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Abstract 

Acoustic localisation technology promoted by modern engineering is of significant meaning 

commercially, militarily and medically. Commercially, Human-Computer Interfaces (HCI) 

powered by the acoustic localisation technology are attractive to consumers. Militarily, modern 

Sound Navigation and Ranging (SONAR) systems are essential equipment for the Navy and 

the acoustic localisation technology is one of the core technologies in SONAR systems. 

Medically, acoustic localisation technology is used to locate and smash stones inside human 

bodies. Acoustic localisation technology has a series of applications in various fields. However, 

the indoor localisation is an exception. 

The localisation demands of individuals in indoor environments are rising. For example, the 

Virtual Reality (VR) technology allows users to explore virtual worlds, but the VR technology 

also brings challenges to human-computer interaction. Traditional Time Difference of Arrival-

based electromagnetic localisation technologies and touchtone HCIs cannot provide users with 

immersive user experiences. However, HCIs powered by the acoustic localisation technology 

can locate users passively and such HCIs may improve the user experience by removing mobile 

restrictions of touchtone HCIs and wearable devices. 

At present, two approaches are applicable to achieve acoustic localisation. The first approach 

is the time difference localisation. The time difference acoustic localisation technology locates 

an acoustic source according to the time differences measured by sensors located at multiple 

locations. The Time Difference of Arrival (TDOA) is the most representative time difference 

localisation methodology. However, TDOA-based localisation technologies are inaccurate in 

short-range scenarios due to the interferences caused by the multipath effect. The second 

approach is the Template Pattern Matching (TPM) localisation. It is a similarity-based 

matching methodology developed for string examination in computer science originally. 

Regarding localisation, TPM-based acoustic localisation technologies locate acoustic sources 

by matching the acoustic signals of the acoustic sources with the template acoustic signals. The 

template acoustic signals are previously collected from pre-defined locations. In template 
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signal matching, the template acoustic signal which has the highest similarity to the input 

acoustic signal is identified as the matched signal thus the acoustic source is located at the pre-

defined location of the matched template signal. The TPM-based acoustic localisation system 

has a reasonable system cost since it does not rely on the deployment of multiple sensors and 

system synchronisation in comparison to the TDOA-based localisation system. But TPM-based 

localisation technologies need adequate data and exact matching algorithms to ensure accurate 

matching results. A representative application of TPM is the passive SONAR system on 

submarines. This project aims to achieve three-dimensional short-range acoustic source 

localisation with the TPM approach. 

The short-range acoustic localisation technology has been applied to two-dimensional human-

computer interaction but has not been applied to three-dimensional human-computer 

interaction. Since the short-range localisation technology is a key enabling technology, current 

research on three-dimensional human-computer interaction tends to realise three-dimensional 

human-computer interaction with the optimised TDOA-based electromagnetic localisation 

technology. However, specific problems such as the deployment of sensors and the high system 

cost are exposed in the implementations. These disadvantages restrict the applicability of the 

short-range localisation technology; thus, an acoustic localisation technology is developed in 

this project to overcome the disadvantages of the TDOA-based electromagnetic localisation 

technology and enhance the applicability of the short-range localisation technology. 

Acoustic waves can be generated actively by speaking, knocking and tapping therefore acoustic 

sources are ideal signal sources for passive localisation. In this thesis, a passive pattern 

matching-based acoustic localisation technology - Location Template-based Positioning Model 

(LTPM) is successfully designed, implemented and tested in terms of three-dimensional 

human-computer interaction. The proposed technology determines the coordinates of acoustic 

sources by matching input acoustic signals with pre-collected template signals according to 43 

acoustic features and 17 signal images. The test results indicate that LTPM has achieved a three-

dimensional accuracy of 173 mm in 95% of the location estimates in an indoor environment.  
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LTPM successfully utilises the acoustic multipath effect to achieve three-dimensional acoustic 

localisation and LTPM does not rely on the deployment of sensor arrays, measurement of time 

difference of arrival, path optimisations and signal filtering in comparison to the TDOA-based 

positioning system. Meanwhile, the LTPM-based positioning system has robust environmental 

adaptability. Correspondingly, the positioning performance of LTPM depends on the data 

volume, the integrated features, and the matching accuracy of the algorithm.  

In this thesis, LTPM is applied to two-dimensional surfaces and an indoor three-dimensional 

space for localisation tests. The two-dimensional LTPM-based localisation system has achieved 

a two-dimensional accuracy of 30 mm in 80% of the location estimates. While the three-

dimensional LTPM-based localisation system has achieved a three-dimensional accuracy of 173 

mm in 98% of the location estimates. These results imply that three-dimensional acoustic 

localisation in indoor environments is feasible, and LTPM has the potential to be the enabling 

technology for three-dimensional human-computer interfaces. 
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1 Introduction 

Localisation technology has various commercial and military applications. For example, 

geological localisation of the earthquake sources; the localisation of air bubbles and 

cracks within metal materials in Non-Destructive Tests (NDT); electromagnetic and 

acoustic localisation of military targets such as aircraft, missiles, ships and submarines. 

Meanwhile, localisation technology is also a critical enabling technology for human-

computer interaction.  

In two-dimensional applications, touch screens such as capacitive and resistive screens 

utilise TDOA-based localisation technologies to locate the user's fingers. In three-

dimensional applications such as Virtual Reality (VR) and Augmented Reality (AR), the 

user's limbs, head and body are located with the short-range localisation technology. 

Traditional TDOA-based electromagnetic localisation and inertial localisation 

technologies have many limitations and shortcomings, such as mobile restriction, system 

installation restrictions and constant requirements for displacement calibrations and path 

optimisations. As a result, the user experience is poor. New three-dimensional 

localisation technologies are therefore needed to enhance the user experience.  

Since conventional electromagnetic localisation technologies can hardly be applied to 

short-range indoor environments due to the expensive system cost and the low 

localisation accuracy. Novel short-range localisation technologies represented by the 

Ultra-WideBand (UWB) localisation technology and the acoustic localisation technology 

have been developed since the 2000s. The UWB is an extension of the remote 

electromagnetic localisation technology but optimised explicitly for indoor localisation 

[1]. Acoustic localisation technology, on the other hand, has many technical advantages 

in comparison to electromagnetic localisation technology. For example, the acoustic 

Natural User Interface (NUI) can locate the user by collecting the user’s speech, tapping 

and knocking. Since the signal carrier is the acoustic wave, users no longer need to wear 

electromagnetic transceiver devices so the cost of the system is reduced and the user 

experience is improved. 
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The TDOA-based acoustic localisation technology and the TPM-based acoustic 

localisation technology are the two mainstream acoustic localisation technologies. The 

TDOA-based acoustic localisation technology has been applied to two-dimensional 

surfaces and achieved millimetre-level localisation accuracy [2]. But the three-

dimensional positioning performance of the acoustic localisation technology regarding 

human-computer interaction has yet to be discovered. In this thesis, a Template Pattern 

Matching (TPM)-based acoustic localisation technology is proposed, tested, and 

discussed, especially from the human-computer interaction perspective.  

1.1 Background introduction 

Acoustic waves have many applications, as shown in Figure 1.1-1. Localisation is one of 

the most representative applications. The general principles of acoustic localisation 

originated from biology and bionics. In the early 18th century, Lazzaro Spallanzani 

discovered that bats have the superpower to fly at night without hitting obstacles. Later 

research revealed that bats utilise echoes to locate barriers and take evading actions 

accordingly [3]. The discovery of echo localisation attracted scholars’ attention, and 

systematic studies of acoustic localisation began in the early 1900s. 

 
Figure 1.1-1 Various applications of the acoustic wave. Acoustic waves have been 

applied to multiple areas, and one of the most critical applications is the 

underwater localisation system - Sound Navigation and Ranging (SONAR) 

The Royal Navy realised the importance of underwater detection after the famous RMS 

Titanic sank [4]. Back then, the electromagnetic wave had been utilised to locate airborne 
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targets. However, the strength of the electromagnetic wave attenuates rapidly in 

underwater environments; a new signal carrier is therefore needed for underwater 

localisation.  

Unlike the electromagnetic wave, mechanical waves, such as the acoustic wave, has a 

low attenuation rate in liquids. Hence, the acoustic wave was applied to underwater 

localisation with the support from the British Royal Navy. Soon afterwards, the first 

applicable Sound Navigation Ranging (SONAR) system was built and tested 

successfully [5].  

SONAR systems are one of the most representative engineering products. The SONAR 

technology combines bionics and electronics with acoustics to achieve tasks such as 

underwater detection, underwater localisation and underwater communication. There are 

two types of SONAR systems: the active SONAR system and the passive SONAR 

system [5]. An active SONAR system is similar to a Radio Detection and Ranging 

(RADAR) system, which locates the target by measuring time differences between 

emitted signals and the signals reflected by the target. On the contrary, a passive SONAR 

system compares acoustic signals generated by the target with pre-collected template 

signals to identify and locate the target. For a passive SONAR system, the environmental 

parameters such as water temperature, water depth and velocity profile of acoustic waves 

have less impact on the positioning performance since the performance depends on the 

pre-collected data and the classification performance of matching algorithms [5]. 

Another advantage of the passive SONAR system is that the system structure of passive 

SONAR systems is relatively simple. The localisation technology proposed in this thesis 

is also developed according to the passive SONAR system. 

Institutions and universities have launched research on indoor localisation since the 

2000s. Current localisation technologies consist of the Time Difference of Arrival 

(TDOA)-based localisation technologies and the Template Pattern Matching (TPM)-

based localisation technologies [6]. The TDOA-based acoustic localisation technology is 

similar to the active SONAR system, while the TPM-based acoustic localisation 

technology is similar to the passive SONAR system.  
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The EU project, Tangible Acoustic Interfaces for Computer and Human Interaction (TAI-

CHI), has achieved the localisation of a moving acoustic source and the localisation of 

multiple acoustic sources on two-dimensional surfaces with the TDOA-based 

localisation algorithm [7]. On the other hand, Microsoft has developed a TPM-based 

electromagnetic localisation system which utilises the signal strength and the Euclidean 

distance to locate mobile devices and achieved metre-level (range error from 1 m to 14 

m) resolution [8]. Researchers from the University of Bristol have created an ultrasonic 

feedback system, allowing users to physically touch the three-dimensional shape formed 

by ultrasonic waves [9]. These novel acoustic wave-based technologies revealed the 

application potential of acoustic localisation in human-computer interaction.  

There is a research gap in the study of three-dimensional acoustic localisation since 

existing research on acoustic localisation is two-dimensional-based, while the research 

on three-dimensional localisation is electromagnetic wave-based. Therefore, three-

dimensional acoustic localisation is determined as the primary research aim of this 

project. 

Conventional localisation technologies have low localisation accuracy and resolution in 

short-range scenarios due to the complex multipath effect and the fast electromagnetic 

propagation speed. Thus, high-performance sampling systems, multi-sensor arrays and 

path optimisations are essential to maintain a high localisation accuracy and a high indoor 

resolution. Still, these solutions increase the system cost and the complexity of the 

localisation system [10]. Hence, a new acoustic wave-based localisation technology is 

developed in this project to address these issues. 

The requirements for the new localisation technology are summarised as follows: 

• The localisation system which utilises the proposed acoustic localisation technology 

should reach a 500 mm-level accuracy in 80%-90% of the location estimates. 

• The localisation system equipped with the proposed localisation technology should 

have excellent adaptability to complex indoor environments while reducing system 

cost and system complexity. 
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Acoustic localisation brings a turning point to short-range localisation. However, from 

the literature review, current acoustic wave-based research led by universities and 

associations lies in speech recognition, acoustic field effects and realistic acoustic 

transmission model. Research on short-range acoustic localisation is extremely finite. 

Therefore, this research aims to propose a TPM-based short-range acoustic localisation 

technology. Technically, the proposed acoustic localisation technology comprises 

acoustic signal processing, feature engineering, TPM and machine learning to reach the 

following targets: 

• Validate the feasibility of acoustic source localisation in a closed three-dimensional 

space.  

• Overcome the drawbacks of traditional TDOA-based localisation technology while 

increasing system adaptability to complex indoor environments. 

• Evaluate the performance of machine learning algorithms in acoustic signal 

classification and summarise the advantages and disadvantages of different machine 

learning algorithms in short-range acoustic localisation.  

To ensure the listed targets are fully covered, localisation technologies, machine learning 

algorithms, noise elimination technologies and signal analysis are studied. In terms of 

system construction, skills and techniques such as circuit design, circuit welding, signal 

processing, application programming interface, and algorithm compilation are also 

mastered and studied for system implementations. 

1.2 Aim and objectives 

This research aims to develop a three-dimensional short-range acoustic localisation 

technology to support natural three-dimensional human-computer interaction. More 

specifically, to achieve three-dimensional short-range acoustic source localisation with 

signal processing, feature engineering and machine learning algorithms. 

The key objectives are as follows: 

(1) Develop a three-dimensional short-range acoustic source localisation technology. 

(2) Design and build corresponding acoustic localisation systems.  
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(3) Validate the proposed technology and evaluate its performance. 

(4) Summarise the advantages and disadvantages of the proposed localisation 

technology and analyse potential applications. 

(5) Advance the short-range localisation research progress by providing an overview 

of the acoustic localisation technology. 

1.3 Research challenges, research novelty and contributions 

1.3.1 Research challenges 

The EU project, Tangible Acoustic Interfaces for Computer-Human Interaction (TAI-

CHI), has achieved two-dimensional acoustic localisation on solid surfaces [7]. 

Snapdragon has also developed sound ID scanning technology for smartphones [11]. 

These technologies hint that the acoustic wave is an ideal signal source for short-range 

localisation. However, current acoustic localisation technologies are TDOA-based. 

These technologies are only applicable in solid media and are difficult to be applied to 

indoor environments fulfilled with air; thus, the primary challenge is: 

• Overcome the drawbacks of TDOA-based electromagnetic/acoustic localisation 

technology with the TPM-based acoustic localisation technology.  

Therefore, a TPM-based acoustic localisation technology is proposed and implemented. 

Detailed research challenges encountered during the design of the localisation 

technology and implementation are introduced below.  

The management of the multipath effect is the first research question. An acoustic wave 

interacts with objects inside the medium and multiple acoustic waves are generated 

during the propagation of the acoustic wave. Hence, a received acoustic signal usually 

contains direct signal components and multiple indirect signal components. The 

phenomenon is called the acoustic multipath effect [12]. The multipath effect complicates 

the solution to short-range localisation, as shown in Figure 1.3-1.  

Specific technical problems caused by the multipath effect, such as source signal 

identification, signal filtering and signal separation, are exposed during the development 

of short-range localisation technologies. Noise elimination techniques (such as adaptive, 
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digital, and predictive filters), acoustic field simulation and high-order acoustic wave 

equations are developed against these problems, and these techniques have only finitely 

improved the accuracy of localisation systems. 

The multipath effect becomes more complex indoors [12]. Therefore, a key research 

challenge in acoustic localisation is: 

Eliminate or utilise the multipath effect. 

In this project, the multipath effect is utilised to achieve localisation instead of being 

eliminated because: 

• The elimination of the multipath effect is impracticable and complicated. 

• The multipath effect endows acoustic signals with unique signal patterns which can 

be utilised for matching.  

The multipath effect is essential to the proposed technology - Location Template-based 

Positioning Model (LTPM). Theoretically, the more complicated the multipath effect is, 

the better the localisation results will be. In comparison to TDOA-based electromagnetic 

localisation technologies, the system cost of LTPM is lower because LTPM does not rely 

on the sensor array deployment, path optimisations and high-frequency sampling systems 

and LTPM has robust environmental adaptability. 

Two factors determine the performance of LTPM; the first factor is the signal feature 

(match target). The second factor is the classification performance of the matching 

algorithm. In the previous research on short-range localisation, the most common signal 

features used for matching are signal strength and frequency shift. It is clear that the 

signal is not fully utilised; thus, the first challenge in applying TPM to acoustic 

localisation is: 

• Improve the acoustic signal utilisation. Explore, define and add more acoustic signal 

features to improve the performance of LTPM. 

The second challenge in applying TPM to acoustic localisation is: 

• Compile a pattern matching algorithm that accurately matches the input signal with 

the template signals according to the defined acoustic signal features.  
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Moreover, acoustic signals received by a sensor are always a mixture of the source signal 

components, the multipath signal components, and the background noise. Therefore, 

noise processing is also necessary and another technical criterion of the proposed 

localisation technology is eliminating the noise while preserving the applicable signal 

components, especially the multipath components in a received signal. 

 

Figure 1.3-1 Illustration of the multipath effect (left) and the power distribution of 

a received acoustic signal (right). 6 signal components (corresponding to sets {β1, 

β2, β3, β4, β5, β6} and {τ1, τ2, τ3, τ4, τ5, τ6} respectively) are sampled, including 

both direct signal components and indirect signal components  

1.3.2 Novelty and contribution 

In the secondary research, 62% of the literature is about electromagnetic localisation, 

12% is about TPM localisation, and 15% is about two-dimensional acoustic localisation. 

Most localisation technologies and related research are electromagnetic and TDOA 

based. There is only limited literature on three-dimensional acoustic localisation.  

In this project, a localisation technology - Location Template-based Positioning Model 

(LTPM) is designed and tested, with the aim of providing human-computer interaction 

with a reliable and accurate three-dimensional acoustic localisation technology. Signal 

processing, feature engineering and template pattern matching are utilised to achieve 

acoustic source localisation in the indoor environment. Machine learning has also been 

applied to recognise the complex acoustic patterns hidden in template signals and classify 

acoustic signals accordingly.  

The proposed Location Template-based Positioning Model (LTPM) utilises the acoustic 

multipath effect and it has a three-dimensional accuracy of 173 mm. LTPM overcomes 
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the drawbacks of TDOA localisation technologies as it does not rely on time difference 

measurement and path optimisations. Meanwhile, technical solutions to challenges listed 

in 1.3.1 are presented.  

The research on short-range acoustic localisation is conducted from the human-computer 

interaction perspective as this research intends to find a better localisation solution for 

three-dimensional human-computer interaction. The proposed acoustic localisation 

technology can be integrated into applications such as Augmented Reality (AR), Virtual 

Reality (VR), natural user interface, human-computer interaction in autonomous driving, 

speech localisation, smart stage, smart home, and battlefield sniper localisation as an 

enabling acoustic localisation technology 

1.4 Scope and thesis structure 

The research background, research challenges and research objectives are described in 

Chapter 1. A state-of-the-art literature review considering existing localisation 

technologies, human-computer interaction technologies, machine learning and signal 

processing techniques is presented in Chapter 2. While in Chapter 3, the spiral research 

methodology is discussed.The localisation principles of LTPM, acoustic signal features 

for matching and machine learning algorithms are introduced in Chapter 4. 

In Chapter 5, two-dimensional localisation tests are designed to preliminarily test the 

positioning performance of LTPM. Detailed test results are presented and discussed.  

In Chapter 6, the LTPM is applied to achieve three-dimensional localisation. Details on 

devices, implementations and signal processing are illustrated and elaborated. The test 

results are analysed and discussed. 

Chapter 7 presents the research conclusions. A review of accomplished work, the 

technical defects of LTPM, suggestions and possible applications are summarised to 

establish a solid foundation for subsequent short-range localisation research. 
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2 Literature review 

In this chapter, technical details of the three-dimensional acoustic source localisation 

technology are determined by reviewing acoustic properties, mainstream human-

computer interaction technologies, existing localisation technologies and machine 

learning technologies.   

2.1 A brief review of acoustics and acoustic localisation 

Modern acoustics consists of classic acoustics, modern acoustics, architectural acoustics, 

hydroacoustic, electroacoustics, biomedical acoustics, and musical acoustics. The review 

begins with the introduction of acoustic decomposition and superposition in classic 

acoustics. 

2.1.1 Classic acoustics and decomposition of mechanical waves 

The exploration of acoustic localisation starts with the vibration theory. The string motion 

theory proposed by Galileo Galilei is widely acknowledged. Galileo Galilei was one of 

the founders of acoustics. He started formal research on the relationship between 

vibration and acoustic waves in the 17th century [13]. His writing “Two New Sciences” 

first clarified the word vibrating strings or frequency. 

Frequency represents the number of occurrences of a periodic event per second. It is a 

physical quantity often used to describe periodic movements. In signal processing, the 

frequency domain provides researchers with a new approach to analysing acoustic 

signals. Some problems that cannot be resolved in the time domain can be easily 

addressed in the frequency domain.  

The frequency domain analysis has become an essential part of signal processing. In this 

project, features of acoustic signals in the frequency domain are utilised to realise 

accurate signal matching. The frequency 𝑓 is academically defined as: 

𝑓 =
1

𝑇
2 − 1 

where 𝑇 is the time to perform a periodic change.  
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From then on, scholars and musicians connected frequency with acoustic terms such as 

tone, pitch and timbre to exploit the correlations between frequency and auditory sensory. 

The famous British mathematician Brook Taylor, inventor of the Infinite Series, 

successfully deduced the strict preliminary solution of the one-dimensional wave 

equation (Eq. 2-2) for single-string vibration with Newton’s motion equation [14].  

𝜕2𝑢

𝜕𝑡2
= 𝑎2

𝜕2𝑢

𝜕𝑥2
, 𝑎 = √

𝑇𝐸

𝜌
2 − 2 

where 𝑎 reflects the propagation speed of the acoustic wave, which is determined by 

the string, 𝑢 is the lateral displacement of the mass point at 𝑥 on the string relative to 

the equilibrium position at time 𝑡, 𝑇𝐸  is the tension on the string, and 𝜌 is the density 

of the material. 

The wave equation is an important model for the vibration analysis of elastomers. It 

provides an intuitive research basis for developing the Fourier Transform since the one-

dimensional wave equation represents the simplest string vibration. In 1822, the Fourier 

Series was proposed by Fourier [15], and it was applied to partial differential equations 

immediately because the Fourier series transfers the acoustic wave in the time domain 

into plural sinusoidal or cosine waves with different frequencies.  

Fourier series of the periodic function in sinusoidal form: 

𝑓𝑇(𝑥) = 𝑐0 + ∑ 𝑐𝑛 sin (𝑛
2𝜋

𝑇
𝑥 + 𝜃𝑛)

∞

𝑛=1

2 − 3 

where 𝑐0 is the direct current component, 𝑐𝑛 stands for the amplitude (the weights of 

different sinusoidal components), 
2𝜋

𝑇
 is the fundamental frequency while 𝜃𝑛 represents 

the initial phase of different sinusoidal components. 

However, the famous electrician Ohm pointed out that most acoustic signals are 

aperiodic. And he solved the aperiodic decomposition problem with differentiation [16]. 

An aperiodic function is considered periodic when 𝑇 → +∞ . The fundamental 

frequency 
2𝜋

𝑇
 is turned into a differentiation: 𝑑𝜔. Meanwhile, the sum operation in (Eq. 
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2-3) becomes integral. The Fourier transformation formula is therefore proposed as 

follows: 

𝑓(𝑥) =
1

2𝜋
∫ 𝐹(𝜔) ∙ 𝑒𝑖2𝜋𝜔𝑥𝑑𝜔

+∞

−∞

2 − 4 

where 𝑓(𝑥) is the aperiodic function. 𝜔 is the reciprocal of 𝑇.  

Nowadays, the power spectrum is calculated by projecting a signal into the frequency 

domain through the Fourier Transform. The Fourier Transform converts realistic, 

complex acoustic waves into periodic waves with single frequencies, presenting an 

intuitive relationship between power and frequency. Thus, the Fourier Transform is a 

powerful mathematical tool, and it has been used to find scientific solutions to complex 

multi-frequency vibration questions. 

A realistic acoustic wave consists of one fundamental wave and many harmonic waves, 

these waves work together to determine the physical properties of the acoustic wave [17]. 

(Eq. 2-4) is widely used to extract an acoustic signal's fundamental frequency and 

harmonic frequencies. Besides, Ohm also illustrated that the human brain could decode 

mixed acoustic waves to extract information about acoustic sources [16]. These research 

achievements promoted the development of modern acoustic signal processing 

profoundly. 

In addition, the inverse Fourier Transform is always used to restore a signal in the 

frequency domain to a signal in the time domain. The general formula for the inverse 

Fourier Transform is as follows: 

𝐹(𝜔) = ∫ 𝑒−𝑖2𝜋𝜔𝑥 ∙ 𝑓(𝑥)𝑑𝑥
+∞

−∞
2 − 5

(Eq. 2-4) and (Eq. 2-5) are the Fourier Transform pair. The appearance of the Fourier 

Transform pair allows signals to be converted freely between the time domain and the 

frequency domain. The Fourier Transform pair is used for signal filtering and feature 

extraction in this research. 

According to the Fourier Transform, an acoustic wave is generated by linear 
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superpositioning a series of periodic acoustic waves with different frequencies. 

Therefore, if acoustic source localisation with a single-frequency acoustic wave is 

feasible, realistic acoustic signals with multiple frequency bands can also be decomposed 

and utilised to achieve acoustic source localisation.  

Based on the above conclusion, this project focuses on processing audible acoustic 

signals with single frequencies. This strategy simplifies the design of localisation tests 

and enables deep mining of acoustic signal features. 

From then on, Helmholtz validated Ohm's research achievements with the Fourier Series 

[18]. Helmholtz also proposed the resonance theory in his famous tone-listening 

experiment [18]. Nowadays, the Helmholtz resonator is still an essential tool for 

instrument design and modern acoustic engineering. Figure 2.1-1 shows the Helmholtz 

resonators.  

Resonance occurs when a periodic acoustic wave enters a closed space. Resulting in a 

series of resonant frequencies called formant frequencies in signal processing [19]. This 

project utilises the resonance feature-formant band to achieve acoustic source 

localisation. 

 

Figure 2.1-1 Helmholtz resonators. The resonators capture and amplify specific 

mechanical waves. The Helmholtz resonance theory was applied widely from 

internal-combustion engines to aircraft engines [20] 

By the end of the 18th century, the research priority of acoustics inclined to the three-

dimensional and analytical solution of the wave equation. French mathematician Poisson 
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presented solutions in 1820 [21]. Poisson researched the reflection of the mechanical 

wave; and the acoustic penetration between two different liquid media. In his research 

‘regarding acoustic wave propagation in open pipes’, he claimed that the sound pressure 

could change significantly at the cross-section of pipes [22]. Considering that such a 

phenomenon could happen during the propagation of acoustic waves, the sound pressure 

of the acoustic signal is extracted as a signal feature for pattern matching in this research. 

In 1866, German physicist Kundt gave birth to the standing wave tube (or Kundt tube, as 

shown in Figure 2.1-2) for sound absorption coefficient measurement [23]. The standing 

wave tube has become a standard method for measuring the material’s acoustic 

impedance. The acoustic absorption coefficients of the composite table and the glass 

plate are also measured with the standing wave tube in this project. 

 
Figure 2.1-2 The Kundt tube is widely used to display mechanical waves visually. 

On the other hand, the tube is often used to measure the acoustic propagation 

velocity in solid objects [23] 

In order to achieve two-dimensional acoustic localisation and three-dimensional acoustic 

localisation, it is important to understand the characteristics of acoustic propagation in 

solids, liquids, and gases. Ernst Chladni invented the Chladni plate to demonstrate the 

propagation patterns of acoustic waves inside solid objects: shear and longitudinal waves 

[24]. The shear wave originates from shear stress, while the shear stress in liquids and 



 

15 

 

gases is approximately zero; thus, acoustic waves propagate only in the form of 

longitudinal waves in liquids and gases. This character of acoustic waves simplifies two-

dimensional acoustic localisation because signal components are complex and well-

preserved inside solid objects. Hence, the two-dimensional localisation test will be 

conducted first, followed by the three-dimensional localisation test.  

The propagation speed of the acoustic wave is also an important parameter in existing 

acoustic localisation technologies, especially in TDOA-based localisation technologies. 

Technically, the acoustic propagation speed affects the localisation accuracy and the 

sampling rate of acoustic wave-based localisation systems. But since the localisation 

technology proposed in this project relies on pattern matching rather than time 

differences, acoustic velocity barely affects the performance of LTPM-based localisation 

systems. 

In the review of classic acoustics, basic requirements for acoustic localisation have been 

determined. Acoustic sources with a single vibration frequency will be used in 

localisation tests to simplify signal processing and enable deep mining of acoustic 

features. In signal pattern matching, multiple signal features (match objects) will be 

defined first then the input signal is located by searching for a sample signal which has 

the most similar features to the input signal’s features. The biggest difference from 

traditional pattern matching-based localisation technologies lies in the utilisation of 

multiple acoustic features.  

From the perspective of the localisation test, the test follows the ‘from simple to complex’ 

principle. Localisation tests will be conducted on two-dimensional surfaces first and then 

proceed to three-dimensional spaces.  

Although there is limited literature on acoustic localisation in classic acoustics, classical 

acoustics still laid the foundation for pattern matching-based localisation technologies. 

Next, modern acoustics are reviewed. 

2.1.2 Architectural acoustics and the multipath effect 

Architectural acoustics focuses on improving indoor acoustic quality and indoor noise 
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elimination [25]. Thus, acoustic field simulation, sound quality control and noise 

suppression techniques are essential for architectural acoustics and these techniques are 

also referenced to achieve acoustic localisation in this project.  

The multipath effect-based reverberation theory was proposed by W. C. Sabine at the 

beginning of the 20th century [26]. As shown in Figure 2.1-3, the multipath effect causes 

interferences for signal processing in TDOA-based localisation technologies. The 

management of the multipath effect has become an inevitable research question since the 

multipath effect significantly reduces the localisation accuracy. The multipath effect is 

always considered a negative effect in architectural acoustics because it causes specific 

differences between the source signal and the received signal. The most effective and 

practical solution to eliminate the multipath effect is the soundproof room; as shown in 

Figure 2.1-4, the room maintains -20 dB of background noise level [27]. 

 

Figure 2.1-3 Illustration of the indoor acoustic multipath effect. The multipath 

effect becomes less obvious in the open space. While in a closed space, the 

multipath effect is amplified and it causes inconsistent signal perceptions [26] 

The acoustic multipath effect is considered a positive effect in this project as it endows 

the received acoustic signals with distinguishable features for signal matching. Previous 

pattern matching-based electromagnetic localisation test results achieved by Ahonen and 

Eskelinen showed that the signal strength could be used for mid-range (200 m 

localisation resolution) localisation [28]. Inspired by their achievements, this project 

focuses on realising short-range localisation (500 mm - 200 mm localisation resolution) 
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with the multipath effect of audible acoustic waves.  

Acoustic waves are elastic waves, and acoustic waves have different characteristics in 

different elastomers. For example, acoustic waves propagate simultaneously in 

longitudinal and transverse waves inside solid objects, whereas only longitudinal waves 

exist in liquids and gases. The transverse, longitudinal, and leaky surface acoustic waves 

in solid objects have different propagation velocities and properties. Predictably, the 

coexistence of different acoustic waves endows the received acoustic signal with unique 

features; thus, it is considered a positive effect for signal feature-based pattern matching 

algorithms. 

 

Figure 2.1-4 Sound-proof room built by Massachusetts Institute of Technology 

[27]. The room has a noise level of 20 dB and the wall absorbs most acoustic 

waves; thus, the multipath effect barely exists. The room is used for sound 

recording, sound quality research etc. 

Different from the attitude of architectural acoustics towards the multipath effect, the 

multipath effect is utilised to achieve localisation rather than being suppressed in this 

project. At the same time, sound propagation models from architectural acoustics [29] 

are referenced to support the simulation and modelling of indoor acoustic fields. 

2.1.3 Hydroacoustics and SONAR systems 

Acoustic waves are essential in underwater detection. Underwater acoustic localisation 

technology played a great role during World War II, and this technology received rapid 

development in military and civilian fields after the war [30]. Nowadays, the main 

application fields of hydroacoustics are marine exploration and the marine military. 
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D. Colldon first measured the underwater acoustic velocity in 1827 [31]. The high 

propagation speed of 1435m/s and low attenuation rate of the acoustic wave have aroused 

researchers' interest in underwater applications. In 1912, the sinking of the most famous 

British passenger liner RMS Titanic shocked the world. Then the British Navy developed 

echolocation systems for battleships and cruise ships to prevent such accidents from 

happening again [32]. As a result, hydroacoustic has received gorgeous development 

since then.  

Nowadays, SONAR is no longer a mysterious word to the public, and it plays a vital role 

in multiple fields such as fishing, marine, and military. In 1916, P. Langevin conducted a 

test on underwater echolocation. In the test, he successfully received reflected acoustic 

waves from the seabed and a huge armour plate placed at 200 meters of depth [33]. While 

in 1918, he invented two key devices for SONAR; the first applicable piezoelectric 

transducer, which produces ultrasonic waves; and the vacuum tube amplifier for power 

amplification [33]. Since then, the military constantly developed SONAR systems for 

anti-submarine purposes during the World War. Figure 2.1-5 shows the SONAR array on 

a submarine and a realistic SONAR scanning map.  

Multiple acoustic localisation technologies are integrated into the SONAR technology to 

ensure the accuracy and versatility of SONAR systems. Localisation technologies 

integrated into the SONAR technology include echolocation, time difference 

localisation, angular localisation, and beamforming localisation technologies [34].  

Technically, the SONAR technology can be divided into active SONAR technology 

(which has acoustic wave generation devices) and passive SONAR technology (which 

only receives acoustic waves emitted by the target) [35]. Both of the SONAR 

technologies are reviewed since it is an acoustic wave-based localisation technology. In 

the proposal of the pattern matching-based three-dimensional acoustic localisation 

technology, the SONAR technology, especially the passive SONAR technology is 

referenced to complete the technical details of LTPM. 

In the military and marine field, a passive SONAR system provides information such as 
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the distances, the thrust modes and the types of the target ships. Compared with the active 

SONAR system, the passive SONAR system has excellent concealment as it only 

receives acoustic waves. A passive SONAR system identifies targets by matching the 

acoustic signals received by hydrophones with the template signals in the matching 

database [35]. Therefore, the nature of the passive SONAR is consistent with the acoustic 

localisation technology proposed in this project. Namely, a passive acoustic localisation 

technology that overcomes the shortcomings of the TDOA-based localisation 

technologies is proposed according to the localisation principles of the passive SONAR 

system. Technologies integrated into the passive SONAR technology are also referenced 

and utilised in the proposed acoustic localisation technology. The sensor array, feature 

extraction and pattern matching technologies are the core technologies for a passive 

SONAR system [35]. These technologies are also studied and selected to achieve onshore 

three-dimensional acoustic source localisation. 

 

Figure 2.1-5 A SONAR array system on a submarine (left) and a scanning SONAR 

image of the seabed [36] 

Another advantage of the passive SONAR system is that the systematic structure is 

simpler in comparison to the structure of the active SONAR system. The localisation 

system is built according to the systematic structure of the passive SONAR system to 

control the hardware cost and the system complexity. 

2.1.4 Electroacoustics and the state-of-the-art acoustic equipment 

Electroacoustics is an interdisciplinary subject which combines electronics with 

acoustics. It is an essential science for the application of acoustics. Gramophones 
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invented by T.A. Edison and carbon microphones invented by A.G. Bell signed the birth 

of electroacoustics [37]. Electroacoustics received rapid development during the two 

World Wars, too. During the two World Wars, various speakers, walkie-talkies, and 

eavesdroppers were manufactured for communication and eavesdropping purposes [38]. 

In this project, sensors and sampling modules used in the two-dimensional and three-

dimensional localisation tests are selected according to the test requirements and the 

electrical characteristics. 

Another rapid development period of electroacoustics began in the 1970s [39]. Powerful 

microprocessors and SoC systems were applied to acoustic devices, and acoustic systems 

became smaller, lighter and more powerful. Typical applications of electroacoustics are 

shown in Figure 2.1-6.  

In the implementation of the proposed localisation technology, the MAX9814 acoustic 

amplifier is selected because of its excellent dynamic response range and self-

adaptability. The sensor used in the two-dimensional localisation test is the Murata 

PKS1-4A10 shock sensor, a cost-effective sensor with stable performance. 

The sampling system is built based on an ADLINK DAQ-2010 data acquisition card, 

which can be configured through the API functions in MATLAB. The highest sampling 

rate of the DAQ-2010 is 2 MHz. The high sampling rate meets the sampling requirements 

of all the localisation tests. 

The GRAS 146AE measurement microphone and the AA12 amplification module are 

selected for the three-dimensional localisation test. The 146AE measurement 

microphone has an extremely low input impedance and a wide dynamic response range 

and weighs only 35 g. It can easily be fixed with a lightweight microphone stand or 

attached to solid surfaces for acoustic signal detection.  

In this project, the contribution of electroacoustic lies in the system setups. Devices such 

as sensors, sampling cards, cables and modules such as signal perception, acoustic signal 

processing, blind acoustic source isolation, noise cancellation module, etc., are selected 

carefully to ensure that devices used in the tests cover the test requirements. For more 
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technical details, please refer to Chapters 5 & 6.  

 

Figure 2.1-6 Pioneer DJ-400 DJ controller and GRAS measurement microphone. 

The advanced electroacoustic engineering products allow users to take control of 

acoustic waves and record the most realistic acoustic waves for exhaust analysis  

At the 2020 advanced engineering exhibition, new localisation systems and acoustic 

equipment were exhibited, including the SINUS integrated localisation system. It is an 

interesting short-range localisation system that detects acoustic source movements in 

front of the microphone array [40], as shown in Figure 2.1-7. SINUS combines computer 

vision with TDOA-based acoustic localisation technology to achieve short-range visual 

localisation [40]. The digital data acquired from cameras and microphones is converted 

into a real-time stereoscopic image. However, the system still needs some improvements 

regarding the system cost and the detective range. 

Figure 2.1-7 The SINUS localisation system developed by AcSoft. The whole 

system consists of 72 transducers and one optical camera 

This item has been removed due to third party copyright. The unabridged 
version of the thesis can be viewed at the Lanchester library, Coventry 

University
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2.1.5 Inspirations from Bionics  

The study of audible acoustic waves began with explorations of the human auditory 

system. Two crucial parameters decide whether humans can hear acoustic waves. The 

first parameter is the time domain's energy threshold (or amplitude). In Anatomy, 

scholars indicate that the minimum average human hearing threshold is 10−12W/𝑚2 

[41]. Assume that the surface of the eardrum is 0.66 cm2, then the minimum watts that 

can be heard with human ears is 6.6 ∗ 10−17W/s  approximately. If the minimum 

hearing interval is set to 0.1s, the minimum energy required to activate the nerve system 

is 6.6 ∗ 10−18J . These conclusions are also referenced to select appropriate acoustic 

sources for localisation tests. 

Another parameter for hearing is the frequency [42]. The hearing threshold of human 

beings was first determined from 8hz to 24000hz by a French scientist Savoie in 1830 

[43]. Afterwards, Biot, Knig, Helmholtz, and their peers kept verifying and adjusting the 

threshold values [44]. The results acquired by those scientists proved that human beings' 

high-frequency threshold decreases with age. Hence, the acknowledged range of the 

auditory frequencies is confirmed from 20 Hz to 20,000 Hz. This audible frequency range 

is also referenced to set the sampling frequency. 

2.1.6 Speech recognition and machine learning technologies 

Nowadays, machine learning algorithms are mostly used in complex classification tasks 

due to the powerful classification functionality of machine learning. Speech recognition 

is a typical example. 

Machine learning has been applied to speech recognition since the 2000s [45]. In some 

cases, words have different meanings under different contexts and accents. As a pioneer 

in Mandarin speech recognition, iFlytek developed multiple deep learning algorithms to 

classify tones, accents, and contexts [46].  

The speech recognition system developed by iFlytek has a powerful autonomous learning 

ability, and it reached a word-matching accuracy of 97%. As a result, the speech 

recognition system developed by iFlytek became the most accurate intelligent speech 
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recognition software for Mandarin [46].  

Similarly, inspired by the fact that machine learning recognises complicated signal 

patterns in speech signal processing, machine learning algorithms are used to classify 

acoustic signals from different physical locations in this project.  

The decomposition and superposition of acoustic waves, the multipath effect, and 

SONAR systems are briefly introduced in this chapter. At the same time, the electrical 

characteristics of acoustic devices are also investigated to build a functional experimental 

platform. Lastly, speech recognition supported by machine learning is discussed. 

Machine learning will be utilised to process complex acoustic signal patterns in the 

proposed acoustic localisation technology. 

