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Abstract 

The search for sustainable but environmentally friendly medium of harnessing energy for the 

automotive industry has led to the evolution of various energy generating as well as converting 

devices. One of such energy convertig device is fuel cells. Despite the merits associated to the 

performance of PEM fuel cells, issues relating to the cost and remaining useful life prediction 

still persist hence impeding their commercialization espcially in the automotive industry. In 

spite of the progress made by the research community in developing various predictive models 

in order to mitigate these challenges, the accuracy of these developed models has lately become 

active research direction. The current study explored the accuracy of recurrent neural network, 

bi recurrent neural network, combined convolutional neural network and bi recurrent neural 

network in predicting the remaining useful life of a PEM fuel cell. The presence of the 

convolutional neural network was mainly to ensure pre – processing of the bi recurrent neural 

network for the extraction of high level features. To reduce the possibility of overfitting, a 

dropout approach coupled with callback technique is adopted. Validation of the model was 

executed based on an experimental data. The outcome of the investigation highlighted the key 

role of the convolutional neural network in improving the accuracy of the recurrent neural 

network. Comparing the RMSE and MAPE of the present model with other models, the 

developed model yielded the least values indicating a higher accuracy compared to other 

models. Similarly, the relative error used in recording the remaining useful life equally showed 

a least value when compared with that of other studies. 

Keywords: Proton Exchange Membrane Fuel cells, Degradation, Health indicator, Predictive 

maintenance, Voltage. 



 

 

      

        

     

      

    

    

      

       

      

      

      

  

       

  

  

    

  

 

         

     

     

        

      

       

     

     

        

     

      

       

    

1. Introduction 

With the world currently going through a pradigm shift in terms of global emissions, one 

crucial area of interest is the approach that may be adopted in harnesshing energy for diverse 

applications. Proton exchange membrane (PEM) fuel cells an energy converting device is 

deemed as one of the viable medium for energy conversion due to it’s quick start up as well as 

higher efficiencies compared to conventional fossil based engines. The reactants required for 

the energy conversion processes in PEM fuel cells are clean hence the by product of the 

electrochemical reaction is largely water and heat. Similarly due to the absence of a moving 

part, fuel cells operate silently and also produce virtually no noise during their operation [1]. 

PEM fuel cells are however projected as the future in the quest of mitigating the sudden upsurge 

in the earths temperature due to human activities particularly in the transportation sector [2]. 

The applications of PEM fuel cells are enormous but predominantly utilised for military as well 

as automotive purposes [3, 4]. This has lead to recent investigation into fuel economy coupled 

with the management of energy being harnessed from PEM fuel cells [5]. The main issue 

impeding the commercialization of PEM fuel cells is related to the cost coupled with the shorter 

life of the cell [6]. A solution to mitigate this challenge is through an effective management of 

the rate of cell degradation coupled with an accurate determination of remainining useful life 

of the cell. It therefore implies that the current challenges impeding the commercialization of 

PEM fuel cells can easily be addressed provided the cells’ durability is improved significantly 

[7]. It must however be noted that several factors come to play in contributing to the rate of 

degradation of PEM fuel cell performance [8]. Notable among them include the rate of 

degration of the catalyst as well as the thermal management issues [9]. This implies that 

characterizing the rate at which various components in the cell tend to degrade is a bit of a 

challenge and this hypothesis even holds true in terms of asessing how each components within 

the cell tends to degrade [10]. It is therefore imperative that an ideal approach in predicting the 

life of the fuel cell coupled with the precise time for maintaining the cell in order to curb failure 

of the cell is critically looked into [11 – 13]. Several research activities has been carried out 

with primary focus on indicators for the degradation of the PEM fuel cell [14]. Voltage as well 

as the power remain the notable indicators in examining the degradation of the cell as well as 

predicting the remaining useful life. A study conducted utilized the voltage as an indicator for 

the cell degrading in order for the prediction of the remaning useful life to be conducted. The 

margin of error deduced was nearly 5 percent [15]. Another study equally considered the power 



      

     

         

        

       

   

     

     

   

   

     

     

 

      

     

         

     

  

     

     

     

         

    

         

     

          

      

         

    

 

        

    

     

       

as the indicator and the results deduced for the remaning useful life was remarkable [6]. 

