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ABSTRACT

Hand measurement is vital for hand-centric applications such
as glove design, immobilization design, protective gear de-
sign, to name a few. Vision-based methods have been pre-
viously proposed but are limited in their ability to only ex-
tract hand dimensions in a static and standardized posture
(open-palm hand). However, dynamic hand measurements
should be considered when designing these wearable prod-
ucts since the interaction between hands and products can-
not be ignored. Unfortunately, none of the existing methods
are designed for measuring dynamic hands. To address this
problem, we propose a user-friendly and fast method dubbed
Measure4DHand, which automatically extracts dynamic hand
measurements from a sequence of depth images captured by
a single depth camera. Firstly, the ten dimensions of the hand
are defined. Secondly, a deep neural network is developed
to predict landmark sequences for the ten dimensions from
partial point cloud sequences. Finally, a method is designed
to calculate dimension values from landmark sequences. A
novel synthetic dataset consisting of 234K hands in various
shapes and poses, along with their corresponding ground truth
landmarks, is proposed for training the proposed methods.
The experiment based on real-world data captured by a Kinect
illustrates the evolution of the ten dimensions during hand
movement, while the mean ranges of variation are also re-
ported, providing valuable information for the hand wearable
product design. (The video abstract is available here.)

Index Terms— hand measurement, point cloud process-
ing, dynamic hand, landmark, partial scan

1. INTRODUCTION

The advent of 4D scanning technology has propelled dynamic
anthropometry measurements [1] to the forefront of various
applications. Although existing methods prioritize analyzing
dynamic body measurements to ensure the ideal fit and er-
gonomic comfort of clothing products, dynamic hand mea-
surement is under-researched [2, 3]. Dynamic hand mea-
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surement values are essential in a multitude of fields, such
as protective gear [4, 5], glove fabrication [6, 7, 8], hand-
centric entertainment [9, 10], to name a few. Furthermore,
several studies have demonstrated that different hand postures
can cause skin deformation, thereby affecting the fit of hand-
centric appliances. Therefore, there is a growing need to com-
prehend how the human hand measurement alters while it is
moved. Such knowledge could provide important informa-
tion in achieving optimal fitting, comfort, and performance in
hand-centric wearable product design.

Traditional hand measurements are manually extracted
by means of a measuring tape by an experienced anthro-
pometrist. However, it requires subjects to stretch their hands
and keep still during measurement, which is not suitable for
static hands in complex postures or dynamic hands. Fur-
thermore, the precision of the measurement highly depends
on the anthropometrist’s expertise. With the development
of 3D scanning technology, researchers have proposed the
automatic extraction of hand measurements from 3D scans
[11, 12]. However, these methods can only work for the
static hand in an open-palm pose, which does not reflect the
dynamic interaction between the agonist and antagonist mus-
cles during movement. Moreover, they require a complete
hand scan as input, which is not always available. Conse-
quently, hand measurement values estimated based on these
static postures are not sufficient for developing hand-centric
appliances. Given that the hand is in constant motion, inter-
acting with the environment, the designed hand appliances
should not be designed as rigid shells that restrict hand move-
ment. This realization has prompted the research community
to turn their attention to the technological evolution from
3D to 4D scanning systems in recent years. Klepser et al
[2, ?] revealed that the proportions of the human body vary
depending on whether the subject is in a dynamic or static
state, and they also investigated how the range of dynamic
measurements affected the fit and comfort of garments worn
by athletic individuals. However, the study overlooked the
deformation of the hand shape during movement. The human
hand is a highly intricate structure comprising 34 muscles
and 27 bones, accounting for a quarter of the bones in the
body. This unique anatomy allows the hand to achieve a wide
range of shapes and complex poses, making the analysis of
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dynamic hand measurements a considerably more complex
issue. Nasir and Kwan et al[13, 7] found that postural vari-
ation significantly affects hand skin deformation. However,
they only studied three static hand postures: relaxed, grip and
power grip.