2.2 Mainstream human-computer interaction technologies 

Localisation technologies are essential enabling technologies for human-computer 

interaction [47]. Thus, the working principles of existing human-computer interfaces and 

the localisation technologies integrated into these human-computer interfaces are 

reviewed to provide a comprehensive understanding of the localisation technology that 

could be applied to support three-dimensional human-computer interaction.  

According to the interactive models, Human-Computer Interfaces (HCI) are classified 

into tangible and intangible interfaces [48]. The most popular tangible interfaces are 

physical touch-tone interfaces such as keyboards, mice, and touchpads. In comparison, 

intangible user interfaces are next-generation interaction technologies that do not rely on 

specific physical entities. The acoustic localisation technology proposed in this project 

can be integrated into the above two interfaces. The working principle, advantages and 

disadvantages of existing touchtone interfaces are reviewed and summarised to ensure 

that the proposed technology stays within the scope of practical applications.  

The touch screen is the most representative tangible interface. It can be found on most 

modern devices. In general, touch screens can be divided into the following four 

categories: 
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(1) Capacitive Touch Screen 

(2) Resistive Touch Screen 

(3) Surface Acoustic Wave and Acoustic Pulse Recognition Touch Screen 

(4) Infrared Grid and Infrared Acrylic Projection (Figure 2.2-1) 

 

Figure 2.2-1 An infrared virtual keyboard deployed on a table 

Capacitive and resistive touch screens are the most commonly used tangible interfaces. 

The interaction medium between the user and the screen comprises plexiglass, conductor 

layers, isolation layers, and multiple electrodes [49]. The direct interaction on the screen 

ensures that the user receives real-time visual feedback. These two touch screens have 

been applied to different electronic appliances to provide users with an intuitive human-

computer interaction experience and reduce the operation difficulty.  

While Surface Acoustic Wave (SAW) is a novel technology which uses ultrasonic waves 

for precise localisation [50], the maximum localisation resolution of SAW reaches the 

micrometre level so that ridges of a fingerprint are identifiable. Infrared grid or infrared 

projection technology is popular among young generations because of its high-tech 

sensations. However, its user interaction experience is bad. It allows users to deploy a 

virtual keyboard on flat surfaces. Still, its performance is unstable when the 

environmental light is bright, or the solid surface is rough, and it barely gives users 

intuitive feedback [51]. 
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2.2.1 Capacitive touch screen 

A surface-capacitive touch screen continuously releases high-frequency currents on the 

screen’s surface. And when conducts (fingers) slide across or touch the capacitive touch 

screen, four compensation currents are generated from four electrodes fixed at four 

corners of the screen. Each electrode provides part of the compensation current, and the 

current supplied by the electrode is proportional to the length between the touchpoint and 

the electrode; hence the touchpoint is calculated according to the compensation currents 

[52]. The localisation procedure is similar to TDOA, except that the signal is current 

instead of electromagnetic waves.  

A projective capacitive screen uses a similar localisation theory to a surface-capacitive 

touch screen, but it measures capacitance instead of current. There are two types of 

projective touch screens: absolute capacitive screens and mutual capacitive screens. An 

absolute capacitive screen uses the sensed object (e.g., fingers) as the second electrode 

of the capacitor [53]. When the object touches the screen, a charge is induced between 

the internal electrode and the sensed electrode; then, the coordinate of the touchpoint is 

calculated by comparing the capacitance change. 

The mutual capacitive screen has multiple internal capacitors. It locates the touchpoint 

according to the change of coupling capacitance caused by finger contacts [54]. In other 

words, the coordinate of the touchpoint is calculated with the change of coupling 

capacitance at the intersection of the X and Y directions. In addition, this localisation 

technology distinguishes the distance between the finger and the capacitor layer. For 

instance, fingers can cause the original capacitance on the X and Y axes to change without 

touching the screen. Thus, the projective capacitive screen work normally even if the user 

wears gloves or the internal capacitors are isolated by thick glass. 

The projective touch screen enables multi-touch, but the cost is high. Therefore, only 

premium devices have a projective capacitive screen [55]. Common applications of the 

projective capacitive screen include mobile phones, mp4 players, digital cameras, etc. 

The localisation steps of a capacitive touch screen are shown in Figure 2.2-2, and the 
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coordinate template distribution of a projective screen is shown in Figure 2.2-3. 

 

 

Figure 2.2-2 Illustration of the localisation steps of a capacitive screen [52] 

In summary, the capacitive touch screen technology is a planar HCI which uses two-

dimensional localisation technology as the enabling technology. On the one hand, 

capacitive screens require precise structures to ensure accurate localisation results. Thus, 

the cost is high and the system is fragile. On the other hand, capacitive touch screens are 

still touchtone interfaces; therefore, the user's mobility is limited. 

 
Figure 2.2-3 The coordinate template distribution of a projective screen [55]. The 

screen usually consists of 5 layers. By examining the coupling capacitance on the 

X-axis and the Y-axis, the location of fingers is calculated precisely 
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2.2.2 Resistive touch screen 

The resistive touch screen has a longer developing history than the capacitive touch 

screen. The resistive touch screen's hardware cost is lower than the capacitive touch 

screen because the resistive touch screen utilises elastic deformation of solid materials 

for localisation instead of measuring capacitance [56]. Curvatures on a resistive touch 

screen surface cause imbalanced conductivity and the increased or decreased 

conductivity is measured by electrodes for localisation.  

 

Figure 2.2-4 The structure of a 4-wire resistive touch screen. The two conductive 

layers represent the X-axis direction and the Y-axis direction, respectively. When 

a force is applied to the surface, the touchpoint is located by measuring the voltage 

change [57] 

There are two representative resistive screens: the 4-wire resistive touch screen with three 

layers, as shown in Figure 2.2-4, and the 5-wire resistive touch screen with four layers 

[57]. For a 4-wire resistive touch screen, the three layers are two resistive conductor 

layers and one insulation layer. The 5-wire resistive touch screen was developed based 

on the 4-wire resistive touch screen. The layers of a 5-wire resistive touch screen include 

one conductive layer, two resistive conductor layers, and one insulation layer.  

The first resistive conductor layer is for X-direction coordinate calculation, and the third 

layer is for Y-direction coordinate calculation. When an external force is applied to the 

surface of the touch screen, the upper layer is forced to contact the lower layer; the x 

conductor layer is activated firstly for the voltage measurement in the parallel electric 

field. The X-coordinate of the touchpoint is calculated with the voltage change. Next, the 

y conductor layer is activated for coordinate measurement. And the Y-coordinate of the 

touchpoint is calculated in the same way [57]. It can be concluded that the localisation 



 

28 

 

procedure equals the measurements of the terminal voltages from different directions. 

The x conductor and y conductor layers are alternatively used as the drive and detective 

layers to provide standard terminal voltage. Unlike capacitive touch screens, a resistive 

touch screen is available for multi-touch while maintaining excellent localisation 

accuracy. Table 2.2-1 compares the capacitive and the resistive touch screens. 

Table 2.2-1 Comparison between the resistive touch screen and capacitive touch screen  

 Resistive Capacitive 

Stability Excellent Medium 

Accuracy High 

High but later 

to resistive 

screens 

Interaction Objects 
Anything causes 

external forces 

Conductors 

only 

Electromagnetic 

interference  
Excellent Medium 

Contaminant resistance Strong Poor 

Point drift None 
Real-time 

calibrations  

Response time Fast Very fast 

2.2.3 Acoustic tangible technology 

Elo Touch developed Acoustic Pulse Recognition (APR) [58]. Similar to the capacitive 

touch screen technology, four piezoelectric sensors are deployed at the corners of a glass 

screen to detect mechanical wave propagation within the screen. A mechanical vibration 

wave is generated when an external force is applied to the surface of the glass screen, 

and the mechanical wave will transmit to the four piezoelectric sensors [58]. The location 

of the contact point is determined by the proportional analysis of the signals received by 

the four sensors. Filtering, signal processing, and pattern recognition are the core 

http://www.baidu.com/link?url=n1pJ0wIu6cqrOmYDIqE92mm8ce92nPpzjjxPuDDM5hiPtL9R3kbM3wwzIsyRwSgaa0GqFK_wx1-GdKMz20sQtAgqAYSmSE_mJp5vsYKEDtFxOeOzaYEN8-v5NWDcJPPCCmIuh6ONnYzHOc6Dhc4JHK
http://www.baidu.com/link?url=n1pJ0wIu6cqrOmYDIqE92mm8ce92nPpzjjxPuDDM5hiPtL9R3kbM3wwzIsyRwSgaa0GqFK_wx1-GdKMz20sQtAgqAYSmSE_mJp5vsYKEDtFxOeOzaYEN8-v5NWDcJPPCCmIuh6ONnYzHOc6Dhc4JHK
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technologies for APR localisation technology. 

Surface Acoustic Wave (SAW) was initially proposed for flow measurement, but it can 

also be used for acoustic localisation on solid surfaces. Transducers are required in SAW 

localisation technology. The transducers continuously emit acoustic waves, and reflectors 

reflect the emitted acoustic waves. If there is no touch action on the surface of the screen, 

the reflected acoustic waves will always travel back to transducers within a certain time 

delay with certain patterns. Once there is a touch action on the surface, the finger will 

cause the acoustic waves passing through the touchpoint to attenuate partially. Then the 

location of the touchpoint is determined with the time delay and energy attenuation [59]. 

In addition, the localisation accuracy of SAW localisation technology depends on the 

wavelength of the emitted acoustic wave. For example, the acoustic wave used in 

Snapdragon Sense ID is a special mechanical wave with 15μm wavelengths so Sense ID 

can locate ridges of fingers for the fingerprint lock screen [11]. 

Although the two acoustic localisation technologies have been applied to Human-

Computer Interfaces, the interfaces are still restricted to two-dimensional surfaces. This 

project aims to develop an acoustic localisation technology which can be applied to three-

dimensional spaces. 

2.2.4 Research on acoustic localisation   

The two-dimensional acoustic localisation technology TAI-CHI was applied to various 

human-computer interactive applications and gained favour from the public [60]. 

Tangible Media, proposed by MIT, locates the user's arms and fingers with cameras and 

motion projection. Then the real-time information is uploaded to motors to perform the 

user’s hand movements [61]. This technology can be used for remote control, precisely 

mimicking the user’s actions. Ultraoptics forms specific patterns in the three-dimensional 

space by gathering acoustic waves [9]. This pattern can be observed visually. The user's 

fingers can be located by touching the pattern, and appropriate force feedback is provided 

during the interaction. Existing acoustic localisation-related research achievements are 

listed in Table 2.2-2. 
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Table 2.2-2 A summary of acoustic localisation technologies  

 

In summary, localisation technologies are prerequisites for human-computer interaction 

technology. Different localisation technologies are closely related to the mobility 

limitations and interaction efficiency of human-computer interaction technologies. From 

the perspective of localisation principles, the localisation technologies used by human-

computer interaction technologies have similar localisation principles. Below, different 

localisation principles are introduced. 

2.3 Localisation technologies 

There are five mainstream localisation technologies. Namely, differential localisation, 

Ultra-Wide Band (UWB) localisation, Time Reversal Mirror (TRM), computer vision 

and TPM localisation technologies. Differential localisation technology is the most 
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commonly used localisation technology. While UWB is an extension of differential 

localisation technology aiming to improve the indoor localisation accuracy of the TDOA-

based electromagnetic localisation technology. Time Reversal Mirror (TRM) is often 

used in passive underwater localisation; thus, it is an essential technology for the SONAR 

system. Below, the most widely used differential localisation technology is introduced. 

2.3.1 Time Difference of Arrival (TDOA) and Ultra-Wide Band (UWB) 

The Time Difference of Arrival (TDOA) technology is a classic localisation technology, 

and it is used widely in telecommunication and GPS localisation [62]. TDOA utilises 

time delay detected by multiple sensors to locate the location of the signal source. 

Theoretically, the location of the signal source can be accurately calculated with precise 

time difference measurements and the real-time signal propagation velocity profile of the 

medium and the localisation accuracy of TDOA can be improved by adding more sensors 

to the localisation network [63]. However, a shortcoming of TDOA is that all sensors 

must be synchronised strictly to maintain the system’s stability and accuracy [64]. The 

application of TDOA localisation technology in indoor environments is therefore 

restricted because the deployment and layout of sensors vary significantly in different 

indoor environments. 

The main application of TDOA is remote localisation. With the development of 

communicative satellites, metre-scale localisation accuracy is achieved with civilian 

equipment such as mobile phones and GPS [65]. Nowadays, TDOA has become the most 

common localisation technology, and TDOA-based localisation systems have been 

applied to navigation, area surveillance and intelligent driving.  

Danicki argued that the localisation accuracy of TDOA will be reduced with the 

increasing electromagnetic interferences [66]. The electromagnetic interference 

generated when electromagnetic waves pass through another electromagnetic field is a 

problem that cannot be ignored as more powerful electromagnetic fields are being 

deployed, especially for RADAR detection and telecommunication [67]. Similarly, 

TDOA localisation technology encounters similar technical problems in indoor 

localisation, especially with the popularity of wireless Wi-Fi and Bluetooth networks. 
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TDOA can be combined with the acoustic wave to locate the acoustic source [68]. Figure 

2.3-1 illustrates a TDOA-based two-dimensional acoustic localisation system. Similar to 

the capacitive screen, four acoustic sensors are placed at the corners of a glass plate. The 

acoustic source location is located by measuring the time differences of the acoustic wave 

arriving at four sensors. The main difference between the electromagnetic TDOA 

localisation technology and the acoustic TDOA localisation technology is that the 

propagation speed of acoustic waves is much slower than the propagation speed of 

electromagnetic waves. Therefore, the acoustic TDOA localisation technology has lower 

sampling requirements and system costs. Correspondingly, the effective range of the 

acoustic TDOA localisation technology decreases significantly (a few millimetres to a 

few metres, depending on the energy density of the acoustic signal and the media). 

 

Figure 2.3-1 Illustration of a short-range acoustic TDOA localisation system 

In the case that conventional electromagnetic TDOA localisation technology is 

impractical in complex indoor environments, Ultra-WideBand (UWB) was proposed 

against indoor localisation tasks. UWB is an extension of the TDOA localisation 

technology, but it uses dedicated high-frequency electromagnetic waves and mini-sensor 

arrays to achieve short-range localisation tasks [69]. However, specific problems such as 

electromagnetic interferences, signal source power and sensor matrix deployment still 

exist in the implementation of UWB.  
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2.3.2 Time-reversal and related applications 

TRM is an array signal processing technology. TRM has the functionality to gather 

physical vibration energy at a specific point for tasks such as metal inspection and 

crushing target objects. It can also locate signal sources and weaken the multipath effect 

in terms of the energy density of acoustic signals.  

However, TRM requires the participation of transducers and consumes tremendous 

energy [70]. The TRM technology is an ideal technology for tasks that require energy 

focus. For example, the assembled energy generated by ultrasonic TRM technology is 

used to shatter stones hidden in human organs medically. 

The working principle of the time-reversal theory is as follows; firstly, a signal source 

emits an electromagnetic or acoustic wave to a transducer array, and each transducer 

partially receives the wave. Secondly, the host processor makes records of these signals 

received by each transducer and then controls the transducer array to emit phase-reversed 

waves. Thirdly, the waves generated by the transducer array retrace to the acoustic 

source, and the energy-gathering effect emerges due to phase stackings of the consecutive 

waves. 

The stackings of the waves lead to a rapid energy increase at the signal source. The 

accumulated energy can even destroy the signal source. Kuperman achieved another 

large-scale undersea Time Reversal Mirror (TRM) test in 1997 [71]. In this test, 

Kuperman successfully verified the energy-gathering effect of TRM in the underwater 

environment and located acoustic signal sources with hydrophones.  

Ray Liu, the president of IEEE, promoted the development of time reversal-based 

localisation technology by combining time-reversal technology with electromagnetic 

beamforming technology for indoor localisation [72]. The time reversal-based 

localisation technology is being applied to indoor localisation as indoor wireless 

networks such as Wi-Fi and Bluetooth are widely deployed. 

Acoustic TRM is inappropriate for three-dimensional localisation, especially for air-

filled spaces. The thin chaotic molecular motion fades the energy-gathering effect. 
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Besides, the acoustic wave has a faster propagation speed in solids and liquids (e.g., 3000 

- 5000 m/s in metals and 1500 m/s in seawater) [73]; thus, the energy can be accumulated 

quickly. In comparison, the acoustic wave propagates at approximately 340m/s in the air. 

As a result, the time required for energy accumulation in the air and system reaction is 

longer. Hence, the main applications of acoustic are underwater detection and non-

destructive test.  

2.3.3 Pattern matching 

Pattern matching originally refers to the basic string operation, which is used to find all 

substrings that share a similar pattern to the target string [74]. This concept has been 

extended and transferred to multiple fields. Pattern matching is used in signal processing 

to match input signals with sample signals.  

The most frequently used cross-correlation processing of signal sequences is a typical 

pattern matching algorithm. The pattern matching algorithm calculates the similarity 

between two signal sequences by point-to-point comparing the amplitudes of the two 

signal sequences [75]. In addition, since the matching database must be established 

before matching, the sample collection work needs to be accomplished in advance in 

pattern matching-based applications.  

However, collecting samples in advance for comparison is not just a characteristic of 

pattern matching. In fact, this matching processing has also been widely applied to 

localisation technology. In most cases, locating a signal source solely with time 

differences is impractical and inaccurate. Therefore, most localisation technologies 

require matching processing to improve the localisation accuracy. For example, modern 

SONAR systems are equipped with various acoustic fingerprint databases to acquire 

detailed information such as the speed, course and type of the target ship for tracking and 

attacking tasks [76]. Similarly, acoustic signals collected from different locations contain 

location information of the acoustic source. In the proposed localisation technology, 

acoustic sources are located by comparing the signal pattern or features of the input signal 

with the signal pattern or features of samples stored in the matching database.  
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The concept of signal pattern emerged during the development of signal analysis. The 

signal pattern represents the whole signal sequence with a vector with single values; thus, 

the matching processing is simplified by reducing the number of peer-to-peer 

computations. 

Signal pattern improves the operability and matching accuracy of pattern matching. 

Pattern matching is currently applied to applications requiring signal classification [77]. 

Typical applications include voice recognition, image recognition, and cyber security. 

The EU project TAI-CHI also utilised pattern matching, TDOA and predictive algorithms 

to realise acoustic human-computer interaction. The technology is able to transform solid 

materials into a touch-screen-like human-computer interface, allowing continuous 

tracking, multi-touch and acoustic source localisation on the surface of three-dimensional 

objects [7]. The novel tangible technology benchmarked next-generation natural user 

interfaces.  

From the mathematical perspective, similarity criterion, maximum likelihood estimation, 

Euclidean distance and correlation analysis are all applicable in matching algorithms. 

TAI-CHI used cross-correlation as the matching methodology and signal peaks as the 

matching target [78], as shown in Figure 2.3-2. Its pattern matching-based localisation 

procedure consists of two steps, learning and recognition. In the first step, the acoustic 

wave signal generated by tapping is labelled with the location coordinate. In the second 

step, the matching algorithm finds a signal in the template with a peak value similar to 

the input signal, and the coordinate of the matched signal is determined as the system 

output.  

Pattern Matching-based systems usually have simple system structures and strong 

environmental adaptability compared to TDOA-based systems in terms of short-range 

localisation. This project utilises pattern matching to realise acoustic source localisation 

in the three-dimensional space. 
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Figure 2.3-2 The peak value-based pattern matching template developed by the 

TAI-CHI project [78] 

2.3.4 Difficulties in practical acoustic localisation cases 

Danicki summarised positioning problems encountered in battlefield acoustic 

localisation. He pointed out that the analysis of the location of a practical acoustic source 

is dynamic, and each acoustic source in the environment should be comprehensively 

referenced to estimate the location of the concerned acoustic source [79]. For example, 

the shooter should be located with the muzzle blast, the acoustic wave generated by bullet 

movements and the acoustic waves generated by the bullet hitting objects [79]. Figure 

2.3-3 illustrates the cone blast wave of the muzzle. The cone blast wave is constantly 
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spreading; thus, the cone wave analysis is dynamic. 

The dynamic analysis of supersonic bullets begins with the muzzle blast analysis. The 

muzzle of a gun can be regarded as a tip of an acoustic cone, and the spreading of the 

cone is related to the acoustic wave caused by the flying bullet. Danicki proposed an 

acoustic wave diffusion model based on these conclusions [79]. The model was 

combined with TDOA-based localisation technologies to provide detailed gunshot 

information. 

 

Figure 2.3-3 Cone wave analysis of gunfire. The model developed by Danicki 

pointed out that the realistic analysis of acoustic waves should always be dynamic 

[79] 

Danicki also tested different combinations of sensor arrays to capture the detailed 

acoustic signals for analysis. Directional microphones, omnidirectional microphones, 

and three combination schemes have been tested, namely, 2+4 (2 directional 

microphones and 4 omnidirectional microphones), 3+3 (3 directional microphones and 

3 omnidirectional microphones), and 4+2 (4 directional microphones and 2 

omnidirectional microphones). The test results showed that the 2+4 scheme is the most 

appropriate solution for mid-range gunfire localisation. Danicki’s work provided scholars 

with comprehensive instruction for practical acoustic localisation tasks, especially in the 

analysis of multiple acoustic sources simultaneously and the deployment of acoustic 

sensors. 

2.3.5 A summary of localisation technologies 

Two-dimensional acoustic localisation technologies can turn solid objects into interactive 

interfaces. Unlike traditional localisation systems, system synchronisations, path 

optimisations, and sensor networks are unnecessary in Template Pattern Matching-based 

acoustic localisation systems. The cost of the TPM-based system is therefore reduced. 
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Correspondingly, a disadvantage of TPM is that sample signals must be collected from 

multiple physical locations in advance. To solve this problem, a tool named ‘Location 

Template’ is proposed in this thesis to accomplish the sample collection work. Details of 

the location template are explained in Chapter 4. 

Other localisation technologies are also worth exploring, but most of the localisation 

technologies are based on two-dimensional surfaces. For instance, Cambridge University 

conducted a two-dimensional side-channel attack project in which the microphones on 

mobile phones are fused with angular localisation algorithms to create a side-channel 

attack system [81]. Their test results showed that cracking personal PINs with internal 

microphones on the phone is possible. Xiang proposed a localisation technology that 

utilises Doppler Frequency shift for indoor localisation, and they achieved a ranging error 

between 30 cm and 40 cm [80].In the pioneering project TAI-CHI, 14 mm localisation 

accuracy was achieved on the surface of a glass plate with multiple sensor deployments 

and predictive algorithms [7]. The details of different localisation technologies are shown 

in Table 2.3-1.  

Table 2.3-1. Comparisons between different localisation technologies. TAI-CHI has the best 

localisation accuracy on solid surfaces. While UWB is the most comprehensive and competitive 

localisation technology which can be applied to 3D spaces though it needs certain 

environmental optimisations and infrastructure installations 

 

Nowadays, various localisation technologies are being developed iteratively. State-of-

the-art localisation technologies tend to integrate environmental variables to achieve 

precise indoor localisation. The concept has been adopted to the proposed localisation 
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technology. In the proposed localisation technology, machine learning algorithms are 

used to classify acoustic signals according to the defined signal features (the multipath 

effect influences acoustic signals and related acoustic features. Therefore, environmental 

variables are integrated into the localisation system indirectly).  

2.4 Acoustic localisation 

2.4.1 Electromagnetic and acoustic waves in localisation 

Acoustic localisation is developed mainly for underwater detection and environments 

with severe electromagnetic interferences [30]. However, acoustic localisation showed 

great commercial value in natural human-computer interfaces.  

The development of human-computer interfaces is inferior to the development of graphic 

technology. Traditional touchtone HCIs can hardly meet the interactive requirements of 

novel graphic technologies. For example, in VR games, users have to wear a VR headset 

and take two controllers to interact with virtual objects. This interactive mode has 

drawbacks of movement restrictions. However, HCIs powered by two-dimensional and 

three-dimensional acoustic localisation technologies and possibly, the acoustic force 

feedback technology may free the user from holding controllers, removing the movement 

restrictions and bringing users a realistic immersive user experience. 

Current mainstream localisation technologies use the electromagnetic wave as the signal 

carrier. However, applying these electromagnetic localisation technologies to indoor 

localisation is troublesome. Since the velocity of electromagnetic waves is close to the 

speed of light, electromagnetic localisation systems require ultra-high-speed sampling 

systems to ensure accurate time difference measurements.  

On the other hand, the multipath effect of the electromagnetic signal also causes multiple 

interferences, which will seriously affect the localisation accuracy of TDOA-based 

electromagnetic localisation systems [67]. Techniques such as signal filtering and 

differential sensor array are developed to eliminate the interferences but these techniques 

further reduce the robustness of the system and increase the system cost. Therefore, it is 

impractical to apply TDOA-based electromagnetic localisation technologies to indoor 
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environments. 

Electromagnetic waves are destined for long-range localisation. Unlike the 

electromagnetic wave, the slow acoustic propagation speed becomes an advantage in 

short-range localisation. For example, the acoustic propagation velocity within the 

Gorilla Glass 3 (the screen material of LG Nexus 5) is 4154.44 m/s [81]. Theoretically, 

systems equipped with a standard 44 kHz A/D converter (a regular sampling frequency 

for audio cards) and the Time Difference of Arrival (TDOA) positioning algorithm can 

reach a localisation accuracy of 100 mm. In the air, the velocity of acoustic waves 

decreases to 340 m/s, and the theoretical localisation accuracy is further improved to 8 

mm. Therefore, acoustic localisation is more practical to achieve short-range localisation 

tasks.  

Problems caused by the multipath effect also exist in acoustic localisation. The acoustic 

wave emitted by an acoustic source is subject to reflection (flat surfaces, e.g., walls, floor 

and table), diffraction (sharp edges, e.g., small apertures), and scattering; such a 

superposition of acoustic waves affects the perception of the source signal. 

However, the multipath-related signal components in a received acoustic signal also 

create distinctive signal patterns [83]. Therefore, the multipath signal components in 

received acoustic signals are utilised to achieve acoustic source localisation. Besides, 

pattern matching-based localisation systems are robust to environmental noises and 

interferences. Therefore, a TPM-based acoustic localisation technology is designed in 

this thesis. 

2.4.2 Machine learning in acoustic localisation 

To achieve pattern matching-based acoustic localisation and utilise the acoustic multipath 

effect, the relationship between acoustic features and different three-dimensional 

locations must be determined. However, it is difficult to manually observe, summarise 

and utilise the hidden patterns in acoustic signals since multiple features (43 features) are 

defined and more than 120,000 acoustic signals are collected.  

Machine learning provides a solution to this problem because machine learning 
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algorithms specialise in finding hidden patterns in the training data and classifying input 

data with the summarised patterns. A practical example is that the Random Forest 

algorithm is used to predict stock prices. A Random Forest-based prediction model can 

be constructed by learning historical stock data, including stock price, trading volume, 

market index, etc. An accurately trained model is able to summarise the changing trend 

of the stock price from historical data and predict future stock prices.  

Another example is the Convolutional Neural Network (CNN)-based computer vision. A 

CNN consists of a series of layers. These layers accomplish tasks from extracting local 

and global features from the training images, dimensionality reduction, and feature 

aggregation. Therefore, CNN can automatically extract features from the training data 

and construct corresponding classifiers. A well-trained classification model can 

accurately classify input images without feature definitions.  

These characteristics of machine learning have been fully considered in this research. A 

scheme that utilises different machine learning algorithms to classify signals from 

different locations according to defined signal features and signal images is designed. 

Therefore, this project utilises signal processing, feature engineering and machine 

learning to achieve short-range acoustic source localisation in the indoor environment.  

2.5 Machine learning  

2.5.1 An introduction to machine learning 

A powerful classifier is necessary to utilise the signal components affected by the 

acoustic multipath effect. Machine learning is particularly suitable for such complex 

classification tasks. Currently, machine learning has been applied to many aspects, 

especially in analysing big data and computer vision [84]. According to National Centre 

for Missing and Exploited Children (NCMEC), 8.2 million missing children reports were 

received in 2016 [86]. The processing of each report takes up to 30 days since time and 

labour are required to process pictures and videos in these reports. With the help of AI 

software (with deep learning frame) developed by Intel, the average single processing 

period is reduced to 1-2 days, potentially saving thousands of children. Thus, significant 
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contributions to multiple social fields can be made with the reasonable utilisation of 

machine learning.   

Machine learning consists of supervised learning, unsupervised learning, and semi-

supervised learning [85]. The training data must be labelled in advance for model training 

in supervised learning. SVM, Random Forest, and decision tree are all supervised 

learning methodologies. Unsupervised learning is widely applied to data mining; it 

automatically captures specific data patterns from unordered data according to the 

defined input and output. Unlike supervised learning, a typical unsupervised learning 

algorithm generates a classification model without labelling data [85]. 

Semi-supervised learning lies in between the two learning methods listed above. The data 

modelling starts with unlabelled data then the model predicts results with labelled data 

[85]. The data distribution across the training phase is stochastic.  

2.5.2 Introduction of deep learning  

Deep learning is the most representative machine learning algorithm because of the 

superb classification performance and the low requirement for feature processing. The 

deep learning classification model process complex and repetitive work efficiently; thus, 

it is an appropriate technology for image and video classification.  

A deep learning neural network consists of layers with different functionalities, as shown 

in Figure 2.5-1. This hierarchical structure allows feature extraction and feature 

transmission through layers so that the deep learning network automatically matches the 

input with the output [87]. In the situation that sufficient samples are provided, the 

classification performance of a deep learning network exceeds that of the traditional 

deterministic algorithms easily.  

The deep learning algorithm’s performance scales with the amount of data and may never 

reach a limit [88]. In other words, the potential of deep learning is infinite. However, 

deep learning still has some drawbacks. For example, disastrous memory loss occurs 

when a trained deep learning network is assigned with new tasks [89]. Humans can 

accumulate experience and master many skills for different tasks, and most importantly, 
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apply previous experience and skills to new challenges. In contrast, deep learning 

networks do not have similar mechanisms and structures for experience inheritance.  

 

Figure 2.5-1 A typical Deep Neural Network (DNN) structure. A DNN consists of 

many layers with different functionalities. The training usually requires a large 

amount of data and huge computational resources 

Another defect of deep learning is that it requires a large amount of data and sufficient 

computational resources for model training. Table 2.5-1 below shows the estimated 

training time of an English speech recognition model [90]. Thousand hours of training 

are required to train the speech recognition model. Therefore, applying machine learning 

to acoustic localisation also comes at a cost. As an attempt, this project established a 

benchmark for three-dimensional acoustic source localisation and systematised basic 

concepts for future research on acoustic localisation. 

Table 2.5-1 Training hours consumed by an English word error rate model [90]. The model is 

a 9-layer CNN model with 68M parameters 
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2.5.3 The development of machine learning in commercial applications 

In 2016, Intel announced the Lake Crest platform (Nervana platform) and Xeon Phi and 

stated that these products are the most powerful processors [91]. As a response, Nvidia 

illustrated their Pascal GPU and new image AI software immediately.  

Nvidia’s AI software manipulates weather and natural light in videos and images. Nvidia 

used an innovative strategy to enhance the performance of its AI software. Namely, two 

models were created for imaging processing; the first one is Variational Auto-Encoder 

(VAE), and the second one is Generative Adversarial Nets (GAN) [92]. The two models 

compete against each other simultaneously. VAE is designed to cheat GAN with similar 

images, while GAN is designed to find the differences in images and restore the images. 

As a result, VAE and GAN evolved simultaneously to a perfect dynamic equilibrium 

state. The images created by VAE and GAN are so vivid that some researchers even 

started to worry about the spam of fake videos and images on the Internet.  

Machine learning has also been applied to speech recognition. In 2016, the initial vocal 

software VoCo developed by Adobe was tested with data collected from individual voice 

lines [93]. The voice line model can transfer texts into natural and fluent voice lines, as 

shown in Figure 2.5-2.  

Figure 2.5-2 The announcement of the Adobe VoCo. The live event showed that 

modern AI software could mimic anyone’s voice line  

On the other hand, Justus Thies from FAU published their real-time face transformation 

application, Face 2 Face, in 2016 [94]. This application allows users to modify and 

This item has been removed due to third party copyright. The unabridged version of the 
thesis can be viewed at the Lanchester library, Coventry University
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change the face and looks of individuals in an image or a video. The facial expressions 

can be replicated perfectly so that people can’t distinguish the authenticity of videos. 

Soon after the launch of Face 2 Face, Face 2 Face and VoCo were used together to create 

vivid videos of celebrities; thus, these technologies were banned soon as they may cause 

negative influences and social panic [95].  

From these examples, it can be summarised that machine learning algorithms are 

powerful tools that can be integrated into multiple applications. In this project, machine 

learning is also applied to improve the localisation performance of the proposed acoustic 

localisation technology. 

2.6 Acoustic signal processing technologies for localisation 

2.6.1 Beamforming and microphone array 

Beamforming technology is a modern signal array processing technology for directional 

signal transmission and reception. The technology has two major applications: 

localisation and signal transmission [96]. The main beamforming applications include 

electronic countermeasures, phased array RADAR, and SONAR. 

Take the beamforming-based SONAR system as an example; the system obtains multiple 

acoustic signals with the hydrophone array. The signals are then processed with power 

spectrum estimation to determine the incoming direction of the signals [97]. Assuming 

that the hydrophone array has 𝑚  hydrophone, then 𝑚  directional vectors can be 

calculated. The signal source’s location is calculated by converging these directional 

vectors. However, since the semiconductor technology was immature in the early years, 

the accuracy of beamforming localisation was poor.  

Compared to the application of beamforming in localisation, beamforming technology is 

mainly used to improve the signal-to-noise ratio currently. Beamforming technology 

relies on the deployment of a multi-antenna system. Not only multiple receiving antennas 

are required, but multiple transmitting antennas are required. So that a wireless signal 

corresponding to a spatial stream from the transmitting end to the receiving end is 

transmitted through multiple paths, the signal-to-noise ratio at the receiving end can be 
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significantly improved by integrating the beamforming algorithm at the receiving end for 

multiple antenna signal processing. Even if the receiving end is miles away, the signal 

quality is still lossless [98].  

The beamforming technology can be divided into delay-sum, filter-sum, and adaptive 

beamforming technologies according to the summary of synchronised array data. A 

beamforming sensor array is illustrated in Figure 2.6-1. 

 
Figure 2.6-1 Illustration of a beamforming sensor array. Every sensor (black dots 

1,2,3) receives an independent signal. Multiple Input and Multiple Output (MIMO) 

is one of the most representative characteristics of a beamforming system  

Beamforming has become part of the 802.11 ac WLAN standard [99]. Interestingly, 

WLAN-based wireless network localisation technology has been proposed and 

developed. Beamforming technology has once again been applied to localisation. 

However, the serious indoor multipath effect restricts the accuracy of WLAN-based 

localisation technology. Currently, the WLAN-based wireless local network localisation 

technology is still in the laboratory stage. 

2.6.2 Microphone array 

The differential microphone array technology is similar to the beamforming technology 

but biased toward acoustic signal perception. In the early 1970s, the first microphone 

array system was built and applied to speech signal processing for noise suppression 

[100]. Since then, the microphone array technology has been gradually applied to various 

research fields, such as sound field measurement, sound pressure measurement and 

acoustic localisation. A microphone array consists of multiple microphones. The 

microphones are deployed in a specific pattern to sample part of the acoustic wave 

emitted by an acoustic source. Special sampling modules and signal processing 
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algorithms are required to support the microphone array.  

A microphone array is shown in Figure 2.6-2. The first-order difference in sound pressure 

is obtained by subtracting the outputs of the two closely placed omnidirectional 

microphones. Similarly, N microphones deliver up to N-1 order of differential pressure. 

Similarly, signals with a high signal-to-noise ratio are acquired by superpositioning 

acoustic wave signals collected by each microphone [101]. 

The microphone array technology also has shortcomings. A large amount of data is 

collected due to the deployment of many microphones; processing the data consumes 

more computational resources and time. Therefore, the placement of microphones is 

always optimised to ensure the best acoustic measurements with the least number of 

microphones.  

The interval between microphones should be smaller than the acoustic wavelength to 

prevent spatial phase ambiguity, as shown in (Eq. 2-6) [102].  

ω ∙ d

𝑐
= 𝜔𝜏0 ≪ 2𝜋 2 − 6 

where 𝑑 is the interval between microphones. 𝑐 is the propagation speed of the acoustic 

wave. 𝜔 is the frequency of the acoustic signal to be measured. 𝜏0 represents the time 

for the acoustic wave to travel between microphones.  

 

Figure 2.6-2 Illustration of a microphone array [102]. There are 8 microphones 

placed in an FPGA-driven voice input board. The microphone array provides 

multiple input acoustic signals for speech recognition 
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In conclusion, beamforming has many technical advantages; it improves the stability of 

wireless systems, and it can be used to achieve localisation. The microphone array 

technology shares similarities with the beamforming technology; it ensures the reception 

of multi-order acoustic waves and potentially reduces noises. These technologies provide 

certain references for the collection of acoustic signals in this project. 

2.7 Summary 

The literature review aims to find the problems of existing localisation technologies in 

short-range localisation applications and make technical reservations for the proposed 

acoustic localisation. The new localisation technology is designed against these 

problems.  

In this thesis, signal processing is combined with signal feature-based pattern matching 

to achieve two-dimensional acoustic localisation. On the other hand, signal processing is 

combined with multiple acoustic features-based machine learning classification 

algorithms to achieve three-dimensional acoustic localisation.  

62% of the literature is about electromagnetic TDOA-based localisation. Only 12% of 

the papers are about pattern matching. And most papers are signal strength and frequency 

drift-based. This project aims to realise the localisation of audible acoustic sources in the 

three-dimensional space with multiple acoustic features and pattern matching 

localisation algorithm. 

Overall, Research Challenges in acoustic localisation are listed as follows: 

(1) The limited literature on acoustic signal pattern matching. The design and 

implementation of the acoustic localisation technology begin with limited studies 

on two-dimensional acoustic localisation and electromagnetic localisation. 

(2) The definition of acoustic features and the utilisation of multiple acoustic features.  

(3) The application of machine learning algorithms in terms of acoustic localisation. 

And the collection and processing of the training and test data. 

(4) Technical problems such as the labelling of three-dimensional locations and system 

implementations. 
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For the first research challenge, the characteristics, merits and drawbacks of the three-

dimensional electromagnetic localisation technologies are carefully analysed and studied 

to determine the most appropriate localisation method for short-range acoustic 

localisation. As a result, TPM-based localisation systems are robust, adaptive and cost-

efficient; thus, it is selected as the core localisation method. Next, previous studies and 

research on two-dimensional acoustic localisation are reviewed. Characteristics of 

acoustic waves, acoustic signal processing techniques and pattern matching algorithms 

are integrated into the proposed localisation technology. Finally, localisation systems and 

localisation tests are built and designed to verify the feasibility of the proposed acoustic 

localisation technology. 

A conclusion is drawn by summarising the pattern matching-based localisation test 

results achieved by other institutions. That the single feature-based TPM is not accurate 

enough to achieve indoor localisation. Therefore, a series of features are defined in the 

proposed localisation technology to improve the localisation resolution and classification 

accuracy.  

For the second research challenge, signal strength and frequency shift are the most 

commonly used matching objects according to previous research on pattern matching-

based localisation. As an attempt, the proposed localisation technology uses multiple 

signal features (from the time domain to the frequency domain) to achieve acoustic 

source localisation. Another challenge is to ensure that the classification algorithm 

effectively utilises these features for accurate signal matching. In this project, the two-

dimensional acoustic localisation system utilises three acoustic features and a weight-

allocated cross-correlation matching algorithm for signal matching. The three-

dimensional acoustic localisation system utilises 43 signal features, 17 signal images, 

and two machine learning algorithms for signal matching. 

For the third research challenge, similar to the machine learning algorithms used in other 

classification tasks, different classification models are trained with numeric data and 

picture data. More specifically, acoustic feature extraction functions are compiled to 

generate input data for feature value-based machine learning algorithms. For image 
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recognition-based machine learning algorithms, various acoustic transform functions are 

compiled. These functions generate various signal images including waveform in the 

time domain, spectrum, power spectrum, and sound pressure for the training of the 

classification model. 

For the fourth research challenge, a special tool-location template is designed to label the 

three-dimensional space. Signal acquisition, signal processing, and signal separation 

modules are constructed in the implementation of the proposed acoustic localisation 

technology. 

A detailed comparison between electromagnetic and acoustic waves is presented in 2.4. 