Similarly, other researchers suggested using electrochemical surface area degradation for 

predicting the remaning useful [16]. The main limitation for the study was the fact that it was 

conducted using only one indicator and this left room for questions regarding the accuracy of 

the remaning useful life being predicted. To accurately predict the remaning useful life, other 

authors considered using several indicators simultaneously [17]. A combination of various 

degradating indicators using voltage coupled with the state of health was executed based on an 

integration of the 2 models using a model driven approach [18]. The outcome of the 

investigation highlighted the importance of the integrated approach in hencing the accuracy of 

the prediucted remaining useful life compared to the single model. A multi scale hybrid 

degradation indicators using film thickness as well as electrochemical surface area has equally 

been reported using automatic machine learning technique [19]. The conclusion from the 

investigation highlighted the effectiveness of the model being capable in predicting the rate of 

degradation as well as the remanining useful life of the PEM fuel cells. Extended Kalman filter 

was also adopted in describing the rate of degradation coupled with the state of health for PEM 

fuel cells [20]. Again a multiparticle filter capable of predicting the change in performacne of 

PEM fuel cells via the identification of degradation parameters has equally been reported. It 

was highlighted that the utilization of multiple indicators for the degradation of the fuel cell 

yielded accurate results compare to single degradation results. Using semi as well as empirical 

models for predicting the rate of degredation for PEM fuel cells, the rate of degredation for 

PEM fuel cell was also deduced at a macro scale perspective. This approach in determining the 

rate of degredation of the fuel cell is largely subject to the expert experience formula [21]. As 

explained earlier, the complexity in the determination of the rate of degradation of fuel cells is 

largely due to the nonlinear characteristics of the cell hence a data driven method being 

suggested as one of the most ideal means of determining the rate of degradation of the cell [22]. 

The appraoch of using a data drive technique often do not require the development of a 

metaphysical degradation model [23]. The technique adopts the performance of the cell under 

study through a learning algorithm in order to ensure the characterization for the non linear 

changes for the degradating approach is observed [24]. Neural networks remains one of the 

common data driven approach used in the determination of the fuel cell performance. A wavelet 

analysis using voltage have also been reported in predicting the degration of a fuel cell [25]. 

The conclusion of the study highlighted the feasibility in the application of the approach on 

original data with disturbances. A long G – LSTM model was however equally investigated 

for the prediction of the degration of PEM fuel cells [26]. Using a model made up of neural 



     

      

             

  

    

  

     

          

       

 

       

      

    

     

        

     

       

    

      

  

       

     

    

      

 

 

 

 

network coupled with a swarm intelligence optimiser a prrediction model was equally explored 

[27]. The study was further advanced using wavelet neural network in combination to cuckoo 

search algorithm [28]. The outcome for the study clearly showed the accuracy for the model 

being predicted compared to conventional approach. In terms of time series data, temproal 

convolutional network has been reported as being ideal in predicting the degradation of the cell 

compared to conventional methods [29, 30]. Based on the research activities conducted from 

literature, the present studies will explore the accuracy in combining convolutional neural 

network and recurrent neural network for predicting the remaining useful like of a fuel cell. 

This will then be combined with other models from literature like the Eco state Neural Network. 

2. Experimental setup for aging test 

The experimental setup for the study as depicted in Fig. 1a was obtained from the FCLAB 

Research Federation [31] and the operating conditions is highlighted in Table 1. The fuel cell 

considered for the investigation is 1kW and within the stack, there are 5 individual cells having 

an active area of 100cm2. Pressure valves coupled with flow valves ensures the oxidant as well 

as reductance for the anodic and cathodic electrodes are properly regulated. The set up is 

designed to allow the 2 reactive substances to flow via independent boilers before making their 

way into the cell. This is more likely to ensure the required relative humidity for the gaseous 

mixtures are achieved. A water pump aids in adjusting the temperature of the fuel cell. An 

active load equally ensures the load current is well controlled. For this investigation, the 

operation of the PEM fuel cell stack occurs within nominal current density of 0.70 A/cm2. 

Absolute pressures for the anodic as well as cathodic electrodes are properly controlled around 

1.5 bar to maintain steady state conditions for the PEM fuel cells whiles the absolute 

temperature was kept around 55oC but relative humidity for air is maintained near 50%. Several 

condition parameters were properly regulated. Characteization for the stack was equally done 

weekly to guanrantee the reliability of the system. 



 

 

 

  

  

   

  

   

    

   

    

    

    

 

(b) 

Fig. 1: a) Experimental setup for the investigation b) output data deduced from the 

experimental process 

Table 1: Fuel cell conditions of operation 

Constraint Control range 

Temperature range for cooling (oC) 20 - 80 

Cooling flow (l/min) 0 to 10 

Gas temperature (oC) 20 – 80 

Gas humidification% RH 0 – 100 

Air flow(l/min) 0 – 100 l/min 

Flow of Fuel (l/min) 0 – 30 

Gas pressure (bars) 0 – 2 bars 

Fuel cell current (A) 0 - 300 



   

    

    

      

  

    

  

      

         

       

     

      

       

          

         

      

        

     

     

            

     

       

   

      

  

  

          

       

       

        

      

     

  