In this paper, we proposed a novel deep learning-based
method dubbed Measure4dDHand, which enables the extrac-
tion of dynamic hand measurements from 4D partial scans.
Although leveraging the real-world dynamic hand sequence
to train the proposed model is the ideal strategy, it is sig-
nificantly expensive and time-consuming to collect such a
dataset. Therefore, we trained our model based on synthetic
single scans but the trained model generalizes well to se-
quences. Specifically, in the training phase, Measure4DHand
takes a partial hand point cloud as input and generates a set
of designed landmarks and their corresponding measurement
values. While in the testing phase, Measure4DHand di-
rectly consumes partial point cloud sequences and produces
a sequence of measurement landmarks and corresponding
measurement values. Unlike previous methods aiming to
predict the complete shapes from partial scans [14], we strive
to predict landmarks rather than complete hand shapes. Such
a strategy enables the network to focus on measurement
landmark prediction, resulting in better estimations of hand
measurements.

The main contributions in this paper can be summarized
as follows:

* We proposed, to the best of our knowledge, the first
deep learning-based method, dubbed Measure4DHand,
for automatic extraction of dynamic hand measure-
ments from partial hand point cloud sequences.

* We proposed a novel large-scale synthetic dataset con-
sisting of 234K hands with a wide variety of hand
shapes and poses, corresponding ground truth land-
marks, and measurement values. Besides, we also
collected 5 real hands via Kinect to validate the effi-
cacy of the proposed method. To facilitate the related
study, we will make the real-world dataset public when
the paper is published.

* We tested our proposed method on real scans and illus-
trated the evolution of the ten dimensions during hand
movement.

2. PROPOSED METHOD

2.1. Problem Statement

The proposed method mainly contains three steps: landmark
definition, landmark extraction, and measurement value esti-
mation, as the following is introduced. Given a sequence of
partial point clouds of a hand X = {S"})_,, where 8" =
{s? € R3|i = 1,2,...,1"} denotes the set of points with
I™ points captured from n*" frame and N is the number of
frames and can be set to an arbitrary number in this study.

The hand is moving when it is scanned, so the hand poses
of N frames are a set of coherent movements and the point
numbers of each S™ can be different. Our target is to devise
a user-friendly method to automatically extract a sequence
of hand measurement landmarks ) = {L"}_, and esti-
mate measurement values Z = {M"}"_, from ), where
L" = {I? e R*|j = 1,2, ..., J} denotes the set of hand land-
marks with J points corresponding to S™ and M" represents
the measurement values of S™. To this end, we first leverage
a neural network to learn a mapping M : X — ). Then the
measurement values are estimated by a measurement function
F:Yr— Z.

2.2. Proposed Datasets

2.2.1. Proposed synthetic dataset
2.2.1.1. Hand model generation

Generating a large-scale dataset (e.g., 100K samples) by
scanning and measuring physical subjects is an incredibly
time-consuming, expensive, and tedious task. To address this
problem, we proposed a novel synthetic dataset by means of
the SMPL-X model [15]. SMPL-X is a unified 3D model
of the human body that encompasses the body, the face and
the hand. In this paper, we only focus on the hand part,
which consists of 778 vertices and 1538 triangles. each hand
model is controlled by 15 x 3 pose parameters 6 and 10 x 1
shape parameters 5. We input thousands of shape and pose
parameters that are extracted with FrankMocap [16] into the
SMPL-X model to generate 234K hand meshes with hand
shape and pose variations, some examples are illustrated in
the first column at the top of Fig. 1b. Subsequently, We
rendered partial scans from the obtained hand models via the
open-source Blender Sensor [17], as shown in the second
column at the top of Fig. 1b. The rendered scan of the hand
is employed as the input to our proposed neural network.