In summary, acoustic waves have unique advantages in short-range localisation; thus, the 

acoustic wave is selected as the signal carrier for the proposed short-range localisation 

technology. Applicable acoustic properties, human-computer interaction technologies, 

localisation technologies and machine learning are reviewed to propose the short-range 

localisation technology.  

Acoustic waves propagate in two patterns in solids [24]. Thus, the multipath effect in 

solid media is more complex. As a result, acoustic signals collected at different locations 

on a solid surface have significant differences. Therefore, localisation tests are first 

conducted on solid surfaces. Three-dimensional localisation tests are executed after the 

proposed localisation technology is preliminarily verified with the test results of the two-

dimensional localisation test. 

According to Fourier transform theory, acoustic sources with single frequencies are 

selected to ensure deep mining of acoustic features. In the formal three-dimensional 

localisation test, buzzers with single frequencies are used as acoustic sources to provide 

template signals and input signals for the localisation system.  

  



 

51 

 

3 Research methodology 

The project aims to propose a novel acoustic localisation technology which can be 

applied to short-range scenarios; thus, scientific tests are necessary to validate the 

proposed technology.  

Based on this fact, primary research is the core research. The primary research is further 

developed into four steps. In the first step, the limitations of existing localisation 

technologies and novel requirements for short-range localisation technology are 

summarised. Meanwhile, research objectives are established according to the summary. 

The second step is to design the localisation technology according to the proposed 

objectives and determine the technical details. The third step is the implementation of the 

proposed technology. In the last step, the performance of the localisation system is 

evaluated with localisation tests and the proposed localisation technology is optimised 

according to the exposed problems. 

The secondary research provides an overview of the development of short-range 

localisation technologies and the latest technologies that can be utilised to achieve 

acoustic localisation.  

3.1 Project development model 

The spiral development model developed from the software life cycle model is selected 

as the project development model [103]. The spiral development model is a widely used 

engineering model. The processing flow of the spiral model is as follows: 

(1) Determine the aim and objectives and identify the requirements for the product. 

(2) Develop a prototype according to the objectives and requirements. 

(3) Evaluate the prototype with an appropriate benchmark and analyse the result. 

(4) Make modifications according to the evaluation and the result analysis. 

(5) Return to the first stage. Review and correct the objectives and requirements, then 

proceed again. 
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Figure 3.1-1 The spiral development model. The model consists of four steps: 

identifying the research gap, proposing the solution and evaluation, developing, 

and reviewing. The four steps may be repeated a few times to regulate the research 

outcomes [103] 

The spiral development model is illustrated in Figure 3.1-1. One of the advantages of the 

spiral model is that the scope is constantly adjusted during development. A benefit of the 

spiral development model is that research progress is supervised strictly until the research 

achievements meet expectations. Based on the spiral model shown in Figure 3.1-1, four 

specific stages are outlined for this project, as shown in Figure 3.1-2. 
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Figure 3.1-2 The spiral model explicitly designed for this project. Instead of 

producing commercial products, this project focuses on creating a novel acoustic 

localisation technology for both indoor and outdoor applications 

Stage 1: Determination of the research gap and objectives. This project aims to find an 

approach to locating an acoustic source in a three-dimensional space. Secondary research 

is accomplished first to provide an overview of human-computer interaction 

technologies, existing localisation technologies and related algorithms, and acoustic 

properties that can be exploited for localisation.  

Stage 2: The design of the acoustic localisation technology. The localisation theory and 

technical details are proposed according to the research objectives summarised in Stage 

1.  

Stage 3: the implementation of the proposed acoustic localisation technology.  

Stage 4: Test and evaluation. The research direction and research progress are calibrated 

by evaluating the test results. If the initial aim and objectives are missed, changes will be 

made to ensure the missed objectives are covered in the next loop.  

At the same time, the system and algorithms are optimised constantly to improve the 
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system efficiency and minimise inherent and random system errors.  

Unlike the linear research model, the spiral development model has multiple loops 

through the entire research procedure; each loop has independent tasks and bullet points. 

As a result, the acoustic localisation technology is continuously optimised to meet the 

primary research objectives. 

3.2 Preliminary research outlines 

The acoustic localisation technology proposed in this research is developed to locate 

acoustic sources in the three-dimensional space. However, it is easier to locate acoustic 

sources on a two-dimensional plane compared to locating acoustic sources in a three-

dimensional space. Therefore, the proposed acoustic localisation technology is first 

applied to two-dimensional localisation. 

The two-dimensional localisation test is conducted on the surface of a glass plate. The 

test simulates the interaction between a user and a touch screen. The location of the user's 

finger is located with acoustic waves generated by tapping on the glass plate, as shown 

in Figure 3.2-1. From the perspective of human-computer interaction, such an interaction 

process is consistent with the interaction process of the touch screen. 

The three-dimensional localisation test is conducted in an indoor laboratory. The 

localisation system locates acoustic sources with the sound waves emitted by the acoustic 

source. In the scenario, three-dimensional human-computer interaction technologies 

powered by the proposed acoustic localisation technology can locate users according to 

the acoustic signals emitted by the user, as shown in Figure 3.2-2.  

Two-dimensional localisation tests: 

The two-dimensional localisation system is relatively easy to build since the solid 

medium has a high signal-to-noise ratio. As a result, acoustic signals are less susceptible 

to external interference. Moreover, the multipath effect is more complex inside solid 

objects due to the coexistence of longitudinal and transverse waves. Figure 3.2-1 

illustrates the two-dimensional acoustic localisation. 
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Only one shock sensor is used in the two-dimensional localisation test because pattern 

matching does not rely on time difference measurements. Instead, the location of the 

acoustic source is calculated by comparing the input acoustic signal with template 

acoustic signals. Thus, the sample collection work must be accomplished in advance. 

In the sample collection work, multiple acoustic sample signals are sampled from the 

labelled locations on the surface of solid objects. Next, the acoustic features of these 

acoustic sample signals are extracted. Finally, a matching database is established by 

merging extracted acoustic features with coordinate labels.  

The matching algorithm used in the two-dimensional localisation test is the cross-

correlation algorithm. The cross-correlation algorithm calculates matching coefficients 

between an input signal and sample signals in the matching database. The coefficient 

represents the similarity between the input signal and a sample signal. The sample signal 

with the highest correlation coefficient is confirmed as the matched signal, and its 

coordinate label is identified as the system output.  

 
Figure 3.2-1 Illustration of the pattern matching-based two-dimensional acoustic 

localisation 

Two steps are needed for the implementation of the pattern matching-based two-

dimensional acoustic localisation. In the first step, template acoustic signals are collected 

from specific areas on the glass plate and stored in a matching database. In the second 
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step, the stored samples are called for matching processing when an input signal is 

provided. 

The three-dimensional localisation test: 

The medium in a three-dimensional space is air. Therefore, the signal-noise ratio, the 

acoustic velocity, and the wave scattering pattern change dramatically. In addition, 

acoustic attenuation and interferences such as environmental noises and spatial 

disturbances further complicate the solution to pattern matching-based three-dimensional 

acoustic localisation. As a result, the positioning performance of the single feature-based 

pattern matching algorithm will significantly decrease. 

Multiple signal features are therefore extracted to address the problem; multiple 

dimensional and dimensionless signal features are extracted to ensure the diversity of 

template signals. One drawback of using multiple signal features is that the three-

dimensional localisation system requires more computational resources for sampling and 

signal processing.  

In addition, the point-to-point cross-correlation algorithm also consumes substantial 

computational resources when dealing with long signal sequences; thus, the matching 

algorithm for three-dimensional localisation needs to be upgraded to handle the 

processing of vast amounts of data.  

Machine learning-based matching algorithms are integrated into the system to solve the 

above problem. Unlike the cross-correlation algorithm used in the two-dimensional 

localisation test, classification models (function models trained with different learning 

strategies) are high-dimensional functions [104]. A trained classification model directly 

calculates a system output when an input is provided to the system without comparing 

the input signal with each sample signal. However, massive data is required to train an 

accurate classification model. In the three-dimensional localisation test, a robot system 

is built to provide matching learning algorithms with sufficient training data, and a High-

Performance Computer (HPC) is utilised to provide computational resources for the 

training of the classification model.  
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In the three-dimensional acoustic signal collection work, location templates are used to 

label the location of the acoustic source in a three-dimensional space. The concept of 

location templates is introduced in 6.2.1. Multiple cubic location templates are designed 

to label pre-defined locations in the three-dimensional localisation test. Meanwhile, 

location templates are merged with the robot coordinate system to simplify the data 

collection work. The zero point of the robot is also regarded as the origin point of location 

templates. In this case, each spatial location defined by location templates can be seen 

visually in the teach pendant of the robot system. 

Figure 3.2-2 illustrates the proposed three-dimensional localisation methodology. Three 

steps are needed to achieve three-dimensional acoustic source localisation. The first step 

is data collection; sample signals are collected from pre-defined locations and then 

merged with coordinates to create a training database. Next, a localisation model is 

trained with the training database in the second stage. In the third stage, the trained model 

calculates the coordinates of the acoustic source when an input acoustic signal is provided 

to the system. The location of the acoustic source is estimated at one of the pre-defined 

locations on the location templates. 

 

Figure 3.2-2 Illustration of the pattern matching-based three-dimensional acoustic 

localisation 

The main difference between two-dimensional localisation and three-dimensional 

localisation is that the cross-correlation matching algorithm is replaced with the machine 

learning algorithm.  
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3.3 Risk assessment 

This project relies on primary research. A robot system is built to execute repetitive data 

collection tasks in the three-dimensional localisation test. Thus, potential humanity issues 

are avoided. Meanwhile, safety regulations are followed strictly to prevent accidents 

from happening. The robot operator must wear protective equipment since the laboratory 

is set inside an industrial factory. Furthermore, operators must follow the safety rules and 

the electricity safety guidance to prevent potential dangers. 

3.4 Ethics 

Students at Coventry University are required to submit an ethics proposal to ensure that 

there are no ethical arguments. Any research plan and equipment changes must be 

documented and integrated into the ethics proposal for review. In this project, the most 

critical ethical point is the ingenuity of the three-dimensional acoustic source localisation 

technology. Thus, related papers, projects and studies are reviewed to ensure the novelty 

and contributions of this project. The proposed localisation technology, implementations 

and test strategies are examined continuously according to the spiral development model 

to avoid ethical issues. The whole project is completed strictly according to the IEEE 

Code of Ethics.  

3.5 Summary 

The project development methodology - the spiral development model, together with the 

two-dimensional and the three-dimensional localisation principles of the proposed 

acoustic localisation technology are briefly introduced in this chapter. Rigorous research 

programs are designed according to the two-dimensional and three-dimensional 

localisation requirements. Details of the proposed localisation technology are explained 

in the next chapter. 
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4 Location Template-based Positioning Model 

The Location Template-Based Positioning Model (LTPM) is a pattern matching-based 

short-range acoustic localisation technology. In 2007, Ze J et al. [105] proposed the 

Location Template Matching (LTM) localisation technology which utilises pattern 

matching, TDOA and recursive algorithm to achieve 40 mm level acoustic localisation 

on two-dimensional surfaces. Similarly, the LTPM aims to achieve three-dimensional 

acoustic localisation with the acoustic multipath effect, signal processing, pattern 

matching and machine learning algorithms. Unlike the LTM, the LTPM abandons the 

multi-sensor deployment and TDOA algorithms and uses multiple acoustic features to 

achieve three-dimensional acoustic source localisation.  

4.1 Pattern matching-based localisation  

Unlike the TDOA-based localisation technology, signal processing and pattern matching 

are combined to match the input signal with the template signals in pattern matching-

based localisation technology. Signal features and matching algorithms are the two 

factors which decide the positioning performance. 

In pattern matching-based localisation, the matching algorithm locates the signal source 

by comparing the input signal with pre-collected sample signals. The pre-collected 

samples are labelled with location coordinates; thus, once a matched sample is found, the 

coordinate of the matched sample is confirmed as the system output. 

Signal propagation is confined to various physical effects; thus, the received signals vary 

significantly in the time domain when the acoustic source is deployed at different 

locations. LTPM utilises this character to achieve signal source localisation. 

The matching between signals is achieved through feature matching. One advantage of 

using signal features for matching is that comparisons between complete signal 

sequences are avoided. In this project, features from different domains are used for 

pattern matching instead of features from a single domain. 
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4.1.1 Introduction of the classic Location Fingerprint 

Generally, any signal feature that correlates with the location of the signal source is 

described as a location fingerprint. Therefore, localisation technologies using location 

fingerprints and pattern matching algorithms refer to the Location Fingerprint 

localisation technology. 

The classic Location Fingerprint achieves localisation with the attenuation and 

deformation of the received signal caused by the environment. In 2003, the first Location 

Fingerprint localisation system, which utilised electromagnetic Received Signal Strength 

(RSS) as a location fingerprint, was successfully built and tested by Ahonen and 

Eskelinen [28]. In their hypothesis, the electromagnetic wave keeps attenuating during 

the propagation due to the energy attenuation and the multipath effect. Thus, the RSS 

decreases linearly with the propagation distance.  

The RSS is defined in (Eq. 4-1). The illustration of their test setups is shown in Figure 

4.1-1. According to their test results, the first Location Fingerprint localisation system 

achieved a three-dimensional accuracy of 188 m in 95% of the location estimates and a 

three-dimensional accuracy of 10 m in 50% of the location estimates [28]. 

𝑅𝑆𝑆 = 𝑝𝑡  −  K −  10𝛼 log10 𝑑 4 − 1 

where 𝑝𝑡  represents the emission power of the signal source. 𝛼  is the path loss 

exponent. K is a constant value related to the environment and transmission frequency. 

𝑑 is the distance between the emission point and the access point. 

Though Ahonen and Eskelinen verified that Location Fingerprint localisation is feasible, 

the test result showed that RSS is not an appropriate location fingerprint in indoor 

environments as the signal feature has overlapping boundary problems, as shown in 

Figure 4.1-2. The problem is severe when the sample size increases. As a result, the 

Thiessen polygons generated by samples from different locations can hardly be 

approximately treated with traditional deterministic algorithms, resulting in a decreased 

positioning accuracy [28]. In conclusion, the performance of the classic Location 

Fingerprint technology is limited with RSS; thus, the localisation technology needs to be 
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updated and extended for practical applications. 

 
Figure 4.1-1 The illustration of RSS-based Location Fingerprint (a). (b) shows the 

distribution of RSS. Two Access Points (AP) are set in this test. For a signal source, 

AP1 and AP2 receive different RSS values. Samples received by these APs are 

stored in the matching database [28] 

Ahonen found that the localisation performance of the Location Fingerprint-based 

system could be improved by increasing the number of Access Points (AP) and analysing 

the spatial distribution of RSS [28]. Since then, the Location Fingerprint technology's 

performance has been gradually improved, and indoor localisation research has adopted 

these techniques and optimisations. A typical application of Location Fingerprint 

technology is the short-range wireless network-based indoor localisation. For example, 

Peizheng realised a positioning accuracy of 500 mm with the Wi-Fi network, machine 

learning and sensor deployment optimisation techniques in 2020 [82]. Such indoor 

localisation technologies are always required in smart homes, wireless charging and 

security monitoring system. 

Overall, the Location Fingerprint localisation technology utilises RSS and the 

deterministic matching algorithm to achieve mid-range signal source localisation 

(positioning accuracy between 0.5m and 200m). A summary is that the location 

fingerprint and the matching algorithm determine the performance of the Location 

Fingerprint-based localisation technology.  
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Figure 4.1-2 Two signal samples collected from the exact location (a). The two 

signals are always covered and stacked partly. The overlap of multiple sample 

signals causes Thiessen Polygon (b) [28] 

Secondly, specific differences exist in different pattern matching-based localisation 

technologies. However, a common point is that different pattern matching-based 

localisation technologies rely on location-related signal features. Factors that affect 

signal features include the multipath effect, path loss, environmental variables such as 

temperature, humidity, and homogeneity of the medium etc. Therefore, an extensive 

database is necessary to achieve accurate acoustic signal matching.  

4.1.2 Challenges in acoustic Location Fingerprint 

In classic Location Fingerprint, pre-defined locations are associated with signal features 

distorted at these physical locations. Ideally, an injective mapping relation between a 

physical location and a set of feature values is established. For example, the Received 

Signal Strength (RSS) reduces with propagation distance, and each RSS value 

corresponds to one location, as shown in Figure 4.1-3 (a). But in practical cases, the 
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mapping relations are consistently bijective or surjective due to the blurred edge of 

congener samples in the database. As a result, the localisation system performs poorly 

because one RSS value corresponds to multiple locations. 

 

Figure 4.1-3 Mapping relations of Location Fingerprint (a) and LTPM (b). The 

injections in (a) often turn into surjections in practical applications, resulting in 

wrong matching results. In LTPM, signals from different locations are more 

distinguishable since multiple signal features are defined 

As shown in Figure 4.1-2 (b), the classic Location Fingerprint uses RSS in pattern 

matching, and RSS leads to sample overlapping. As a result, the boundaries of different 

sample sets are blurred.  

Hence, the first challenge is establishing surjective relations between signals and source 

locations with the acoustic multipath effect and feature extraction techniques. From the 

perspective of matching efficiency, any quantity that contributes to identifying different 

source locations is a valid signal feature. Direct physical quantities in the time domain, 

such as signal strength and duration, or indirect signal features from other domains, such 

as power, energy density, frequency distribution, and signal entropy, are imported to 

LTPM to form a feature set for accurate matching. The distribution of samples from 

different locations becomes more centralised after multiple features are defined. 

Therefore, a feature set with multiple signal features is defined for the LTPM-based three-

dimensional localisation test; the feature set contains 43 signal features and location 

labels. According to the test results presented in Chapter 6, the feature set is more 
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effective than the RSS used in the classic Location Fingerprint, as the LTPM-based 

localisation system achieved a three-dimensional accuracy of 173 mm.  

The matching between the input signal and the template signals is another challenge. 

Traditional point-to-point correlation matching algorithms compare the entire signal 

sequences of the input signal and sample signals. Consequently, it consumes enormous 

computational sources and is inefficient if the database contains millions of signals.  

Machine learning algorithms are appropriate algorithms for processing extensive data. 

Instead of calculating coefficients, the classification model is trained with samples stored 

in the database. A trained model directly calculates an output according to an input signal, 

as shown in Figure 4.1-4. 

 
Figure 4.1-4 The trained model is a transfer function with the input signal being 

an excitation. The classification model is optimised with the training data, and the 

trained model calculates the system output according to the training data 

The Thiessen polygon boundary problem is solved with machine learning. Linearly 

inseparable samples in a low-dimensional space are linearly separable in high-

dimensional spaces [106]. The kernel function of machine learning algorithms maps 

features to high-dimensional spaces for accurate separations, as shown in Figure 4.1-5.  

Therefore, traditional correlation analysis algorithms in the classic Location Fingerprint 

technology are replaced with machine learning algorithms. The Random Forest and the 

Convolutional Neural Network are selected regarding training efficiency and 

classification performance. Details of selected machine learning algorithms are 

introduced in 4.2. 
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Figure 4.1-5 The kernel function performs hyperplane separation on two-

dimensional distributed samples and accurately classifies samples in a high-

dimensional space 

4.1.3 Advantages of the acoustic signal  

Electromagnetic localisation dominates the development of short-range localisation 

technologies. The current research direction of electromagnetic localisation inclines to 

use existing wireless networks for indoor localisation. For example, the daily used Wi-Fi 

routers with 802.11n specification is an ideal wireless platform for electromagnetic short-

range localisation. Nevertheless, localisation systems based on Wi-Fi wireless networks 

usually perform poorly because of inherent defects in signal processing and the 

communication specificity of the wireless network. 

Unlike the electromagnetic wave, the acoustic wave is an elastic wave generated by 

mechanical vibrations; it has some unique physical characteristics compared to the 

electromagnetic wave. For example, acoustic waves require certain mediums for 

propagation; acoustic waves' vibration frequency and propagation speed are much lower 

than electromagnetic waves. These acoustic characteristics facilitate signal sampling. 

Besides, acoustic waves can be artificially generated; thus, acoustic signals are ideal 

signals for natural human-computer interaction.  

Acoustic signals received by acoustic sensors located at a fixed location vary 

significantly when the acoustic source is placed at different locations because the direct, 

reflection, diffraction, and refraction signal components in the received signal change 

with the location of the acoustic source. And LTPM uses this acoustic characteristic to 
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locate acoustic sources. 

In LTPM, an acoustic source is located passively by receiving the acoustic waves emitted 

by the acoustic source. Users do not need to hold or wear signal transmission devices in 

this localisation mode. Technically, the localisation mode is classified as network 

localisation [107]. An advantage of network localisation is that network localisation-

based localisation technologies have no mobile restrictions. All calculations are handled 

by the localisation network. Therefore, HCIs powered by such localisation technologies 

could bring users a natural and immersive interaction experience.  

4.2 Machine learning algorithms for LTPM 

Since classic location fingerprint technology and TDOA localisation technologies have 

limitations, the project aims to improve the utility and the positioning accuracy of the 

short-range localisation technology with the acoustic multipath effect, signal processing 

technologies and matching algorithms (deterministic correlation matching algorithms 

and machine learning algorithms are implemented to classify acoustic signals from 

different locations).  

Unlike standard machine learning applications, acoustic features are extracted as training 

data. The classification model is trained with extracted features instead of acoustic 

signals. An advantage is that signal classification accuracy is improved significantly with 

multiple signal features from different domains. The disadvantage is that a series of signal 

transformations and feature extraction functions must be executed before training. 

4.2.1 Random Forest 

Random Forest (RF) belongs to supervised learning. It is an efficient machine learning 

algorithm which consists of multiple decision trees. Each decision tree is trained with 

defined features for an independent classification output [108].  
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Figure 4.2-1 Structure of Random Forest. The algorithm is based on Bayesian 

Criterion. There are three decision trees in this illustration, and each tree is trained 

with the bagging approach until it reaches the limitation of dividing attributes  

Figure 4.2-1 illustrates the structure of the Random Forest. The decision tree starts 

splitting from a root node with no incoming branches. The branches of the root node then 

provide inputs for the internal nodes (also known as decision nodes). Homogeneous 

subsets are formed by internal nodes performing the functionalities-based evaluation. 

These subsets are leaf nodes (also known as terminal nodes). Leaf nodes represent all 

possible outcomes within the training dataset. As a result, the diversity of RF not only 

comes from samples but also from nodes. When an input is provided, the input goes 

through every decision tree, and multiple results will be acquired. The most frequent 

result will be confirmed as the output [108]. 

Ideally, there is no correlation between decision trees. Therefore, Random Forest has a 

robust fault-tolerant ability. Random Forest even maintains classification accuracy in the 

situation that part of the data is missing [109]. At the same time, RF requires few 

computational resources as each decision tree is trained simultaneously.  

Generally, four steps are needed to apply RF to the LTPM-based localisation system. 
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Regulation of input signals is the first step. Sample signals are regulated and stored in a 

database. The second step is feature extraction; signal features are extracted and written 

into an Excel file. In the third step, the RF algorithm reads the Excel file, and the splitting 

of each decision tree begins. Each node selects its subsets according to the information 

gain until the information gain reaches its limit. At this point, a decision tree is built. In 

the last step, step 3 is repeated to create multiple decision trees. Finally, a Random Forest 

is constructed. 

Below is a detailed implementation flow chart of the Random Forest-based LTPM; the 

four steps are further divided into 12 exact steps, as shown in Figure 4.2-2. 

 

Figure 4.2-2 A brief illustration of RF-based LTPM. Overall, 12 steps are designed. 

One significant difference between the proposed four steps and the applicable 12 

steps is that matching tests are executed for evaluation after the training completes  

4.2.2 Convolutional Neural Network (CNN) 

The convolutional neural network represents deep learning. A neural network is a 

mathematical or computational model that mimics the structure and functions of 

biological neural networks [110] and comprises many artificial neurons. Different 

networks are constructed according to different layer connection methods. Neural 

networks have decision-making and judgment abilities. Nowadays, neural networks have 

been applied to image and speech recognition widely. 
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CNN performs translation-invariant classification due to its hierarchical structure [111]. 

A CNN consists of various layers, each with specific functionality for automatic 

classification. CNN has fewer parameters in comparison to RF, but the classification 

performance of CNN is superior. Another advantage of CNN is that feature extraction is 

unnecessary because CNN learns autonomously from the training data [111]. Therefore, 

CNN is a reasonable classification tool for LTPM since it summarises signal patterns 

hidden in signal images and classifies acoustic signals from different locations according 

to the summarised patterns. 

RNN has the same status as CNN. These two networks are extensions of traditional 

neural networks with multi-layer neural network connections. CNN is selected over RNN 

because of the following reasons: 

(1) CNN is a spatial expansion convolutional model; the convolution happens between 

neural functions and features (signal patterns). While RNN is a time-expansion 

memory model, neural functions are correlated to time-variant outputs [112]. 

Therefore, CNN is more appropriate for acoustic source localisation tasks because 

the precise spatial location is marked by features affected by the multipath effect, 

regardless of the time span. 

(2) CNN has a variety of structures and more robust adaptability than RNN. 

A typical CNN consists of three parts: the convolutional layer, the pooling layer and the 

fully connected layer [113]. The convolutional layer is responsible for feature extraction, 

while the pooling layer reduces the extracted features' dimensionality and prevents 

overfitting. The fully connected layer has a similar function to a classifier; it maps the 

learned "distributed feature" to the sample tag space.   

On top of that, CNN establishes feature maps automatically by matching the output data 

with the input data. Predictably, CNNs with different structures perform differently, 

which may require specific application optimisations [114]. 

Figure 4.2-3 shows the structure of a CNN model. The model is an animal recognition 

model, whereas Figure 4.2-4 illustrates the structure of the CNN for LTPM. 
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Figure 4.2-3 The structure of a CNN. With the fast development of deep learning, 

the latest CNN algorithms are powerful enough to generate vivid videos and 

images [92]. CNN automatically extracts features from pictures according to input 

and output and avoids overfitting. It has been widely applied to multiple 

applications 

The first layer in Figure 4.2-4 is the input layer. The second layer is the convolutional 

layer for feature extraction. The third layer is the pooling layer for downsampling. The 

fourth and fifth layers are the second convolutional and second pooling layers. The sixth 

layer is the transit layer, while the seventh is a fully connected layer. The eighth layer to 

the twelfth layer are hidden layers for linear partition. 

Compared with the training of Random Forest, the training of CNN is concise. Three 

steps are required for the implementation of CNN. In the first step, MATLAB functions 

are compiled to convert the time domain signal into 17 signal images. Secondly, the 

images are loaded by the deep learning algorithm for training. In the third step, the 

performance of the trained model is tested with test datasets. Figure 4.2-5 shows the 

detailed implementation steps of the CNN-based LTPM. 
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Figure 4.2-4 The weight-shared convolutional neural network used in the three-dimensional localisation 

test. 4 inputs and 4 outputs are defined in this network
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Figure 4.2-5 A brief illustration of CNN-based LTPM. Similar to the Random 

Forest training procedure, input data are divided into training and test sets, and test 

datasets are loaded for test after the training is finished 

4.2.3 Feature introduction 

Two feature sets which contain 43 signal features and 17 signal images are assigned to 

Random Forest-based LTPM and CNN-based LTPM, respectively. 

For Random Forest-based LTPM, time domain features, frequency domain features, 

power spectrum features, and entropy features of acoustic signals are calculated as the 

training data. Complete features are listed in Table 6.2-2. 

Some features, such as the deviation of a signal sequence and peak and valley value, are 

mathematical features calculated directly with the signal's time distribution. Frequency 

features such as centroid frequency, skewness of frequency, and STD of frequency 

components are computed from the spectrum of the signal. Entropies of the acoustic 

signals, such as max or min power, occupied bandwidth, power entropy, signal entropy 

and information entropy, are also calculated.  

Below is the introduction of two features: the length of a signal sequence and the margin 

factor. 

The power of an acoustic signal is definite; thus, the strength of the signal attenuates with 
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propagation distance. Therefore, signal length is selected to reflect effective sampling 

points.  

Assume that a signal sequence received by a sensor is: 

𝑋(𝑖) = 𝑠(𝑖 − 𝑡𝑑) + 𝜂(𝑖)  4 − 2 

whereas 𝑠(𝑖) is the source signal. 𝑡𝑑 is the time delay. 𝜂(𝑖) is random Gaussian white 

noise. And the max value of 𝑖 represents the last component sampled by the sensor; 

therefore, 𝑖 equals the length of the signal sequence.  

The square root value of 𝑋(𝑖) is the square of the mean value of the arithmetic square 

root and can be described as 𝑋𝑟: 

𝑋𝑟 = (
1

𝑁
∑√|𝑋𝑖|

𝑁

𝑖=1

)

2

4 − 3 

And margin factor can be described as follows: 

𝐿 =
𝑋𝑝𝑒𝑎𝑘𝑣𝑎𝑙𝑙𝑒𝑦

𝑋𝑟
4 − 4 

The margin factor is illustrated because it indicates the power distribution of multipath 

components [115]. In total, 43 signal features are projected to the Random Forest 

algorithm. For more details, please refer to 6.2.5. 

Similarly, 17 signal images are defined for the convolution neural network algorithm, as 

shown in Table 6.2-3. 

Two-dimensional images display the signal variations over time. CNN classification 

models are trained with signal sequences that change synchronously with time in 

different domains. Four signal images are shown in Figure 4.2-6. For more details, please 

refer to 6.2.5. 

The spectrum of an acoustic signal shows the correlation between power and frequency. 

The correlation can hardly be described with a single value. From the signal processing 

perspective, the pattern residing in signal images contains more location-related 



 

74 

 

information about the signal source; CNN extracts the information and classifies acoustic 

signals according to the extracted information.  

 

Figure 4.2-6 Illustration of signal images. (a) is the time distribution of an acoustic 

signal. (b) is the change of centroid frequency of the acoustic signal. The left 

colourful image (c) is the spectrum of the acoustic signal, while the right image (d) 

is the frequency image converted with the Fast Fourier Transform (FFT). Different 

images contain different information regarding physical locations 

4.3 Analysis of applications 

LTPM is different from the classic Location Fingerprint and TDOA-based localisation 

technologies. In LTPM, sample signals are collected from predetermined locations in 

advance. Then the LTPM-based localisation system outputs the coordinate of an input 

signal by comparing specific acoustic features of the input acoustic signal with that of 

sample signals.  

Compared to traditional TDOA technologies, the acoustic source is located with 

matching calculations rather than real-time differential calculations. Therefore, sensor 

array technology and noise reduction technology are unnecessary in LTPM. In addition, 

the algorithm of LTPM is flexible and straightforward, as filtering and system 

synchronisation are unnecessary. Besides, LTPM has strong adaptability to complex 

indoor environments. Although presampling work must be completed in advance, LTPM 

successfully located different acoustic sources in a complex indoor environment in the 

three-dimensional localisation test. 

From the perspective of human-computer interaction, LTPM is an enabling technology 
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which provides human-computer interaction technologies with an essential ability to 

locate acoustic sources. Natural User Interfaces (NUIs) equipped with LTPM technology 

potentially free users from wearing heavy devices and enhance the interaction experience 

gained from VR technology. Furthermore, LTPM can be potentially applied to battlefield 

acoustic source localisation, SONAR and smart home systems. 

A commercial application and a military application are presented below. 

Automatic acoustic tracking technology:  

In indoor conferences, speakers need a microphone to make a speech. Inconvenience 

caused by holding wired or wireless microphones can be solved by automatic acoustic 

tracking technology.  

In this scenario, microphones with different directivities and automated acoustic tracking 

technology can be combined to automatically track the speaker's location, as shown in 

Figure 4.3-1. Automatic acoustic tracking technology locates the speaker. Then, it adjusts 

the microphone system to collect acoustic waves from the specified area.  

 

Figure 4.3-1 Illustration of the automatic acoustic tracking technology. The 

technology frees the speaker from holding a microphone and allows the speaker 

to walk freely in the space 

One advantage of an automatic acoustic tracking system is that speakers no longer need 

to hold and wear a microphone during the speech. In addition, microphone systems that 
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are heavier but more stable and powerful than portable microphones are available in this 

case. 

Battlefield acoustic localisation technology:  

Another critical application of acoustic waves lies in the military. For example, acoustic 

waves are utilised to achieve target localisation, armour welding, acoustic attack, near-

field communication, etc.  

In complex and noisy battlefield environments, acoustic localisation is essential. For 

example, in skirmishes, soldiers may lose the ability to determine enemies’ locations due 

to surprise attacks and sudden casualties for a short period. Technically, the impact and 

explosion generated by gunshots, bullets and shells are ideal acoustic sources for 

battlefield acoustic localisation technology.  

Firearms produce unique acoustic waves while firing, and gun bullets also have unique 

shock waves. These acoustic signals can be used as training samples for LTPM. The 

LTPM-based acoustic localisation system locates shooters by matching acoustic signals 

generated by bullets and firearms with sample signals, as shown in Figure 4.3-2. After 

the shooter is located, a counterattack can be organised quickly to reduce casualties.  

 

Figure 4.3-2 Illustration of battlefield acoustic localisation technology. Figure (a) 

shows a military jeep equipped with an acoustic localisation system. Figure (b) is 

the UI of the acoustic localisation system. This system quickly helps users to 

determine the direction of artillery fire [116] 

  

This item has been removed due to third party 
copyright. The unabridged version of the 
thesis can be viewed at the Lanchester 

library, Coventry University
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4.4 Summary 

The Location Fingerprint technology is referenced and exploited in this chapter. Unlike 

conventional TDOA-based localisation technologies, the Location Fingerprint 

technology is an electromagnetic pattern matching-based localisation technology. The 

acoustic wave-based LTPM is developed according to the localisation principles of 

Location Fingerprint. 

The limitations of the classic Location Fingerprint localisation technology and the 

challenges of applying Location Fingerprint to acoustic localisation have been analysed 

and summarised. Traditional Location Fingerprint localisation technology relies on one 

specific signal feature such as RSS to locate mobile devices. However, in practical 

applications, the signal feature exposed a severe problem of sample overlapping, which 

leads to unclear mapping relations between the signal feature and locations. Therefore, 

multiple features are defined in the proposed pattern matching-based localisation 

technology. 

As mentioned in Chapter 2, the multipath effect is always considered a negative effect. 

However, from the perspective of signal processing, the multipath effect also provides 

acoustic signals from different locations with unique features. LTPM utilises the acoustic 

features distorted by the multipath effect to achieve localisation and theoretically, the 

stronger the multipath effect is, the better the accuracy will be. 

To solve the Thiessen polygon boundary problem caused by sample overlapping. Two 

representative machine learning algorithms are applied; Random Forest and 

Convolutional Neural Network. These machine learning algorithms perform high-

dimensional classification and ensure accurate matching results. This is also the leading 

application of machine learning in three-dimensional acoustic localisation. 

Notably, LTPM uses processed features as input for the training of positioning models. 

LTPM innovatively uses multi-dimensional signal features and signal images from 

different domains as training data. 43 signal features and 17 signal images are defined 

for Random Forest-based LTPM and CNN-based LTPM, respectively. 
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Overall, machine learning-based LTPM implementation consists of three steps, as shown 

in Figure 4.4-1: data collection, model training and model testing. In the data collection 

stage, acoustic samples are collected from pre-defined locations. The raw data is then 

processed with signal processing techniques to generate training datasets for machine 

learning algorithms. In the model training stage, the processed training datasets are 

loaded by machine learning algorithms for classification model training. In the model 

test stage, the system calculates the locations of input signals with the trained model.  

 
Figure 4.4-1 The implementation of LTPM. The input of the system is an acoustic 

signal collected by the sampling system, and the output of the system is the 

location of the acoustic signal source 

Machine learning significantly extends the applicability of the pattern matching-based 

localisation technology. As a result, LTPM has robust environmental adaptability and it 

is capable of locating acoustic sources in complex indoor environments with one 

microphone. However, one disadvantage of LTPM is that samples from different 

locations must be collected in advance to ensure the positioning performance of LTPM. 

This disadvantage may affect the actual application of LTPM. Related solutions are 

discussed in Chapter 7. 
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5 Localisation on two-dimensional surfaces 

This project aims to develop a pattern matching-based three-dimensional acoustic 

localisation technology which adapts to complex indoor environments while maintaining 

a three-dimensional accuracy of 200 mm - 500 mm. Since the preliminary research is 

used to validate the proposed localisation technology, system implementations and 

localisation tests are essential to this project. 

The initial system aims to realise acoustic source localisation on two-dimensional 

surfaces. Acoustic waves caused by tapping or knocking propagate inside the solid object 

and are received by shock sensors deployed on the solid surface. Solid objects provide 

ideal propagation conditions for acoustic waves. Thus, details of the acoustic wave are 

well preserved, including signal components generated by the multipath effect.  

LTPM is first applied to the two-dimensional localisation test. This chapter introduces 

the setups of the two-dimensional localisation system, the design of two-dimensional 

localisation tests and test results. The feasibility, accuracy, and constraints of LTPM are 

discussed in the result analysis and summary. 

5.1 Test objectives 

It is easier to locate an acoustic source on the surface of solid objects than to locate an 

acoustic source in the air, not only because of the lower dimensions but also because of 

the coexistence of transverse and longitudinal waves. The high signal-to-noise ratio and 

different acoustic propagation patterns (transverse and longitudinal waves) intensify the 

acoustic multipath effect.  

The enhanced multipath effect amplifies the multipath signal components in the received 

acoustic signals, resulting in distinguishable differences between signals from different 

locations. These differences are utilised by the pattern matching-based localisation 

system to classify acoustic signals from different locations.  

A deterministic cross-correlation matching algorithm is compiled to validate LTPM 

preliminarily since the number of samples is small (640 samples). All sample signals are 
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collected manually in the two-dimensional localisation test.  

The deterministic cross-correlation matching algorithm calculates the correlation 

coefficient between an input signal and sample signals. The sample signal with the 

highest correlation coefficient will be determined as the output of the localisation system. 

Its coordinate is extracted as the final system output; thus, the location of the acoustic 

source is revealed. 

The objectives of the two-dimensional localisation test are listed below: 

(1) Build a complete localisation system. The system should have functionalities such 

as sample collection, signal processing, acoustic feature extraction and pattern 

matching.  

(2) Compile a cross-correlation matching algorithm that matches input signals with 

template signals in the matching database in terms of three acoustic features. 

(3) Design appropriate accuracy tests and illustrate the effectiveness of selected signal 

features with test results. 

(4) Summarise the feasibility, the accuracy and the classification accuracy of the 

LTPM-based two-dimensional acoustic localisation system. 

Therefore, a practical localisation system and appropriate tests for performance 

evaluation are required in the two-dimensional localisation test.  

In the two-dimensional localisation test, acoustic signals are generated manually; a 

handheld stylus pen is used to tap on the surface of a glass plate. Besides, acoustic sources 

are always treated as mass points without practical volume in the test. 

5.2 Introduction of system modules and electronic devices 

5.2.1 The location template and coordinate setups 

The location template is the tool for signal collection. In the two-dimensional localisation 

test, pre-defined locations for acoustic sources are labelled with the location template. 

Thus, the location template is crucial in signal acquisition, and it affects the accuracy of 

the localisation system.  

In the two-dimensional localisation test, the location template is built by dividing the 
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surface of the target object. An initial two-dimensional localisation test is first conducted 

on a composite table. The table has a size of 1500 × 870 × 23 mm. The acoustic 

impedance of the table is between 23.90 and 25.00 kg/(m2s)3. Two points (A and B) are 

labelled on the table, as shown in Figure 5.2-1. The distance between point A and point 

B is 500 mm.   

 

Figure 5.2-1 Illustration of the location template for the initial two-point 

localisation test. It was used in the early stage of the research to collect acoustic 

signals  

The second localisation test is conducted on a rectangular glass plate. The dimensions of 

the glass plate are 400 × 300 × 4 mm. Figure 5.2-2 illustrates the hardware deployment 

and the actual setups are shown in Figure 5.2-3.  

64 grids are labelled on the glass plate, as shown in Figure 5.2-3. The horizontal and 

vertical labels are {1, 2, 3, 4, 5, 6, 7, 8} and {A, B, C, D, E, F, G, H}, respectively. These 

square grids are the areas for acoustic sources. Acoustic signals are generated by tapping 

or knocking on the labelled area. A stylus pen is used to interact with the glass plate to 

mitigate the differences caused by different tapping angles. 
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Acoustic waves generated by physical impact (tapping or knocking) propagate within the 

glass plate. The acoustic waves are then collected by a piezoelectric ceramic sensor glued 

to the corner of the glass plate. A buffer area between the sensor and the localisation 

region is set to balance different signal components. The closest grids are 100 mm from 

the sensor, ensuring evenly distributed multipath components.  