2.1 Rate of degradation for the PEM fuel cell – Characteristic analysis 

Several parameters were monitored during the investigation process to check the degradation 

of the PEM fuel cell. Notable among these parameters include stack voltage, current, 

temperature etc as depicted in Fig. 1b. Due to the fuel cell being operational in a more precise 

as well as conducive environment the trends of the signals being harnessed from the cell is 

often stationary. It must be stated that the signals from the cell stack comes with noise as well 

as peaks. With respect to time, compared to the other parameters investigated, the rate of 

degradation of the fuel cell using voltage as a primary indicator was more predominant. This 

may be largely due to a decrement in the overall material characteristics of other components 

within the cell as well as the rate of degradation internally. It therefore explains why several 

research works usually uses voltage as the health indicator to capture the rate of degradation of 

the cell. The gathering of voltage signals is equally simple compared to using other parameters. 

The present study will therefore focus on the voltage signals as health indicator for a PEM fuel 

cell. In a nut shell, the present study intends to explore the remaining useful life for a PEM fuel 

cell from voltage historical data. From Fig. 1 it is obvious that there are several spikes and 

noise indicating that there are some voltage regeneration characteristics the comes to play 

during the data collection. It further explains that the voltage rose reversibly during the PEM 

fuel cell aging test. A justification for the observable reversible changes can be attributed to 

the operation of the stack being halted for characterization of the cell during the experiment. 

Again, due to the fact that the characterization of the cell was done at least once a week, voltage 

regeneration was seen as being periodic. After the characterization, the cell continues it 

operation but the voltage tend to drop over a period of time. From a technical point of view, 

the interruption of the stack for the weekly characterization of the cell impedes the diffusion of 

reactants as well as by product within the cell. It must however be stated that the voltage data 

from the PEM fuel cells are non linear with some element of uncertainty. 

2.2 Remaining useful life prediction – Problem description 

The primary focus of the present study is to evaluate a more proactive means of tracking the 

health status of the fuel cell in order to plan a maintenance routine especially for the automotive 

industry. The method discussed in the determination of the prediction period for estimating the 

remaining useful life is time consuming hence real – time characteristics as well as the cost for 

determining the prediction was not considered as evaluation indicators. The method adopted 

primarily focused on accuracy as well as anti interference coupled with generation. First and 

foremost, the predictive model developed was expected to be able to extract good degradation 



    

    

       

      

     

 

 

        

   

       

   

    

   

     

     

        

       

     

    

         

    

  

    

       

    

        

 

 

  

    

          

    

characteristics from the voltage data that is non linear. The model was further anticipated to be 

able to build a correlation between the input characteristics as well as the output characteristics. 

The model is also further anticipated to be able to deal with any form of spikes due to the 

weekly characterization of the experimental set up as well as any form of noise that comes with 

the experimental procedure. The model is further expected to be robust in terms of training the 

data. 

2.3 Challenges of approaches used in remaining useful life determination 

There are current 4 types of data driven prediction approach being used in estimating the rate 

of degradation of proton exchange membrane fuel cells. Each of these approaches comes with 

their own merit and demerit. In spite of the usefulness of each approach, there are still 

challenges that needs to be addressed in terms of the prediction of the accuracy of the model, 

anti – interference characteristics as well as generalization. One of the come technique used is 

the non – parametric regression approach which is quite simple to implement as well as 

recommended due to their excellent portability. The main limitation here is the fact that more 

historical data is needed and there are issues in terms of non – linear data during the data 

processing stage hence the accuracy of the prediction made using this approach cannot be 

guaranteed. Similarly, others have argued that the machine learning approach is quite flexible 

and easy to implement compared to the other models. This model is suitable for nonlinear data 

but an increase in complexity of the data can make its application quite challenging. It also 

heavily relies on the quality as well as quantity of the trained data. The accuracy of the 

prediction using this model is significantly low as well as exhibit some challenges in terms of 

generalization. The probability statistics approach is the third option but the Gaussian methods 

exhibit poorer learning ability hence the accuracy in terms of prediction is significantly low as 

well. Others like the grey models are equally dependent on the quality as well as the quantity 

of the trained data hence leads to poor generalization characteristics. The application of deep 

neural network is considered as being ideal for non linear data because of their strong extraction 

features as well as their learning process. 

2.4 Rational behind the study 

2.4.1 Motivation 

Several research activities has been conducted to ascertain the rate of degradation as well as 

estimate the remaining useful life for PEM fuel cell hence this study will evaluate the accuracy 

of predicting the remaining useful life using deep learning based lifetime predictive model. The 



      

 

  

  

       

    

     

         

          

  

 

  

      

        

   

   

   

       

      

    

   

 

model being developed is a combination of recurrent neural network and convolutional neural 

network. This will further be compared with other model from literature to ascertain the 

accuracy of the model under investigation. 

