.9196 0.43
HQPSO-t1 | 32670.3033 | 32735.1835 | 45.9301 | 32856.4061 2.06
HQPSO-t2 | 32658.3740 | 32728.0508 | 55.5440 | 32884.3606 2.07

In order to verify the best solution obtained by the proposed method not violate s the constraints,
the characteristics of System 1 are given in Table 3. Columns 2-5 in this table describe the generating
prohibited zones of the system, where P! UR/ , and DR/ are the previous output level, the up-ramp
limit, the down-ramp limit of the j-th generator, respectively. Columns 6-10 give the coefficients of the
generating unit ramp rate limits of the system, where P;’.”” and P“* are the lower and upper bounds of
the k-th prohibited operation zone of the j-th generating unit. The Table 4 gives the power generation
output of each generator corresponding to the best solution. To prove that the best solution obtained
by the HQPSO-t2 satisfies the constraints in (14), we added the transmission loss (25.1431 MW) to
the load demand (2630 MW), getting the summation of 2655.1431 MW. By comparing the summation
with the total power output (2656.6716 MW), we find that the equality constraint is well satisfied. In
addition, we find that all the power outputs of generators are satisfy the ramp-rate limits, minimum
and maximum limits and prohibited zones limits. In addition, the convergence properties of the tested
optimization methods with higher objective function values on the 15-Unit system, namely the QPSO,
the HPSOWM, and two types of HQPSO algorithms, are presented in Fig.2. We find that the proposed
method converges faster and obtains a better solution finally than the fundamental QPSO method, which
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Table 3
The generating unit ramp rate limits and the generating prohibited zones of the 15-unit system
The generating prohibited zones The generating unit ramp rate limits
Unit | P} | UR; | DR, Prohibited Zones PP P ey | by ¢j
1 400 | 80 120 150 | 455 | 671 | 10.1 | 0.000299
2 300 | 80 120 | [185,225][305,335][420,450] | 150 | 455 | 574 | 10.2 | 0.000183
3 105 | 130 | 130 20 130 | 374 | 8.8 | 0.001126
4 100 | 130 | 130 20 130 | 374 | 88 | 0.001126
5 90 80 120 | [180,200][305,335](390,420] | 150 | 470 | 461 | 10.4 | 0.000205
6 400 | 80 120 | [230,255][365,395][430,455] | 135 460 | 630 | 10.1 | 0.000301
7 350 | 80 120 135 465 | 548 | 9.8 | 0.000364
8 95 65 100 60 300 | 227 | 11.2 | 0.000338
9 105 | 60 100 25 162 | 173 | 11.2 | 0.000807
10 110 | 60 100 25 160 | 175 | 10.7 | 0.001203
11 60 80 80 20 80 186 | 10.2 | 0.003586
12 40 80 80 [30,40][55,65] 20 80 230 | 9.9 | 0.005513
13 30 80 80 25 85 225 | 13.1 | 0.000371
14 20 55 55 15 55 309 | 12.1 | 0.001929
15 20 55 55 15 55 323 | 12.4 | 0.004447
Table 4
The best solution obtained by the HQPSO on system 1 (15-unit system) with M = 20and Gax = 1000
Power Output
Py — Py (MW) 454.5451 | 378.7795 130 130
Ps — Pg (MW) 170 459.8223 428.8658 66.3782
Py — P12 (MW) 51.9768 159.0918 79.0049 79.4431
P13 — P15 (MW) | 25.2877 24.9203 17.0272
Total Power Output (MW) 2655.1431 | Power Loss (MW) | 25.1431
Total generation cost($/h) 32686.4338

verifies the improvement of the convergence performance by incorporating the local search method and
two evolution operators of the algorithm.

As we can see in Table 5, the minimum total fuel cost obtained by the HQPSO-t2 with
M = 100, G,,.x = 200 over 100 independently trail runs is 119058.2805 $/h on the ED problem of
System 2. Fig.3 indicates that both the HQPSO-t1 and HQPSO-t2 have better convergence performance
than the canonical QPSO algorithm, and the HQPSO-t2 can find a better solution than the other com-
petitors.