Signals received by the piezoelectric sensor are electronic signals that must be amplified 

before sampling. Hence, a MAX 9814-based amplification module is designed for signal 

amplification. The output of the amplification module is maintained at 5.0 V with a single 

power supply. Details of each module are presented below. 

 

Figure 5.2-2 Illustration of the two-dimensional experimental platform 
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Figure 5.2-3 Location template for the two-dimensional localisation system (a). 

The glass plate has been divided into 8 × 8 grids, similar to a chess board. Each 

grid is a square with a side length of 30 mm. (b) shows the amplification module 

and sampling module. (c) is the stylus pen for tapping and knocking 

5.2.2 The piezo electronic sensor and the amplification module 

The piezoelectric vibration sensor is a sensitive sensor that transforms physical vibration 

energy into an electron signal. When a force is applied to a piezoelectric material, the 

surface of the piezoelectric material will generate an electrical voltage proportional to the 

magnitude of the force [117]. The characteristic of piezoelectric materials allows 

acoustic-electric transition; thus, any vibrations can be converted into electric signals.  

The Murata PKS1-4A10 is a shock sensor with a single axis. It has a thickness of 4.5 mm 

and a diameter of 34.4 mm. In the two-dimensional localisation test, the sensor is glued 

to the surface of the glass plate for signal collection. A Murata PKS1-4A10 shock sensor 

is shown in Figure 5.2-4. The frequency response and the impact response of the shock 

sensor are shown in Figure 5.2-5.  
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Figure 5.2-4 Murata PKS1-4A10 piezo shock sensor. It has excellent electric 

performance and strong versatility. The sensor is widely used for vibration signal 

detection. Applications include security, strain instrumentation and wearable 

device 

Signal processing begins with signal amplification. As a transmission channel, signal 

amplification is not the only objective for the signal amplification module. A qualified 

amplification module should also prevent signals from noise interference since noise can 

also be synchronously amplified [118]. Therefore, hardware RC filters are fitted into the 

amplification module to eliminate noises lower than 20 Hz. Meanwhile, it is important 

to note that the PKS1-4A10 shock sensor has an inherent 50 Hz vibration frequency. To 

facilitate subsequent signal processing, the 50 Hz frequency is filtered out with a digital 

filter. Besides, technical details such as coupling, grounding, slew rate, power supply, 

gain, bandwidth, and wiring are carefully considered to ensure the best amplification 

performance.  
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 (a) (b) 

Figure 5.2-5 Frequency response and impact response of the PKS1-4A10 shock 

sensor. Murata PKS1-4A10 has a smooth impulse response curve and a balanced 

low-frequency response. But its frequency response varies greatly from 1K Hz to 

3K Hz. However, since most of the acoustic frequencies generated by tapping and 

knocking are less than 1000Hz, PKS1-4A10 meets the test requirements; thus, it 

is selected as the vibration sensor for acoustic signal collection  

As no commercial amplification modules are found to connect the PKS1-4A10 shock 

sensor with the DAQ-2010 data acquisition card, an amplification module is built in this 

project to amplify the signal received by the shock sensor and modulate the signal for 

sampling. The main amplifier is MAX9814. Characteristic curves of MAX9814 are 

shown in Figure 5.2-6, whereas the main features of MAX9814 are listed as follows: 

• Functions: Amplification and de-noise 

• With a pre-amp Auto Gain Control (AGC) circuitry 

• Gain adjustable from 40 dB to 60 dB as well as the attack/release ratio 

• input noise voltage: 30 nV/√Hz at 1k Hz 

• Input impedance: 100k Ω 

• Cut-off frequencies: 20 Hz – 20k Hz 

• Power Supply Rejection Ratio (PSRR): 55 dB 

• Signal to Noise Ratio (SNR): 61 dB 
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Figure 5.2-6 Features of MAX9814. The MAX9814 is a highly integrated 

amplifier. It amplifies the output of the Murata PKS1-4A10 for sampling, and it 

has a free gain control mode that could simplify the circuit design 

 

Figure 5.2-7 (a) The amplification circuit design. (b) Simulation of the designed 

circuit in NI Multism. (c) An amplification performance test 
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Figure 5.2-7 (a) shows the design of the amplification circuit followed by a simulation in 

NI Multism (b) and an actual performance test (c). The amplified signal meets the input 

requirements of DAQ-2010.  

5.2.3 The sampling module 

The sampling module is designed to sample analogue signals; an analogue signal 

acquired from the shock sensor is converted into a digital signal after sampling. The 

sampled digital signals are then sent to RAM directly through Direct Memory Access 

(DMA) for digital signal processing.  

 
Figure 5.2-8 The DAQ-2010 data acquisition card. Parameters and functionalities 

such as voltage trigger, sampling rate, and pointer are adjustable through API, 

making it a perfect tool for particular scenarios that require acoustic sampling 

Instead of using an audio card to sample acoustic signals, a data acquisition card DAQ-

2010 is used for sampling because most commercial audio cards have integrated 

algorithms explicitly tailored for audible acoustic waves. 

The sampling rates of on-sale audio cards are uncontrollable, and the internal algorithm 

integrated into the audio card may filter specific frequency bands out and change the 

sampled signals. To avoid this risk, a controllable sampling module is built. Unlike 

commercial on-sale audio cards, the data acquisition card DAQ-2010 has no internal 

algorithms that could potentially optimise sampled signals. 
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The sampling module is built based on a DAQ-2010 data acquisition card. The sampling 

module for the two-dimensional localisation test has a consistent frequency response 

across the 20 Hz - 20000 Hz frequency band. The parameters of the sampling module are 

adjustable for different localisation scenarios. Figure 5.2-8 shows the DAQ-2010 

acquisition card used in the test. 

The sampling rate is set to 10k Hz regarding the centroid frequency of tapping acoustic 

signals. The centroid frequencies of tapping acoustic signals are confirmed to vary from 

300 Hz to 1000 Hz. Hence, according to the Nyquist sample theorem, the minimum 

sampling rate for the system should be twice the max frequency. The sampling rate 

should be higher than 2000 Hz at least. In the test, the sampling rate is set to 10k Hz to 

facilitate the calculation of sampling parameters. Moreover, the Murata PKS1-4A10 

shock sensor has an inherent resonate frequency of 50 Hz. A multi-order Butterworth 

lowpass filter is applied to the sampling model to filter out the 50 Hz signal components. 

Sampling and data transfer functions are compiled with ADLINK Application 

Programming Interface (API) in MATLAB. The drive code for DAQ-2010 consists of 

four parts: module initialisation, channel configuration, pointer assignment and data 

transfer. The drive codes are attached in Appendix B.  

Real-time data monitoring is also integrated into the driver code for sampling 

surveillance. The real-time signal display and frequency response of the sampled signal 

are presented in a 3 × 2 grid panel, as shown in Figure 5.2-9. 

The refresh rate of the panel equals the transfer rate of a single buffer under the double 

buffering mode. The sampled signals are stored in a pre-allocated self-extend matrix. The 

matrix transforms into a MAT file automatically after the sampling sequence completes. 

So far, the raw data collection has been completed, and the collected data is ready for 

further signal processing. 
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Figure 5.2-9 Real-time data display panel. Waveforms of the acoustic signal in the 

time and frequency domain can be observed in real-time with the panel 

5.2.4 Signal processing: signal separation and coordinate merge  

The signal collected by the sampling module is a huge matrix with quantised values. 

Thus, the matrix must be cut into independent signal arrays for coordinate merge and 

feature extraction operations.  

Another reason for signal separation is that the acoustic signal received by the shock 

sensor is a variation of the signal source and environmental noises; thus, the received 

acoustic signal is always merged with background noises. Thus, acoustic signals need to 

be separated to reduce noise energy. 

A digital energy density-based signal separation algorithm is developed to separate 

acoustic signals accurately. Figure 5.2-10 illustrates the steps of signal separation, and 

Figure 5.2-11 compares an unseparated signal sequence and a separated signal. 
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Figure 5.2-10 Signal separation illustration. En is the energy density acquired from 

the logarithmic (10log) power spectrum. The algorithm amplifies low amplitude 

components, revealing signal components which are masked in low amplitude 

noise for accurate signal separation 

At the beginning of signal separation, the Fast Fourier Transform (FFT) is applied to 

extract the timings of peaks. These time points are recorded, and multiple small arrays 

are assigned to separate the signal sequence according to the recorded time points. These 

small arrays are intentionally extended to ensure enough space to cover each complete 

signal.  

After initial separations, each array is examined with signal length and energy thresholds. 

An array is confirmed as a separated signal when the length of the array is between 180 

and 332 points and the energy is between 1.2 and 3.5 dB. Arrays that pass the examination 

are identified as an independent signal sequence. At this point, acoustic signals are 

separated and stored in multiple arrays. Figure 5.2-11 (b) shows an illustration of a 

separated signal.  
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Figure 5.2-11 Illustration of a separated signal (b). (a) is a complete signal 

sequence obtained from the sampling module. The X-axis represents the number 

of sampling points, and the Y-axis represents the signal amplitude. The average 

signal length is around 250. The changing trend of the signal can be observed 

clearly after separation: each signal segment is excited quickly in the beginning. 

After reaching a maximum amplitude value, the signal gradually fluctuates until 

the vibration disappears 

The coordinate is not added to the signal arrays directly. The separated acoustic signals 

are saved in folders labelled with the location tags {1, 2, 3, 4, 5, 6, 7, 8} and {A, B, C, 

D, E, F, G, H}. After a matched sample is acquired, the tag name of the folder to which 

the matched sample belongs will be identified as a system output. An advantage of using 

folder tags is that no extra coordinate arrays need to be added to the signal array, thus 

facilitating subsequent operations such as extraction and matching.  

5.2.5 Features for cross-correlation calculation 

In the two-dimensional localisation test, a deterministic cross-correlation matching 
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algorithm matches the input signal with the template signals. The cross-correlation 

matching algorithm is selected because the data volume is small (640 sample signals in 

the database). Whenever an input signal is provided to the algorithm, 640 correlation 

coefficients between the input signal and the template signals are calculated and the 

template signal with the highest correlation coefficient is determined as the matched 

signal.  

In the signal processing, cross-correlation functions are usually used to examine the 

similarity between signals by comparing an unknown signal with a known signal [119]. 

The cross-correlation function describes the statistical correlation between two signals, 

while the correlation coefficient represents the similarity between the two signal series, 

as shown in Figure 5.2-12.  

In the two-dimensional localisation test, the length of each signal is short (approximately 

250 sampling points) due to the low sampling frequency. And the number of sample 

signals in the database is small (640 samples). Even if the cross-correlation calculation 

is performed between an input signal and each sample signal, the amount of computations 

per iteration is small. Thus, a deterministic cross-correlation matching algorithm is 

compiled to classify acoustic signals from different locations. 

 

Figure 5.2-12 Comparison between two sample signals. (a) is an acoustic signal 

collected from A1, and (b) is an acoustic signal collected from H8. The correlation 

coefficient of these two signals is 0.694. These two signals have certain similarities, 

but many differences exist as well. The cross-correlation function is used to 

perform point-to-point comparisons and find accumulated differences in the form 

of the correlation coefficient 
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In addition to the signal correlation coefficient, the signal length from the time domain 

and the centroid frequency from the frequency domain are also utilised to improve the 

matching accuracy of the cross-correlation matching algorithm.  

The length of a signal equals the sum of the signal's Direct Components (DC) sampling 

points and the Multipath Components (MC) sampling points. The direct components of 

an acoustic signal vary slightly at different locations, but the multipath components 

caused by the multipath effect vary greatly at different locations. An intuitive example is 

that the signal length decreases when an acoustic source is far from the sensor location. 

Therefore, signal length is selected to reflect the number of sampled signal components. 

The centroid frequency describes the frequency of signal components in the spectrum 

[120]. It reflects the distribution of the signal power spectrum. A characteristic of the 

centroid frequency is that for a given frequency range, the energy contained in signal 

components lower than the centroid frequency is always half of the total energy of the 

signal. In summary, centroid frequency represents the energy distribution of a received 

signal. Therefore, the feature is selected to reflect the energy difference between different 

acoustic signals. 

Signal length and centroid frequency are scalar features. The reason for choosing scalar 

features is to utilise changes in signal components caused by the multipath effect in the 

solid medium for localisation.  

The matched sample’s coordinate will be identified as the location coordinate of the 

signal source when the above three features (coefficient, signal length and centroid 

frequency) of an input signal are consistent with the three features of a sample signal in 

the database. The definition of signal length has been introduced in 4.2.1. Signal length 

represents the effective sampling points of the sampling module while centroid frequency 

is calculated with (Eq. 5-1): 

Centroid Frequency =  
∫ 𝑓𝑆(𝑓)𝑑𝑓

∞

0

∫ 𝑆(𝑓)𝑑𝑓
∞

0

5 − 1 

where 𝑆(𝑓)  is the amplitude corresponding to bin 𝑓  in the Fast Fourier Transform 
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(FFT) power spectrum. 

Solid medium preserves the details of acoustic signals. The three features are sufficient 

to achieve a two-dimensional accuracy of 30 mm on solid surfaces. 

5.2.6 The matching algorithm 

The cross-correlation matching algorithm calculates the similarity between an input 

signal and a sample signal. The sample with the highest cross-correlation coefficient is 

determined as the matched template signal, and the matched sample's coordinate is the 

system output.  

In the two-dimensional localisation test, features integrated into the cross-correlation 

matching algorithm are the distribution of frequency components, signal length and 

centroid frequency. The cross-correlation coefficient is calculated according to (Eq. 5-2). 

𝑅𝑖𝑗(𝑐𝑜𝑟𝑟𝑐𝑜𝑒𝑓) =
𝐶𝑖𝑗

√𝐶𝑖𝑖𝐶𝑗𝑗

5 − 2 

where 𝐶𝑖𝑗 is the covariance of variables 𝐶𝑖 and 𝐶𝑗. √𝐶𝑖𝑖 is the standard deviation of 

𝐶𝑖. √𝐶𝑗𝑗 is the standard deviation of 𝐶𝑗. 

In practical cases, the variables 𝐶𝑖  and 𝐶𝑗  in the above formula are replaced with 

vectors because the point-to-point correlation calculation between two signal arrays is 

required. The equation listed above is therefore extended to (Eq. 5-3): 

𝑟 =
∑ ∑ (𝐴𝑚𝑛 − �̅�)𝑛𝑚 (𝐵𝑚𝑛 − �̅�)

√(∑ ∑ (𝐴𝑚𝑛 −𝑛𝑚 �̅�)2)(∑ ∑ (𝐵𝑚𝑛 −𝑛𝑚 �̅�)2)
5 − 3 

where �̅� and �̅� are average values of vector 𝐴 and vector 𝐵. The operators 𝑚 and 

𝑛 represent the dimensions of vector 𝐴 and vector 𝐵. The operator 𝑟 represents the 

correlation between the selected sample signal and the input signal. The higher the 𝑟 

value is, the more relevant the two signals are. 

The criteria of the cross-correlation coefficient are not academically unified yet. Table 

5.2-1 provides a general reference for the effectiveness of the coefficient: 
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Table 5.2-1 Relations between coefficient level and extent of relativity 

Coefficient level Extent of relativity 

0.00 - ±0.30 Minor correlation 

±0.30 - ±0.50 Positive correlation 

±0.50 - ±0.80 Significant correlation 

±0.80 - ±1.00 High correlation 

 

The outline of the acoustic signal-based cross-correlation matching algorithm is 

described in Table 5.2-2. 

Table 5.2-2 Cross-correlation matching algorithm 

System Input: Real-time electronic signal, 𝒔𝒕⃗⃗  ⃗ 

System Output: Grid tag of the location, 𝑮𝑰 

1. System initialisation. 

2. Define labels. For example, the 4 corner grids are labelled as follows; 

𝐺𝑎 (𝐴1), 𝐺𝑏 (𝐴8), 𝐺𝑐 (𝐻1) 𝑎𝑛𝑑 𝐺𝑑  (𝐻8). 

3. Grid calibration and data transition. Each grid is correlated with 10 sample signals, 

𝑠11
⃗⃗⃗⃗  ⃗, … , 𝑠110

⃗⃗⃗⃗⃗⃗  ⃗ ∈ 𝐺𝑎; 𝑠21
⃗⃗ ⃗⃗  ⃗, … , 𝑠210

⃗⃗ ⃗⃗⃗⃗  ⃗ ∈ 𝐺𝑏; … 𝑒𝑡𝑐. 

4. Calculate the 11th ‘average’ signal based on the loaded 10 sample signals, 

𝑠�̅� ∈ 𝐺𝑎, 𝑠�̅� ∈ 𝐺𝑏 , 𝑠�̅� ∈ 𝐺𝑐 𝑎𝑛𝑑 𝑠𝑑̅̅ ̅ ∈ 𝐺𝑑. 

5. Establish a matching database by applying Fast Fourier Transform (FFT) and feature 

extraction functions (signal length extraction and centroid frequency extraction) to 

each sample signal,  

𝑓𝑎1,1, 𝑓𝑎1,2, 𝑓𝑎1,3 ∈ 𝐹𝑎1
…𝑓𝑎10,1, 𝑓𝑎10,2, 𝑓𝑎10,3 ∈ 𝐹𝑎10

, 𝑓𝑎,1
̅̅ ̅̅̅, 𝑓𝑎,2

̅̅ ̅̅̅, 𝑓𝑎,3
̅̅ ̅̅̅ ∈

𝐹�̅� … 𝑓𝑑1,1, 𝑓𝑑1,2, 𝑓𝑑1,3 ∈ 𝐹𝑑1
…𝑓𝑑10,1, 𝑓𝑑10,2, 𝑓𝑑10,3 ∈ 𝐹𝑑10

, 𝑓𝑑,1
̅̅ ̅̅̅, 𝑓𝑑,2

̅̅ ̅̅̅, 𝑓𝑑,3
̅̅ ̅̅̅ ∈ 𝐹𝑑

̅̅ ̅. 𝑓𝑥,1 

represents frequency components. 

6. Real-time acoustic signal transmission, 𝑠𝑡⃗⃗  ⃗. 

7. Apply FFT to 𝑠𝑡⃗⃗  ⃗. 

8. Features extraction of 𝑠𝑡⃗⃗  ⃗ → 𝑓𝑡,1, 𝑓𝑡,2, 𝑓𝑡,3 ∈ 𝐹𝑡. 

9. For 𝑓𝑡,1 ∈ 𝐹𝑡, where 𝑓𝑡,1 is frequency components: 

a. Calculate cross-correlation coefficients（𝑐𝑎 , 𝑐𝑏 , 𝑐𝑐 , 𝑐𝑑）between 𝑓𝑡,1 against 

𝑓𝑎,1
̅̅ ̅̅̅, 𝑓𝑏,1

̅̅ ̅̅̅, 𝑓𝑐,1
̅̅ ̅̅ , and 𝑓𝑑,1

̅̅ ̅̅̅ respectively. 

b. Find 𝑚𝑎𝑥(𝑐𝑎 , 𝑐𝑏 , 𝑐𝑐 , 𝑐𝑑). 

c. Store 𝐺𝑗|𝑓1 where j is the grid label of the max coefficient. 

10. For 𝑓𝑡,2 ∈ 𝐹𝑡, where 𝑓2 is the signal length: 

a. Calculate signal length ranges of 𝑓𝑎𝑖,2, 𝑓𝑏𝑖,2, 𝑓𝑐𝑖,2, and 𝑓𝑑𝑖,2, 

[𝑚𝑖𝑛(𝑓𝑎𝑖,2),𝑚𝑎𝑥(𝑓𝑎𝑖,2)], [𝑚𝑖𝑛(𝑓𝑏𝑖,2),𝑚𝑎𝑥(𝑓𝑏𝑖,2)], [𝑚𝑖𝑛(𝑓𝑐𝑖,2),𝑚𝑎𝑥(𝑓𝑐𝑖,2)]… 

where 𝑖 = 1,… ,10. 

b. Compare 𝑓𝑡,2 against 

[𝑚𝑖𝑛(𝑓𝑎𝑖,2),𝑚𝑎𝑥(𝑓𝑎𝑖,2)], [𝑚𝑖𝑛(𝑓𝑏𝑖,2),𝑚𝑎𝑥(𝑓𝑏𝑖,2)], [𝑚𝑖𝑛(𝑓𝑐𝑖,2),𝑚𝑎𝑥(𝑓𝑐𝑖,2)]… 

where 𝑖 = 1,… ,10. 
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c. If 𝑓𝑡,2 ∈ [𝑚𝑖𝑛(𝑓𝑗𝑖,2),𝑚𝑎𝑥(𝑓𝑗𝑖,2)] & 𝑓𝑡,2 ∉ [𝑚𝑖𝑛(𝑓𝑘𝑖,2),𝑚𝑎𝑥(𝑓𝑘𝑖,2)]  for 𝑗 =

 𝑎, 𝑏, 𝑐 𝑜𝑟 𝑑 and ∀𝑘 ≠ 𝑗, store 𝐺𝑗|𝑓2 where 𝑗  is the grid label of the matched 

signal length range. 

d. Else 

i. Calculate difference between 𝑓𝑡,2 and 

 𝑎𝑣𝑒(𝑓𝑎𝑖,2), 𝑎𝑣𝑒(𝑓𝑏𝑖,2), 𝑎𝑣𝑒(𝑓𝑐𝑖,2) 𝑎𝑛𝑑 𝑎𝑣𝑒(𝑓𝑑𝑖,2). 

ii. Store 𝐺𝑗|𝑓2 , where 𝑗  is the grid label of the 𝑓𝑥,2  with the minimum 

difference. 

11. For 𝑓𝑡,3 ∈ 𝐹𝑡, where 𝑓3 is the centroid frequency: 

a. Calculate the centroid frequency ranges of 𝑓𝑎𝑖,3, 𝑓𝑏𝑖,3, 𝑓𝑐𝑖,3, and 𝑓𝑑𝑖,3, 

[𝑚𝑖𝑛(𝑓𝑎𝑖,3),𝑚𝑎𝑥(𝑓𝑎𝑖,3)], [𝑚𝑖𝑛(𝑓𝑏𝑖,3),𝑚𝑎𝑥(𝑓𝑏𝑖,3)], [𝑚𝑖𝑛(𝑓𝑐𝑖,3),𝑚𝑎𝑥(𝑓𝑐𝑖,3)]… 

where 𝑖 = 1,… ,10. 

b. Compare 𝑓𝑡,3 against 

[𝑚𝑖𝑛(𝑓𝑎𝑖,3),𝑚𝑎𝑥(𝑓𝑎𝑖,3)], [𝑚𝑖𝑛(𝑓𝑏𝑖,3),𝑚𝑎𝑥(𝑓𝑏𝑖,3)], [𝑚𝑖𝑛(𝑓𝑐𝑖,3),𝑚𝑎𝑥(𝑓𝑐𝑖,3)]… 

where 𝑖 = 1,… ,10. 

c. If 𝑓𝑡,3 ∈ [𝑚𝑖𝑛(𝑓𝑗𝑖,3),𝑚𝑎𝑥(𝑓𝑗𝑖,3)] & 𝑓𝑡,3 ∉ [𝑚𝑖𝑛(𝑓𝑘𝑖,3),𝑚𝑎𝑥(𝑓𝑘𝑖,3)]  for 𝑗 =

 𝑎, 𝑏, 𝑐 𝑜𝑟 𝑑 and ∀𝑘 ≠ 𝑗, store 𝐺𝑗|𝑓3 where 𝑗  is the grid label of the matched 

signal length range. 

d. Else 

i. Calculate difference between 𝑓𝑡,3 and 

 𝑎𝑣𝑒(𝑓𝑎𝑖,3), 𝑎𝑣𝑒(𝑓𝑏𝑖,3), 𝑎𝑣𝑒(𝑓𝑐𝑖,3) 𝑎𝑛𝑑 𝑎𝑣𝑒(𝑓𝑑𝑖,3). 

ii. Store 𝐺𝑗|𝑓3 , where 𝑗  is the grid label of the 𝑓𝑥,3  with the minimum 

difference. 

12. If 𝐺𝑗|𝑓1 ≠ 𝐺𝑗|𝑓2 ≠ 𝐺𝑗|𝑓3 

a. Calculate cross-correlation coefficients between 𝑓𝑡,1 and all sample signals. 

b. Find the maximum coefficient and its grid label. 

c. Output 𝐺𝑗|𝑓1, where 𝑗  is the grid label. 

13. Else 

Output 𝑚𝑜𝑑𝑒(𝐺𝑗|𝑓1, 𝐺𝑗|𝑓2, 𝐺𝑗|𝑓3) 

14. End  

Firstly, the system’s output is defined by determining the positioning area (grid labels) 

and loading corresponding sample signals. Then a matching database is established to 

extract features from the loaded signals. 𝑓𝑥,1 is the frequency component of a signal, 

𝑓𝑥,2 is the length of the signal, while 𝑓𝑥,3 is the centroid frequency of the signal. To this 

extent, the matching database is ready for matching. The corresponding steps are 1-5. 

The real-time signal 𝑠𝑡⃗⃗  ⃗  is a system input. FFT is applied to extract frequency 

components 𝑓𝑡,1 , signal length 𝑓𝑡,2  and centroid frequency 𝑓𝑡,3  of 𝑠𝑡⃗⃗  ⃗ . The cross-

correlation coefficient between 𝑓𝑡,1  and 𝑓𝑥,1 is calculated first. The grid label of the 

sample corresponding to the maximum cross-correlation coefficient is stored in 𝐺𝑗|𝑓1. 
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The corresponding steps are 6-9. 

Next is the matching of signal lengths. Firstly, at each labelled grid, the range of signal 

length is confirmed by searching for the minimum and maximum signal length values of 

the 10 sample signals. If the input signal length 𝑓𝑡,2 of 𝑠𝑡⃗⃗  ⃗ only belongs to a known 

signal length range, the corresponding grid label of the matched range is stored in 𝐺𝑗|𝑓2. 

If the signal length 𝑓𝑡,2 of 𝑠𝑡⃗⃗  ⃗ belongs to multiple known signal length ranges, or no 

matched range is found, 𝑓𝑡,2 will then be compared with the average signal length of the 

10 sample signals of each grid. The grid of the average signal length with the minimum 

difference is stored in 𝐺𝑗|𝑓2. The corresponding step is 10. 

Next is the matching of centroid frequencies. Similar to matching signal lengths, the first 

step is to determine the range of centroid frequency by searching for the minimum and 

maximum centroid frequency values of the 10 sample signals. When the centroid 

frequency 𝑓𝑡,3  of 𝑠𝑡⃗⃗  ⃗  only belongs to a known centroid frequency range, the 

corresponding grid label of the range is stored in 𝐺𝑗|𝑓3. And if the centroid frequency 

𝑓𝑡,3 of 𝑠𝑡⃗⃗  ⃗ belongs to multiple known centroid frequency ranges, or no matched range is 

found, 𝑓𝑡,3  will be compared with the average centroid frequency of the 10 sample 

signals of each grid. The grid of the average signal length with the minimum difference 

is stored in 𝐺𝑗|𝑓3. The corresponding step is 11. 

In the case that the 3 grid labels 𝐺𝑗|𝑓1, 𝐺𝑗|𝑓2, 𝐺𝑗|𝑓3 have different values, recalculate the 

cross-correlation coefficients between 𝑓𝑡,1 and all sample signals. The grid label of the 

sample signal with the highest cross-correlation coefficient is selected as the final output 

of the system. While in the case that the 3 grid labels 𝐺𝑗|𝑓1, 𝐺𝑗|𝑓2, 𝐺𝑗|𝑓3 have 2 or 3 

identical values, the grid label with the most occurrences are selected as the final output 

of the system. The corresponding steps are 12-14. 

The two-dimensional localisation algorithm is a deterministic pattern matching algorithm 

which determines the location of the acoustic source signal according to the three defined 

features. Although only 640 sample signals were collected, the localisation system still 

achieved high accuracy on the surface of a glass plate. The hardware platform and 
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applicable algorithms required for the test have been built and compiled to this extent. 

Next, the test design and test results are presented. 

5.3 Two-dimensional localisation test design 

The two-point localisation test is proposed against the aim and objectives of the research 

to lay a foundation for the multiple points localisation test. After the performance of the 

proposed localisation technology and the effectiveness of the pattern matching approach 

are examined preliminarily, a more complex and comprehensive multiple points 

localisation test is designed.  

In addition, a stylus pen is used to tap at the pre-defined area on the composite table and 

the glass plate. Vibrations received by the shock sensor are input signals for the 

localisation system, while the system output is the coordinate of the acoustic source. 

5.3.1 Two-point test 

Electromagnetic localisation technologies have been widely applied and stable progress 

has also been made in the development of acoustic wave-based localisation technology. 

In the EU project TAI-CHI [7], pattern matching is combined with TDOA, time-reversal 

and predictive algorithm to achieve short-range acoustic localisation on solid surfaces. 

Test results of the TAI-CHI project validated the feasibility of acoustic localisation on 

two-dimensional surfaces.  

Inspired by the TAI-CHI project and the two-dimensional localisation test achieved by 

Ze J [105], a simple two-dimensional localisation test is designed to determine the 

localisation performance of the cross-correlation matching algorithm. The two-point (A 

and B) localisation test is conducted on a composite table, and the distance between point 

A and point B is set to 500 mm, as shown in Figure 5.3-1.   
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Figure 5.3-1 The two points on the table. The pattern matching-based localisation 

algorithm is used to classify acoustic signals from the two physical locations. In 

the test, only the frequency distribution of the signal is used as the matching object, 

and the matching database contains 20 sample signals  

Differences in frequency distributions between points A and B can be observed in Figure 

5.3-2. The matching algorithm uses the differences to locate acoustic sources. By tapping 

points A and B, the classification accuracy of the system is verified. The localisation 

system has a two-dimensional accuracy of 500 mm in 96% of the location estimates. 

The localisation system miscalculated the location 4 times out of 100 tapping tests. In 

conclusion, it is proven that the acoustic source at different locations has different 

waveforms and frequency distributions in terms of received acoustic signals. The test 

result verified the system functionalities and the two-point test laid a solid foundation for 

multiple points localisation test.  
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Figure 5.3-2 The frequency distribution comparison between point A and point B. 

The waveform of the acoustic signal at location A is similar to the waveform of 

the acoustic signal at location B. But the frequency distributions of acoustic signals 

from different locations are different due to the multipath effect; LTPM utilises the 

differences to distinguish signals from A and B in the two-dimensional localisation 

test 

5.3.2 Multiple points test 

The design principle of the two-dimensional localisation test is to deliver the research 

objectives with a simple and clear test method. Since the surface of the glass plate is 

divided into 64 grids, localisation tests on every single grid would lead to a huge 

workload, making the localisation results difficult to explain and understand. Therefore, 
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a special test method is selected to reduce the workload burden while providing scientific 

test results. 

The multiple points localisation test is developed on the basis of the two-point 

localisation test. The medium is replaced with a glass plate. The dimensions of the glass 

plate are 400 × 300 × 4 mm. 64 points (grids) are labelled on the surface of the glass 

plate. A special test method is therefore designed due to the increased points. The test 

method is developed from the Taguchi methods.  

The Taguchi method is a statistical methodology proposed by the Japanese statistician 

Fangfu Taguchi in 1950 [121]. The initial purpose of the Taguchi method is to improve 

product quality, product reliability and functionality and reduce production costs by 

managing and controlling variables during production. The statistical methodology 

improves the quality of products effectively in many practical cases. In engineering, the 

Taguchi method has been gradually developed into a test method which uses a minimum 

number of tests to illustrate all the factors affecting the performance of a system [122]. 

A Taguchi method-based diagonal progressive test strategy is designed to examine the 

relation between the positioning accuracy and the classification accuracy, as shown in 

Figure 5.3-3.  

Figure 5.3-3 illustrates the Taguchi method-based test design, and Figure 5.3-5 shows the 

physical setups of the two-dimensional multiple points test. 

 
Figure 5.3-3 Taguchi chessboard for the two-dimensional localisation test. The 

progressive interval is set to 30 mm. The first-round test begins with four corner 

grids. Then the test indents along the diagonal line until the four test grids meet in 

the central area 

A series of converging localisation tests are designed to measure the classification 

accuracy of the localisation system. The test begins with the four corner grids on the 
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edges of the glass plate and then progresses towards the central grids on the glass plate 

along the diagonal lines until the four grids meet each other in the centre of the glass 

plate. The classification accuracy is calculated with (Eq. 5-4).  

Accuracy =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100% 5 − 4 

where TP stands for True Positive while FP stands for False Positive, the accuracy rate 

equals the number of correctly classified samples divided by the total number of test 

samples.  

At the beginning of the test, the test is conducted at four corner test points. The four 

points have the farthest distance from each other. Theoretically, the localisation system 

should have a high classification accuracy because acoustic signals from four locations 

have unique signal features. As the localisation test progresses, the grid used for the 

accuracy test will progress diagonally and eventually reach the four central grids (D4, 

D5, E4, E5, as shown in Figure 5.3-3). 

Predictably, acoustic signals generated at the four central grids are similar, resulting in 

decreased classification accuracy. Thereby, localisation tests on all grids are unnecessary 

so that confusion and difficulties in all grids tests are avoided. Instead, the classification 

accuracy of the system is determined in several rounds of diagonal progressive tests. 

Sample collection: 

Each grid is randomly tapped 10 times, and the acoustic signals generated by tapping are 

sampled and stored in the matching database. Each marked grid corresponds to a signal 

cluster consisting of 10 tapping signals. A tapping signal collected from A1 and a tapping 

signal collected from H8 are shown in Figure 5.3-4 as an illustration.  

To prevent data overflow and system asynchronism from happening, time control 

functions are used to regulate computational resources consumed by each function and 

call for timeout when an error occurs. 

As introduced above, the test starts with the four corner grids, A1, A8, H1, and H8, and 

then indents along the diagonal line. B2, B7, G2 and G7 are tapped in the 2nd round test, 
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while C3, C6, F3 and F6 are tapped in the 3rd round test. 

After reaching the central area, the localisation system still has a classification accuracy 

of 83%. Thus the four grids in the central area are further divided into grids with 15 mm 

side lengths for further localisation tests, as shown in Figure 5.3-5 (blue arrows). In total, 

six rounds of progressive tests corresponding to distance {210 mm, 150 mm, 90 mm, 45 

mm, 30 mm, 15 mm} are conducted. 

 
Figure 5.3-4 Signal illustration. (a) is the signal collected from location A1 in the 

time domain. The X-axis represents the sampling points, and the Y-axis is the 

amplitude of the signal. While (c) is the same signal but in the frequency domain. 

The X-axis in (c) represents frequency, and the Y-axis in (c) represents energy 

density. (b) is a signal collected from H8 in the time domain, and (d) is the same 

signal in the frequency domain. Acoustic frequency components in the frequency 

domain are different though their waveforms in the time domain are similar 
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Figure 5.3-5 Physical setups of the two-dimensional multiple points accuracy test. 

The glass plate has been divided into 8 × 8 grids, similar to a chess board. Each 

grid is square with dimensions of 30 × 30 mm. The sensor on the right is activated 

for signal reception, and a stylus pen from HTC Touch is used for tapping 

5.4 Result analysis 

The localisation performance of the two-dimensional localisation system is evaluated in 

this section. The test results of the six rounds of progressive tests corresponding to 

distance {210 mm, 150 mm, 90 mm, 45 mm, 30 mm, 15 mm} are shown in Figure 5.4-1. 

The overall test result indicates that the system has a two-dimensional accuracy of 30 

mm in 85% of the location estimates.  

As expected, the classification accuracy varies with the localisation distance. The two-

dimensional localisation system has a two-dimensional accuracy of 210 mm in 91% of 

the location estimates. The classification accuracy decreases to approximately 85% when 

the two-dimensional accuracy is set to 150 mm. The classification accuracy decreases to 

78% when the two-dimensional accuracy is set to 30 mm. A conclusion can be drawn 

that the connections between the three acoustic features and locations are disrupted when 

the two-dimensional accuracy is within 30 mm.  

Two main factors affect the decrease in classification accuracy. The first factor is the 

distance between the four grids. As shown in Figure 5.3.5, the four grids in the centre 
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have adjacent edges. In this situation, the acoustic waves emitted by tapping within these 

four grids will have similar frequency distributions and feature values, resulting in a 

decreased classification accuracy. The second factor is the decrease in the matching 

accuracy of the localisation algorithm. From the algorithm's perspective, internal factors, 

such as the parameters of the algorithm and feature extraction functions, also affect the 

positioning performance of the localisation system. For instance, in the compilation of 

the algorithm, the coefficient of 𝑐𝑎 and  𝑐𝑏 are always similar to 𝑐𝑐 and 𝑐𝑑; thus, four 

empirical values 𝝐𝟏, 𝝐𝟐, 𝝐𝟑, 𝝐𝟒 are set to offer preferences when the four coefficients of 

four grids have approximate values. In the two-dimensional localisation test, such 

empirical algorithm parameters cannot be adaptively adjusted; thus, the classification 

accuracy will inevitably decrease with the decrease in the distance between grids. 

Overall, the system has reached a two-dimensional accuracy of 30 mm in 80% of the 

location estimates on the surface of a glass plate. 

 

Figure 5.4-1 Two-dimensional test results. The X-axis represents the positioning 

accuracy; the Y-axis represents the classification accuracy. The classification 

accuracy of the system decreases as the positioning accuracy decreases 
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Compared to the two-point A/B localisation test, two features (signal length and centroid 

frequency) are integrated into the localisation system. The test result verifies the 

feasibility of pattern matching-based acoustic localisation on the surface of solid objects.  

What’s more, it appears that the phase spectrum of the acoustic signal contains more 

information than the power spectrum. The proof is that the time domain signal restored 

with the phase spectrum has a higher correlation coefficient than the signal restored with 

the power spectrum. To make use of this phenomenon, phase-related features are added 

to the three-dimensional localisation system to improve the signal discrimination ability.  

5.5 Summary 

The preliminary exploration of short-range acoustic pattern matching localisation has 

been accomplished in this chapter. In the test, a glass plate is equidistantly divided into 

64 grids. Each grid is assigned with a corresponding tag number. Template signals and 

input signals are generated by tapping on these grids. The localisation system captures 

acoustic signals and matches the captured signals with template signals. When a matched 

template signal is determined, the coordinate number of the matched sample signal will 

be identified as the system output. 

The sensor used in the two-dimensional localisation test is a Murata PKS1-4A10 shock 

sensor. The output of Murata PKS1-4A10 is amplified and filtered by a MAX9814 

amplification module. A controllable sampling module then samples amplified signals. 

The sampling module is built based on a DAQ-2010 data acquisition card, and the 

sampling rate is set to 10,000 Hz. The sampled signals are sent to the computer memory 

directly for matching processing. 

The format of the collected signal is a multi-dimensional matrix; thus, signals in the 

matrix must be separated for signal processing. An energy density and signal length-

based separation algorithm is developed for the signal separation. The separated signals 

are then stored in a location-named folder and waiting to be retrieved. 

The deterministic cross-correlation matching algorithm is selected as the classification 

algorithm due to the small sample size (640 samples). The frequency distribution of the 
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acoustic signal, signal length, and centroid frequency are used to classify acoustic signals. 

Thus, the cross-correlation matching algorithm is developed to match input signals with 

template signals based on the three features.  

The localisation system is first applied to the two-point test. The two-point test aims to 

examine the functionality of each module and collect acoustic signals, and preliminarily 

verify the feasibility of LTPM. The distance between point A and point B is 500 mm in 

the two-point test and the localisation system has a classification accuracy of 96%.  

A Taguchi method-based test method is developed for the 64-point localisation test. A 

location template similar to a chess board is designed, and localisation tests are conducted 

following the diagonal indentation principle from the far end to the near end. The 

multiple points test consists of 6 rounds of tests.  

The following objectives are accomplished in the two-dimensional localisation test; 

(1) A complete signal processing system is built. The system meets the test 

requirements from sampling to signal matching. Technical problems in acoustic 

localisation are preliminarily solved. 

(2) A cross-correlation matching algorithm is compiled and applied to the localisation 

system. It classifies acoustic signals from different physical locations according to 

three defined features. 

(3) A special test methodology is developed according to the Taguchi method. The test 

methodology examines the classification accuracy of the localisation system and 

avoids the hassle of repetitive tests. 