2.5 Pre processing of the output voltage 

According to a study carried out by Kimotho et al [15], the recorded voltage comes with some 

abnormalities which have direct implication on the voltage data generated. It therefore becomes 

imperative that the data is being pre processed before its integration to the developed model. 

The process often involves samplings of the data, removing all abnormal values as well as 

ensuring smoothning of the data. Fig. 2 for instance captures the outcome of the pre – processed 

data. The importance of pre – processing the data is also to reduce computational time and as 

explained earlier increase the accuracy as well. 

Fig. 2: Pre processing of the data obtained for the voltage 

Reconstruction of the actual datum is carried out to reduce the quantum of data as well as derive 

a realistic data. With constant sampling being carried out within 1 hour interval range, 1155 

sets of information datum were derived from the original data. It can be deduced that the 

original trend in the raw data is maintained even with the smoothed data. The data that was 

smoothened had 24 dimensional characteristics and this dimensional disparity among the 

parameters being investigated was more likely to cause the data for the voltage becoming 

distorted. Normalization of the data is important even after smoothning the data in order to 

decrease the impact of high variable disparity on the model performance. At the initial stages 

of the pre processing stage, the voltage signal deduced was decomposed into 3 sections as 

shown in Eqn. 1 



                                                                                                     

      

       

     

 

                                                                                      

     

  

       

            

        

 

                                                                                                                      

                                                                                                                            

    

      

                                                                              

     

                                                                                            

      

   

           

    

 

𝑌(𝑡) = 𝑇(𝑡) + 𝑆(𝑡) + 𝑒(𝑡) (1) 

The time point is denoted as t whiles 𝑌(𝑡) represent the voltage whiles the trend data is 

captured as 𝑇(𝑡). The seasonal data is also 𝑆(𝑡) and 𝑒(𝑡) is the residual dat with respect to 

time. In order for the noise passing white noise test, a Fourier transform is used as depicted in 

Eqn. 2. 

𝑡−1 
2𝜋

𝑘𝑖(𝑘 = 0,1,2. , 𝑡 − 1)𝑋(𝑘) = ∑ 𝑥(𝑖)𝑒−𝑗 
𝑁 (2)𝑖=0 

The white noise test is performed to confirm that no key information is omitted during the 

process. A particle fiter has been recommended in other studies to attain the smoothing effect. 

This was suggested as being suitable for non linear data due to its ability to ensure the initial 

and tail data were not lost because they conform to the first order Markov model [33]. In the 

case of the particle fuilter approach prediction coupled with updating are the 2 key stages that 

must be solved. Eqn. 3 and 4 are used for capturing the observation and state. 

𝑥𝑘 = 𝑓(𝑥𝑘−1, 𝑄𝑘) (3) 

𝑦𝑘 = ℎ(𝑥𝑘, 𝑅𝑘) (4) 

Assuming the probability density function(𝑥𝑘−1|𝑦1:𝑘−1) at 𝑘 − 1 is determined, then the 

process for carrying out the prediction, 𝑓: 𝑥𝑘−1 → 𝑥𝑘 is computed using eqn. 5. 

𝑝(𝑥𝑘−1|𝑦1:𝑘−1) = 𝑝 (𝑥𝑘⌋𝑥𝑘−1)𝑝(𝑥𝑘−1|𝑦1:𝑘−1)𝑑𝑥𝑘−1 (5) 

With respect to the updating process ℎ ∶ 𝑥𝑘 → 𝑦𝑘 is determined from eqn. 6 

𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)
𝑝(𝑥𝑘|𝑦1:𝑘) = (6)

𝑝(𝑦𝑘|𝑥𝑘)𝑝(𝑥𝑘|𝑦1:𝑘−1)𝑑𝑥𝑘 

The failure threshold is very critical in the determination of the remaining useful life of the cell 

and this is basically the condition at which the cell is incapable of providing enough power for 

a specific application. For the purpose of this study the Savitzky – Golay filter was utilised. 

The green region from Fig. 3 is basically the initial voltage and the threshold was maintained 

as 96 percent of the initial voltage. 



 

 

 

    

   

      

          

   

    

       

    

     

  

   

  

     

   

    

Fig. 3: Remaining useful life determination from initial voltage 

2.5.1 Savitzky – Golay filter 

Despite the raw data from the experimental setup capable of being fitted to the developed 

model, the presence of noise in the data is likely to affect the accuracy of the model hence often 

not ideal to use the raw data in the training of the model. Savitzky – Golay filter has been 

reported as being an effect filter for the removal of noise from an experimental data [34]. This 

filter has also been investgated [35] in terms of their application in the estimation of the rate pf 

degradation for a proton exchange membrane fuel cells. For this current study, the Savitzky – 

Golay filter aided in the removal of noise from the gathered data from the sensors of the 

experimental setup. This type of filter is basically a finite impulse response (FIR) where time 

domain signal is made smooth based on convolution operation. This basically ensures that the 

shaper coupled with the width for the signal do not change when removing noise from the data. 