2.2.1.2. landmark definition

To get the measurement values of the hands, it is neces-
sary to define the measurements in advance. In this study,
we defined 10 types of measurement: thumb girth, index-IP
girth, index-DI girth, middle-IP girth, middle-DI girth, ring-
IP girth, ring-DI girth, little-IP girth, little-DI girth and wrist
girth (DI - the joint between Distal and Intermediate pha-
langes, IP - the joint between Intermediate and Proximal pha-
langes). The last two columns at the top of Fig. 1b shows ex-
amples of the proposed hand models and defined landmarks.
With the exception of wrist girth, which comprises 16 land-
marks, all other measurements incorporate 10 landmarks. Ad-
ditionally, a fingertip landmark and two fingerroot landmarks
are preserved for each finger, totaling 121 landmarks are de-
fined.
2.2.2. Collected real-world dataset
The proposed method was trained based on a synthetic dataset
via a frame-wise manner but should generalize well to the
real-world partial point cloud sequence. To validate its perfor-
mance, we created a real-world dataset by utilizing a Kinect
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(a) Overview of the proposed method. Measure4DHand processes a sequence
of hand partial point clouds frame by frame and outputs measurement values.

The proposed real-world dataset

(b) The proposed synthetic and real-world datasets

Fig. 1. (a) The architecture of the proposed method. (b) The proposed datasets

to scan the hand of a subject, as shown at the bottom in Fig.
1b. The hand performs a closed-loop coherent motion from
an open palm to a palm grip to a fully open palm, which rep-
resents the maximum range of motion that can be achieved by
the hand, as illustrated at the bottom in Fig. 1b.

2.3. Landmark extraction

As aforementioned, the proposed neural network consumes
the partial point cloud and deforms the hand measurement
landmarks to fit the pose of input accordingly. In the train-
ing phase, the input is a single partial point cloud S™ and the
output is landmarked L™. In the testing phase, a sequence of
partial point clouds X is utilized as input, and a sequence of
anticipated measurement landmarks ) is output.

The proposed neural network follows the encoder-decoder
framework, as shown in Fig. la. The encoder is designed by
stacking two simplified PointNet [18]. The first PointNet with
a shared MLP consisting of two hidden layers of low dimen-
sions to convert the coordinates of S into point-wise feature
matrix F}", which is further extracted into a global feature G’
by point-wise max-pooling operation. Following the similar
processing of the first PointNet, the combination of G}* and
E7' as input of the second PointNet with two hidden layers of
high dimensions output a high-dimension global feature G7..
To the end, G}' and G}, are concatenated, forming the com-
bined latent vector V™. The decoder with three fully con-
nected layers is responsible for generating the landmarks L"
from the combined latent vector V™.

Original landmarks
Projected landmarks
o0y % Fitted plane

Fig. 2. Illustration of projecting landmarks to the same plane.

2.4. Measurement estimation

As described in Sec. B(1), the landmarks are selected from
the vertices of the hand mesh, so the order of landmarks can
be fixed. The extracted landmarks usually are not on the same
plane, especially during the movement, which can lead to
an increase in measurement errors. Therefore, We adopt a
point-projection method to project all the landmarks onto the

same plane, as shown in Fig. 2. Let ﬁ'g C L" denote the
landmarks of ¢'* dimension, where L" = {lZL . € R3g =
1,2,....,Q,k = 1,2,..., K}. We first compute the centroid
pg and normal vector wy' of ﬁg as:

1 ..
Pg = = ln,k (1
q AK ; q )
[an, — =] =8SVD(( ;,k - MZ) : ((lg,k - MZ))T) )

wy = Wg'[:, —1]
where SVD is the Singular Value Decomposition that can find
the main dimensions of the data distribution. The normal vec-
tor w is the last column of basis vector W. The fitted plane
can be represented as:

(W)l =02 3)

where b is the distance between the fitted plane and the origi-

nal point. The point [}, can be projected on the fitted plane as

follow: .