(4) The validity of the selected features is verified. Test results indicate that the pattern 

matching-based localisation system achieved an accuracy of 30 mm in 80% of the 

location estimates. 
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6 Localisation in the three-dimensional space 

Speech, limb collisions, finger clicks, clapping, tapping and knocking are all available 

acoustic signals for short-range acoustic localisation. Similar to the TDOA-based 

electromagnetic localisation and inertia orientation localisation technologies, short-range 

acoustic localisation technology can be used to support the interaction between users and 

computers. In this chapter, an LTPM-based three-dimensional acoustic localisation 

system is designed and tested from the aspect of acoustic human-computer interaction. 

In the two-dimensional test, three signal features and a cross-correlation pattern matching 

algorithm are used to achieve the short-range acoustic localisation on solid surfaces. 

Excellent test results are acquired due to the inconsistency of acoustic features and the 

high signal-to-noise ratio. However, the matching algorithm used in the two-dimensional 

localisation test is a deterministic correlation algorithm, which is inappropriate for the 

three-dimensional acoustic localisation since the number of samples in the matching 

database has increased to 120,000, and the number of acoustic features has increased to 

43. In this case, a high-performance classification algorithm is required to classify 

acoustic signals from different three-dimensional locations. 

Two machine learning algorithms are utilised to classify acoustic signals from different 

locations. In traditional signal matching, sample signals are compared with template 

signals then the differences are summarised artificially and compiled into the matching 

algorithm to ensure accurate matching results. Unlike the traditional deterministic signal 

matching algorithms, machine learning algorithms dig into the training data deeply and 

automatically summarise signal patterns in the form of classification models.   

Machine learning has been applied to different fields, especially in computer vision and 

image processing. It analyses factors that affect visual perception and utilised the factors 

for image processing and image classification [84]. Machine learning has been widely 

applied. In image processing, images modified by machine learning algorithms are so 

vivid that even a human being is hard to tell if the processed image is true [92].  

Although powerful machine learning algorithms have been applied to various fields, 
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machine learning has not been applied to acoustic localisation. In this project, machine 

learning algorithms are integrated into the LTPM-based acoustic localisation system to 

classify acoustic sources at different spatial locations. The Random Forest (RF)-based 

localisation system and the Convolutional Neural Network (CNN)-based localisation 

system have achieved excellent short-range acoustic localisation results. Below, the 

objectives of the three-dimensional test are presented, followed by the introduction of 

different system modules, test design, test results and a comprehensive summary. 

6.1 Test objectives 

In machine learning, massive data are required to train a classification model. Therefore, 

a robot-based sampling system is built to collect massive acoustic signals.  

A robot is programmed to move an acoustic source to designated three-dimensional 

locations. A microphone-based sampling system then detects acoustic waves generated 

by the acoustic source. The sampled acoustic signals (training data) are then processed 

and stored in a matching database. 

Next, the signal processing functions are executed to extract signal features. The 

extracted signal features and the coordinates of sampled signals are then processed as the 

training data for machine learning algorithms.  

Two machine learning algorithms are utilised to achieve three-dimensional localisation. 

Similar to the objectives listed for the two-dimensional localisation test, the objectives of 

the three-dimensional localisation test are summarised as follows: 

(1) Design and build an acoustic signal acquisition and a signal processing system for 

three-dimensional acoustic signal collection. 

(2) Collect adequate samples (100,000 to 150,000 signals) for the training of 

classification models. 

(3) Extract acoustic features with signal processing techniques to form multi-

dimensional input data and compile machine learning algorithms.  

(4) Train Location Templated-based Positioning Models (LTPM) with different 

training datasets and evaluate the positioning performance of the trained model.  
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(5) Summarise the characteristics and properties of LTPM. 

In this chapter, rigorous tests are designed to evaluate the performance of LTPM. In 

addition, acoustic sources are always approximately treated as mass points without 

practical volumes in the three-dimensional localisation test.  

6.2 Introduction of system modules and electronic equipment 

The acoustic signal acquisition in the three-dimensional space is divided into three steps:  

(1) Design three-dimensional location templates 

(2) Robot programming 

(3) Compile sampling programs 

The acoustic source is an intermittent sound buzzer with a resonant frequency of 3100Hz. 

A UR-10 robot is programmed to carry the buzzer to pre-defined locations then the 

buzzer is activated to generate acoustic waves, which are detected by a microphone at a 

fixed location. Finally, the amplification module sends amplified analogue signals to the 

sampling module for sampling.  

The sampling module comprises a DAQ-2010 data acquisition card and a host computer. 

The DAQ-2010 data acquisition card is pre-configured with API functions in MATLAB. 

Channel 1 on DAQ-2010 is activated since only one microphone is deployed. The 

sampling rate is set to 50,000 Hz. After the sampling system is initialised, a pre-allocated 

array in MATLAB is charged with the sampled signal components alternately from two 

internal buffers of DAQ-2010. Next, the sampled signal sequences are separated and 

saved in designated folders for the training of LTPM.  

6.2.1 The design of three-dimensional location templates and coordinate setups 

According to the test design, a robot moves the acoustic source to prescriptive locations. 

Thus, location templates are designed first to provide three-dimensional coordinates for 

the robot. Technically, the location template is the tool for acoustic signal collection and 

it correlates with the accuracy of the localisation system.  

Three-dimensional location templates are designed according to the space volume of the 
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test area. The origin point of the robot is the zero point of all location templates. The 

operational space is a sphere centred at the origin point and the sphere has a radius equal 

to the robot's arm span, as shown in Figure 6.2-1 (b). 

 
Figure 6.2-1 (a) is the UR robot, and the red point is the origin point. (b) is the 

sphere operational space centred at the origin point. (c) shows a cube inside the 

sphere, and (d) illustrates two cubic location templates with different side lengths 

The surface of the sphere is the boundary for three-dimensional location templates. In 

other words, the robot is able to send the buzzer to any location that is inside the sphere. 

To simplify the coordinate calculations in practical robot programming, the sphere is 

replaced by a cube, as shown in Figure 6.2-1 (c). The length of the diagonal of the cube 

equals the diameter of the sphere. By changing the side length of the cube, location 

templates with different scales are set; in this way, three-dimensional locations are 

labelled.  

A buzzer is attached to the endpoint of the robot manipulator and the robot transports the 

buzzer to a labelled spatial location by inputting coordinate parameters. Limited by the 

length of the robot arm, the maximum and minimum side lengths of the template are set 

to 1200 mm and 460 mm, respectively.  
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The shape of the three-dimensional location template is cubic because the square cross-

section facilitates calculations of three-dimensional coordinates potentially. Two cubic 

location templates with 1200 mm and 460 mm side lengths are established first. Next, 

cubic location templates are progressively established along the diagonal axis from the 

maximum side length to the minimum side length with a step interval of 200 mm. 

Practical three-dimensional location templates are illustrated in Figure 6.2-2. 

Multiple location templates are established by changing the side length of the initial cubic 

location template. Figure 6.2-2 (a) shows three location templates with 1200 mm, 1000 

mm and 800 mm side lengths. Each cubic location template has eight vertices; these 

vertex locations are the pre-defined locations for the acoustic source. 

All three-dimensional vertex locations on the location templates are compiled into the 

UR-10 robot operational program so that the robot can transport buzzers to any 

designated vertex location for acoustic signal collection.  

A microphone is deployed next to the cubic location template to sample acoustic signals. 

Next, acoustic signals are collected from the pre-defined locations on cubic location 

templates. Then, filtering, signal separation, feature extraction, and coordinate merging 

functions are executed to generate the training and test data for machine learning 

algorithms.  

In practical localisation applications, the localisation system locates acoustic sources to 

pre-defined locations. The positioning procedure is passive as acoustic sources are 

located by receiving acoustic waves emitted by these acoustic sources. Compared to 

electromagnetic localisation systems, signal transmission devices are unnecessary for 

acoustic wave-based localisation systems thus the system complexity of the acoustic 

localisation system is low. Indoor localisation is a typical application of the proposed 

acoustic localisation technology. The localisation system can locate users with speech, 

knocking, and collision signals emitted by users and provide location information to the 

interactive system to perform passive human-computer interaction. 
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Figure 6.2-2 Illustration of three-dimensional location templates (a) and practical 

setups (b). The robot arm span is between 1200 mm and 460 mm; thus, the max 

and min lengths of the cubic location templates are set to 1200 mm and 460 mm 

correspondingly. Each cubic location template has 8 vertex locations, and 

locations 4, 12, and 18 are linear coaxial locations 

6.2.2 Robot for acoustic source movement 

Unlike the manual signal collection strategy used in the two-dimensional localisation 

test, the three-dimensional localisation test requires hundreds of thousands of acoustic 

sample signals from different locations for model training. It is inefficient to collect such 

a volume of acoustic signals manually. Therefore, an industrial robot is integrated into 

the localisation system to collect acoustic signals automatically.  

The UR-10 robot, as shown in Figure 6.2-3, is used for the repetitive sample collection 

work. The robot moves acoustic sources to pre-defined locations and activates the buzzer 

for acoustic signal sampling. In this way, acoustic signals are generated and collected 

continuously and accurately. The sample generation rate is 8 samples per minute.  

Since the acoustic multipath effect is utilised to locate acoustic sources, the robot and 

appliances deployed in the space enhance the multipath effect resulting in an improved 

positioning performance. In other words, the acoustic waves reflected and blocked by the 
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robot and related appliances could add more multipath components to the received 

acoustic signal, making acoustic signals collected from different locations more 

distinguishable. 

 

Figure 6.2-3 The UR-10 robot used in the three-dimensional localisation test. The 

UR robots are widely applied to industrial manufacturing. The robot system 

consists of a robot arm, a power module and a teach pendant. Operational 

programs are compiled in the teach pendant with the URScript Programming 

Language 

6.2.3 Sampling module 

Similar to the sampling module built for the two-dimensional localisation test, a DAQ-

2010 data acquisition card-based sampling module is applied to the three-dimensional 

localisation system. Corresponding adjustments are made according to the test 

environment, including the sampling time extension, trigger adjustment, filter 

implementation, microphone connection etc. At the beginning of the three-dimensional 

localisation research, a differential microphone array was applied to the localisation 

system to provide differential acoustic signals. However, subsequent research showed 

that the microphone array technology requires additional hardware and specific 

differential algorithms. Besides, according to the test results, signal features extracted 
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from acoustic signals sampled with a single microphone are sufficient to achieve the 

expected three-dimensional localisation results. Therefore, the differential microphone 

array is abandoned in this research. 

Microphone: 

G.R.A.S Ltd. provides excellent acoustic equipment and techniques for acoustic 

measurement and analysis. The state-of-the-art sensors from G.R.A.S ensure accurate 

acoustic signal measurement. The measurement microphone used in the three-

dimensional test is the 146AE measurement microphone. Parameters of the G.R.A.S 

146AE microphone, such as dynamic range, sensitivity, equivalent resistance, and 

frequency responding range, are shown in Table 6.2-1. 

The frequency response and dynamic range of measurement microphones are better than 

that of studio microphones. Besides, measurement microphones are shorter and lighter; 

thus, they can be easily deployed in the three-dimensional space with stands, tapes and 

glues. 146AE is selected because of its stable performance under different environments; 

the output of 146AE maintains at a stable level under different temperatures and pressure.  

Another merit of 146AE is that this microphone has no resonant frequency compared to 

the Murata PKS1 shock sensor used in the two-dimensional localisation test. Therefore, 

hardware filtering is unnecessary for the 146AE measurement microphone. 

The 146AE microphone is powered by an AA12 power module, as shown in Figure 

6.2-4. The AA12 provides three amplification options. Namely, -20 dB, 20 dB and 40 

dB. This amplification characteristic of AA12 makes subsequent sampling work more 

convenient and efficient. Different amplification options are selected according to the 

changes in the acoustic source. 
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Table 6.2-1 Comparison between CO2 microphones (ordinary microphones) and G.R.A.S 

microphones (measurement microphones) 

Usage of 

CO2/46AE/146AE 

CO2 

(Studio Microphone) 

Studio 

46AE  

(Measurement 

Microphone) 

Measurement 

146AE 

(Measurement 

Microphone) 

Measurement 

Type Condenser Condenser Condenser 

Diaphragm Size 

Polar Pattern 

Small Diaphragm 

Cardioid 

Free Field Free Field 

Width 20 mm 13.2 mm 12 mm 

Height 150 mm 84 mm 86.5 mm 

Weight 170 g 33 g 35 g 

Sensitivity -40 dBV/Pascal -26 dBV/Pascal -26 dBV/Pascal 

Impedance 200 Ohm < 50 Ohm < 50 Ohm 

Frequency Response 40 Hz - 20000 Hz 3.15 Hz – 20000 Hz 3.15 Hz - 20000 Hz 

Connector Type Microphone (XLR) BNC BNC 

Dynamic Range 112 dB 138 dB 133 dB 
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Figure 6.2-4 The AA12 power module and the input adapter. The power module 

is a 2-channel power module with gain control and CCP preamplifier 

Amplification:  

The AA12 module has an output voltage of 2 mv with no biases. In contrast, the CO2-

based sampling module has an output voltage of 25 mv. The characteristic of AA12 is 

beneficial for improving the signal-to-noise ratio and maintaining stable signal output. 

The amplified signals are sent to the DAQ-2010 data acquisition card for sampling. 

Data interface and sampling configuration:  

According to pre-defined location templates, the UR robot continuously transports 

buzzers to designated locations. Analogue acoustic signals are then collected by the 

microphone and sent to the DAQ-2010 for analogue-to-digital conversion. The DAQ-

2010 sampling module is optimised in the three-dimensional localisation test to perform 

four hours of continuous sampling. The monitor interface and control panel used in the 

two-dimensional sampling module are removed to reduce the computational burdens and 

improve the stability of the sampling system. 

The optimised sampling module work continuously for four hours at a sampling rate of 

50,000 Hz. The 4-hour acoustic data has a size of 1.5 GB (MATLAB data format, MAT). 
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A sampled acoustic signal is shown in Figure 6.2-5.  

 

Figure 6.2-5 An acoustic signal collected from the laboratory. The X-axis is the 

time, while the Y-axis stands for the amplitude of the signal 

6.2.4 Pre-processing for feature extraction: signal separation and coordinate merge 

The three-dimensional acoustic signal matrices are converted into a one-dimensional 

column array for faster processing speed. The one-dimensional array is the raw data 

which contains acoustic signals sampled from different locations. Thus, independent 

acoustic signals must be separated for subsequent signal processing. 

Signal filtering:  

The first step is to filter the array with a bandpass filter to eliminate the unwanted 

frequency components. As shown in Figure 6.2-6, signal components between 2,000 Hz 

- 15,000 Hz are preserved.  

Signal separation:  

A waveform-based separation algorithm is developed to separate acoustic signals. The 

block diagram of the separation algorithm is shown in Figure 6.2-7. The algorithm has a 

similar functionality to the hardware trigger, but it is more efficient as it automatically 
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filters out unqualified signals and separates acoustic signals.  

 

 
Figure 6.2-6 Signal power spectrums after passing a bandpass filtering (orange). 

The blue power spectrum stands for the raw acoustic signal. The bandpass filter 

removes low-frequency interferences 

In the initial separation of acoustic signals, a maximum peak value of an acoustic signal 

𝑃𝑚𝑎𝑥 is extracted first. Next, the signal sequence is initially separated into two signal 

sequences according to 𝑃𝑚𝑎𝑥 . The two separated signal sequences are defined as the 

forward separation sequence and the backward separation sequence. 

The location of the microphone is fixed; thus, one of the eight locations on a location 

template always has the shortest distance to the microphone. Since the energy of an 

acoustic source is finite, acoustic signals at this location always have the highest peak 

value 𝑉𝑝, while peak values 𝑉1, 𝑉2, … 𝑉7 of acoustic signals at the other 7 locations are 

smaller than 𝑉𝑝.  

The 𝑉𝑝  appears periodically in the sampled signal sequence. Therefore, periodic 

secondary separations on the forward separation sequence and backward separation 

sequence are performed by extracting multiple 𝑉𝑝 values.  
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Taking the forward separation sequence as an example, the forward separation sequence 

is divided into multiple periodical signal sequences according to 𝑉𝑝  values. Each 

separated signal sequence contains eight signals, corresponding to eight vertex locations 

of a cubic location template. The same separation is applied to the backward separation 

sequence. 

 

Figure 6.2-7 Block diagram of the signal separation algorithm in the three-

dimensional test 

The third separation separates independent acoustic signals from each periodical signal 

sequence acquired from the secondary separation. Since the robot needs a certain time to 

take the buzzer to a specified location, the third separation is performed based on the 

operational time difference of the robot system.  
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To this extent, acoustic signals at different three-dimensional locations are separated. 

Next, separated signals are examined again to eliminate faulty signals. Separated signals 

are stored in location folders for feature extraction and signal transformation. 

 
Figure 6.2-8 Signal processing flow chart for three-dimensional localisation. 

Separated signals are then processed with feature extraction functions and 

transformation functions to generate two types of training datasets for Random 

Forest and Convolutional Neural Networks, respectively 

The complete signal processing procedure is shown in Figure 6.2-8. Signal processing 

consists of three parts: signal filtering, signal separation, and feature extraction. But 

before feature extraction, all separated acoustic signals are normalised with a MATLAB 

library function: mapminmax. Different features have different dimensions and the value 

of different features varies significantly. Therefore, the collected signals are normalised 

to eliminate the potential impact caused by differences in the dimensions of features and 

value ranges between different features. 

In data normalisation, a signal sequence is centralised first according to the minimum 

value in the signal sequence. Then the sequence is scaled according to the range decided 

by the maximum and minimum values in the sequence. Values of a normalised signal are 

converged to between [0,1]. 

Values of separated signals are then regulated between [-10,10] to facilitate feature 
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extraction. The separated signals are ready for feature extraction and transformation after 

normalisation. Further normalisation processings on signal feature values extracted from 

these separated signals and signal images converted from these separated signals are 

unnecessary. 

Two types of data are generated according to two machine learning algorithms integrated 

into LTPM. Namely, acoustic features and images of acoustic signals. The acoustic 

features are in the format of a bijective array, while signal images are the transformations 

of acoustic signals in different domains.  

6.2.5 Signal processing: feature extraction and signal image transformation 

Acoustic waves propagate omnidirectionally in three-dimensional space; the microphone 

deployed in the space only receives part of the acoustic wave emitted by an acoustic 

source. Thus, more features are required to accurately classify acoustic signals from 

different locations. 

Features for Random Forest: 

Features for Random Forest consist of statistical features and information theoretic 

features. Statistical features include dimensional features (such as the mean value, the 

variance, the power, the centroid frequency, and the peak or valley value) and 

dimensionless features (such as the Kurtosis, crest factor and L factor) extracted from the 

time domain, the frequency domain and the spectrum of an acoustic signal.  

The selection of statistical features is related to the physical properties of acoustic waves. 

For example, the nature of acoustic propagation is the transmission of mechanical energy. 

Each sampled signal component is regarded as an energy integration in the time domain. 

The sum of the energy of the direct components and the energy of the multipath 

components forms the total energy of an acoustic signal; thus, the signal energy is 

selected. Similarly, the power distribution of different frequency components varies with 

propagation distance; thus, power features are added to the feature set.  

Information theoretic features quantify the information contained in a signal from a 

mathematical perspective [123]. Entropy is an important concept in information theory; 
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it describes data uncertainty. Different entropy values represent the amount of 

information, the probability distributions of signals and the complexity of a time series. 

For example, permutation entropy indicates the complexity of a time series (acoustic 

signals are time series). The permutation entropy value of an acoustic signal will be 

higher if the time series of the acoustic signal is more complex than those of other 

acoustic signals [124]. Other information theoretic features include fuzzy entropy, 

information entropy, approximate entropy, etc. 

In this test, 43 acoustic features are used in acoustic signal matching. Acoustic features 

used in the test are listed in Table 6.2-2. In a practical case, 43 acoustic features are 

extracted from each acoustics signal. These feature values are input data for a supervised 

machine learning algorithm (Random Forest).  

Table 6.2-2 Illustration of statistical features and information theoretic features  

 

Part of the features are introduced below: 

Mean Square Frequency =  
∫ 𝑓2𝑆(𝑓)𝑑𝑓

∞

0

∫ 𝑆(𝑓)𝑑𝑓
∞

0

 6 − 1 

Mean Square Frequency: 𝑓  is the frequency component of the signal. 𝑆(𝑓)  is the 

amplitude of the corresponding frequency 𝑓  of the acoustic signal. The feature 

describes the change of the main frequency band on the power spectrum. 

RMS Frequency = √
∫ 𝑓2𝑆(𝑓)𝑑𝑓

∞

0

∫ 𝑆(𝑓)𝑑𝑓
∞

0

6 − 2 

Root Mean Square Frequency: This feature is the arithmetic square root of Mean 
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Square Frequency. The root Mean Square frequency of a spectrum is a value which 

represents the overall level of energy across the frequency range. 

Variance of Frequency =  
∫ (𝑓 − 𝐶𝐹)2𝑆(𝑓)𝑑𝑓

𝑁

0

∫ 𝑆(𝑓)𝑑𝑓
∞

0

6 − 3 

The variance of Frequency: 𝐶𝐹  is the centroid frequency of the acoustic signal, 

representing the frequency of the largest signal component in the spectrum. The feature 

describes the fluctuation degree of signal frequency or the distribution of power spectrum 

energy. The frequency variance is small if the spectral amplitude near the centroid 

frequency is high.   

STD Frequency =  √
∫ (𝑓 − 𝐶𝐹)2𝑆(𝑓)𝑑𝑓

𝑁

0

∫ 𝑆(𝑓)𝑑𝑓
∞

0

6 − 4 

Standard Deviation of Frequency: The standard deviation of frequency is the square 

root of the frequency variance. It is often used to describe the dispersity of the power 

spectrum energy distribution. The standard deviation of frequency has the same 

dimension as the original signal, which represents the degree of dispersion of frequency 

components. 

Crest =  
𝑋𝑝𝑒𝑎𝑘

𝑋𝑅𝑀𝑆
6 − 5 

Crest Factor: The crest factor is a time-invariant signal feature. 𝑋𝑝𝑒𝑎𝑘 is the peak value 

of the acoustic signal while 𝑋𝑅𝑀𝑆 is the signal’s root mean square value. It represents 

the relation between the signal peak and the signal waveform. 

K =  
1

𝑁
∑

(𝑥(𝑖) − 𝜇)4

𝜎4

𝑁

𝑖=1

 6 − 6 

Kurtosis: 𝜎 is the standard deviation of a signal sequence, 𝜇 is the mean value of the 

signal, 𝑥(𝑖) is the amplitude, and 𝑁 is the signal length. Kurtosis is the ratio of the 4th-

order central moment to the 4th power of the standard deviation. The feature is often used 

to detect the impact of signals. It reflects the sharpness of peaks in the signal distribution.  
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I =  
𝑋𝑝𝑒𝑎𝑘

1
𝑁

∑ |𝑥𝑖|
𝑁
𝑖=1

 6 − 7 

Impulse factor: The impulse factor is the ratio of the signal peak to the absolute mean 

value of the signal. The difference between the impulse indicator and the crest factor lies 

in the denominator. The absolute mean value of a signal is less than the RMS value of 

the signal; thus, the impulse indicator is greater than the crest factor. 

CL =
𝑋𝑝𝑒𝑎𝑘

(
1
𝑁

∑ |𝑥𝑖|
𝑁
𝑖=1 )

2 6 − 8 

Clearance factor (L factor): The feature is the ratio of the peak value of a signal to the 

square mean value of the square roots of the absolute amplitude values of the signal.  

S =   
𝑋𝑅𝑀𝑆

|�̅�|
6 − 9 

Waveform factor (sin factor): The waveform factor is the ratio of a signal's RMS value 

to the signal's absolute mean value. The physical concept of the waveform factor is the 

current ratio. Namely, it is the current ratio of a signal's Direct components (DC) to the 

alternative components (AC). 

Skewness =
1

𝑁
∑

(𝑥(𝑖) − 𝜇)3

𝜎3

𝑁

𝑖=1

 6 − 10 

Skewness (skew): Skewness is the ratio of the 3rd-order central moment to the 3rd power 

of the standard deviation. It represents the asymmetry in the probability distribution of a 

signal. 

H(X) = −∑p(𝑥𝑖)

𝑛

𝑖=1

log p(𝑥𝑖) 6 − 11 

Information Entropy (signal entropy): X  represents random variables. p(𝑥𝑖) 

represents the probability function, which is essentially a mathematical expectation of 

the amount of information. The greater the information entropy, the more chaotic the 

signal is. 
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Hpe(m) = −∑p𝑗

𝑚

𝑗=1

log p𝑗 6 − 12 

Permutation Entropy: m is the embedded dimension. The original signal sequence is 

partitioned into vectors to determine the order relations between signal values. The 

permutation entropy is calculated by calculating the probability of each permutation of 

vectors. It is an indicator of the complexity of the time series. 

Signal images for CNN: 

Unlike acoustic features, two-dimensional images show synchronised changes in a time-

variant signal. For example, the spectrum of an acoustic signal shows the relation 

between signal power and frequency, which cannot be sufficiently described with a single 

type of parameter. From the perspective of signal processing, signal patterns residing in 

signal images are ideal resources for signal classification but it is not practical to 

summarise and utilise the hidden signal patterns for signal classification artificially. 

However, computer vision provides a solution to this problem. Since computer vision 

identifies hidden patterns in images and utilises the patterns to achieve object 

identification, similar algorithms are applied to classify acoustic signals from different 

locations. Namely, deep learning algorithms are utilised to identify patterns hidden in 

signal images and classify acoustic signals from different locations according to the 

summarised signal patterns. In this case, signal transformation techniques are applied to 

generate multiple signal images for the training of CNN. Part of the images are shown in 

Figure 6.2-9. And Image types are summarised in Table 6.2-3.  

Part of the image transformation formulas are introduced below: 

amdf(τ) = ∑|𝑠(𝑡) − 𝑠(𝑡 − 𝜏)|

𝑛−1

𝑡=𝜏

 6 − 13 

Average Magnitude Difference Function (AMDF): 𝑠(𝑡)  is a frame of an acoustic 

signal. τ is the shift sampling number of the frame. In signal analysis, acoustic signals 

are considered periodic signals. The periodic characteristic of acoustic signals under 

stationary noise conditions can be analysed and observed with AMDF. 



 

127 

 

 
Figure 6.2-9 Display of signal images. (a) Average Magnitude Difference (b) 

Sound Pressure (c) The change of Centroid Frequency (d) Instant Frequency (e) 

Kurtogram (f) Power Density 

Table 6.2-3 Illustration of signal images  

 

S(t) = ∑ 𝐼𝑀𝐹𝑖(𝑡)
𝐾

𝑖=1
+ 𝑟𝐾 6 − 14 

H[𝐼𝑀𝐹𝑖(𝑡)] =
1

𝜋
∫

𝐼𝑀𝐹𝑖(𝜏)

𝑡 − 𝜏

+∞

−∞

dτ 6 − 15 

Hilbert-Huang Transform (HHT): HHT consists of 2 parts. The 1st part is Empirical 

Mode Decomposition (EMD). EMD adaptively performs local time-frequency analysis 

on a signal and extracts mode functions from the signal. (Eq. 6-14) is the formula of 

EMD [125]. S(t) is the acoustic signal, 𝐼𝑀𝐹𝑖(𝑡) are Intrinsic Mode Functions (IMF). 

𝑟𝐾  is the signal redundancy. The functionality of EMD is to decompose S(t)  into a 
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series of IMFs.  

The 2nd part is Hilbert Transform. Hilbert Transform is usually applied to spectral 

analysis. (Eq. 6-15) is the Hilbert Transform. H[·] stands for Hilbert Transform while 𝜏 

is the transition time of the controlled variable t. It can be summarised that H[𝐼𝑀𝐹𝑖(𝑡)] 

is the convolution of 𝐼𝑀𝐹𝑖(𝑡) and 
1

𝜋𝑡
 intrinsically. 

HHT reflects the time-frequency relation of a signal. Compared to the signal frequency 

components acquired with the Fourier transform, HHT delivers detailed variations of 

frequency components over time because of EMD [128].  

S𝑥(f) = ∫ 𝑅𝑥(𝜏)𝑒
−2𝜋𝑖𝑓τ

+∞

−∞

dτ 6 − 16 

R𝑥(τ) = ∫ 𝑆𝑥(𝑓)𝑒2𝜋𝑖𝑓τ
+∞

−∞

dτ 6 − 17 

Power Spectral Density (PSD): The power density spectrum represents the distribution 

of signal power in the frequency domain in terms of density (in W/Hz). According to the 

Wiener-Khinchin theorem, the autocorrelation function of a signal and its power density 

spectrum are a pair of Fourier transform pairs [126]. The power density spectrum of a 

signal can be acquired by performing the Fourier transform on the signal’s 

autocorrelation function. (Eq. 6-16) and (Eq. 6-17) are mathematical expressions of the 

Wiener-Khinchin theorem, where X(t) is the signal, R𝑥(τ)  is the autocorrelation 

function of X(t). S𝑥(f) is the Fourier transform of R𝑥(τ).  

𝑃𝑜𝑤𝑒𝑟 𝑆𝑝𝑒𝑐𝑡𝑢𝑟𝑚 = 𝑝𝑠𝑑 ∗
𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

𝑁
6 − 18 

Power Spectrum: The power spectrum is calculated by multiplying the power density 

function with the sampling rate. 𝑝𝑠𝑑 is the power spectral density function, 𝑓𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 

is the sampling rate, and 𝑁  is the number of sampling points. The power spectrum 

shows the relation between signal power and frequency. In the three-dimensional 

localisation test, although the frequency of the acoustic source is remained at 𝑓𝑠𝑜𝑢𝑟𝑐𝑒, 

the power of the received signal varies with different distances (locations). Therefore, the 
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power spectrum is an important input data for CNN-based LTPM. 

𝑃𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = √
1

𝑁
∑ 𝑥2(𝑛)

𝑁

𝑛=1

6 − 19 

Sound Pressure: The sound pressure is calculated by calculating the RMS of 

instantaneous sound pressure over time (in Pa). 𝑁 is the number of sampling points, and 

𝑥(𝑛) is an acoustic signal. In signal processing, the acoustic signal is divided into frames 

first, and then the sound pressure of each frame is calculated. Next, a sound pressure 

variation curve is acquired by connecting these frames. 

6.2.6 The training of Random Forest 

Training method for Random Forest-based LTPM:  

Bagging, also known as bootstrap aggregation, is an ensemble training technique in 

machine learning [127]. It was proposed by Leo Breiman in 1996 [136]. Bagging is 

combined with classification and regression algorithms to improve classification 

accuracy while preventing overfitting. 

Assuming a training dataset contains 𝑚 samples. A sample is randomly taken from the 

training dataset and added to a sampling dataset; then, the sample is returned to the 

training dataset. In other words, the samples added to the sampling dataset may be 

selected multiple times during the sampling. After 𝑚 sampling operations, a sampling 

dataset containing 𝑚 samples is obtained. A characteristic of samples in the sampling 

dataset is that some samples in the training dataset appear multiple times in the sampling 

dataset, while some samples have never appeared [127].  

Each dataset contains 𝑚  training samples, and 𝑇  sampling datasets are obtained by 

repeating the sampling processing. Next, a base learner is trained with each sampling 

dataset. These trained base learners are then combined to create a classifier. Generally, 

the final output of the classifier is calculated by voting since each base learner calculates 

an output. In some tasks with biased requirements, each learner's confidence level can 

also be further examined to determine the final output. 
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Overall, Bagging is a technique which reduces generalisation error by combining several 

classification models. The idea of bagging is to train several different models separately; 

then, all models vote to generate a final output. Bagging is a classic learning technique 

in machine learning. Machine learning algorithms that utilise this technique are 

categorised as ensemble learning.  

Since the training dataset is randomly selected with replacements; thus, learners are not 

correlated. This characteristic is consistent with the training pattern of decision trees. 

Therefore, bagging is selected to train the Random Forest-based LTPM. 

Evaluation of Random Forest-based LTPM:  

The data is divided into three categories: training dataset, validation dataset and test 

dataset. The training dataset is used for model training. The classification model is 

continuously optimised with the data in the training dataset during the training. The test 

dataset is not involved in the model training. It is only used to test the classification 

performance of the trained model. Similarly, the validation dataset is also not involved 

in the model training, it is used to select the model with the most appropriate 

hyperparameter.  

In the training of RF-based LTPM, the data is only divided into multiple training datasets 

and test datasets due to bagging. Unbiased estimates of generalisation errors can be 

calculated in the training of the classification model with the Out-of-Bag (OOB) data 

[136]; thus, the validation dataset is unnecessary in Random Forest. In other words, the 

classification accuracy of the model can be directly evaluated with OOB datasets. At the 

same time, since no validation data is used for hyperparameter adjustment, all training 

data is preserved. This is a unique characteristic of Random Forest and the reason for 

choosing Random Forest since the data volume is small (120,000 signals). 

Illustration of three-dimensional acoustic localisation: 

43 features are extracted from each acoustic signal. After the completion of the feature 

extraction, the features, along with their coordinates, are written into an Excel sheet file 
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waiting for the RF machine learning algorithm to read. The algorithm divides the data 

into a training dataset and a test dataset. Below, the matching between an input acoustic 

signal and acoustic sample signals is illustrated. 

The format of a processed input signal in a training dataset is a 43-dimensional array: 

𝑆𝑖 ∶= [ 𝑠1, 𝑠2, 𝑠3 …𝑠43, coordinate] 

So the format of the training data is as follows: 

𝑆𝑁𝑖 ∶= [

 𝑠11, 𝑠12, 𝑠13 …𝑠143, coordinate1
𝑠21, 𝑠22, 𝑠23 …𝑠243, coordinate2

…
𝑠N1, 𝑠N2, 𝑠N3 …𝑠𝑁43, coordinateN

] 

Part of the database is shown in Table 6.2-4. 4 features are selected as an illustration: the 

minimum valley value, the maximum valley to peak value, the centroid frequency, and 

the occupied bandwidth of a signal. 

Table 6.2-4 Illustration of the training dataset. The example training dataset is a matrix, but 

the complete training dataset is a 43-dimensional matrix which contains both signal feature 

values and coordinates 

 

When a test signal is sent to the trained model, the signal is decomposed into a feature 

array 𝑇0 ∶= [𝑡1, 𝑡2, 𝑡3 …𝑡43]  with the same signal processing and feature extraction 

functions which have been applied to generate the training data. Next, the trained model 

matches values in 𝑇0 with values in row vectors of 𝑆𝑁𝑖 and finds a row vector 𝑆𝑇 with 

the highest similarity to 𝑇0. The corresponding coordinate of 𝑆𝑇 is confirmed as the 

location of the acoustic source. For example, if   

𝑇0 = [−5.00, 10.00, 21525.00, 41.50] 

Location 1 (the 1st row) in Table 6.2-4 will be identified as the matched output 𝑆𝑇0, thus 

the acoustic source is located at location 1 (600, -600, -600).  
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6.2.7 The training of CNN 

Signals are converted into tensors (images) for the training of CNN. Images must be pre-

processed first to increase the convergence speed and improve learning efficiency. 

Therefore, image processing techniques such as scaling, rotating, flipping, and 

normalisation are applied. The data pre-processing includes the following steps: 

Data conversion: Signals are converted into three-dimensional tensors (RGB colour 

images) before training. Image types are introduced in Section 6.2.5 (b).  

Data augmentation: Data augmentation refers to additional processing of the training 

data. The purpose of data augmentation is to increase the number and diversity of training 

data, thereby improving the generalisation ability of the model. Common data 

augmentation methods include image scaling, rotation, flip, translation, cropping, 

brightness adjustment and contrast adjustment. 

Data loading: Reading data from a training dataset and storing the data in memory. 

Generally, datasets are divided into training and test datasets, which are used for model 

training and performance evaluation. 

Data partitioning: Data are divided into three datasets; the training, validation and test 

datasets.  

Pre-processing on images improves CNN models' training efficiency, generalisation, and 

classification accuracy. 

Stochastic Gradient Descent (SGD) for CNN:  

Gradient Descent is applied to find out model parameters in machine learning. From a 

mathematical perspective, a model is a multivariate function. The gradient of the 

multivariate function is calculated by calculating the partial derivative 𝜕  of each 

variable [128].  

For example, for a function 𝑓(𝑥, 𝑦), the partial derivative of 𝑥 and 𝑦 are calculated 

respectively. Thus, the gradient 𝑔𝑟𝑎𝑑 𝑓(𝑥, 𝑦)  of 𝑓(𝑥, 𝑦)  is (𝜕𝑓 𝜕𝑥⁄ , 𝜕𝑓 𝜕𝑦)⁄ 𝑇
 , or 
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∇𝑓(𝑥, 𝑦). Similarly, for a function which contains three variables, the gradient of the 

function is (𝜕𝑓 𝜕𝑥⁄ , 𝜕𝑓 𝜕𝑦, 𝜕𝑓 𝜕𝑧)⁄⁄ 𝑇
.  

The gradient represents the curvature of a function in terms of geometrics. For example, 

for a function 𝑓(𝑥, 𝑦)  at point (𝑥0, 𝑦0) , the gradient vector is (𝜕𝑓 𝜕𝑥0⁄ , 𝜕𝑓 𝜕𝑦0)⁄ 𝑇
 . 

The function curve along the gradient vector is the direction where 𝑓(𝑥, 𝑦) increases 

the fastest. Alternatively, along the direction of the gradient vector, the maximum value 

of the function 𝑓(𝑥, 𝑦)  will be found [128]. On the other hand, along the opposite 

direction of the gradient vector, which is −(𝜕𝑓 𝜕𝑥0⁄ , 𝜕𝑓 𝜕𝑦0)⁄ 𝑇
, the gradient decreases, 

and the minimum value of the function 𝑓(𝑥, 𝑦) will be found.  

Stochastic gradient descent (SGD) updates the model based on each stochastic sample. 

Technically, the classification model is updated in every execution period [129]. Below, 

a function example is used to illustrate the implementation of SGD. 

Assume that the objective function is: 

𝐽(𝑥) =
1

𝑛
∑ 𝐽(𝑥𝑖)

𝑛

𝑖=1
6 − 20 

where 𝑥𝑖  is the training sample, 𝐽(𝑥)  is the objective function. The gradient of the 

objective function is ∇𝐽(𝑥): 

∇𝐽(𝑥) =
1

𝑛
∇∑ 𝐽(𝑥𝑖)

𝑛

𝑖=1
6 − 21 

If the model is trained with the Batch Gradient Descent method (BGD), gradient 

calculations on 𝑛 samples must be performed during each iteration, resulting in a very 

high calculation cost 𝑂(𝑛). 

The idea of Stochastic Gradient Descent is to update model parameters according to a 

random sample 𝐽(𝑥𝑖). Thus the calculation cost decreases from 𝑂(𝑛) to 𝑂(1). As a 

result, SGD converges faster than BGD while maintaining the same level of classification 

accuracy. 

SGD has specific problems as well. SGD does not optimise the loss functions [130]. 

Instead, the loss function of a stochastic training sample is optimised in each iteration. 
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As a result, not all loss functions are biased toward a global optimal solution, but most 

loss functions are biased toward the global optimal solution. 

As mentioned above, the neural network trained with SGD hardly achieves global 

optimisation; thus, the iterative trajectory of an independent variable trained with SGD 

is more tortuous than that trained with BGD, as shown in Figure 6.2-10. 

 
Figure 6.2-10 Illustration of Stochastic Gradient Descent (SGD) training (a). 

Compared with batch gradient descent (BGD, (b)), the convergence curve of SGD 

is disordered. However, SGD has a lower computational cost 

Evaluation of CNN-based LTPM:  

The dataset is divided into three categories: training dataset, validation dataset, and test 

dataset. The training dataset is used for model training. The classification model is 

continuously optimised with the data in the training dataset during the training. 

The validation dataset is not involved in the model training. The validation dataset is used 

to verify the convergence of the classification model during the training. It is typically 

used to adjust hyperparameters. The validation dataset can also be used to examine if the 

model is overfitting. For example, in the situation that the classification accuracy of a 

trained model keeps increasing while the classification accuracy of the model using a 

validation dataset keeps decreasing, the model is considered overfitting. 

The test dataset is also not involved in the model training. It is only used to test the 

classification performance of the trained model. 

In the training of CNN-based LTPM, the data is divided into training, validation, and test 

datasets with a ratio of 3:1:1 [135]. The classification accuracies of a CNN-based LTPM 
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using the validation data and the training data are shown in Figure 6.2-11. 