For Savitzky – Golay filter, it’s also been reported that the effect of smoothing is predominant 

if the order of the polynomial is small. Similarly, this postulate holds true in the event that the 

window length is large [36]. For the present study, the window length was kept as 51 whiles 1 

was selected as the order of the polynomial. From a general perspective, the omittion of 

normalization during the modeling of data usually lead to the development of models that 



      

    

  

       

   

  

   

 

 
 

                                                                                                                           

        

  

 

 

         

      

      

       

      

       

   

  

 

   

     

     

     

 

learns a lot on variables having larger values but performs otherwisr for smally values. It 

implies that the convergence speed has a direct correlation with normalization of the data hence 

leading to an improvement in the accuracy of the developed model. Normalization of the data 

for this study was carried out using the maximum – minimum normalization approach. This 

method involves the utilization of the maximum and minimum values in the data for 

standardization. The standardization was kept between 0 and 1. In terms of calculations, the 

approach involves finding the disparity between the data and minimum values for the column 

and diving by the range. This is captured in Eqn. 7. 

𝑥−𝑚𝑖𝑛 
�̅� = (7) 

max − 𝑚𝑖𝑛 

The raw data set is captured as 𝑥 whiles �̅� is the normalized value for the individual data set. 

Min and Max denotes the minmum and maximum values respectively. 

3. Model investigated 

Deep learning is considered as a distributed feature learning technique [37]. The goal in 

executing deep learning is to ensure enormous amount of information is obtained via multiple 

progressive training layers. Deep learning equally ensures issues relating to poor training 

structure hence leading to some deficiency in the accuracy of the results is curbed. There is 

deepening of all layers trained from the previous layers for all algorithms in the structure of 

deep learning. Deep learning often utilize multi layer structure hence the initial raw data is 

capable of being trained coupled of times. This approach ensures important information are 

captured hence the data characteristics can easily be deduced. 

3.1 Recurrent Neural Network 

Recurrent neural network is best suited for data that is sequential [39]. Recurrent neural 

networks are designed to record, preserve as well as recorded information for data that is 

sequential based on historical antecedent via connection of hidden layer nodes periodically 

[40]. The recurrent neural network comprise of input layer, hidden layer as well as the output 

layer as depicted in Fig. 4. The weight serves as a point of connection between layers. 



 

 

     

      

   

         

   

   

 

 

   

                                                                                                          

    

 

       

 

 

 

      

     

         

    

   

        

          

Fig. 4: Recurrent neural network structure 

The weight of the input layer are captured as U for the input to hidden layer whiles hidden layer 

to hidden layer is captured as V and the hidden layer to the output layer is W. The unique 

features for recurrent neural network compared to conventional neural network is the concept 

of parameter sharing but U, V as well as W stays same for both types of neural network. For 

expanded recurrent neural, the data (…𝑥𝑡−1, 𝑥𝑡, 𝑥𝑡+1 … ). is coupled to the next neuron leading 

to the generation of neural time series (…ℎ𝑡−1, ℎ𝑡, ℎ𝑡+1 … ). For a single recurrent neuron, the 

output us sumarised  in eqn. 8. 

=ℎ𝑡 𝜎(𝑊𝑥𝑥𝑡 + 𝑊ℎℎ𝑡−1 + 𝑏) 

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊𝑦ℎ𝑡 + 𝑐) (8) 

From eqn. 8, the weight vectors are denoted as 𝑊𝑦, 𝑊ℎ, 𝑊𝑥 whiles c coupled with b are the bias 

terms. On the other hand activation function is 𝜎. Relu or Tanh is often utilised in recurrent 

neural network. Output for the recurrent neuron is 𝑦𝑡 but this is subject to ℎ𝑡 which is the 

hidden state. 

3.2 Bidirectional Recurrent Neural Network 

In order to mitigate the challenges pertaining to recurrent neural network as described  earlier, 

bidirectional recurrent neural network is often recommended because they are capable of being 

trained subject to the availability of input information both historically as well as in future with 

a specific period. The main concept is to ensure the splitting of state neurons for a regular 

recurrent neural network. This done to allow positive time direction (forward states) as well as 

negative time direction (backward states). Forward state outputs are not coupled to backward 

state inputs, and vice versa [41]. This phenomenon result in the structure captured in Fig. 5. 