The ED problem of System 3 taking the valve point effects into consideration that it is harder than
the problems of the previous systems, so that there are great differences among the tested algorithms in
solving the ED problem as can be seen in Table 6. Similar to the other cases, the minimum fuel cost
value was also yielded by the HQPSO-t2, and the HQPSO-t1 is the second-best algorithm in solving
this ED problem. Fig.4 shows the convergence properties of four tested algorithms that perform well
on the ED problem of this system. It is worth noting that the canonical QPSO and the two different
types of the proposed HQPSO converge smoothly and can find final satisfying solutions. However, other
algorithms, for example, the HPSOWM algorithm, converges very fast at the early search stage which
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Table 5

The results on system 2 (40-unit system)

M = 100, Gpax = 200

Algorithms Min.Cost Mean.Cost Std.Cost Max.Cost Time Cost
SPSO 126133.3248 | 127892.0687 | 1499.0383 | 134228.2116 0.38
CPSO 127315.8093 | 130562.3740 | 1556.9199 | 134635.5384 0.49
HGPSO 131204.4270 | 133254.5020 | 1354.3291 | 135164.4746 1.94
HPSOM 127129.5609 | 128501.2895 | 1229.9310 | 131450.5274 0.32
HPSOWM | 127502.6626 | 128609.6261 | 682.5146 | 129535.0901 0.34
QPSO 123928.5081 | 124818.7533 | 510.1762 | 125075.9790 0.34
ESGHS 123801.7456 | 128433.3286 | 2340.1223 | 134380.7145 0.32
DFnABC 125310.9948 | 131094.0562 | 2693.0796 | 136801.5961 0.85
DE-CQPSO | 123329.7213 | 123728.8773 | 2523.7985 | 126293.6599 0.32
DPPSO 123210.5375 | 123529.4618 | 788.3241 | 126704.2136 0.52
HQPSO-t1 | 122929.7734 | 1239347336 | 607.0051 | 126219.8492 1.06
HQPSO-t2 | 123001.4797 | 123930.6621 | 604.6610 | 125805.0694 1.09

M = 20, Gnax = 1000

SPSO 127747.9049 | 131024.0408 | 4683.2325 | 150323.9269 0.56
CPSO 128989.9941 | 133099.8996 | 2756.4730 | 139322.9076 0.65
HGPSO 131673.4145 | 134277.9978 | 2022.6942 | 138303.8831 2.31
HPSOM 127835.5108 | 127835.5108 | 743.5363 | 129284.1261 0.41
HPSOWM | 128066.3551 | 128066.3551 | 1376.5995 | 131628.1340 041
QPSO 121948.8493 | 122900.0740 | 530.0614 | 124212.2353 0.42
ESGHS 123801.7456 | 128433.3286 | 2340.1223 | 134380.7145 0.42
DFnABC 125310.9937 | 131094.0562 | 2693.0796 | 136801.5961 0.97
DE-CQPSO | 122313.9905 | 123202.1172 | 2573.0851 | 129923.7554 0.47
DPPSO 122345.1225 | 122376.1628 | 733.3221 | 125492.1116 0.49
HQPSO-tl | 121972.5806 | 122959.5297 | 645.9579 | 124970.6544 1.10
HQPSO-t2 | 121800.5434 | 122739.6659 | 488.3997 | 124345.7115 1.21

may make the swarm stuck into a local optimal point. It can be clearly seen from the enlarged picture
that the HQPSO-t2 is able to get a better solution than the QPSO and the HQPSO-t1.

Table 7 provides the results of 10 tested algorithms obtaining by 100 trails on the problem of System 4.
This problem is the largest and the hardest problem among the four systems, since it has 320 generating
units with both valve-point effect and multi fuel options considered. It can be clearly seen from the table
that the proposed method HQPSO-t2 outperforms the other competitors under two different configura-
tions. Fig.5 shows the convergence properties of four tested algorithms for the 320-Unit system, and we
find that the algorithm may stucks into the local optima area without the help of the single dimension
operations of crossover and mutation.

Furthermore, Table 8 provides the results of the unpaired t-test and Wilcoxon rank sum test of the
HQPSO-t2 with the other compared algorithms. Due to space limitation, the statistic test results for
the other three systems are not given in the paper. From Table 8, we can reach the conclusion that the
HQPSO-t2 has an extremely significant difference with all the other competitors. Therefore, it is verified
that the HQPSO-t2 performed the best in a significance manner on this ED problem among all the tested
approaches.
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Table 6
The results on system 3 (140-unit system)