 

Figure 6.2-11 The accuracy change of a CNN-based LTPM during training. The 

X-axis represents the epoch. The Y-axis is the percentage accuracy 

In the iterations, the accuracy of the LTPM using the validation dataset stabilises at 20 

epochs, indicating that the validation accuracy has converged. The training should be 

stopped to prevent overfitting. Therefore, the epoch number is determined to be 20. 

In the three-dimensional localisation test, the training dataset contains 17 types of images. 

The classification accuracy of CNN in the localisation test stabilises within 20 epochs, 

as shown in Figure 6.2-12. 
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Figure 6.2-12 Iterations of a CNN-based LTPM (using the training dataset). The 

classification accuracy of the LTPM tends to be stabilised after 20 epochs 

6.3 Three-dimensional localisation test design 

In the three-dimensional localisation test, samples in the database are divided into two 

types of data: training data and test data. The training data are used to train classification 

models, and the test data are used to evaluate the classification performance of the trained 

model. The test design starts with the introduction of tests and input data. 

6.3.1 Three-dimensional localisation test types and input Data 

The three-dimensional localisation tests are divided into the first level tests 

(training/testing data from the same location template) and the second level tests 

(training/testing data from different location templates).  

Similarly, each level of tests consists of independent tests (each vertex location of 

location templates serves as an independent system output) and coaxial tests (coaxial 

vertex locations of multiple location templates serve as a coaxial system output) based 

on the axial correlation. 

The input data consists of primary datasets and secondary datasets. The primary datasets 

are used for training and testing, while the secondary datasets are mainly used for testing. 
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Details of input datasets have been introduced in Section 6.2.5. 43 acoustic features and 

coordinates are written into an Excel file for the compiled Random Forest algorithm to 

read. Similarly, 17 signal images are transformed and stored in designated folders for the 

compiled CNN algorithm to read.  

Two levels of test: 

Generally, a dataset refers to signals collected from the same location template. The 

dataset is split into a training dataset to train a model and a test dataset to test the trained 

model's classification performance.  

In some tests, datasets from other location templates are also used to test the performance 

of a trained model. Such tests aim to examine the signal discernment of the trained model, 

especially in situations that the acoustic source shifts from pre-defined three-dimensional 

locations. 

In the 1st level test, signals collected from a location template are divided into two 

subsets: a sub-dataset for model training and a sub-dataset to test the trained model. For 

example, 48,000 samples are collected from the location template with a 1200 mm side 

length. These samples are divided into a training dataset (40,000 samples) and a test 

dataset (8000 samples). An LTPM is trained with the training dataset and then tested with 

the test dataset. The 1st level test aims to determine the classification accuracy of the 

LTPM.  

In the 2nd level test, the LTPMs are trained with samples collected from a specific 

location template and then tested with samples collected from other location templates. 

For example, samples collected from the 1200 mm location template are used to train a 

model then the trained model is tested with samples collected from the 1000 mm location 

template. The 2nd level test aims to verify the uniqueness of the acoustic features 

embedded in the sampled signals.  

Independent test and Coaxial test:  

Acoustic signals collected at the coaxial direction share similar acoustic features. The 
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independent and coaxial tests are therefore designed to examine the coaxial localisation 

performance of LTPM.  

The independent test is a standard point-to-point comparison test. The input and output 

of the LTPM are identical. For example, in a 24 points independent test, the input dataset 

contains 24 locations, and the same 24 locations are defined in the output of the LTPM. 

In the coaxial test, the vertex locations of different cubic location templates in the 

diagonal direction are defined as coaxial locations. As shown in Figure 6.2-2 (a), 

Locations 4,12,18 are coaxial locations. Since these locations are linear, these locations 

are also referred to linear locations.  

The coaxial test aims to verify: 

(1) If an acoustic source can be located at the closest pre-defined location and the coaxial 

location when LTPM cannot find a matched sample signal. 

(2) Whether the multipath effect changes linearly on the propagation path. 

(3) The relationship between the classification accuracy and the deviation distance.  

Since the coaxial locations are regarded as a coaxial location, the output of LTPM only 

contains 8 locations (corresponding to 8 cube diagonals) regardless of the number of 

location templates. For example, in an 8 points coaxial test, 24 locations are defined in 

the input as the datasets are collected from 3 cubic location templates. However, only 8 

locations are defined in the output; every 3 locations at the coaxial direction are regarded 

as 1 linear location.  

Thus, the output of the LTPM has multiple patterns. For example, 8 points coaxial test 

(2-4 cubic location templates), 8 points independent test (single cubic location template), 

16 points independent test (2 cubic location templates), and 24 points independent test (3 

cubic location templates). 

The primary datasets:  

3 primary datasets are collected from the 1200 mm, 1000 mm and 800 mm location 

templates, as shown in Table 6.3-1.  
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Table 6.3-1 The number of samples of the 3 primary datasets 

 1200 mm 1000 mm 800 mm 

Number of 

samples 
48,000 40,000 32,000 

The secondary dataset: 

5 secondary datasets are collected from the 460 mm, 1100 mm, 1050 mm, 900 mm, and 

750 mm location templates, as shown in Table 6.3-2. 

Table 6.3-2 The number of samples of all datasets 

 460 

mm 

750 

mm 

900 

mm 
1050 mm 1100 mm 

Number of 

samples 
3,200 100 100 100 100 

Datasets for Random Forest:  

3 primary datasets (from 1200 mm, 1000 mm and 800 mm location templates), 4 

secondary datasets (from 1100 mm, 1050 mm, 900 mm, and 750 mm location templates) 

and 1 dataset with a medium number of samples (from 460 mm location template) are 

established for the training of RF-based LTPM. 

Datasets for CNN:  

The training dataset contains 2.1 million images (generated with 17 transformation 

functions). 1/20 of the images are used to train CNN-based LTPM. The train-validation-

test ratio is set to 3:1:1. The ratio can be adjusted to ensure efficient data utilisation. The 

3:1:1 ratio is the most reasonable ratio since the total amount of collected samples is 

small (120,000 signals) and the validation dataset is essential to prevent overfitting. The 

3:1:1 train-validation-test ratio ensures the efficient training of LTPM. On the other hand, 

this project attempts to apply machine learning algorithms to acoustic localisation instead 

of optimising machine learning algorithms; thus, the most commonly used 3:1:1 train-

validation-test ratio is selected.  

The image compression rate of the image is 0%, and the image resolution is set to 

875×656 while all pixel values are within 255. The batch size is 40, and the epoch is set 
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to 20. 

Classification accuracy measurement: 

For a given test dataset, the number of samples that are correctly classified by the LTPM 

(True Positive, TP) to the total number of samples is the accuracy rate (Eq. 6-22). 

Accuracy =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗ 100% 6 − 22 

where TP stands for True Positive while FP stands for False Positive; thus, the 

classification accuracy is the proportion of all "correctly matched results (TP)" to all 

"matched results (TP+FP)". 

Localisation accuracy: 

Unlike the classification accuracy measurement, the localisation accuracy is determined 

by location templates. It is calculated according to the gap distances between location 

templates. Location templates have different side lengths, and the gap distance between 

two vertex locations of two different cubic location templates represents the localisation 

accuracy. For example, the minimum distance between the 1200 mm cubic location 

template and the 1000 mm cubic location template is 173 mm and the maximum distance 

is 2078 mm. In this case, LTPM trained with the 1000 mm dataset is tested with the 1200 

mm dataset and the localisation accuracy is 173 mm. 

Figure 6.3-1 illustrates the calculation of the localisation accuracy between different 

location templates. The hypotenuse of the triangle is 173 mm, which is the minimum gap 

between location templates. It is also the highest localisation accuracy that LTPM 

achieved in the three-dimensional localisation test. 
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Figure 6.3-1 Illustration of the minimum localisation accuracy 

The minimum localisation accuracy is the distance between the coaxial vertices of two 

cubic location templates, while the maximum localisation accuracy is the diagonal 

distance (2078 mm) of the 1200 mm cubic location template. 

Deviation distance: 

Deviation distance is the distance between the acoustic source and the closest pre-defined 

location. In the 2nd level test, LTPMs are trained with a dataset from a specific location 

template and then tested with datasets from other location templates. The deviation 

distance represents the gap between the training location template and the test location 

template, as shown in Figure 6.3-2. The deviation distance in the three-dimensional 

localisation test varies between 50 mm to 450 mm. 

Assume that the training data is collected with the green location template, and the test 

data is collected with the yellow location template. The distance between location 

templates is defined as the deviation distance. The deviation distance is used to describe 

the shift between the acoustic source and the closest pre-defined location. 
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Figure 6.3-2 Illustration of deviation distance 

6.3.2 The first level of cross test 

The first level of cross test between 3 primary datasets:  

The test consists of an independent test (24 points) and a coaxial test (8 points). Since 3 

primary datasets are used (corresponding to 3 location templates), the output includes 24 

locations (3 location templates have 24 cubic vertex locations). While in the 8 points 

coaxial test, locations on the cubic diagonals are connected to form linear locations. An 

example is shown in Figure 6.2-2 (a); locations 4, 12 and 18 are coaxial locations.  

In this test, 120,000 samples from the 3 primary datasets are divided into a training 

dataset which contains 100,000 samples and a test dataset which contains 20,000 

samples. The 20,000 samples in the test dataset are randomly selected from the 3 primary 

datasets. This test aims to evaluate the accuracy of LTPM preliminarily. Test results are 

shown in the first 2 columns of Table 6.3-3.  

Next, models trained with different datasets are tested separately. In these tests, input and 

output are based on a single location template with 8 locations. For example, in the 1200 
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mm dataset (LTPM-LT-8(1200)), 48,000 samples are divided into a training dataset 

(40,000 samples) and a test dataset (8,000 samples). The same test approach is applied 

to the 1000 mm dataset and 800 mm dataset. The test results are displayed in the 3rd, 4th 

and 5th columns of Table 6.3-3. 

Lastly, the 460 mm dataset, which contains 3,200 samples, is used for a localisation test 

(2,700 samples for training and 500 samples for testing). The test is designed to evaluate 

the performance of the LTPM-based localisation system when the number of training 

data is reduced. The test results are shown in the last column of Table 6.3-3. 

In addition, to provide an intuitive comparison between RF-based LTPM and CNN-based 

LTPM, test results of RF-based LTPM and test results of CNN-based LTPM are presented 

in the same table. 

Table 6.3-3 Test results of the first level test between 3 primary datasets. LTPM-8(all) 

denotes the coaxial test and LTPM-24(all) represents the 24 points (3×8) independent test. 

The classification accuracy is presented in the corresponding columns in percentage 

Method 
LTPM-

8(all) 

LTPM-

24(all) 

LTPM-

8(1200) 

LTPM-

8(1000) 

LTPM-

8(800) 

LTPM-

8(460) 

RF(%) 95.97 98.90 98.21 96.47 98.90 88.66 

CNN(%) 89.25 88.72 87.30 88.48 89.85 82.02 

Note: the number inside the parentheses indicates the side length of the location template used 

for signal collection. For example, LTPM-8(1200) means the model is trained with signals 

collected from the 1200 mm location template. 

The classification accuracy of LTPM is the primary concern. The RF-based LTPM 

achieved 98.9% classification accuracy in the 24 points independent test. Multi-

dimensional acoustic features and sufficient training data ensure the classification 

accuracy. In contrast, the classification accuracy of the RF-based LTPM trained with the 

460 mm dataset decreases to 88.66% since the data volume of the training data is reduced. 

The test result indicates that the classification accuracy of LTPM varies with data volume. 

The RF-based LTPM achieved a classification accuracy of 95.97% in the 8 points coaxial 

test, indicating that the RF-based LTPM distinguishes coaxial locations, and the 

classification accuracy decreases slightly if adjacent locations on the coaxial lines of the 

cubic location templates are defined as linear locations forcibly.  
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The classification accuracy of the CNN-based LTPM is inferior to the classification 

accuracy of the RF-based LTPM but the CNN-based LTPM still has an average 

classification accuracy of 87%. In conclusion, the CNN-based LTPM achieved excellent 

localisation results with a limited amount of training data. The test result in the 6th 

column (82.02%) indicates that the classification accuracy of the CNN-based LTPM also 

varies with the data volume of the training data. 

The test results preliminarily verified that LTPM is a feasible three-dimensional acoustic 

localisation technology which can be applied to indoor environments, and different 

machine learning algorithms have different positioning performances in the background 

of indoor acoustic source localisation. 

6.3.3 The second level of cross test 

This test is more complex than the first level of cross test. It consists of a series of tests, 

and it is designed to determine the LTPM-based localisation system's specifications.  

The test includes spatial adjacent location test, coaxial test and data volume test. A 

characteristic of the second level of cross test is that the LTPM is trained with data 

collected from a specific location template, while the test data are collected from other 

location templates. Below, the second level of cross tests are introduced. 

460 mm dataset (test dataset) to 3 primary datasets (training dataset, 8 points and 24 

points):  

Considering that the effectiveness of acoustic features corresponds to the distance 

between the acoustic source and the microphone. 3 primary datasets (800 mm, 1000 mm, 

1200 mm) and the 460 mm dataset (collected from a location template with the shortest 

side length) are selected for the test. In this test, LTPMs are trained with 3 primary 

datasets and then tested with the 460 mm dataset. 

The test aims to determine whether the acoustic source can be accurately or axially 

located to the closest location in the situation that acoustic sources deviate from locations 

defined by the location template.  
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The test consists of 5 parts; in the 1st part, the 460 mm dataset is used to test the LTPM 

trained with all 3 primary datasets. Coaxial locations are defined as linear locations; thus, 

the output of the LTPM includes 8 locations only. The 2nd part is similar to the first part, 

but all 24 locations from the 3 primary datasets are defined as output locations; thus, the 

output of the LTPM includes 24 locations. The 3rd part is about testing the LTPM (trained 

with the 800 mm dataset) with the 460 mm dataset. The 4th part is about testing the 

LTPM (trained with the 1000 mm dataset) with the 460 mm dataset. And the 5th part is 

about testing the LTPM (trained with the 1200 mm dataset) with the 460 mm dataset.  

In this test, the locations of the training data are gradually moving away from the 

locations of the test data. Thus, the relation between acoustic features and distances is 

revealed. Test results are shown in Table 6.3-4. 

Table 6.3-4 Cross test results of 460 mm against 800 mm,1000 mm and 1200 mm 

Method 
LTPM-CT-8(460-

(800+1000+1200)) 

LTPM-CT-24(460-

(800+1000+1200)) 

LTPM-

CT-8(460-

(800)) 

LTPM-

CT-8(460-

(1000)) 

LTPM-

CT-

8(460-

(1200)) 

RF(%) 18.15 10.56 10.5 15.65 19.56 

CNN(%) 87.20 - 81.21 79.93 86.62 
 

The RF-based LTPM has a low classification accuracy in the situation that acoustic 

sources are not placed at exact pre-defined locations. For acoustic sources that are 

deviated from pre-defined locations, the average classification accuracy of the RF-based 

LTPM is 15%.  

However, the CNN-based LTPM shows a different property. The CNN-based LTPM 

coaxially locate acoustic sources that are not at defined locations. The CNN-based LTPM 

has a classification accuracy of 81.21% in the situation that acoustic sources are 340 mm 

away from the pre-defined locations. The CNN-based LTPM still has a classification 

accuracy of 86.62% when the deviation distance further increases to 740 mm. These test 

results indicate that acoustic signals of acoustic sources at coaxial locations share similar 

signal patterns. Therefore, the CNN-based LTPM is able to locate acoustic sources that 

deviate from pre-defined locations to the closest coaxial location. This property is named 
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inheritance in the three-dimensional localisation test. The inheritance of the CNN-based 

LTPM is crucial to practical applications. In practical cases that the actual location of an 

acoustic source deviates from a pre-defined location, the inheritance of the CNN-based 

LTPM ensures that the acoustic source can be located at the closest pre-defined location. 

Correspondingly, the RF-based LTPM shows a property of non-inheritance. The 

classification accuracy of the RF-based LTPM in the 8 points coaxial localisation test is 

18% (1st column). In contrast, the classification accuracy of the RF-based LTPM 

decreases to 10.56% in the 24 points localisation test (2nd column), indicating that 

acoustic features of acoustic signals from coaxial locations share similar changes; thus, 

the classification accuracy is improved. The non-inheritance endows the RF-based LTPM 

with an automatic filtering ability and ensures high classification accuracy in the situation 

that acoustic sources are placed at exact pre-defined locations.  

750 mm dataset to 3 primary datasets (8 points and 24 points):  

The purpose of this test is to measure the localisation accuracy of the system in a situation 

that an acoustic source is placed next to a pre-defined location. The 3 primary datasets 

(800 mm, 1000 mm, 1200 mm) and the 750 mm dataset are selected for the test. In this 

test, LTPMs are trained with the 3 primary datasets and then tested with the 750 mm 

dataset. Next, LTPMs are independently trained with 800 mm, 1000 mm, 1200 mm, and 

460 mm datasets and tested with the 750 mm dataset. 

This test determines the relation between localisation accuracy and classification 

accuracy. For a successful localisation, any signals from the 750 mm location template 

are located at the closest location on the training location template or a coaxial linear 

location. 

The test consists of 6 parts; in the 1st part, the model trained with 3 primary datasets is 

tested with the 750 mm dataset. Locations at the coaxial line are defined as linear 

locations; thus, the output of the LTPM includes 8 locations. The 2nd part is similar to 

the 1st part, but all locations are independent.  

In the 3rd part, the 750 mm dataset tests the LTPM trained with the 800 mm dataset. 
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Since the 800 mm location template is the closest location template to the 750 mm 

location template, the classification accuracy is expected to increase. In the 4th part, the 

750 mm dataset tests the LTPM trained with the 1000 mm dataset. In the 5th part, the 

750 mm dataset tests the LTPM trained with the 1200 mm dataset. In the 6th part, the 

750 mm dataset tests the LTPM trained with the 460 mm dataset. The 6th part is for the 

overfitting examination. Test results are shown in Table 6.3-5. 

Table 6.3-5 Cross test results of 750 mm against 800 mm,1000 mm, 1200 mm and 460 mm 

Method 
LTPM-CT-8(750-

(800+1000+1200)) 

LTPM-CT-

24(750-

(800+1000+1200)) 

LTPM-CT-

8(750-

(800)) 

LTPM-CT-

8(750-

(1000)) 

LTPM-CT-

8(750-

(1200)) 

LTPM-

CT-8(750-

(460)) 

RF(%) 35 27.5 40 5 32.5 2.5 

CNN(%) 82.25 - 80.45 80.60 85.79 83.89 

RF still shows the property of non-inheritance. Acoustic features extracted from the 

received acoustic signal can hardly be recognised and matched by the RF-based LTPM 

when acoustic sources are not at pre-defined spatial locations, resulting in a decreased 

classification accuracy.  

In the 8 points coaxial test, the RF-based LTPM has a classification accuracy of 35%. In 

the 24 points independent test, the RF-based LTPM has a classification accuracy of 

27.5%. These test results are similar to the test results from the previous test (the 1st 

column and the 2nd column), which further verified that the RF-based LTPM is unable 

to locate acoustic sources that are not at pre-defined locations. On the other hand, the 

CNN-based LTPM maintains a coaxial classification accuracy of over 80% throughout 

the test. 

900 mm dataset to 3 primary datasets (8 points and 24 points): 

An extension of the previous test, the test dataset is replaced with the 900 mm dataset. In 

the previous test, the test location template is wrapped by training location templates 

visually. But in this test, the test location template is sandwiched between training 

location templates, as shown in Figure 6.3-3. This test aims to examine the localisation 

performance of LTPM when an acoustic source is nearby multiple pre-defined locations 
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on different location templates. 

 

Figure 6.3-3 Illustrations of the location templates for the test signals and training 

signals. The side lengths of the two yellow location templates are 800 mm and 

1000 mm, respectively. The green template is used for testing, with a side length 

of 900 mm 

The test consists of four parts; in the 1st part, the model trained with 3 primary datasets 

is tested with the 900 mm dataset. Locations at the coaxial lines are defined as linear 

locations; thus, the output of the LTPM includes 8 locations. For a successful localisation, 

signals from the 900 mm dataset are supposed to be located at adjacent coaxial locations. 

The 2nd part is similar to the 1st part, but all locations are independent. A localisation is 

considered successful when signals from the 900 mm location template are located to 

any nearest adjacent locations.  

In the 3rd part, the 900 mm dataset is used to test the LTPM trained with the 800 mm 

dataset. In the 4th part, the 900 mm dataset tests the LTPM trained with the 1000 mm 

dataset. These tests examine the classification accuracy of LTPM in the situation that an 
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acoustic source is placed in the middle of two location templates (100 mm deviation 

distance to both locations templates). The results are shown in Table 6.3-6. 

Table 6.3-6 Cross test results of 900 mm against 800 mm,1000 mm and 1200 mm 

Method 
LTPM-CT-8(900-

(800+1000+1200)) 

LTPM-CT-

24(900-

(800+1000+1200)) 

LTPM-

CT-8(900-

(800)) 

LTPM-

CT-8(900-

(1000)) 

RF(%) 5 5 2.5 12.5 

CNN(%) 81.15 - 82.04 81.03 

The test results are similar to the test results acquired from the 750 mm dataset to the 3 

primary datasets test. However, the overall localisation accuracy is lower. The reason is 

that the deviation distance between the test acoustic signals and the pre-defined locations 

has increased from 50 mm to 100 mm. Still, CNN maintains accurate coaxial 

classification accuracy, with an average accuracy of 81% throughout the test. 

1050 mm dataset to 3 primary datasets (8 points and 24 points):  

Similar to the previous test, the classification accuracy of LTPM is measured with 1050 

mm location templates in this test. Acoustic signals collected from the 1050 mm location 

template are used to test the localisation performance of the model trained with 800 mm, 

1000 mm and 1200 mm datasets. 

The test consists of 4 parts; in the 1st part, the model trained with 3 primary datasets is 

tested with the 1050 mm dataset. Locations at the coaxial lines are defined as linear 

locations; thus, the output of the LTPM includes 8 locations. For a successful localisation, 

signals from the 1050 mm location template are located at corresponding coaxial linear 

locations. In the 2nd part, all locations are independent; thus, 24 locations are defined in 

the output.  

In the 3rd part, the 1050 mm dataset tests the LTPM trained with the 1000 mm dataset 

(50 mm deviation distance). In the 4th part, the 1050 mm dataset tests the LTPM trained 

with the 1200 mm dataset (150 mm deviation distance).  

The results are shown in Table 6.3-7. 
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Table 6.3-7 Cross test results of 1050 mm against 800 mm, 1000 mm and 1200 mm 

Method 

LTPM-CT-

8(1050-

(800+1000+1200)) 

LTPM-CT-

24(1050-

(800+1000+1200)) 

LTPM-CT-

8(1050-

(1000)) 

LTPM-CT-

8(1050-

(1200)) 

RF(%) 15 17.5 12.5 40 

CNN(%) 88.97 - 79.60 86.25 

The classification accuracy of the RF-based LTPM is between 12.5% and 40%. The 

classification accuracy of the CNN-based LTPM is between 80% and 89%. A 

comprehensive summary is presented in the cross test between 3 primary datasets. 

1100 mm dataset to primary datasets (8 points and 24 points): 

In this test, the dataset collected from the 1100 mm location template is used to measure 

the classification accuracy of models trained with 800 mm, 1000 mm and 1200 mm 

datasets. 

The test consists of four parts; in the 1st part, the model trained with the 3 primary 

datasets is tested with the 1100 mm dataset, while the 2nd part is an independent 

localisation test (24 locations). In the 3rd part, the 1100 mm dataset tests the LTPM 

trained with the 1000 mm dataset. In the 4th part, the 1100 mm dataset tests the LTPM 

trained with the 1200 mm dataset. The results are shown in Table 6.3-8. 

Table 6.3-8 Cross test results of 1050 mm against 1000 mm and 1200 mm 

Method 
LTM-CT-8(1100-

(800+1000+1200)) 

LTM-CT-24(1100-

(800+1000+1200)) 

LTM-CT-

8(1100-(1000)) 

LTM-CT-

8(1100-(1200)) 

RF(%) 27.5 17.5 0.00 30 

CNN(%) 79.03 - 82.72 86.58 
 

The classification accuracy of the RF-based LTPM is between 0% and 30%. The 

localisation accuracy of the CNN-based LTPM is between 80% and 87%. The test results 

are similar to the test results of the last test. A comprehensive summary is presented in 

the cross test between 3 primary datasets. 

The secondary dataset to the primary datasets (8 points and 24 points): 

All secondary datasets are used to test the LTPM trained with the 3 primary datasets in 
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this test. The test consists of an 8 points test and a 24 points test. The results are shown 

in Table 6.3-9. 

Table 6.3-9 Cross test results of 750 mm, 900 mm, 1050 mm and 1100 mm against 800 

mm,1000 mm and1200 mm 

Method 

LTPM-CT-

8((750+900+1050+1100) 

-(800+1000+1200)) 

LTPM-CT-

24((750+900+1050+1100) 

-(800+1000+1200)) 

RF(%) 20.62 16.88 

CNN(%) - - 

In this test, the input acoustic signals are collected from 4 cubic location templates thus 

the number of locations in the input data is 32. The acoustic signals for the training are 

collected from 3 cubic location templates thus the number of locations in the training 

data is 24. The number of location labels of the test data and the number of location labels 

of the training data is different. Hence, the CNN-based LTPM is not involved in this test 

since it requires consistent input and output labels.  

In the 8 points test, the classification accuracy of the RF-based LTPM is 20.62% because 

independent locations on the coaxial line are linearly connected. The classification 

accuracy of the RF-based LTPM further decreases to 16.88% in the 24 points test. In 

summary, the classification accuracy of the RF-based LTPM decreases to 26% 

approximately (previous test results referenced) when acoustic sources are 50 mm away 

from pre-defined locations. The classification accuracy further decreases to 15% when 

the deviation distance increases to 100 mm. In conclusion, the classification accuracy of 

the RF-based LTPM is reduced with the increase of the deviation distance. 

To this extent, localisation tests on 50 mm and 100 mm deviation distances have been 

accomplished. The distance between the acoustic source and the pre-defined locations is 

further increased to 200 mm in the next test.  

Cross test between 3 primary datasets (8 points and 16 points): 

3 primary datasets are used mutually for classification accuracy tests. Similar to previous 

cross tests, this test aims to measure the classification accuracy when the distance 

between the acoustic source and pre-defined locations increases to 200 mm. Sufficient 
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training data and test data are provided in this test. The amount of training samples is 

over 80,000. 

The 3 primary datasets are combined in pairs to train LTPMs. Therefore, the output 

contains 16 locations (2 location templates have 16 cube vertices). The test consists of 

six parts; in the 1st part, the model is trained with the 1000 mm dataset and the 1200 mm 

dataset is tested with the 800 mm dataset. Locations at the coaxial line are defined as 

linear locations; thus, the output of the LTPM includes 8 locations. The 2nd part is similar 

to the 1st part, but all locations are independent; thus, the output contains 16 locations.  

The 3rd part is a coaxial test; the 1000 mm dataset is used to test the LTPM trained with 

the 800 mm dataset and 1200 mm dataset. The test location template (1000 mm) is 

sandwiched between the two training location templates (800 mm and 1200 mm). The 

4th part is similar to the 3rd part, but it is an independent test with 16 output locations.  

The 5th part is a coaxial test; the 1200 mm dataset is used to test the LTPM trained with 

the 800 mm dataset and 1000 mm dataset. The two training location templates (800 mm 

and 1000 mm) are wrapped by the test location template (1200 mm). The 6th part is 

similar to the 5th part, but it is an independent test with 16 output locations. 

The test determines the localisation accuracy when an acoustic source is placed outside 

or within the location template. In the second level of cross test, the location template of 

the test dataset is gradually moving away from the location template of the training 

dataset so that the relation between acoustic signals and distance can be observed. The 

results are shown in Table 6.3-10. 

Table 6.3-10 Cross test results of 800 mm,1000 mm and 1200 mm 

Method 

LTPM-CT-

8(800-

(1000+1200)) 

LTPM-CT-

16(800-

(1000+1200)) 

LTPM-CT-

8(1000-

(800+1200)) 

LTPM-CT-

16(1000-

(800+1200)) 

LTPM-CT-

8(1200-

(800+1000)) 

LTPM-CT-

16(1200-

(800+1000)) 

RF(%) 5.01 4.74 9.72 8.67 8.55 0.00 

CNN(%) 89.14 - 79.55 - 83.10 - 

The overall classification accuracy of the RF-based LTPM is less than 10% in this test. 

The RF-based LTPM can barely locate any acoustic sources to the closest pre-defined 
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locations when acoustic sources are 200 mm away from pre-defined locations. While the 

CNN-based LTPM maintains a classification accuracy between 79.55% and 89.14% as 

the CNN-based LTPM still accurately locates acoustic sources to adjacent locations. 

The 800mm, 1000mm, 1200mm, 460mm, 1100 mm, 1050 mm, 900 mm and 750 mm 

datasets are used as the test data in the above seven tests to examine the classification 

accuracy of LTPM in the situation that acoustic sources deviate from the pre-defined 

locations. The overall classification accuracy of the RF-based LTPM reduces to 26% at 

a deviation distance of 50 mm. Furthermore, the classification accuracy is reduced to 

15% at a deviation distance of 100 mm and 8% at a deviation distance of 200 mm. The 

relationship between the classification accuracy and the deviation distance is shown in 

Figure 6.3-4. 

 

Figure 6.3-4 The relation between the classification accuracy and the deviation 

distance. The classification accuracy of RF-based LTPM decreases with the 

distance, while the classification accuracy of CNN-based LTPM maintains the 

same level 

The CNN-based LTPM, on the other hand, shows the property of inheritance. It 

accurately locates acoustic sources to adjacent pre-defined locations in all tests.  
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Reduced scale tests: 

In this test. The volume of the training data is reduced to examine whether the trained 

model maintains the same level of classification accuracy achieved in previous tests. The 

training datasets used in this test consist of the 3 primary datasets. The test datasets are 

the 460 mm, 1050 mm and 1200 mm datasets. 

Another test objective is to conduct a comparison test between RF-based LTPM and 

CNN-based LTPM. The same amount of training data is used to train RF-based LTPM 

and CNN-based LTPM. Since the data volume of CNN is smaller than the data volume 

of RF, the threshold control of the data volume in this test is based on the data volume of 

CNN. Namely, 40800 samples in each dataset.  

The test consists of three parts; in the 1st part, the model trained with 3 primary datasets 

is tested with the 460 mm dataset. The training data volume of RF-based LTPM is 

reduced to 32640 samples, and the test data volume is 8160. Training and test data 

volume of CNN-based LTPM maintains the same since they are the benchmark in this 

test. In the 2nd part, the model trained with 3 primary datasets (reduced scale) is tested 

with the 1050 mm dataset. The 3rd part belongs to the first level of cross test. The data 

from a location template is divided into two parts for training and testing; thus, a dataset 

which contains 40800 samples is extracted from the 1200 mm dataset. The results are 

shown in Table 6.3-11. 

Table 6.3-11 Reduced scale test results. RS represents for Reduced-Scale 

Method 

LTPM-CT-RS-

8(460-

(800+1000+1200)) 

LTPM-CT-RS-

8(1050-

(800+1000+1200)) 

LTPM-

LT-RS-

8(1200) 

RF(%) 17.75 27.50 94.00 

- 
LTPM-CT-8(460-

(800+1000+1200)) 

LTPM-CT-8(1050-

(800+1000+1200)) 

LTPM-

LT-

8(1200) 

CNN(%) 87.20 88.97 87.30 
 

The classification accuracy of the RF-based LTPM increases slightly (17.75% and 

27.5%) compared to previous test results because the data volume of the training data is 
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reduced. The test result in the 3rd column indicates that the LTPM still maintains an 

excellent classification accuracy with less training data.  

The RF-based LTPM achieved a classification accuracy of 94% in the first level of cross 

test, but the result does not imply that the RF-based LTPM is superior to the CNN-based 

LTPM. The two machine learning algorithms have different properties. The CNN-based 

LTPM always outperforms the RF-based LTPM in coaxial localisation tests. And the RF-

based LTPM has a high classification accuracy in independent tests. In summary, a single 

machine learning-based LTPM always has bottlenecks; reasonable utilisation of 

complementary machine learning algorithms may improve the versatility of LTPM 

significantly. Related discussions are presented in future works. 

6.4 Result analysis 

6.4.1 Systematic and environmental factors 

In an ideal situation, acoustic features extracted from an input acoustic signal should 

perfectly match a set of features in the training dataset so that the location of the input 

acoustic signal is calculated precisely by outputting the matched sample’s coordinate. 

However, potential systematic and environmental variables cause certain localisation 

errors in practical situations. 

Firstly, the distortion of the signal source is an important factor. A sampling sequence is 

shown in Figure 6.4-1. The signal amplitude changes with time though the environmental 

conditions are strictly maintained. The change of the acoustic source causes the quantised 

values of sampled signals to float unexpectedly, resulting in matching errors.  

To solve the problem, more signals are collected and added to the training dataset. The 

idea is to cover signal variations by extending the data volume. Time-varying acoustic 

signals are collected by sampling acoustic signals at different periods. LTPM classifies 

acoustic signals from different locations stably (with an average classification accuracy 

of 94%) after the number of signals in the training dataset reaches 30,000. In other words, 

LTPM adapts to signal variations (e.g., sudden changes in amplitude) by adding more 

training data to the training dataset, eliminating errors caused by signal source distortions. 
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Figure 6.4-1 Sudden change of a signal sequence. The X-axis is the sampling point 

(time), and the Y-axis is the signal's amplitude (voltage). Although the power 

supply is stable and the environment is strictly maintained, signal variations still 

exist. The absolute mean amplitude of signals reduces to 0.75 at the X-axis point 

𝟏𝟎 ∗ 𝟏𝟎𝟕 . In the test, LTPM adapts to the variations due to the utilisation of 

multiple features and extensive data collection 

Another factor is feature similarity. An acoustic source may generate similar signal 

features at different locations due to the multipath effect, resulting in feature overlaps. In 

the three-dimensional localisation test, the overlapping rate of acoustic features is less 

than 2%. Thus feature similarity is not a serious problem. Related solutions include 

adjusting the weights of acoustic features, non-symmetry sensor deployment and pre-

correlation of the database. 

In addition, if the sensor is too far from the localisation zone. The path loss will replace 

the multipath effect and play a dominant role in matching processing. In this case, LTPM 

is similar to the classic Location Fingerprint technology. Predictably, the localisation 

accuracy and classification accuracy of LTPM will decrease rapidly due to the inefficient 

utilisation of acoustic features. Solutions include using adaptive filters, adjusting the 



 

157 

 

locations of sensors, and using a microphone array instead of a single microphone. 

6.4.2 Probability distribution of features 

The probability distribution is the foundation of machine learning, while the foundation 

of probability distribution is the normal distribution [19]. Understanding and estimating 

the probability distributions of object variables is crucial in analysing the localisation 

performance of LTPM from the perspective of the high-dimensional joint probability 

distribution. Meanwhile, the training of the positioning model can be simplified if the 

probability distributions of object variables (acoustic features) follow the normal 

distribution. 

Assuming that the distribution of each feature follows the normal distribution, the 

probability of feature distribution can be calculated according to the probability density 

function (Eq. 6-23).  

f(x) =  
1

𝜎√2 ∗ 𝜋
𝑒− 

1
2
(
𝑥−𝑢
𝜎

)2
 6-23 

where 𝜎 is the standard deviation of the signal feature, and 𝑢 is the mean value. And 

f(x) is the probability of the feature’s distribution. Suppose the probability distribution of 

each acoustic feature follows the normal distribution. The distribution curve of a signal 

feature from different locations should be similar to that of the normal distribution. 

Meanwhile, the variances of the normal distributions of acoustic features from different 

locations should be at the same level.  

However, as shown in Figure 6.4-2, the two distributions of signal length from two 

different locations are inconsistent. The left distribution is asymmetric, while the right 

distribution can be roughly regarded as a left-biased normal distribution curve. Besides, 

the variances of acoustic features at different locations increase with the distance between 

the microphone and the acoustic source. Therefore, it is preliminarily judged that 

distributions of acoustic features do not follow the normal distribution. 
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Figure 6.4-2 Signal length distributions of two signals sampled at location 2 (a, 

close to the microphone), and location 8 (b, far away from the microphone). The 

variances of these two distributions are 1.8043 and 2.8794, respectively 

Moreover, the variance of the probability distribution of each acoustic feature should 

affect the overall classification accuracy of LTPM [134]. A criterion is that the 

classification accuracy should increase as the variance of each signal feature decreases. 

However, variances of probability distributions of features vary significantly, and the 

classification accuracy barely changes in the test. This phenomenon may be caused by 

utilising multiple features since each feature has a limited impact on the final output. 

In summary, the probability distributions of acoustic features do not follow the normal 

distribution, as no similar distribution patterns are observed. The variances of signal 

features also vary greatly. Thus, the probability expression of the classification accuracy 

cannot be deduced according to the normal distribution. But acoustic signals at different 

locations are still distinguishable with machine learning. The test results indicate that 

machine learning algorithms are appropriate for pattern matching-based acoustic 

localisation tasks. Acoustic localisation is also the new application field of machine 

learning. 

6.5 Summary 

The proposed localisation technology, Location Template-based Positioning Model, is 
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tested strictly in the three-dimensional localisation test. Test results show that the LTPM-

based localisation system has achieved a three-dimensional localisation accuracy of 173 

mm.  

In traditional time difference-based localisation technologies, the multipath effect is 

usually considered negative as it causes interferences to signal reception; thus, various 

techniques are used to eliminate the interferences caused by the multipath effect. In 

indoor environments, the multipath effect is further amplified, and it becomes difficult to 

eliminate signal components generated by the multipath effect.  

LTPM successfully utilises the multipath effect to achieve three-dimensional acoustic 

localisation rather than eliminating the multipath effect. LTPM uses multiple acoustic 

features, pattern matching and machine learning to achieve acoustic source localisation 

in a three-dimensional space. The proposed acoustic localisation technology does not rely 

on sensor array deployment, signal filter and time differential localisation algorithms. 

Besides, LTPM overcomes the drawbacks of TDOA-based electromagnetic localisation 

technologies as it has robust environmental adaptability. The positioning performance of 

LTPM varies with the data volume, the defined acoustic features, and the classification 

performance of the matching algorithm.  

 
Figure 6.5-1 System block diagram of LTPM. The positioning model is 

continuously optimised in the training stage to match training acoustic signals with 

allocated coordinates. The trained model directly calculates the coordinate of the 

acoustic source when an input signal is provided 
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In this project, signal processing has been successfully combined with machine learning 

to achieve three-dimensional acoustic source localisation. Machine learning algorithms 

are used to find and utilise hidden signal patterns in the training data. The signal features 

integrated into LTPM are no longer limited to time-domain features. 43 features from 

multiple domains are extracted with feature extraction and signal transformation 

techniques. The signal usage rate has been improved significantly in comparison to the 

signal usage rate of the classic Location Fingerprint. The test results demonstrate that 

LTPM is a successful short-range acoustic localisation technology. At the same time, this 

research opened a new research field for machine learning, namely, three-dimensional 

acoustic source localisation in terms of human-computer interaction. 

The Random Forest and the Convolutional Neural Network are utilised to classify 

acoustic signals from different locations in LTPM. The format of input data for RF is a 

43-dimensional feature matrix. In contrast, 17 signal images are defined for CNN. The 

classification model is updated iteratively during the training and models that calculate 

the coordinates of acoustic sources according to the input acoustic signal are obtained 

after the training completes. The system block diagram is illustrated in Figure 6.5-1. 

In the implementation of LTPM, an automatic robot is used to collect acoustic signals. 

The collected acoustic signals are processed as input data according to the requirements 

of different machine learning algorithms. Other modules, such as sampling modules, 

signal processing modules and feature extraction modules, are also optimised to meet the 

requirements of the three-dimensional acoustic localisation test. 

A series of tests are designed to determine the positioning performance of LTPM. The 

relationship between the localisation accuracy and the classification accuracy of the 

LTPM-based three-dimensional acoustic localisation system is shown in Figure 6.5-2.  
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Figure 6.5-2 The Localisation accuracy and classification accuracy line chart 

As shown in Figure 6.5-2, the RF-based LTPM maintains a classification accuracy of 

95%, and the CNN-based LTPM maintains a classification accuracy of 85% throughout 

the test. The classification accuracy is decreased at the 460 mm accuracy since the 460 

mm dataset only contains 3,200 template acoustic signals. Both machine learning 

algorithms used in the three-dimensional localisation test reached an accuracy of 173 

mm, but the classification accuracy of the CNN-based LTPM is inferior to the 

classification accuracy of the RF-based LTPM.  