Due to the fact that the delay line would have to be positive and negative in time, it is not 



   

    

       

     

       

       

      

       

     

      

       

       

       

         

         

      

          

 

 

 

 

 

 

feasible to represent the BRNN structure in a form comparable to Fig. 4 with the delay line. A 

conventional recurrent neural network having a reversed time axis occurs when the forward 

states are taken out. Because both time directions are handled in the same network, input data 

from the past and future of the currently evaluated time frame can be used directly to minimise 

the objective function without the need for delays to account for future data, as in the regular 

unidirectional RNN discussed above. Because there are no connections between the two kinds 

of state neurons, the BRNN may be trained using the same techniques as a standard 

unidirectional RNN. It can then be unfurled into a generic feedforward network. The forward 

and backward pass procedures become significantly more difficult if, for example, any sort of 

back-propagation through time (BPTT) is utilised, since the updating of state as well as output 

neurons cannot be carried out once at a time. When using BPTT, the forward and backward 

passes over the unfolded BRNN over time are performed very identically to a conventional 

MLP. Only at the beginning and conclusion of the training data does extra treatment become 

essential. The forward state as well as backward state inputs at have not been determined. 

Setting these might be considered a part of the learning process, but they are set to a preset 

value arbitrarily here. Furthermore, the local state derivatives at for forward states and at for 

backward states are unknown and are set to zero here, presuming that information beyond that 

point is unimportant for the current update, which is absolutely the case for the boundary. 

Fig. 5: Bidirectional recurrent neural network 



  

       

    

     

   

     

  

       

    

      

     

      

  

       

 

 

   

 

    

   

 

   

     

3.3 Combined Convolutional Neural Network and Birecurent nural etwork. 

Recording of spatial dependencies in the case of feature domains can be carried out using 

convolutonal neural network but the recurrent neural network can manage temporal 

dependencies in sequencial data. Furthermore due to the feedback loop, early information can 

easily be remembered by the recurrent neural network . Entire accuracy for the RNN model is 

enhanced due to the convolution neural network being utilised as preprocessing step. The 

convolution neural network carries out the extraction of high level features in the data and then 

pass to the recurrent neural network for learning the voltage sequence. In this study, the 

developed model is made up of 4 layers namely input layer, convolutional neural network layer, 

Bi – recurrent neural network layer as well as output layer. The structure is depicted in Fig. 6. 

All required data relating to the PEM fuel cell voltage for prediction goes through layer one 

Notable features relating to the input data are extracted whiles there is equally lowering of 

dimensionality in the convolutional neural network layer. Time series prediction is then carried 

out by the BiRNN layer based on processing conducted in previous layers. The output layer 

then serves as a passage for the predicted values. 

Fig. 6: Combined convolutional neural network  and Bi – recurrent neural network model 

3.4 Convolutional Neural Network(CNN) 

This model was first developed in 1998 [42] for pattern recognition coupled with the extraction 

of features as feedforward neural network. The input data’s characteristics are captured using 

a convolutional neural network and coupled into a high level features for regressional coupled 

with classification prediction. For the present investigation, a one dimensional convolutional 

was utilised as pre – processing step for the recurrent neural networks. The convolutional 



     

        

 

 

  

  

  

  

   

  

 

 

    

       

      

      

    

     

 

                                                                                                                  

                                                                                                        

 

     

      

       

    

    

neural network parameters are depicted in Table 2. From table 2, the highest pooling layer 

window is represented as the Pooling layer Pool_size whiles the output space dimension is the 

convolution layer filter. 

Table 2: Constrainst for the convolutional neural network 

Parameters Value 

Convolutional Layer Filters 128 

Convolution Layer Kernel_size 7 

Convolutional Layer Activation function Relu 

Pooling Layer Pool_size 4 

Dropout 0.2 

4. Model optimization and selecting parameters 

For the present investigation, 2 primary evaluation standards were utilised namely root mean 

square error (RMSE) as well as mean absolute percentage error. These two parameters were 

selected to ascertain the prediction performance for the model. A lower RMSE as well as 

MAPE were considered as an ideal performance of the model hence the model with the best 

accuracy in terms of prediction. Eqn 7 and 8 highlights the 2 parameters investigated. The 

original voltage is denoted as 𝑥𝑖 whiles the predicted PEM fuel cell voltage is noted as 𝑥𝑖 as 

highlighted below. 

𝑛 
1 

𝑅𝑀𝑆𝐸 = √ ∑(𝑥𝑖 − 𝑥𝑖)2 (7)
𝑛 

𝑖=1 

𝑛 
1 𝑥𝑖 − 𝑥𝑖 

𝑀𝐴𝑃𝐸 = ( ∑ | |) ∗ 100 (8)
𝑛 �̅̅�(̅𝑛)̅ 

𝑡=1 

4.1 Learning rate selection 

The current study adopted the adaptive moment optimization algorithm in ensuring the weight 

were properly adjusted in order to reduce loss value. To obtain learning rates at high precision, 

varying learning rates for the adaptive moment optimization algorithm were explored. For the 

combined convolutional neural network and the bi – recurrent neural network, the batch sive 

was kept at 50 whiles the epochs were mained at 250 whiles the units were maintained at 35. 