M = 100, Gpax = 200
Algorithms Min.Cost Mean.Cost Std.Cost Max.Cost Time Cost
SPSO 1728741.8982 | 1778427.0646 | 37939.5346 | 1996816.3970 1.56
CPSO 1832766.1106 | 1888991.6944 | 24467.0471 | 2011114.1627 2.37
HGPSO 1879121.8773 | 1909705.5392 | 11218.3140 | 1931204.5411 11.24
HPSOM 1887442.9630 | 1956773.7462 | 25737.7534 | 2002370.4120 0.82
HPSOWM | 1884711.1356 | 1964226.7551 | 45201.4724 | 2038199.9819 0.89
QPSO 1670809.7544 | 1677133.6079 3570.5149 1687790.7177 1.20
ESGHS 1857427.1258 | 1928523.8805 | 24238.3065 | 1977945.9261 1.29
DFnABC 1881238.3763 | 2553878.8346 | 881745.0854 | 4699593.8377 3.57
DE-CQPSO | 1847690.9399 | 1917456.9870 | 35199.6722 | 1969464.5639 0.92
DPPSO 1676223.1275 | 1680231.4108 4572.3221 1692837.2126 1.03
HQPSO-t1 1670756.2609 | 1675535.7567 3222.5733 1683489.5604 5.32
HQPSO-t2 | 1670265.6224 | 1675272.4989 2748.2349 1682552.8438 5.40
M = 20, Gnax = 1000
SPSO 1742480.5812 | 1914882.7720 | 117215.2318 | 2152977.5007 1.52
CPSO 1857363.8994 | 1903203.3744 | 19802.0558 | 1974100.2225 1.72
HGPSO 1885397.0518 | 1920491.6889 | 12486.4050 | 1945173.1240 12.64
HPSOM 1880363.6519 | 1930098.3411 | 268422235 | 2071747.6331 1.20
HPSOWM | 1881967.9661 | 1928056.8934 | 25162.5623 | 2057779.5623 1.23
QPSO 1659691.9918 | 1662849.4855 1789.4972 1668901.1165 1.72
ESGHS 1853743.4210 | 1905869.6847 | 33572.2909 | 2007021.7456 1.85
DFnABC 1870110.7843 | 2112048.5359 | 118097.2076 | 2390590.1222 5.82
DE-CQPSO | 1934426.0643 | 1982332.1632 | 23069.0030 | 2007861.6231 1.82
DPPSO 1678723.5275 | 1679723.3608 2020.3321 1682302.2193 1.92
HQPSO-tl | 1660878.1374 | 1664237.8064 1451.3683 1667938.3994 14.91
HQPSO-t2 | 1659909.7560 | 1662186.9386 1057.6178 1665583.3976 15.25

A:2*y*\/l3\

M

=1

1/2

M
. . 1 . .
i=1

Fig.6 shows the changing curves of the swarm diversity of two types of the proposed algorithms and
the canonical QPSO algorithm during the search process. The swarm diversity is calculated by:

where M is the swarm size, y is self-defined and used to limit the range of swarm diversity values, and
D means the dimension number of the problem. C/ is the mean value of each dimension of the particle
swarm. It can be clearly seen form Fig.6 that HQPSO-t2 can maintain the swarm diversity during the
search process better than the other two algorithms. In addition, the swarm diversities of the QPSO drops
rapidly especially at the later search stage.
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Table 7
The results on system 4 (320-unit system)

M = 100, Gpax = 200
Algorithms Min.Cost Mean.Cost | Std.Cost Max.Cost | Time Cost
SPSO 23530.0279 | 23895.2890 | 135.3200 | 24203.2531 2.65
CPSO 20730.0132 | 20854.1034 | 74.8109 | 20982.5791 4.38
HGPSO 21703.1450 | 21895.9838 | 99.9073 | 22177.3701 524.11
HPSOM 20601.5084 | 20711.6665 | 55.8853 | 20855.2873 3.44
HPSOWM | 20968.2764 | 21091.4724 | 67.0453 | 21296.7401 2.86
QPSO 20253.8544 | 20339.0282 | 34.7542 | 20441.9486 2.96
ESGHS 22757.6964 | 23224.3743 | 220.0019 | 23757.9709 0.83
DFnABC 22125.2705 | 22716.6823 | 176.5680 | 23031.9353 44.53
DE-CQPSO | 23488.9966 | 23862.7038 | 186.6734 | 24249.5416 0.87
DPPSO 23021.5271 | 23210.4201 | 220.3521 | 23321.2195 3.23
HQPSO-tl | 23657.5590 | 24301.6431 | 273.1929 | 25286.2464 3.00
HQPSO-t2 | 20228.0330 | 20292.3103 | 35.7659 | 20392.5634 3.89
M = 20, Gnax = 1000
SPSO 23873.4001 | 24341.5286 | 212.4972 | 24782.2126 2.79
CPSO 20730.0132 | 20854.1034 | 74.8109 | 20982.5791 5.75
HGPSO 21647.6398 | 21895.5575 | 124.4781 | 22153.0172 505.00
HPSOM 20197.7344 | 20290.9004 | 35.2913 | 20383.1526 3.01
HPSOWM | 20380.7888 | 20529.0938 | 54.4495 | 20692.9613 3.00
QPSO 20208.3425 | 20299.6276 | 43.6105 | 20401.6185 3.12
ESGHS 22141.7745 | 22557.0066 | 211.2381 | 23223.0294 4.15
DFnABC 20636.0731 | 20802.1720 | 79.3019 | 21044.2541 10.38
DE-CQPSO | 23884.1108 | 24310.1655 | 280.4958 | 24686.1076 3.21
DPPSO 21281.2252 | 21321.3262 | 46.1231 | 21542.1082 443
HQPSO-t1 | 21323.3064 | 21735.0146 | 198.5969 | 22377.5906 7.57
HQPSO-t2 | 20079.5113 | 20136.7030 | 25.6040 | 20209.9782 8.66