The RF-based LTPM is highly sensitive to acoustic sources that deviate from pre-defined 

locations. The classification accuracy of the RF-based LTPM decreases when the 

acoustic source deviates from pre-defined locations, and the attenuation of the accuracy 

is related to the deviation distance. The average classification accuracy of the RF-based 

LTPM reduces to 26% when the deviation distance between the acoustic source and the 

pre-defined locations increases to 50 mm. Furthermore, the classification accuracy is 

reduced to 15% at a deviation distance of 100 mm and 8% at a deviation distance of 200 

mm. The relationship between the classification accuracy and the deviation distance is 
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summarised in Figure 6.3-4. 

Unlike the RF-based LTPM, the CNN-based LTPM has a property of inheritance as it 

always maintains a precise classification accuracy. On the other hand, it can be 

summarised that acoustic signals collected from coaxial locations share some 

connections in consecutive signal transformations; the neural network summarises the 

hidden signal patterns and utilises the signal patterns for accurate signal classification; 

thus, the coaxial classification accuracy of the CNN-based LTPM is always maintained 

at 80% approximately.  

Overall, the RF-based LTPM has achieved a superior three-dimensional accuracy of 173 

mm in 95% of the location estimates in the indoor environment. In contrast, the CNN-

based LTPM has achieved a three-dimensional accuracy of 173 mm in 85% of the 

location estimates in the indoor environment. However, the CNN-based LTPM is still 

worth exploiting as it has a higher coaxial classification accuracy. The three-dimensional 

localisation test results verify that the multipath effect endows acoustic signals with 

unique features, and these features are utilised by LTPM successfully to achieve short-

range acoustic localisation.  

The following objectives are accomplished in the three-dimensional localisation test; 

(1) A complete acoustic localisation system is built.  

(2) A large number (150,000) of acoustic signals are collected. 

(3) 43 acoustic features are defined for the Random Forest-based LTPM, and 17 signal 

images are converted for the Convolutional Neural Network-based LTPM. 

(4) The positioning performance of LTPM is rigorously evaluated with a series of 

three-dimensional localisation tests.  

(5) Factors that cause matching errors and characteristics of the LTPM-based 

localisation system are discussed and summarised. 

In the three-dimensional localisation test, one microphone is deployed in the indoor 

environment for signal collection and acoustic source localisation; thus, LTPM has a 

superior advantage in system cost as it only requires one sensor. LTPM is a low-cost 



 

163 

 

enabling localisation technology for human-computer interfaces which have indoor 

positioning demands. But LTPM needs sufficient data to ensure accurate localisation 

results. As a localisation technology which has fused multiple technologies, the 

advantages and disadvantages of LTPM and a comprehensive analysis of LTPM is 

presented in Chapter 7.  
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7 Final discussions and conclusions 

7.1 Conclusions  

7.1.1 The accomplishment of the research aim and research objectives 

The research aims to provide three-dimensional human-computer interaction with a 

passive enabling localisation technology. The ubiquitous acoustic waves are ideal signal 

sources for the TPM-based acoustic localisation technology. In this research, acoustic 

signal processing is combined with pattern matching to create a novel acoustic 

localisation technology - Location Template-based Positioning Model (LTPM). LTPM 

accurately locates acoustic sources in the three-dimensional indoor space and it 

overcomes the drawbacks of TDOA-based electromagnetic localisation technologies. 

The Location Fingerprint is the early pattern matching-based localisation technology. It 

achieved different scales of accuracy (from 0.5m to 188m) [28]. Soon afterwards, the EU 

project - TAI-CHI developed a TDOA-based acoustic localisation system, which 

achieved a two-dimensional accuracy of 14 mm [7]. Inspired by these achievements, the 

Location Template-based Positioning Model is proposed to realise three-dimensional 

acoustic localisation in indoor environments. 

The positioning performance of LTPM is determined with a series of two-dimensional 

and three-dimensional localisation tests. Both two-dimensional and three-dimensional 

localisation systems use pattern matching-based localisation principles but have different 

technical details. From the perspective of project development, the two-dimensional 

acoustic localisation system is the foundation of the three-dimensional acoustic 

localisation system. More acoustic samples and more complex machine learning 

algorithms are utilised to achieve acoustic source localisation in the three-dimensional 

localisation test. 

The entire research procedure follows the spiral project processing model proposed in 

Chapter 3. The advantages and disadvantages of LTPM have been documented during 

the system implementations and localisation tests. Details of technical problems are 

discussed in future works. 
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The accomplished research objectives are listed as follows: 

(1) An acoustic localisation technology - LTPM, which is capable of locating acoustic 

sources in complex three-dimensional indoor environments, is proposed, 

implemented and tested successfully. 

(2) Two fully functional localisation systems have been built successfully for two-

dimensional and three-dimensional localisation tests. These systems cover all the 

functions required by the proposed LTPM (such as signal sampling, signal filtering, 

feature extraction and signal matching). 

(3) In the two-dimensional localisation test, three acoustic features are defined and a 

deterministic cross-correlation matching algorithm is compiled to match the input 

acoustic signal with the template acoustic signals. Overall, the localisation system 

achieved a two-dimensional accuracy of 30mm in 80% of the location estimates. In 

the three-dimensional localisation test, 43 acoustic features and 17 signal images 

are extracted and transformed for the RF-based LTPM and the CNN-based LTPM. 

The RF-based LTPM has achieved a superior three-dimensional accuracy of 173 mm 

in 95% of the location estimates in the indoor environment. In contrast, the CNN-

based LTPM has also achieved a three-dimensional accuracy of 173 mm in 85% of 

the location estimates in the indoor environment.  

(4) Signal processing is successfully combined with machine learning to realise acoustic 

signal matching. Two machine learning algorithm-based LTPMs are built to find and 

utilise the hidden signal patterns in the training data. On the other hand, the training 

data provided to the two machine learning algorithms is also extended to multiple 

signal domains with feature extraction and signal transformation techniques. The 

signal utilisation rate has been improved significantly in comparison to the signal 

utilisation rate in the RSS-based Location Fingerprint. 

(5) The test results indicate that three-dimensional short-range acoustic localisation is 

feasible. LTPM locates acoustic sources with only one microphone, and it has 

robust adaptability to complex indoor environments. 
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(6) To design LTPM and build the LTPM-based localisation systems, interactive 

technologies, electromagnetic and acoustic localisation technologies, signal 

processing technologies and machine learning are studied and reviewed. The latest 

achievements in short-range localisation and the research direction of indoor 

localisation technology are listed and analysed. Overall, this research provides a 

comprehensive reference for short-range acoustic localisation technology. 

In this project, a novel acoustic localisation technology is proposed and tested. At the 

beginning of the research, properties, characteristics, physical effects, and applications 

of acoustic waves were reviewed and referenced carefully to establish the physical 

foundations and the localisation theory for the proposed three-dimensional acoustic 

localisation technology. Since the acoustic multipath effect plays a vital role in acoustic 

propagation and it is challenging to eliminate the acoustic signal variations affected by 

the acoustic multipath effect, a localisation theory that utilises the multipath effect for 

acoustic source localisation is established. 

Meanwhile, various localisation technologies were evaluated and the shortcomings and 

technical limitations of TDOA-based localisation technologies were summarised. The 

proposed localisation technology utilises the pattern matching-based matching algorithm 

as the localisation algorithm in response to these shortcomings.  

To collect massive template acoustic signals for LTPM, the concept of the location 

template is proposed. The location template is an essential element for the Location 

Template-based Positioning Model. The features and images of acoustic signals are 

extracted and transformed by processing the collected acoustic signals. Next, the acoustic 

features and images are loaded by the machine learning algorithm for the training of the 

positioning model. 

From the perspective of signal processing, feature selection is crucial to the positioning 

performance of LTPM. As mentioned in Chapter 4, the positioning performance of LTPM 

depends on the effectiveness of selected acoustic features and the classification 

performance of the localisation algorithm. Therefore, multiple acoustic features are 
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defined and integrated into LTPM to provide balanced matching references for acoustic 

signal matching. 

Machine learning algorithms are used to solve the boundary problem caused by sample 

overlapping. The two machine learning algorithms are capable of classifying acoustic 

signals from different physical locations according to the test results. Moreover, 

supervised learning and deep learning-based LTPMs have different properties. Test 

results are summarised in the next section.  

7.1.2 Comparison with other localisation technologies 

LTPM is first applied to two-dimensional localisation. The LTPM-based localisation 

system achieved a two-dimensional accuracy of 30 mm in 80% of the location estimates. 

The feasibility of LTPM is preliminarily verified with the two-dimensional localisation 

test result. Next, a three-dimensional localisation system is developed based on the two-

dimensional localisation system. A series of localisation tests have been conducted to 

evaluate the positioning performance of the LTPM-based three-dimensional localisation 

system.  

In the situation that 120,000 sample signals are collected and processed as the training 

data, the RF-based LTPM localisation system reached a three-dimensional accuracy of 

173 mm in 98% of the location estimates. On the other hand, the CNN-based LTPM 

localisation system reached the same three-dimensional accuracy in 80% of the location 

estimates.  

However, the CNN-based LTPM can locate acoustic sources that are deviated from pre-

defined spatial locations to adjacent pre-defined locations. On the contrary, the RF-based 

LTPM only locates an acoustic source accurately if acoustic sources are precisely placed 

at pre-defined locations.  

Technically, difficulties in pattern matching-based acoustic localisation lie in the signal 

collection, signal processing and classification of acoustic signals. These difficulties are 

systematically addressed one by one in this project. In contrast, problems in TDOA-based 

electromagnetic localisation technologies lie in the sensor deployment and 
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environmental optimisations. As a result, the system cost of TDOA-based 

electromagnetic localisation technologies is high. In this case, the pattern matching-based 

acoustic localisation technology is competitive because of its strong environmental 

adaptability and low system cost. As indoor localisation receives more and more 

attention, LTPM has the potential to become the cornerstone for indoor localisation 

applications.  

Table 7.1-1 presents a comprehensive comparison between existing short-range 

localisation technologies. LTPM has the best three-dimensional accuracy and it only 

needs one microphone. TAI-CHI has the best two-dimensional accuracy, while UWB is 

the most promising TDOA-based electromagnetic indoor localisation technology. 

Table 7.1-1 Comparison between different localisation technologies 

 
 

7.2 Criteria of finished work 

Some technical problems are exposed during the implementation of LTPM. Criteria that 

affect the performance of LTPM and issues in practical application are listed as follows: 

(1) The Kalman filter did not achieve the expected signal processing results. According 

to the research plan, the Kalman filter is implemented to improve the signal-to-

noise ratio, as shown in Figure 7.2-1. However, the comparison between the 

original signal and the filtered signal shows that the Kalman filter erased most of 

the multipath signal components in the received acoustic signal. This property of 
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the Kalman filter reduces the accuracy of signal matching. Thus, the Kalman filter 

has not been adopted in formal localisation tests. 

 

Figure 7.2-1 Comparison between an original acoustic signal (black) and the 

acoustic signal after passing the Kalman filter (blue). The X-axis is the sampling 

point, while the Y-axis is the normalised amplitude. It can be observed that the 

components of the filtered signals are reduced by half, and the tail of each 

independent signal is compressed 

However, the Kalman filter unexpectedly facilitated blind source separation of 

acoustic signals. After a signal sequence passes the Kalman filter, the starting point 

of each independent acoustic signal can be observed clearly. Therefore, in future 

work, the performance of the signal separation algorithm can be enhanced by 

integrating the Kalman filter.  

(2) Acoustic sources with single frequencies are used in localisation tests. Though 

different buzzers are deployed as acoustic sources in the three-dimensional 

localisation test, the frequency bands of these buzzers are fixed. Such acoustic 

sources facilitated the signal processing, but acoustic waves generated by these 

buzzers differ from natural acoustic sources in terms of frequency, signal energy 

and randomness.  

According to the decomposition principle of acoustic waves (introduced in Chapter 

2), if acoustic waves with single frequencies can be utilised to achieve three-

dimensional acoustic localisation, a realistic acoustic source with complex 

frequency components can also be located with the same localisation method and 

the Fourier decomposition. However, acoustic waves generated by biological 

sources may change drastically and stochastically in actual localisation tasks. 
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Therefore, research on applicable natural acoustic sources is essential before 

applying LTPM to practical human-computer interactive applications. 

(3) The utilisation of the microphone array is unsuccessful. Although LTPM only 

requires one sensor to achieve acoustic localisation, the deployment of multiple 

sensors still benefits LTPM since a microphone array receives more signal details, 

thus making signal features more distinctive. As a result, clear boundaries between 

signal clusters can be formed with the microphone array technology. However, a 

microphone array requires complicated differential or summary algorithms to 

ensure precise acoustic signal receptions and no commercial microphone array 

systems are found; thus, the microphone array is abandoned. 

(4) The design of the location template is conservative. The location templates used in 

the three-dimensional localisation test should be denser, and more sample signals 

should be collected. Although LTPM achieved a three-dimensional accuracy of 173 

mm, its localisation potential has yet to be fully exploited. 

However, if more location templates are designed and compiled, the signal 

processing and feature extraction modules would require more computational 

resources and time to process the collected acoustic signals. Therefore, the balance 

between the design of the location template and the data processing must be 

considered according to practical test requirements. 

(5) Machine learning algorithms used in the three-dimensional localisation test are not 

optimised. It is widely known that CNN has various structures. CNN requires deep 

optimisations for a specific application to maximise its classification performance. 

Theoretically, model optimisations and parameter adjustments against indoor 

localisation will significantly improve the universality and positioning 

performance of LTPM. 

7.3 Limitations and future works 

Although the two-dimensional and three-dimensional tests are accomplished, some 

technical problems and empirical defects still exist. In this section, latent defects and 

feasible solutions are clarified and discussed in terms of the static test. Namely, using 
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logical analysis and reasoning skills to assess the system deficiencies.  

7.3.1 Factors causing acoustic scattering and signal variations  

Although expected test results are acquired, the scattering of acoustic waves in the three-

dimensional space still needs to be valued.  

In the two-dimensional localisation test, acoustic scattering is confined within the solid 

medium; thus, the multipath components of acoustic signals are well-preserved. The 

well-preserved multipath components endow the received acoustic signal with unique 

features and ensure superb signal matching results.  

 

Figure 7.3-1 Illustration of two-dimensional acoustic scattering (a) and three-

dimensional scattering (b). From the perspective of acoustic signal reception, 

acoustic propagation in a three-dimensional space is less complex due to the long 

propagation distance, significant energy attenuation, acoustic diffraction, spatial 

interference etc.  

However, acoustic waves spread omnidirectionally and attenuate fast in the three-

dimensional space. Signal components in the received acoustic signals, especially the 

multipath signal components, are weakened significantly. The received signal is 

dominated by direct acoustic components, as shown in Figure 7.3-1. 

Possible solutions to this problem include enhancing the reception of acoustic signals 

with multiple sensors and using active acoustic sources. Enhancing the reception of 

acoustic signals is the most practical solution since the multi-sensor array receives 

acoustic waves from multiple locations thus ensuring the reception of multipath signal 

components. As a cost, the system's cost and complexity will inevitably increase.  

Using active acoustic sources will further improve the adaptability of the LTPM-based 
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localisation system and simplify signal filtering and signal processing. Ultrasonic sources 

are in top priority as ultrasonic waves are out of the auditory sense of human beings, and 

the acoustic energy of ultrasonic waves is higher than most audible acoustic waves. A 

problem caused by integrating active acoustic sources into LTPM is that users may need 

to hold or wear active acoustic sources. As a cost, the user’s mobility will be restricted 

inevitably. 

 

Figure 7.3-2 Change of temperature (a), change of Humidity (c), change of signal 

amplitude (b) and change of centroid frequency (d). The X-axis represents the 

sampling time, while the Y-axis varies with analysis objects. The cross-correlation 

coefficient of temperature to amplitude is 0.5053. The cross-correlation coefficient 

of temperature to centroid frequency is 0.1897. The cross-correlation coefficient 

of humidity to amplitude is 0.2619. The cross-correlation coefficient of humidity 

to centroid frequency is 0.2747. The relations between coefficient and relativity 

are shown in Table 5.2-1 

Similarly, environmental variables cause acoustic signal variations, thereby affecting the 

positioning performance of the LTPM-based localisation system. Sudden changes in 

acoustic signals are observed and recorded during the three-dimensional localisation test, 
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as shown in Figure 7.3-2. The factors leading to signal variations are initially speculated 

as the environmental temperature, humidity and dewpoint. However, according to the 

cross-correlation coefficients, environmental temperature and humidity are not correlated 

with the change of signal amplitudes and frequencies. In addition, the correlation 

coefficients between temperature, humidity, signal amplitude, and signal frequency are 

maintained within 0.05-0.50. Therefore, environmental temperature and humidity are not 

the primary factors causing the acoustic signal variations. 

To minimise the impact of external variables, a large number of sample signals are 

collected. Based on the test results of the RF-based LTPM and the CNN-based LTPM, 

LTPMs trained with samples from different periods effectively eliminated positioning 

errors caused by external variables. In future research, it is necessary to identify variables 

that cause signal variations so that the number of template signals can be reduced. 

7.3.2 The fusion of technologies 

LTPM is a pattern matching-based localisation technology. Other localisation 

technologies and auxiliary techniques can be integrated into LTPM to achieve better 

positioning accuracy and enhance the versatility of LTPM. 

A single localisation technology always has some drawbacks and limitations. Therefore, 

modern localisation technologies, represented by the TDOA-based localisation 

technology, have integrated the pattern matching algorithm and predictive algorithms 

into the localisation system to enhance the system performance [131].  

Similar technology fusion strategies can be applied to LTPM. The technology fusion is 

divided into the localisation technology fusion and the auxiliary technology fusion. 

LTPM can be fused with electromagnetic localisation technologies, e.g., the Ultra-

Wideband (UWB), to achieve complementary indoor localisation in terms of acoustic 

sources and electromagnetic sources.  

In the fusion of auxiliary technologies, LTPM can be combined with acoustic force 

feedback technology such as the UltraSound, developed by the University of Bristol [9], 

or the SoundFORM, developed by MIT [61], to locate users and bring users realistic 
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tactile sensations. 

In this project, different machine learning algorithms are independently integrated into 

LTPM. But the fusion of different machine learning algorithms is also one of the future 

research directions. Machine learning has dramatically improved the application 

potential of the pattern matching-based acoustic localisation technology. Therefore, 

research on integrating different machine learning algorithms into LTPM is advocated. 

7.3.3 Approaches to reduce the workload of sample collection 

One primary concern about LTPM is the signal collection work. This repetitive work 

challenges equipment and researchers since massive acoustic samples need to be 

collected. It is impossible to ensure that template signals are collected from exact pre-

defined locations manually. In the three-dimensional localisation test, the acoustic source 

is transported to designated locations by a robot for signal collection. Therefore, the 

signal collection includes the automatic signal collection (with robots) and the organic 

construction of a public database (manual collection). 

In the implementation of LTPM, the total number of collected signals is 150,000. 

Collecting and processing such an amount of signals consume considerable time and 

massive computational resources. However, results of the reduced scale test indicated 

that the RF-based LTPM localisation system maintains a classification accuracy of 94% 

when the number of training signals is reduced to 32,000. Therefore, the number of 

training signals can be adjusted according to the requirements of the application and 

empirical schema. On top of that, two solutions that could potentially reduce the sampling 

workload are discussed: 

The sub-region localisation:  

The workload of the signal collection work can be reduced by optimising the number and 

size of the location template. For example, instead of establishing massive location 

templates in the entire indoor space, a small number of location templates should be 

established within certain interactive areas. Since the size of each location template in 

the sub-area is small and the number of in-area location templates is reduced, the required 
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number of signals for the training of LTPM is reduced accordingly.  

Meanwhile, a multistage location template can be formed by connecting location 

templates from different sub-areas. A benefit of the multistage location template is that 

machine learning algorithms with different properties can be deployed to maximise their 

strengths. For example, the CNN-based LTPM determines the coaxial location of the 

acoustic source first then the RF-based LTPM is applied to determine the precise location 

of the acoustic source.  

The organic construction of acoustic location template database:  

Alternatively, the organic construction of a public database is a potential strategy that 

reduces the workload of signal collection. The organic construction of public databases 

has already been applied to computer vision [132]. GitHub, Google, Nvidia and 

universities established open-source databases, and these databases are expanding 

constantly. Similarly, an acoustic signal database can be established collectively to reduce 

the workload of a single localisation task.  

7.3.4 Applications of LTPM 

LTPM is an acoustic source localisation technology which can be applied to two-

dimensional human-computer interaction and three-dimensional human-computer 

interaction. It is an appropriate enabling localisation technology for human-computer 

interaction technologies which have potential localisation demands of individuals in 

complex indoor environments. LTPM utilises acoustic signals generated by the user to 

locate the user thus it has the advantages of strong environmental adaptability and low 

system costs.  

A typical application of LTPM is the human-computer interaction inside vehicles since 

the interior space inside the vehicle is small and enclosed. With the rapid development 

of autonomous driving technology, speech recognition and speech control are gradually 

integrated into the autonomous driving system [133]. The speech-based human-computer 

interaction also has localisation demands. As an enabling localisation technology which 

also utilises acoustic waves for acoustic source localisation, LTPM can be combined with 
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the speech-based interaction technology to bring passengers a better user experience by 

providing the autonomous drive system with implicit information such as the number of 

passengers, locations of passengers and body motions of passengers.   

Another typical application of LTPM is the Virtual Reality (VR) technology. Modern VR 

technologies provide users with a realistic visual experience but the user experience is 

poor because users are required to wear and hold transceiver devices to provide 

computers with location information. The most commonly used localisation technologies 

in VR are the inertial localisation technology and the TDOA-based electromagnetic 

localisation technology. However, the proposed LTPM provides the VR technology with 

a third option. The interaction between users and virtual objects can be realised with 

speech, knocking, clapping and tapping, thereby bringing users a better immersive 

interaction experience. 
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Appendix A Feature definitions and signal transformations  

A.1 Acoustic features for Random Forest-based LTPM 

A.1.1 Acoustic features  

43 signal features are defined and extracted for the training of LTPM. 14 features have 

been introduced in Chapter 4, Chapter 5 and Chapter 6. The rest of the features are listed 

as follows: 

Assume that a signal sequence received by a sensor is: 

𝑋(𝑖) = 𝑠(𝑖 − 𝑡𝑑) + 𝜂(𝑖)  𝐴 − 1 

whereas 𝑠(𝑖) is the source signal. 𝑡𝑑 is the time delay. 𝜂(𝑖) is random Gaussian white 

noise. And the max value of 𝑖 represents the last component sampled by the sensor; 

therefore, 𝑖 equals the length of the signal sequence.  

Features from the time domain: 

Signal Energy = ∫|𝑋(𝑖)|2𝑑𝑖 𝐴 − 2 

Signal Energy: 𝑋(𝑖) is the signal sequence. The energy of a signal equals the integral 

of the square of its amplitude on the time axis. 

Mean Value (𝜇) =  
1

N
∑ 𝑋(𝑖)

𝑁−1

𝑖=0

𝐴 − 3 

Absolute Mean Value =  
1

N
∑|𝑋(𝑖)|

𝑁−1

𝑖=0

 𝐴 − 4 

The Mean value and the Absolute Mean value represent DC components in a signal. 

Variance =  
1

N − 1
∑(𝑋(𝑖) − 𝜇)2

𝑁−1

𝑖=0

 𝐴 − 5 

Standard Deviation =  √
1

N − 1
∑(𝑋(𝑖) − 𝜇)2

𝑁−1

𝑖=0

 𝐴 − 6 

where 𝜇  is the mean value of a signal, variance represents the power of a signal 
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deviating from its mean value. STD represents the magnitude of the signal deviation. 

Absolute Summary = ∑|𝑋(𝑖)|

𝑁−1

𝑖=0

 𝐴 − 7 

Peak Value =  𝑀𝐴𝑋(𝑋(𝑖)) 𝐴 − 8 

Valley Value =  𝑀𝐼𝑁(𝑋(𝑖))  𝐴 − 9 

Valley to Peak Value = |𝑀𝐼𝑁(𝑋(𝑖)) − 𝑀𝐴𝑋(𝑋(𝑖))|  𝐴 − 10 

Median Value = MEDIAN(𝑋(𝑖)) 𝐴 − 11 

RMS = √ 
1

N
∑ 𝑋(𝑖)2

𝑁−1

𝑖=0

  𝐴 − 12 

Zero Crossing Rate =  
1

2
∑|𝑠𝑔𝑛[𝑋(𝑖)] − 𝑠𝑔𝑛[𝑋(𝑖 − 1)]|

𝑁−1

𝑖=0

 𝐴 − 13 

Zero Crossing Rate: 𝑠𝑔𝑛[𝑥]  is a sign function. 𝑠𝑔𝑛[𝑥] = 1  when 𝑋(𝑖) >

0. 𝑠𝑔𝑛[𝑥] = −1 when 𝑋(𝑖) < 0. Zero crossing rate refers to the rate of sign change in 

a signal. This feature is widely used in Electromagnetism, and it is the main feature for 

current classification. 

Singular Value Decomposition =  𝑈∑𝑉𝑇 𝐴 − 14 

Singular Value Decomposition: 𝑈 is a matrix composed of eigenvectors of 𝑋(𝑖)𝑋(𝑖)𝑇. 

𝑉 is a matrix composed of eigenvectors of 𝑋(𝑖)𝑇𝑋(𝑖). ∑ is a singular value matrix 

with the same dimensions as 𝑋(𝑖), its values are the square root of the eigenvalues of 

𝑋(𝑖)𝑇𝑋(𝑖). 

Features from the frequency domain: 

CF of Kurtosis Diagram =  𝑀𝐴𝑋(
(∫ 𝑋(𝑖)𝜔(𝑖 − 𝜏)𝑒−2𝜋𝑖𝑓𝑑𝑖

∞

−∞
)
4

∫ 𝑋(𝑖)𝜔(𝑖 − 𝜏)𝑒−2𝜋𝑖𝑓𝑑𝑖
∞

−∞

4 − 2) 𝐴 − 15 

Center Frequency of Kurtosis Diagram (CFKD): The Kurtosis in the frequency 

domain is calculated with the Short Time Fourier Transform (STFT). 𝜔(𝑖)  is the 

window function used in STFT. CFKD corresponds to the maximum spectral Kurtosis 

value in the Kurtosis diagram. 
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The spectrum of 𝑋(𝑖)  is calculated with the Fast Fourier Transform (FFT). The 

following features are all based on the transformed signal: 𝑋𝐹𝐹𝑇(𝑓). 

Max Amplitude =  𝑀𝐴𝑋(𝑋𝐹𝐹𝑇(𝑓)) 𝐴 − 16 

Min Amplitude =  𝑀𝐼𝑁(𝑋𝐹𝐹𝑇(𝑓)) 𝐴 − 17 

Median Amplitude = 𝑀𝐸𝐷𝐼𝐴𝑁(𝑋𝐹𝐹𝑇(𝑓)) 𝐴 − 18 

Mean Amplitude =
1

T
∑ 𝑋𝐹𝐹𝑇(𝑓)

𝑇−1

𝑓=0

 𝐴 − 19 

𝑉𝑎𝑙𝑙𝑒𝑦 𝑡𝑜 𝑃𝑒𝑎𝑘 𝑉𝑎𝑙𝑢𝑒 =  |𝑀𝐼𝑁(𝑋𝐹𝐹𝑇(𝑓)) − 𝑀𝐴𝑋(𝑋𝐹𝐹𝑇(𝑓))| 𝐴 − 20 

Although the above features appear similar to features in the time domain, the processing 

objects are the frequency components of the signal. 

Features from the power spectrum: 

The power spectrum is the Power Spectral Density function (PSD), which is defined as 

the signal power in the unit frequency band.  

The derivation formula of the power spectrum is complex. Still, according to the Wiener–

Khinchin theorem, the power spectrum of a signal is equal to the Fourier Transform of 

the autocorrelation of the same signal. Thus, the power spectrum of 𝑋(𝑖) is calculated 

by performing autocorrelation Fourier Transform on 𝑋(𝑖). The following features are all 

based on the transformed signal: 𝑋𝑝𝑠𝑑(𝑓). 

Max Power =  𝑀𝐴𝑋(𝑋𝑝𝑠𝑑(𝑓)) 𝐴 − 21 

Min Power =  𝑀𝐼𝑁(𝑋𝑝𝑠𝑑(𝑓)) 𝐴 − 22 

Median Power =  𝑀𝐸𝐷𝐼𝐴𝑁(𝑋𝑝𝑠𝑑(𝑓))  𝐴 − 23 

Mean Power =  
1

T
∑ 𝑋𝑝𝑠𝑑(𝑓)

𝑇−1

𝑓=0

 𝐴 − 24 

Centroid Frequency of Spectrum =  
∫ 𝑓2𝑋𝑝𝑠𝑑(𝑓)𝑑𝑓

∞

0

∫ 𝑋𝑝𝑠𝑑(𝑓)𝑑𝑓
∞

0

 𝐴 − 25 

Signal to Noise Ratio = 10log10

𝑀𝐴𝑋(𝑋𝑝𝑠𝑑(𝑓))

∑ |𝑋𝑝𝑠𝑑(𝑓)| − 𝑀𝐴𝑋(𝑋𝑝𝑠𝑑(𝑓))𝑁−1
𝑖=0

  𝐴 − 26 

Signal to Noise Ratio (spectral): It is the ratio of the maximum value of the signal power 
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to the sum of the signal power (minus the maximum value).  

Occupied Bandwidth =  𝑓𝑚𝑎𝑥 − 𝑓𝑚𝑖𝑛 𝐴 − 27 

Occupied Bandwidth: It represents the frequency bandwidth occupied by 99% of signal 

components. 

Pitch =  
1

𝑀𝐸𝐴𝑁(𝑑𝑖𝑓𝑓(𝑓𝑝𝑒𝑎𝑘 )/𝑓𝑠)
 𝐴 − 28 

𝑓𝑝𝑒𝑎𝑘 = 𝑓𝑖𝑛𝑑𝑝𝑒𝑎𝑘𝑠(𝑖𝑓𝑓𝑡(𝑓𝑓𝑡(𝑋𝑝𝑠𝑑(𝑓)) × 𝑓𝑓𝑡(𝑋𝑝𝑠𝑑(𝑓)))) 𝐴 − 29 

Pitch (Fundamental Frequency): 𝑓𝑓𝑡 is the Fast Fourier Transform, while 𝑖𝑓𝑓𝑡 is the 

inverse Fourier Transform. 𝑖𝑓𝑓𝑡(𝑓𝑓𝑡(𝑋𝑝𝑠𝑑(𝑓)) × 𝑓𝑓𝑡(𝑋𝑝𝑠𝑑(𝑓))) is a matrix which 

contains the autocorrelation and cross-correlation sequences for all combinations of the 

column vectors in 𝑋𝑝𝑠𝑑(𝑓).  

Entropy features: 

Spectrum Entropy = −∑ 𝑋𝑝𝑠𝑑(𝑓)

𝑚

𝑓=1

log 𝑋𝑝𝑠𝑑(𝑓)  𝐴 − 30 

Spectrum Entropy: 𝑋𝑝𝑠𝑑(𝑓) is the PSD function of a signal. The entropy calculation 

formula is identical to the signal entropy calculation formula in Chapter 6. The 

combination of energy distribution and information entropy represents the uncertainty of 

the signal energy in terms of the power spectrum. 

Sample Entropy (m, r, N) = lim
𝑁→

{− ln
𝐴𝑚(𝑟)

𝐴𝑚+1(𝑟)
}  𝐴 − 31 

Sample Entropy: 𝑚  is the dimension parameter, 𝑟  is the similarity tolerance for 

sequence matching, and 𝑁 is the sequence length. The signal sequence is divided into 

multiple subsequences according to 𝑚. 𝐴 is the ratio of the approximate combination 

quantity to the total combination quantity. 𝑚 and 𝑟 have the same impact on sample 

entropy. Similar to permutation entropy, sample entropy is also used to measure the 

complexity of a time series. 

A.1.2 Feature extraction codes (MATLAB) 

 

clear all;clc; 

tic; 
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signalsper=2000; 

points=8; 

signals=signalsper*points; 

signalset=zeros(signals,100000); 

Lenset=zeros(signals,1); 

maindir = 'D:\data for localisation 1200mm'; 

subdir  = dir( maindir ); 

i1=1; 

load('D:\data for localisation 1200mm\errorlog.mat','berrorall'); 

% 

for i = 1 : length( subdir ) 

    if( isequal( subdir( i ).name, '.' )||... 

        isequal( subdir( i ).name, '..')||... 

        ~subdir( i ).isdir)              

        continue; 

    end 

    subdirpath = fullfile( maindir, subdir( i ).name, '*.mat' ); 

    dat = dir( subdirpath ); 

    % ?? 

    nameCell = cell(length(dat)-2,1); 

    for i2 = 1:length(dat) 

        %disp(dat(i2).name); 

        nameCell{i2} = dat(i2).name; 

    end 

    dat1 = sort_nat(nameCell); 

    % ?error?? 

    [m,n]=size(berrorall); 

    nameCell1 = cell(m,1); 

    for i3 = 1 : m 

        nameCell1{i3}=cell2mat(berrorall(i3,1)); 

    end 

    for i4 = 1 : 2300%length(dat) 

        i5 = 1:1:m; 

        jg=strcmp(dat1(i4),nameCell1(i5)); 

        if sum(jg)>0 

            dat1(i4)=[]; 

        end 

    end 

     

    for j = 1 : 0 + signalsper%length( dat ) 

        datpath = fullfile( maindir, subdir( i ).name, dat1( j )); 

        datpath = cell2mat(datpath); 

        a=cell2mat(struct2cell(load( datpath ))); 

        Len=length(a); 
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        Lenset(i1)=Len; 

        signalset(i1,1:Len)=a; 

        i1=i1+1; 

         

    end 

end 

%% 

clearvars -except signalset Lenset signalsper 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

D=[]; 

DA=[]; 

fs=50000; 

%% 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    s0=length(d); 

    FFT_Data1 = fft(d); 

    power2 = abs(FFT_Data1).^2/fs;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    ff2=(1:floor(s0/2))*fs/s0; 

    FC=sum(ff2.*power2)/sum(power2); 

    clearvars -except signalset Lenset FC d D DA data fs power2 m 

signalsper 

    peak_value=max(d);%max 

    valley_value=min(d);%min 

    median_value = median(d); 

    mean_value=mean(d); 

    abs_sum=sum(abs(d));%sum 

    vp=peak_value-valley_value; 

    abs_mean_value=mean(abs(d)); 

    variance=var(d);%variance 

    standard_deviation=std(d);%standard deviation 

    kurto = kurtosis(d); 

    skew = skewness(d); 

    root_mean_square = rms(d); 

    %factors 

    sinfactor = root_mean_square/abs_mean_value; 

    crestfactor = vp/root_mean_square; 

    impulsefactor = vp/abs_mean_value; 

    xr = mean(sqrt(abs(d)))^2; 

    Lfactor = vp/xr; 
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    %feature in FD 

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    %% 

    f=fft_sonar; 

    fft_amp=abs(f); 

    amp_max = max(fft_amp);      

    amp_min = min(fft_amp);      

    amp_median = median(fft_amp);    

    amp_mean = mean(fft_amp);        

    amp_pk = amp_max - amp_min;    

    amp_mph = amp_pk * 0.75;       

    N=length(fft_amp); 

    amp_pks = [];   

    amp_pkfs = [];   

    for i1 = 1:N 

        if amp_mph < fft_amp(i1) 

            amp_pks = [amp_pks,fft_amp(i1)]; 

            amp_pkfs = [amp_pkfs,i1 / N * fs/ 2]; 

        end 

    end 

    N1=length(d); 

    avg_fs = fs*(1:N) / N1; 

    avg_fft =  fft_amp.^2 / fs; 

    amp_fc = sum(avg_fs .* avg_fft) / sum(avg_fft);     

    amp_msf =sum(avg_fs.^2 .* avg_fft) / sum(avg_fft);    

    amp_rmsf = sqrt(amp_msf);   

    amp_vf = sum((avg_fs - amp_fc).^2 .* avg_fft) / sum(avg_fft);   

    amp_rvf = sqrt(amp_vf);      

    [pbutt,fbutt] = periodogram(d,[],[],fs); 

    d1=d'; 

    [~,~,~,fc,~,~] = kurtogram(d1,fs); 

    power_max = max(power2);    

    power_min = min(power2);      

    power_median = median(power2);        

    power_mean = mean(power2);           

    power_snr = 10*log10(power_max / (sum(power2) - power_max));      

    power_obw = obw(d,fs);      

    %cepstrum 

     

    cepstrum = real(ifft(log(abs(fft(d))))); 

    during_time = 1/fs:1/fs:length(d)/fs; 

    % old features 

    signal_length=length(d); 

    zerorate = zero_crossings(d); 
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    [dd,dd1]=mapminmax(d);%normalization 

    energy_t = sum(abs(d).^2);%energy of each segmented signal 

    pitch=self_correlation_pitch(d,fs,20,fs/2); 

    svdvalue=svd(d); 

    amdf=zeros(N1,1); 

    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1))); 

    end    

     

    audioIn=d; 

    audioBuffered = 

buffer(audioIn,round(fs*0.03),round(fs*0.02),'nodelay'); 

    [p,cf] = poctave(audioBuffered,fs);%Calculate the centroid of the 

octave power spectrum over time. Plot the results. 

    centroid = spectralCentroid(p,cf); 

    t = linspace(0,size(audioIn,1)/fs,size(centroid,1)); 

    Formantband=formant(d,fs); 

    powerentropy=gonglvshang(d); 

    entropy=yyshang(dd,10);% instant entropy 

    pe=permutationentropy(d'); 

    %fe=Fuzzy_Entropy(4,0.2*standard_deviation,d,1); 

    %??????? 

    specentropy=spectrum_entropy(d); 

    D=[D;signal_length;mean_value;abs_mean_value; 

        variance;standard_deviation;abs_sum; 

        peak_value;valley_value;vp; 

        median_value; 

        kurto;skew;root_mean_square; 

        sinfactor;crestfactor;impulsefactor; 

        Lfactor;zerorate;amp_max; 

        amp_min;amp_median;amp_mean; 

        amp_pk;amp_fc;amp_msf; 

        amp_rmsf;amp_vf;amp_rvf; 

        fc;power_max;power_min; 

        power_median;power_mean;power_snr; 

        power_obw;pitch;svdvalue; 

        specentropy;energy_t;FC 

        entropy;powerentropy;pe; 

        %fe; 

        ]; 

    DA=[DA,D]; 

    D=[]; 

End 
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function [maxAmp,freq,X]=positiveFFT(x,Fs) 

N=length(x); %get the number of points 

k=0:N-1; %create a vector from 0 to N-1 

T=N/Fs; %get the frequency interval 

freq=k/T; %create the frequency range 

X=fft(x); % normalize the data 

%only want the first half of the FFT, since it is redundant 

cutOff = ceil(N/2); 

%take only the first half of the spectrum 

X = X(1:cutOff); 

freq = freq(1:cutOff); 

X = abs(X); 

%X = mag2db(X); 

maxAmp = max(X); 

 

function d=FrequencyCal(x,nw,ni) 

n=nw;                                        %å¸§é•¿ 

h=ni;                                        %å¸§ç§»é‡? 

s0=length(x); 

win=hamming(n);                             %åŠ çª—,hammingä¸ºä¾‹ 

c=1; 

ncols=1+fix((s0-n)/h);                       %åˆ†å¸§ï¼Œå¹¶è®¡ç®—å¸§æ•° 

d=zeros((1+n/2),ncols); 

for b=0:h:(s0-n) 

    u=win.*x((b+1):(b+n)); 

    t=fft(u); 

    d(:,c)=t(1:(1+n/2))'; 

    c=c+1; 

end 

function varargout = instfreq1(x, varargin) 

narginchk(1,7); 

nargoutchk(0,2); 

  

opts = parseAndValidateInputs(x,varargin{:}); 

  

if strcmp(opts.Method,'tfmoment') 

     

    [instfreq, Time, opts ] = 

computeInstantaneousFrequencyTfmoment(opts); 

elseif strcmp(opts.Method,'hilbert') 

     

    [instfreq,Time,opts] = 

computeInstantaneousFrequencyHilbert(opts); 

end 
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%Adjust TT variable names 

if strcmp(opts.InputType,'TimeTable') 

    varlabel = strcat(opts.VarNames,'_instfreq'); 

    IF = x(1:size(instfreq,1),:); 

    IF.Properties.RowTimes = Time; 

    IF.Properties.DimensionNames{1} = 'Time'; 

    for idx = 1:length(opts.VarNames) 

        IF.(opts.VarNames{idx}) = instfreq(:,opts.VarColIndex == idx); 

    end 

    IF.Properties.VariableNames = varlabel; 

     

else 

    IF = instfreq; 

end 

switch nargout 

    case 0 

        if strcmp(opts.Method,'tfmoment') && opts.NumChannels == 1 

            

displayInstFreqSpectrum(Time,instfreq,opts.Power,opts.Frequency,opts.