   

     

      

         

 

     

       

 

 

    

    

    

 

 

 

 

 

 

Tanh was equally maintained as the activation function whiles a callback techniques was 

adopted to curb overfitting. The callback was necessary to ensure overfitting was prevented by 

stopping the training process whenever the loss values attained a specific value. The mean 

absolute error is basically the loss function. The varying learning rate is depicted in Table 3. It 

can be deduced from table 3, that the least error is recorded at 0.01 learning rate but highest at 

0.1 learning rate. Fig. 7 equally highlights the predictive model at varying learning rates hence 

0.01 was selected as the most suitable learning rate for the adaptive moment optimization 

algorithm. 

Table 3: RMSE and MAPE of RNN at different learning rates 

Learning Rate 0.1 0.01 0.001 

RMSE 0.013703272 0.003595755 0.003982157 

MAPE 0.235627770 0.08383161 0.09178552 

Fig. 7: Model prediction under varying learning rates. 

4. 2 Selection of dropout 



         

    

 

     

    

     

        

    

 

       

 

    

    

    

 

 

    

    

   

 

 

   

 

One of the key down side of deep learning is the occurrence of overfitting. Overfitting is a 

condition where the developed model aligns perfectly well with the trained data set but does 

not fit properly on the test set. A mitigation appraoch that be be adopted to curb this challenge 

is the dropout technique. Deliberately freezing neurons temporarily at random conditions over 

some probability during the training procedure often results in good robustness of deep 

learning. This phenomenon occurs via the elimination of random neurons concurrently. For the 

present studies, varying drop outs are utilised in training the degradation model whiles the rest 

of the data was used in testing the predictive model after the training process. The results are 

highlighted in table 4. A drop out of 0.2 was selected in terms of accuracy as it was able to 

help curb the issue of overfitting. 

Table 4: Root mean square error coupled with MAPE for recurrent neural network at varying 

dropouts 

Dropout 0.1 0.2 0.5 

RMSE 0.048446664 0.03595755 0.05234955 

MAPE 0.105870515 0.08383161 0.11062717 

5. Discussion of results 

Python language was used in the development of the predictive model and the operation 

enviornment included a central processing unit AMD® A8-4500 M™ CPU®1.90 GHz. 

memory: 8.00 GB; operating system (OS): Ubuntu 16.04. The learning data used in the model 

varied between 0 -550 hours whiles the testing data was between 551 – 1154 hours. This is 

highlighted in the Fig. 8 below. 

Fig. 8: Representation of the training as well as testing datasets 

5.1 Evaluation of all models under investigation 

https://CPU�1.90


         

     

 

 

      

      

      

       

         

 

 

  

       

    

      

       

      

   

The study further explored varying batch size from 32, 64 and 128. The number of hidden 

neurons utilised in the training of the degradation predictive model was kept constant. Table 5 

captures the results from combining the 4 neural network models. Fig. 9 also captures the 

prediction results  for the 4 optimised recurrent neural network. 

Table 5: The optimal parameters of the 4 recurrent neural network. 

Unit Batch_size Dropout RMSE MAPE 

RNN 25 32 0.2 0.005310813 0.17665497 

Bi-RNN 25 32 0.2 0.007433851 0.23586397 

CNN-RNN 25 32 0.2 0.0036010389 0.08983413 

CNN-BiRNN 25 32 0.2 0.002581254 0.035485635 

Fig. 9: The prediction results for the four predictive model under investigation 

From table 5, it is observed that the RMSE for CNN-BiRNN was 0.002581254 and the MAPE 

was 0.035485635 and this was the least value indicating the most accurate model among the 4 

other models being studied. It can be deduced that the presence of the convolutional neural 

network enhanced the accuracy of the predictive model. For instance the root mean squared 

error for the recurrent neural network was deduced as 0.005310813 but the incorporation of 

the convolutional neural network improved the accuracy to 0.0036010389. In terms of MAPE, 



      

        

 

 

 

             

      

     

     

    

   

   

 

 

 

 

 

the recurrent neural network yielded a result of 0.17665497 whiles that of the CNN – RNN 

was 0.08983413 buttressing the point regarding the improvement of the entire model due to 

the presence of the CNN. 

Fig. 10: 80%of data training for predicting the remaining useful life. 

The next stage of the study is to compare the outcome of the CNN – BiRNN and three other 

models using the FC1 data set. The models being compared with the present study are back 

propagation neural network having 2 hidden layers, long short – term neural network and 

stacked long short – term memory neural network. Further information regarding the models 

being compared is obtainable from Fu et al [43]. The combined convolutional neural network 

and the Bi recurrent neural network exhibited the least RMSE as well as MAPE results hence 

the most accurate compared to other results gathered in literature. This implies that the model 

being investigated presented the most accurate results. 