6. Conclusion and Future Works1

In this paper, we proposed the HQPSO algorithm which couples the Solis and Wets local search and
evolution operators with the QPSO, in order to improve the relatively poor local search ability of the
QPSO when solving the non-convex ED problems. In the HQPSO, the Solis and Wets local search
method enhances the local search ability of the algorithm, and the two evolution operators decrease the
probability of premature convergence caused by the Solis and Wets method. Therefore, the HQPSO has a
better balance between the local search and global search abilities. The two types of the HQPSO and the
other optimization techniques were tested on the ED problems of four power systems, with the nonlinear
characteristics of the generators, valve-point effects and multi-fuel options taken into consideration. To
guarantee that the candidate solutions provided by the tested algorithms do not violate the constraints,
the penalty method was employed.

The experimental results obtained by the tested algorithms on the four well-studied cases indicated
that the two different types of HQPSO algorithms were better than the other tested competitors in terms
of solution quality and performance robustness. Furthermore, the HQPSO-t2 could yield higher-quality
solutions with better convergence properties than the HQPSO-t1, implying that it is a promising opti-
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Table 8

Results of the unpaired t-test and Wilcoxon rank sum test on the data in Table 7.) ;
C . M =100, Gmax = 200 | M = 20,Gmax = 1000 | M = 100, Gpax = 200 ‘ M = 20, Gmax = 1000 13
onfigurations . -
p value of the unpaired t-test p value of Wilcoxon rank sum test )
HQPSO-t2 SPSO 2.39E-29 3.22E-162 1.13E-23 2.56E-34 4
HQPSO-t2 CPSO 3.83E-66 9.31E-26 2.56E-34 2.06E-07
HQPSO-t2 HGPSO 1.71E-155 9.12E-11 1.96E-10 1.96E-10 i
HQPSO-t2 HPSOM 7.76E-193 1.72E-143 2.56E-34 2.56E-34
HQPSO-t2 HPSOWM 1.31E-182 5.43E-127 2.56E-34 2.56E-34
HQPSO-t2 QPSO 2.67E-202 2.51E-142 2.56E-34 2.56E-34 |
HQPSO-t2 MGDE 6.38E-174 3.06E-150 2.56E-34 2.56E-34 0
HQPSO-t2 ESGHS 3.04E-77 1.24E-71 3.06E-34 2.56E-34 !
HQPSO-t2 DE-CQPSO 1.23E-199 1.92E-132 2.56E-34 2.56E-34 2
HQPSO-t2 DPPSO 3.31E-76 1.68E-71 2.56E-34 2.56E-34 3
HQPSO-t2 DFnABC 3.31E-112 1.68E-103 2.56E-34 2.56E-34 4
15
16
o 17
—rarsez) | e
- QPSO e QPsO 19
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Fig. 6. The changing curve of the swarm diversities of the QPSO, HQPSO-t1 and HQPSO-t2 algorithms on different systems 38
with M = 20 and Gyax = 1000 39
40
mization technique for solving ED problems. However, the proposed algorithm has many parameters 41
need to be adjusted and converges lower that the other metaheuristic algorithms. 4z
Since the HQPSO incorporates the Solis and Wets local search method and two evolution operators, 43
its computational cost is higher than the other population-based algorithms. Therefore, in the future, we 44
will first implement some gradient based methods into the algorithm to reduce the time complexity of the 45
46
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algorithm. We also will focus on the application of the HQPSO-t2 algorithm to other difficult industrial
optimization problems.
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