(g - wq — (wg)" p)
(wi - wi)wg

In the end, each measurement value can be calculated as fol-

low:

Z/n _
4.k — gk

@

K
“n .
mg = E Il /q,k+1 -1 /q,k||§ (5)
k=1

2.5. Loss Functions

To train the proposed model, the loss function is defined as
the mean square error:

J
1
LLLar) = 5 >l = 17713, 7 = 121 ©)
j=1



where L is the predicted measurement landmarks, L is the
ground truth measurement landmarks directly extracted from
the vertices of hand models.
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Fig. 3. The evolution of each hand measurement along the move-
ment (frames) of a hand. The first row is partial point clouds cap-
tured by Kinect, while the following rows illustrate variation plots of
measurement values.

3. EXPERIMENTAL RESULTS

The proposed model was trained on the synthetic dataset but
generalizes well to the unseen real-world partial point cloud
sequence. We measure the hand of each frame to qualitatively
and quantitatively analyze the measurement range while it is
moved.

3.1. Qualitative evaluation

Fig. 3 visualizes the evolution of each hand measurement
along the movement (frames) of a hand. The figure is use-
ful to illustrate the pattern and the magnitude of contraction
and expansion of each dimension during movement. As de-
scribed in Sec. B(2), the captured motion performs a closed-
loop coherent motion from an open palm to a palm grip to
a fully open palm, which constitutes a single cyclic motion.
As shown in Fig. 3, it can be seen that such motion can lead
to a clear cyclic variation in measurement values. Specifi-
cally, the variation of measurement values for the open palm
and the fully open palm is a similar trend with slight fluctu-
ation and the measurement values of the fully open palm are
slightly greater than those of the open palm. While the hand
postures are during grip movements, the measurement values
show significant fluctuations and are much lower than those
of the open palm. Additionally, while the finger-IP and finger-
DI exhibit similar variations throughout the entire motion, the

Table 1: Mean range and standard deviations of the ten measure-
ments (Unit:mm)

Measurements ~ Mean +St. Dev
Thumb girth 712433 ™ }
Index-IP girth 66.5+1.5 £ [) [] [}
Index-DI girth 52.842.5 )
Middle-IP girth 67.44+2.2 H I
Middle-DI girth 55.245.4 g I I
Ring-IP girth 66.5+£2.7 < {
Ring-DI girth 51.5 +4.0
Little-IP girth 57.242.8 o o T T
Little-DI girth 47.0+4.8 o Srgen® S5 S ? S50 e S S Spet S
Wrist girth 190.3+2.6 Measurment t

former display more intense fluctuations in comparison to the
latter.

3.2. Quantitative evaluation

For quantifying the magnitude of the variation of each mea-
surement throughout a movement, the mean and standard de-
viation of each dimension is calculated, as shown in Table 1.
The range represents the maximum value minus the minimum
value, which is the total variation. Depending on the mo-
tion performed, we can see the variation of nine finger girths
ranges from 4.2 cm to 7.5 cm, while the range of wrist girth
varies from 18.7 cm to 19.3 cm. We also draw an error bar
to enhance the visualization of the range, as shown in Fig.
1. Due to the significant difference in measurement values
between the wrist and fingers, the results of the wrist and fin-
gers are presented separately. It clearly shows the variation
range of joint DI is larger than that of joint IP.

4. CONCLUSION

This paper presents a novel user-friendly and fast method for
extracting dynamic hand measurements automatically. Com-
pared with existing methods, the proposed method can work
well for static hands in complex postures and dynamic hands.
Specifically, it takes partial hand point clouds as input and
outputs dynamic hand measurement values. A novel synthetic
dataset consisting of 234K hands with corresponding ground
truth measurement is generated for training, and a real-world
dataset consisting of 5 hands has been collected to evaluate
the proposed method. Experimental results on the real-world
data illustrate that our method is able to well record the vari-
ation of hand measurement values when the hand is moving.
It facilitates the analysis of the range of measurement values
due to skin deformations caused by different postures, provid-
ing valuable information for hand-centric wearable product
design.

In the future, we will explore the evolution of finger length
and palm region, which are also important information for
hand hand-centric applications. Moreover, our method relies
on a neural network approach that processes the depth image
frame by frame, which may result in measurement fluctuating
from one frame to the next. This limitation can be mitigated
by considering the temporal sequence information.
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