 

   

 

 

   

       

       

     

        

  

        

        

 

 

   
 

                                                                                                         

       

     

       

  

 

  

 

  

 

 

 

 

 

 

 

 

 

 

      

       

       

 

      

       

       

Table 6: Prediction result of different models using data set for FC1 

LSTM 

[43] 

S – LSTM 

[43] 

Random Forest 

[44] 

2 - hidden 

layer BPNN 

[45] 

CNN-

RNN 

CNN-BiRNN 

Case 1 : 

651h 

RMSE 0.0058 0.0047 0.0157 0.0049 0.00349 0.00319 

MAPE 0.1421 0.0944 0.3644 0.1128 0.05708 0.05408 

Case 2 : 

751h 

RMSE 0.0045 0.0039 0.0140 0.0119 0.00329 0.00309 

MAPE 0.0947 0.0836 0.3290 0.3007 0.04978 0.04678 

Similarly, from FC2 data set, an investigation to assess the performance of the model in 

predicting the remaining useful life was equally explored. The remaining useful life is simply 

the period prior to the attainment of a specific voltage loss. Failure of the cell is meant to be 

reported once the voltage goes below a certain threshold which is defined as it’s end of life. In 

all, 3 voltage losses were considered and this were 3, 4 and 5 % of the entire voltage. The 

relative error was utilized in the determination of the remaining useful life prediction 

performacne for the model using eqn. 9. 70, 80 and 90% for the overall data set are used for 

training and the most ideal model prediction is attained at relative error of 0.012 and 0.039 at 

a voltage threshold of 5%. Using 80% of the data set for the training relative error of 0.06 was 

attained at voltage threshold of 4%. 

̅̅ ̅̅ ̅̅ ||𝑅𝑈𝐿− 𝑅𝑈𝐿
𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐸𝑟𝑟𝑜𝑟 = 𝑥 100 (9)

𝑅𝑈𝐿 

Again the smaller the relative error value, the more accurate predictive results obtained. The 

data being tained were varied between 70 , 80 and 90% in order to carry out the prediction. The 

reamining data were used for testing the data. The droupout used were equally mained as 0.2 

as explained previously. Table 7 captures the gathered predictive results obtained from the 

study. 



 

 

     

 
 

 

 

 
 

 

 

 

 
 

 

 

 
 

 

           

           

           

 

   

     

        

     

           

        

 

 

        

       

      

        

    

     

      

     

    

      

     

       

      

 

Table 7: Model RUL prediction results 

70% 80% 90% 

EOL 
Actual 

RUL 

Predicted 

RUL 
RE 

Actual 

RUL 

Predicted 

RUL 
RE 

Actual 

RUL 

Predicted 

RUL 
RE 

Threshold(%) 

3 3.26 332.39 337.05 1.40 387.17 387.01 0.31 432.14 432.06 0.87 

4 3.23 337.59 338.67 0.32 387.18 387.40 0.06 442.14 442.05 0.0179 

5 3.19 339.24 337.35 0.12 387.69 386.93 0.11 486.16 486.06 0.039 

As explained earlier even from Fig. 8, the data set before 550 hours were utilised for trainign 

the model and the threshold for the voltage was maintained at 5% and this is compared with 

other results from literature. From the results gathered in literature the relative error values for 

the LSTM was noted as 2.61 whilrs that of the S – LSTM was 0.31. on the other hand, for the 

CNN – BiRNN the relative error was 0.12. In summary the CNN – Bi RNN yileded the least 

RE compared to other models in literature hence suitable for predicting the remaining useful 

life of the the fuel cell. 

6. Conclusion 

As the demand for sustainable source of energy keeps surgining up globally particularly for the 

automotive industry, fuel cells are projected as the future to ensure the realization of the 

hydrogen economy. However, for fuel cells to become viable for various applications, issues 

pertaining to the cost as well as degradation of the cells must critically be investigated. The 

present study explored the evolution for bi - recurrent neural network and its combination with 

convolutional neural network. As discussed earlier, Savitzky – Golay filter was utilised to 

ensure the data was smooth and free from noise. Curbing of overfitting was equally executed 

using a dropout approach. The model was then optimised. From the study, a combination of 

the convolutional neural network and the recurrent neural network ensured the performacne of 

the fuel cell was significantly improved. Again the accuracy for the convolutional nueural 

network bi recurrent neural network was noted to be higher based on the results generated from 

the relative error. It therefore justify the suitability of the convolutional nueural network bi 

recurrent neural network in accurately predicting the remianing useful life for fuel cells 

compared to other models investigated. 
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