Time) 

        else 

            displayInstFreq(Time,instfreq,opts) 

        end 

    case 1 

        varargout{1} = IF; 

    case 2 

        varargout{1} = IF; 

        varargout{2} = Time; 

end 

  

  

end 

  

function [IF,T,opts] = computeInstantaneousFrequencyTfmoment(opts) 

%Compute Instantaneous Frequency using the tfmoment method 

  

for idx = 1:opts.NumChannels 

     

    if ~strcmp(opts.InputType,'Spectrum') 

        inputData = opts.Data(:,idx); 

        [opts.Power,opts.Frequency,opts.Time] = 

pspectrum(inputData,opts.TimeInfo,'spectrogram'); 

    end 
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    IF(:,idx) = 

signal.internal.tfmoment.tfsmomentCompute(opts.Power,opts.Frequency,1

,false,opts.FrequencyLim); %#ok<AGROW> 

     

end 

  

if opts.IsSingle 

    IF = single(IF); 

    if isnumeric(opts.Time) 

        opts.Time = single(opts.Time); 

    end 

end 

T = opts.Time; 

  

end 

  

function [IF,T,opts] = computeInstantaneousFrequencyHilbert(opts) 

%Compute Instantaneous Frequency using the hilbert method 

  

IF = zeros(size(opts.Data,1)-1,size(opts.Data,2)); 

for idx = 1:opts.NumChannels 

     

    inputData = opts.Data(:,idx); 

    z = hilbert(inputData); 

    IF(:,idx) = opts.SamplingFrequency/(2*pi)*diff(unwrap(angle(z))); 

end 

  

if numel(opts.TimeInfo)>1 

    T = opts.TimeInfo(1:end-1); 

    if size(T,1) == 1 

        T = T'; 

    end 

     

else 

    if isnumeric(opts.TimeInfo) 

        temp = 0:1/opts.SamplingFrequency:(length(opts.Data)-

1)/opts.SamplingFrequency; 

        T = temp(1:end-1)'; 

        if opts.IsSingle 

            T = single(T); 

        end 

    else 

        temp = 0:opts.TimeInfo:(length(opts.Data)-1)*opts.TimeInfo; 

        T = temp(1:end-1)'; 
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    end 

end 

  

%adjusting Time array to be at center of each period 

if isnumeric(T) 

    T = T+ ((1/opts.SamplingFrequency)/2); 

else 

    T = T+ seconds((1/opts.SamplingFrequency)/2); 

end 

  

  

if opts.IsSingle 

    IF = single(IF); 

end 

  

end 

  

function displayInstFreq(T,IF,opts) 

%Display the instantaneous frequency as a line 

  

[~,freqScale,uf] = 

signalwavelet.internal.convenienceplot.getFrequencyEngUnits(max(abs(I

F(:)))); 

IF = IF*freqScale; 

freqlbl = [getString(message('signal:instfreq:Frequency')) ' (' uf 

')']; 

  

if isnumeric(T) 

    [~,timeScale,ut] = 

signalwavelet.internal.convenienceplot.getTimeEngUnits(max(abs(T))); 

    T = T*timeScale; 

    timelbl = [getString(message('signal:instfreq:Time')) ' (' ut 

')']; 

else 

    timelbl = getString(message('signal:instfreq:Time')); 

end 

  

xlbl = timelbl; 

ylbl = freqlbl; 

h = newplot; 

  

ifhndl = plot(h,T,IF,'LineWidth',1); 

  

% Disable AxesToolbar 
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ax = ancestor(ifhndl,'axes'); 

if iscell(ax) 

    cellfun(@(hAx) set(hAx,'Toolbar',[]),ax,'UniformOutput',false); 

elseif ~isempty(ax) && ~isempty(ax.Toolbar) 

    ax.Toolbar = []; 

end 

  

ylabel(ylbl); 

xlabel(xlbl); 

title(getString(message('signal:instfreq:InstFreqEstimate'))); 

  

if opts.NumChannels >1 

    if strcmp(opts.InputType,'TimeTable') 

        legendNames = []; 

        for idx = 1:length(opts.VarNames) 

            if sum(opts.VarColIndex==idx) ~= 1 

                temp = strcat( opts.VarNames{idx}, '\_instfreq(:,', 

num2str((1:sum(opts.VarColIndex==idx))'), ')'); 

            else 

                temp = strcat( opts.VarNames{idx}, '\_instfreq'); 

            end 

            legendNames = [legendNames; cellstr(temp)]; %#ok<AGROW> 

        end 

    else 

        legendNames = cellstr(num2str((1:opts.NumChannels)', 'instfreq 

(:,%d)')); 

    end 

    legend(h,ifhndl,legendNames,'Location','best') 

end 

  

ylim(h,[0 (opts.SamplingFrequency/2)*freqScale]) 

  

end 

  

function displayInstFreqSpectrum(TF,IF,P,F,T) 

%Display the instantaneous frequency as a line over the spectrogram 

  

plotOpts.title = 

getString(message('signal:instfreq:InstFreqEstimate')); 

plotOpts.legend = getString(message('signal:instfreq:InstFreq')); 

plotOpts.isFsNormalized = false; 

  

signalwavelet.internal.convenienceplot.plotTFR(T,F,10*log10(abs(P)+ep

s),TF,IF,plotOpts); 
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end 

  

function opts = parseAndValidateInputs(x,varargin) 

opts = struct(... 

    'Data',[],... 

    'SamplingFrequency',[],... 

    'Time',[],... 

    'TimeInfo',[],... 

    'Frequency',[],... 

    'Power',[],... 

    'DataLength',[],... 

    'NumChannels',1,... 

    'FrequencyLim',[],... 

    'IsTimeTable',istimetable(x),..., 

    'VarNames',[],... 

    'VarColIndex',[],... 

    'InputType','Signal',... 

    'Method','tfmoment',... 

    'IsSingle',0); 

 

  

if ~isempty(varargin) 

    numValueOnlyInput = 

signal.internal.tfmoment.numOfRequiredInput(varargin{:}); 

else 

    numValueOnlyInput = 0; 

end 

  

if opts.IsTimeTable 

    %Input is Timetable 

    opts.InputType = 'TimeTable'; 

     

    if numValueOnlyInput > 0 

        error(message('signal:instfreq:SampleRateAndTimetableInput')); 

    end 

    if (height(x) < 2) 

        error(message('signal:instfreq:InvalidInputLength')); 

    end 

     

    if ~all(varfun(@(x) isa(x,'double'),x,'OutputFormat','uniform')) 

&& ~all(varfun(@(x) isa(x,'single'),x,'OutputFormat','uniform')) 

        

error(message('signal:instfreq:InvalidNonHomogeneousDataType')); 



 

199 

 

    end 

     

    %Validate Data 

    

signal.internal.utilities.validateattributesTimetable(x,{'sorted'},'i

nstfreq','Timetable'); 

    [Data, ~, TimeInfo] = 

signal.internal.utilities.parseTimetable(x); 

    opts.VarNames = x.Properties.VariableNames; 

    [opts.DataLength, opts.NumChannels] = size(Data); 

    validateattributes(Data, 

{'single','double'},{'nonempty','finite','2d','nonnan'},'instfreq','T

imetable variables'); 

    opts.Data = Data; 

    opts.IsSingle = isa(Data,'single'); 

    for idx = 1:length(opts.VarNames) 

        opts.VarColIndex = [opts.VarColIndex 

idx*ones(1,size(x.(opts.VarNames{idx}),2))]; 

    end 

     

    %Validate Time 

    opts.TimeInfo = TimeInfo; 

    

validateattributes(TimeInfo,{'numeric','duration','datetime'},{'vecto

r','real','nonempty'},'instfreq','Timetable row times '); 

    nvpair = {varargin{1:end}}; 

    if isnumeric(TimeInfo) 

        TimeInfo = double(TimeInfo); 

    end 

     

    %Compute Fs 

    Fs = signal.internal.utilities.computeFs(TimeInfo, 'instfreq'); 

    if isreal(Data) 

        defaultFrequencyLimits = [0,Fs/2]; 

    else 

        defaultFrequencyLimits = [-Fs/2,Fs/2]; 

    end 

    defaultMethod = 'tfmoment'; 

    opts.SamplingFrequency = Fs; 

else 

    if isempty(varargin) 

        error(message('signal:instfreq:InvalidInputDataTypeVector')); 

    end 
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    if numValueOnlyInput < 2 

        %Input is Signal 

        opts.InputType = 'Signal'; 

         

        %Validate Data 

        validateattributes(x, 

{'single','double'},{'nonempty','finite','2d','nonnan'},'instfreq','I

nput signal'); 

        if isrow(x) 

            Data = x(:); 

        else 

            Data = x; 

        end 

        [opts.DataLength, opts.NumChannels] = size(Data); 

         

        if (opts.DataLength < 2) 

            error(message('signal:instfreq:InvalidInputLength')); 

        end 

        opts.Data = Data; 

        opts.IsSingle = isa(Data,'single'); 

         

        %Validate Time 

        TimeInfo = varargin{1}; 

        

validateattributes(TimeInfo,{'numeric','duration','datetime'},{'vecto

r','real','nonempty'},'instfreq','Time values'); 

         

        if isnumeric(TimeInfo) 

            TimeInfo = double(TimeInfo); 

        end 

         

        len = length(x); 

        if (~isscalar(TimeInfo)) 

            if length(TimeInfo) ~= len 

                error(message('signal:instfreq:TimeNotMatchVector')); 

            end 

        elseif isdatetime(TimeInfo) 

            error(message('signal:instfreq:TimeNotMatchVector')); 

        end 

         

        opts.TimeInfo = TimeInfo; 

         

        if numValueOnlyInput == numel(varargin) 

            nvpair = {}; 
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        else 

            nvpair = {varargin{numValueOnlyInput+1:end}}; 

        end 

         

        %Compute Fs 

        Fs = signal.internal.utilities.computeFs(TimeInfo, 

'instfreq'); 

        if isreal(Data) 

            defaultFrequencyLimits = [0,Fs/2]; 

        else 

            defaultFrequencyLimits = [-Fs/2,Fs/2]; 

        end 

         

        defaultMethod = 'tfmoment'; 

        opts.SamplingFrequency = Fs; 

    else 

        %Input is a TFD 

        if numValueOnlyInput > 2 

            error(message('signal:instfreq:TooManyValueOnlyInputs')); 

        end 

        opts.InputType = 'Spectrum'; 

         

        %Validate Data 

        validateattributes(x, 

{'single','double'},{'nonnegative','nonempty','finite','real','2d','n

onnan'},'instfreq','TFD'); 

        opts.Power = x; 

        opts.IsSingle = isa(x,'single'); 

         

        %Validate Frequency 

        F = varargin{1}; 

        validateattributes(F, {'numeric'},{'vector', 'nonempty',... 

           

'nondecreasing','finite','real','nonnan'},'instfreq','Frequency 

values'); 

         

        F = double(F); 

         

        len = size(x,1); 

        if length(F) ~= len 

            error(message('signal:instfreq:FrequencyNotMatch')); 

        end 

         

        opts.Frequency = F; 
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        %Validate Time 

        TimeInfo = varargin{2}; 

        

validateattributes(TimeInfo,{'numeric','duration','datetime'},{'vecto

r','nonempty','real'},'instfreq','Time values'); 

         

        len = size(x,2); 

        if length(TimeInfo) ~= len 

            error(message('signal:instfreq:TimeNotMatchTFD')); 

        end 

         

        if isnumeric(TimeInfo) 

            TimeInfo = double(TimeInfo); 

        end 

         

        [t, td]= 

signal.internal.tfmoment.parseTime(TimeInfo,len,'instfreq'); 

        validateattributes(t, 

{'single','double'},{'nonnegative','increasing',... 

            'finite','real','vector'},'instfreq','time values'); 

        opts.Time = td; 

         

        if numValueOnlyInput == numel(varargin) 

            nvpair = {}; 

        else 

            nvpair = {varargin{numValueOnlyInput+1:end}}; 

        end 

        defaultFrequencyLimits = [F(1),F(end)]; 

        defaultMethod = 'tfmoment'; 

    end 

end 

  

opts = 

parseAndValidateNVPair(opts,defaultMethod,defaultFrequencyLimits, 

nvpair); 

end 

  

function opts = parseAndValidateNVPair(opts, 

defaultMethod,defaultFrequencyLimits,nvpair) 

%PARSEANDVALIDATENVPAIR parse and validate the name-value pair for 

%INSTFREQ functions. 

% 

%   This function is for internal use only. It may be removed. 
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% 

%   Copyright 2017 The MathWorks, Inc. 

  

p=inputParser; 

  

addParameter(p,'FrequencyLimits',defaultFrequencyLimits); 

addParameter(p,'Method',defaultMethod); 

  

parse(p,nvpair{:}); 

  

%Validate Frequency Limits 

FrequencyLim = p.Results.FrequencyLimits; 

validateattributes(FrequencyLim, {'single','double'},... 

    {'nondecreasing','finite',... 

    

'real','vector','>=',defaultFrequencyLimits(1),'<=',defaultFrequencyL

imits(2),'numel',2},... 

    'instfreq','FrequencyLim'); 

opts.FrequencyLim = FrequencyLim; 

  

%Validate Method 

Method = p.Results.Method; 

if any(strcmp(Method,{'tfmoment','hilbert'})) 

    opts.Method = Method; 

    if (strcmp(Method,'hilbert')&& strcmp(opts.InputType,'Spectrum')) 

        error(message('signal:instfreq:MethodAndTFDInput')) 

    end 

     

    if (strcmp(Method,'hilbert')&& 

~any(strcmp(p.UsingDefaults,'FrequencyLimits'))) 

        error(message('signal:instfreq:MethodAndFreqLim')) 

    end 

     

     

    if (strcmp(Method,'hilbert')&& numel(opts.TimeInfo) >1) 

        if isdatetime(opts.TimeInfo) 

            temp = seconds(opts.TimeInfo - opts.TimeInfo(1)); 

        elseif isduration(opts.TimeInfo) 

            temp = seconds(opts.TimeInfo); 

        else 

            temp = opts.TimeInfo; 

        end 

         

        err = max(abs(temp(:).'-
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linspace(temp(1),temp(end),numel(temp)))./max(abs(temp))); 

        nonUniformSampling = err > 3*eps(class(err)); 

         

        if nonUniformSampling 

            

error(message('signal:instfreq:MethodAndNonUniformSampling')) 

        end 

    end 

else 

    error(message('signal:instfreq:InvalidMethod')) 

end 

  

end 

 

function Hx=sampleentropy(y,duan) 

%²»ÒÔÔÐÅºÅÎª²Î¿¼µÄÊ±¼äÓòµÄÐÅºÅìØ 

%duan:´ýÇóÐÅÏ¢ìØµÄÐòÁÐÒª±»·Ö¿éµÄ¿éÊý 

%Hx:yµÄÐÅÏ¢ìØ 

%duan=10;%½«ÐòÁÐ°´duanÊýµÈ·Ö£¬Èç¹ûduan=10,¾Í½«ÐòÁÐ·ÖÎª10µÈ·Ý 

x_min=min(y); 

x_max=max(y); 

maxf(1)=abs(x_max-x_min); 

maxf(2)=x_min; 

duan_t=1.0/duan; 

jiange=maxf(1)*duan_t; 

% for i=1:10 

% pnum(i)=length(find((y_p>=(i-1)*jiange)&(y_p<i*jiange))); 

% end 

pnum(1)=length(find(y<maxf(2)+jiange)); 

for i=2:duan-1 

    pnum(i)=length(find((y>=maxf(2)+(i-

1)*jiange)&(y<maxf(2)+i*jiange))); 

end 

pnum(duan)=length(find(y>=maxf(2)+(duan-1)*jiange)); 

%sum(pnum) 

ppnum=pnum/sum(pnum);%Ã¿¶Î³öÏÖµÄ¸ÅÂÊ 

%sum(ppnum) 

Hx=0; 

for i=1:duan 

    if ppnum(i)==0 

        Hi=0; 

    else 

        Hi=-ppnum(i)*log2(ppnum(i)); 

    end 



 

205 

 

    Hx=Hx+Hi; 

end 

end 

 

function spl = SPLCal( x,fs,flen ) 

Length = length(x); 

M = flen*fs/1000; 

if Length~=M 

   error('è¾“å…¥ä¿¡å?·é•¿åº¦ä¸Žæ‰€å®šä¹‰å¸§é•¿ä¸?ç‰ï¼?');  

end 

pp = 0; 

for i = 1:M 

   pp = pp + x(i)^2; 

end 

pa = sqrt(pp/M); 

p0 = 2*10^-5; 

spl = 20*log10(pa/p0); 

end 

 

function d=FrequencyCal(x,nw,ni) 

n=nw;                                    

h=ni;                                      

s0=length(x); 

win=hamming(n);                             

c=1; 

ncols=1+fix((s0-n)/h);                      

d=zeros((1+n/2),ncols); 

for b=0:h:(s0-n) 

    u=win.*x((b+1):(b+n)); 

    t=fft(u); 

    d(:,c)=t(1:(1+n/2))'; 

    c=c+1; 

end 

 

function [F,Bw]=formant(x,fs) 

u=filter([1 -.99],1,x);                      

wlen=length(u);                          

p=12;                                       

a=lpc(u,p);                               

U=lpcar2pf(a,255);                           

freq=(0:256)*fs/512;                        

df=fs/512;                                  

U_log=10*log10(U);                         

[Loc,Val]=findpeaks(U);                      
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ll=length(Loc);                              

for k=1 : ll 

    m=Val(k);                              

    m1=m-1; m2=m+1; 

    p=Val(k);                              

    p1=U(m1); p2=U(m2); 

    aa=(p1+p2)/2-p;                        

    bb=(p2-p1)/2; 

    cc=p; 

    dm=-bb/2/aa;                           

    pp=-bb*bb/4/aa+cc;                    

    m_new=m+dm; 

    bf=-sqrt(bb*bb-4*aa*(cc-pp/2))/aa;      

    F(k)=(m_new-1)*df;                      

    Bw(k)=bf*df;                          

end 

 

function [pe]=permutationentropy(X) 

X=X'; 

 [m,~]=size(X);  

eLag = 1; 

eDim = 4; 

pe=zeros(1,m); 

for i=1:m 

    [pe(i),~] = pec(X(i,:),eDim,eLag); 

end 

 

function basepitch=self_correlation_pitch(d,fs,low,high) 

d=d'; 

nw=length(d); 

r2=xcorr(d); 

r2 = r2./(d'*d); 

rhalf = r2(nw-1:end); 

lmin = ceil((low/fs)*nw); 

lmax = round((high/fs)*nw); 

[~,tloc] = findpeaks(rhalf(lmin:lmax)); 

basepitch=1./(mean(diff(tloc))/fs); 

 

function [maxAmp,freq,X]=positiveFFT(x,Fs) 

N=length(x); 

k=0:N-1;  

T=N/Fs;  

freq=k/T; 

X=fft(x); 
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cutOff = ceil(N/2); 

X = X(1:cutOff); 

freq = freq(1:cutOff); 

X = abs(X); 

maxAmp = max(X); 
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A.2 Acoustic signal images for CNN-based LTPM 

A.2.1 Signal transformations 

Signal transformation is similar to feature extraction, but the output of signal 

transformation is the signal image. 17 types of signal images are defined, and three types 

are introduced in Chapter 6. The remaining four types (11 signal images) are introduced 

in this section. 

Note: the horizontal and vertical axis labels in the training images are erased for the 

training of CNN-based LTPM. 

Amplitude to time: 

Assume that a signal sequence is: 

y (Sampling Value or Amplitude) = 𝑥(𝑖), i = 1,2, … ,m 𝐴 − 32 

Waveform: 𝑥(𝑖) is a one-dimensional array (signal sequence), each value within the 

array is a discrete signal sampling value. The length of the array is the number of 

sampling points. The sampling time is calculated by dividing the number of sampling 

points by the sampling rate. 

The waveform of a time-domain signal is acquired by setting the sampling time as the 

horizontal axis and the sampling value as the vertical axis, as shown in Figure A-1. 

 

Figure A-2 Signal waveform. The X-axis is the sampling point (time), and the Y-

axis is the amplitude of the signal  
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Amplitude to frequency: 

𝑌𝑎𝑚𝑝 = |𝑓𝑓𝑡(𝑥(𝑖))|, i = 1,2, … ,m (A − 33) 

If 𝑌𝑎𝑚𝑝  > 0.01 ∗ MAX(|𝑓𝑓𝑡(𝑥(𝑖))|), 

{Peaks of Amplitude} = 𝑌𝑎𝑚𝑝, {𝑚𝑠𝑢𝑚} = 𝑖 (𝐴 − 34) 

Peaks of Amplitude: Firstly, the FFT is applied to a time-domain acoustic signal. Then, 

transformed signal components 𝑌𝑎𝑚𝑝  that are greater than 1% of the maximum 

transformed amplitude value are stored in the summary {Peaks of Amplitude} . The 

vertical axis represents the peak value, and the horizontal axis represents the number of 

points. 

 

Figure A-2 The summary of peaks of amplitude in the frequency domain. The X-

axis is the number of points, and the Y-axis is the amplitude of the signal  

𝐹𝑝𝑒𝑎𝑘 =
𝑚𝑠𝑢𝑚

𝑁
∗
𝑓𝑠

2
(A − 35) 

Frequencies of Peak Values: 𝑚𝑠𝑢𝑚 is the summary of signal points corresponding to 

the peak values extracted with (Eq. A-34), 𝑁  is the signal length, and 𝑓𝑠  is the 

sampling frequency. The processing is similar to the processing of amplitude peaks, but 

the output is frequency. 
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Figure A-3 Corresponding frequencies of peak values. The X-axis is the number 

of points, and the Y-axis is the frequency  

Signal Envelop = √ℎℎ𝑡(𝑥(𝑖))2 + 𝑥(𝑖)2 𝐴 − 36 

Formant: ℎℎ𝑡 is the Hilbert-Huang Transform (HHT). The Formant is included in the 

spectrum envelope of the acoustic signal. Therefore, it is necessary to estimate the 

spectrum envelope of an acoustic signal with the HHT to extract the Formant frequencies. 

Peak values in the spectrum envelope are the Formant frequencies. The spectrum 

envelope of the acoustic signal can be calculated with (Eq. A-36). This project estimates 

the formant band with an interpolated LPC-based channel model. 

 

Figure A-4 Formant band. The X-axis is the number of points, and the Y-axis is 

the frequency  

Spectrum: The spectrum is calculated with the FFT. 
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Figure A-5 Signal spectrum. The frequency components of an acoustic signal are 

displayed clearly. The X-axis is the frequency, and the Y-axis is the amplitude of 

the signal  

Cepstrum = 𝑟𝑒𝑎𝑙(𝑖𝑓𝑓𝑡(log (𝑎𝑏𝑠(𝑓𝑓𝑡(𝑥(𝑖)))))) 𝐴 − 37 

Cepstrum: 𝑟𝑒𝑎𝑙 stands for the real number calculation. The Cepstrum is symmetrically 

distributed. The low-frequency components become significant in comparison to the 

signal spectrum. 

 

Figure A-6 Signal Cepstrum. The X-axis is the time, and the Y-axis is the 

amplitude of the signal (logarithmic amplified) 
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Frequency to time: 

𝑋𝑛(𝑒
𝑗𝜔) = ∑ 𝑋(𝑚)𝑤(𝑛 − 𝑚)𝑒𝑗𝜔𝑚

𝑚

𝑚=1

  𝐴 − 38 

Spectrogram: 𝑚 is the frame length, 𝑛 is the number of frames. One acoustic signal 

is transformed into a multi-dimensional signal after framing: 𝑥(𝑖) → 𝑋(𝑚, 𝑛). Next, 

𝑓𝑓𝑡 is applied to each framed signal as shown in (Eq. A-32). Then the square of the 

absolute value of each transformed and framed signal is calculated. Finally, the 

spectrogram is acquired by connecting all the signal frames.  

 

Figure A-7 Signal Spectrogram. The X-axis is the time, and the Y-axis is the 

frequency 

Change of Centroid Frequency: An acoustic signal is divided into multiple frames. 

Then the centroid frequency of each signal frame is calculated according to (Eq. 5-1). 

The change of centroid frequency is acquired by connecting all signal frames. 
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Figure A-8 Change of centroid frequency. The X-axis is the time, and the Y-axis 

is the frequency 

𝑓𝑖𝑛𝑠𝑡(𝑡) =
∫ 𝑓𝑃(𝑡, 𝑓)𝑑𝑓

∞

0

∫ 𝑃(𝑡, 𝑓)𝑑𝑓
∞

0

 𝐴 − 39 

Instant Frequency: 𝑃(𝑡, 𝑓)  is the power spectrum of 𝑥(𝑖).  The instantaneous 

frequency of an acoustic signal is a time-varying parameter that relates to the average 

of the frequencies present in the signal as it evolves. 

 

Figure A-9 Instant frequency change of a signal. The X-axis is the time, and the 

Y-axis is the frequency  
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Kurtosis to Frequency: 

𝑆(𝑡, 𝑓) = ∫ 𝑥(𝑖)𝑤(𝑖 − 𝜏)

+∞

−∞

𝑒−2𝜋𝑓𝑖𝑑𝑖 𝐴 − 40 

𝐾(𝑓) =
〈|𝑆(𝑡, 𝑓)|4〉

〈|𝑆(𝑡, 𝑓)|2〉2
− 2 𝐴 − 41 

Spectral Kurtosis: w(t) is the window function for the Short Time Fourier Transform 

(STFT), and ⟨·⟩ is the time-average operator. An acoustic signal 𝑥(𝑖)  is transformed 

into 𝑆(𝑡, 𝑓)  with STFT first. Next, the Kurtosis in frequency distribution 𝐾(𝑓)  is 

calculated based on 𝑆(𝑡, 𝑓). The spectral kurtosis is used to examine whether a signal is 

a stationary white noise signal. In practical cases, a white noise signal is always within 

the confidence interval at all frequency bands. 

 

Figure A-10 Spectral kurtosis of an acoustic signal. The X-axis is the frequency, 

and the Y-axis stands for the value of the spectral Kurtosis 

Kurtosis Diagram: Spectral Kurtosis uses one window function to calculate 𝑆(𝑡, 𝑓), 

while in the Kurtosis diagram, multiple windows are used to calculate 𝑆(𝑡, 𝑓) of each 

frame. Compared to spectral Kurtosis, the Kurtosis diagram displays changes in Kurtosis 

in frequency distribution under different window lengths. 
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Figure A-11 Kurtosis diagram with a window length of 1024. The X-axis is 

frequency, and the Y-axis is the window length (points)  

A.2.2 Signal transformation codes (MATLAB) 

clear all;clc; 

tic; 

signalsper=5; 

points=8; 

signals=signalsper*points; 

signalset=zeros(signals,100000); 

Lenset=zeros(signals,1); 

maindir = 'D:\data for localisation 750mm'; 

subdir  = dir( maindir ); 

i1=1; 

load('D:\data for localisation 750mm\errorlog.mat','berrorall'); 

% 

for i = 1 : length( subdir ) 

    if( isequal( subdir( i ).name, '.' )||... 

        isequal( subdir( i ).name, '..')||... 

        ~subdir( i ).isdir)              

        continue; 

    end 

    subdirpath = fullfile( maindir, subdir( i ).name, '*.mat' ); 

    dat = dir( subdirpath ); 

    % ?? 

    nameCell = cell(length(dat)-2,1); 

    for i2 = 1:length(dat) 

        %disp(dat(i2).name); 

        nameCell{i2} = dat(i2).name; 

    end 
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    dat1 = sort_nat(nameCell); 

    % ?error?? 

    [m,n]=size(berrorall); 

    nameCell1 = cell(m,1); 

    for i3 = 1 : m 

        nameCell1{i3}=cell2mat(berrorall(i3,1)); 

    end 

    for i4 = 1 : 5%length(dat) 

        i5 = 1:1:m; 

        jg=strcmp(dat1(i4),nameCell1(i5)); 

        if sum(jg)>0 

            dat1(i4)=[]; 

        end 

    end 

    %?????????? 

    section=0000; 

    for j = 1+section : section + signalsper%length( dat ) 

        datpath = fullfile( maindir, subdir( i ).name, dat1( j )); 

        datpath = cell2mat(datpath); 

        a=cell2mat(struct2cell(load( datpath ))); 

        Len=length(a); 

        Lenset(i1)=Len; 

        signalset(i1,1:Len)=a; 

        i1=i1+1; 

         

    end 

end 

%% ???? 

clearvars -except signalset Lenset signalsper 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

namedelay=0; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    plot(d); 

    axis off 

    saveas(gcf,['C:\image750\Time domain\',num2str(i1),'.jpg']); 

end 

% ???? 

clearvars -except signalset Lenset signalsper namedelay fs 
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data=signalset; 

[m,~]=size(data); 

D=[]; 

DA=[]; 

fs1=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    FFT_Data1 = fft(d); 

    power2 = abs(FFT_Data1).^2/fs1;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    [B1,~] = mapminmax(power2',0,1); 

    ff2=(1:floor(s0/2))*fs1/s0; 

    i1=i+namedelay; 

    plot(ff2,B1) 

    axis off 

    saveas(gcf,['C:\image750\Frequency domain\',num2str(i1),'.jpg']); 

end 

% ??????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

D=[]; 

DA=[]; 

fs1=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    %[popen,fopen] = periodogram(xs1,[],[],fs1); 

    [pbutt,fbutt] = periodogram(d,[],[],fs1); 

    i1=i+namedelay; 

    plot(fbutt,20*log10(abs(pbutt))) 

    axis off 

    saveas(gcf,['C:\image750\Power spectrum 

density\',num2str(i1),'.jpg']); 

end 

% ????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

D=[]; 

DA=[]; 

Fs=50000; 

for i=1:1:m 
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    s0=Lenset(i); 

    d=data(i,1:s0); 

    signal = d'; 

    nw=512;ni=nw/4; 

    c=1; 

    d=FrequencyCal(signal,nw,ni); 

  

    framerate=1:60; %1:257 

    d=d(framerate,1:end); 

  

    tt=(0:ni:(length(signal)-nw))/Fs; 

    ff=(0:(nw/2))*Fs/nw; 

    ff=ff(framerate); 

    imagesc(tt,ff,20*log10(c+abs(d))); 

    i1=i+namedelay; 

    axis off 

    saveas(gcf,['C:\image750\Power spectrum\',num2str(i1),'.jpg']); 

end 

% power spectrum II 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

%namedelay=0; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    s0=length(d); 

    FFT_Data1 = fft(d); 

    power2 = abs(FFT_Data1).^2/fs;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    plot(power2); 

    axis off 

    saveas(gcf,['C:\image750\power spectrumII\',num2str(i1),'.jpg']); 

end 

  

% periodogram 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 



 

219 

 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    [pbutt,fbutt] = periodogram(d,[],[],fs); 

    plot(fbutt,20*log10(abs(pbutt)),'--'); 

    axis off 

    saveas(gcf,['C:\image750\periodogram\',num2str(i1),'.jpg']); 

end 

% pkurtosis 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    pkurtosis(d1,fs); 

    axis off 

    saveas(gcf,['C:\image750\pkurtosis\',num2str(i1),'.jpg']); 

end 

% kurtogram 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    kurtogram(d1,fs); 

    axis off 

    saveas(gcf,['C:\image750\kurtogram\',num2str(i1),'.jpg']); 

end 

%% instfreq 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 
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cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    instfreq1(d1,fs); 

    axis off 

    saveas(gcf,['C:\image750\instfreq\',num2str(i1),'.jpg']); 

end 

% hht 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    hht(d1,fs); 

    axis off 

    saveas(gcf,['C:\image750\hht\',num2str(i1),'.jpg']); 

end 

% ??? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    cepstrum = real(ifft(log(abs(fft(d))))); 

    during_time = 1/fs:1/fs:length(d)/fs; 

    plot(during_time,cepstrum,'color',[29/255 176/255 

184/255]);ylim([0 0.01]); 

    axis off 

    saveas(gcf,['C:\image750\???\',num2str(i1),'.jpg']); 

end 

% ?????? 
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clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    audioIn=d; 

    audioBuffered = 

buffer(audioIn,round(fs*0.03),round(fs*0.02),'nodelay'); 

    [p,cf] = poctave(audioBuffered,fs);%Calculate the centroid of the 

octave power spectrum over time. Plot the results. 

    centroid = spectralCentroid(p,cf); 

    t = linspace(0,size(audioIn,1)/fs,size(centroid,1)); 

    plot(t,centroid); 

    axis off 

    saveas(gcf,['C:\image750\??????\',num2str(i1),'.jpg']); 

end 

% %% ?? 

% clearvars -except signalset Lenset signalsper namedelay 

% data=signalset; 

% [m,n2]=size(data); 

% cd 'D:\localisation system + machine learning algorithm\laser 

welding analysis' 

% fs=50000; 

% for i=1:1:m 

%     d=data(i,1:Lenset(i)); 

%     i1=i+namedelay; 

%      

%     x=d; 

%     Length=length(x); 

%     framlen = 100; 

%     M=fs*framlen/1000; 

%     m = mod(Length,M); 

%     if m >= M/2 % ?? 

%         % ?????? 

%         x = [x,zeros(1,M-m)]; 

%         % ???????? 

%         Length = length(x); 

%     else   % ?m < M/2??????????? 

%         % l?Length/M????? 

%         l = floor(Length/M); 
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%         % ?????? 

%         x=x'; 

%         x = x(1:M*l,1); 

%         % ???????? 

%         Length = length(x); 

%     end 

%     % ?????????? 

%     N = Length/M; 

%     %%------------------------?????------------- 

%     s = zeros(1,N); 

%     % N???????????spl??? 

%     spl = zeros(1,N); 

%     for k = 1:N 

%         % ???k??? 

%         s =x((k-1)*M + 1:k*M); 

%         % ???k???????? 

%         spl(1,k) = SPLCal(s,fs,framlen); 

%     end 

%     %%------------??------ 

%     t = 1:Length; 

%     SPL = zeros(1,Length); 

%     for r = 1:N 

%         SPL(1,(r-1)*M+1:r*M) = spl(r); 

%     end 

%      

%     plot(t/fs,x); 

%     axis off 

%     saveas(gcf,['D:\image\??\',num2str(i1),'.jpg']); 

% end 

% 

% ??? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

      x=d; 

    Length=length(x); 

    framlen = 100; 
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    M=fs*framlen/1000; 

    m = mod(Length,M); 

    if m >= M/2 % ?? 

        % ?????? 

        x = [x,zeros(1,M-m)]; 

        % ???????? 

        Length = length(x); 

    else   % ?m < M/2??????????? 

        % l?Length/M????? 

        l = floor(Length/M); 

        % ?????? 

        x=x'; 

        x = x(1:M*l,1); 

        % ???????? 

        Length = length(x); 

    end 

    % ?????????? 

    N = Length/M; 

    %%------------------------?????------------- 

    s = zeros(1,N); 

    % N???????????spl??? 

    spl = zeros(1,N); 

    for k = 1:N 

        % ???k??? 

        s =x((k-1)*M + 1:k*M); 

        % ???k???????? 

        spl(1,k) = SPLCal(s,fs,framlen); 

    end 

    %%------------??------ 

    t = 1:Length; 

    SPL = zeros(1,Length); 

    for r = 1:N 

        SPL(1,(r-1)*M+1:r*M) = spl(r); 

    end 

     

    stairs(t/fs,SPL,'r'); 

    axis off 

    saveas(gcf,['C:\image750\???\',num2str(i1),'.jpg']); 

end 

% amp_pks 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 
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cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    f=fft_sonar; 

    fft_amp=abs(f); 

    amp_pks = [];   %???? 

    amp_pkfs = [];  %????????? 

    amp_max = max(fft_amp);     %????? 

    amp_min = min(fft_amp);     %????? 

    amp_median = median(fft_amp);   %????? 

    amp_mean = mean(fft_amp);       %????? 

    amp_pk = amp_max - amp_min;     %???? 

    amp_mph = amp_pk * 0.75;  

    N=length(fft_amp); 

    for i2 = 1:N 

        if amp_mph < fft_amp(i2) 

            amp_pks = [amp_pks,fft_amp(i2)]; 

            amp_pkfs = [amp_pkfs,i2 / N * fs/ 2]; 

        end 

    end 

     

    plot(amp_pks); 

    axis off 

    saveas(gcf,['C:\image750\amp_pks\',num2str(i1),'.jpg']); 

end 

% amp_pkfs 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    f=fft_sonar; 

    fft_amp=abs(f); 
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    amp_pks = [];   %???? 

    amp_pkfs = [];  %????????? 

    amp_max = max(fft_amp);     %????? 

    amp_min = min(fft_amp);     %????? 

    amp_median = median(fft_amp);   %????? 

    amp_mean = mean(fft_amp);       %????? 

    amp_pk = amp_max - amp_min;     %???? 

    amp_mph = amp_pk * 0.75;  

    N=length(fft_amp); 

    for i2 = 1:N 

        if amp_mph < fft_amp(i2) 

            amp_pks = [amp_pks,fft_amp(i2)]; 

            amp_pkfs = [amp_pkfs,i2 / N * fs/ 2]; 

        end 

    end 

     

    plot(amp_pkfs); 

    axis off 

    saveas(gcf,['C:\image750\amp_pkfs\',num2str(i1),'.jpg']); 

end 

%% amdf 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m %1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    N1=length(d); 

    amdf=zeros(N1,1); 

    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1)));%???????????? 

    end 

     

    plot(amdf); 

    axis off 

    saveas(gcf,['C:\image750\amdf\',num2str(i1),'.jpg']); 

end 

  

for i=1:1:m %1:1:m 

    d=data(i,1:Lenset(i)); 
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    i1=i+namedelay; 

     

    N1=length(d); 

    amdf=zeros(N1,1); 

    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1)));%???????????? 

    end 

     

    plot(amdf); 

    axis off 

    saveas(gcf,['C:\image750\amdf\',num2str(i1),'.jpg']); 

end 

% formantband 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    Formantband=formant(d,fs); 

     

    plot(Formantband); 

    axis off 

    saveas(gcf,['C:\image750\formantband\',num2str(i1),'.jpg']); 

end 

%% 

clear all;clc; 

tic; 

signalsper=5; 

points=8; 

signals=signalsper*points; 

signalset=zeros(signals,100000); 

Lenset=zeros(signals,1); 

maindir = 'D:\data for localisation 900mm'; 

subdir  = dir( maindir ); 

i1=1; 

load('D:\data for localisation 900mm\errorlog.mat','berrorall'); 

% 

for i = 1 : length( subdir ) 

    if( isequal( subdir( i ).name, '.' )||... 
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        isequal( subdir( i ).name, '..')||... 

        ~subdir( i ).isdir)              

        continue; 

    end 

    subdirpath = fullfile( maindir, subdir( i ).name, '*.mat' ); 

    dat = dir( subdirpath ); 

    % ?? 

    nameCell = cell(length(dat)-2,1); 

    for i2 = 1:length(dat) 

        %disp(dat(i2).name); 

        nameCell{i2} = dat(i2).name; 

    end 

    dat1 = sort_nat(nameCell); 

    % ?error?? 

    [m,n]=size(berrorall); 

    nameCell1 = cell(m,1); 

    for i3 = 1 : m 

        nameCell1{i3}=cell2mat(berrorall(i3,1)); 

    end 

    for i4 = 1 : 5%length(dat) 

        i5 = 1:1:m; 

        jg=strcmp(dat1(i4),nameCell1(i5)); 

        if sum(jg)>0 

            dat1(i4)=[]; 

        end 

    end 

    %?????????? 

    section=0000; 

    for j = 1+section : section + signalsper%length( dat ) 

        datpath = fullfile( maindir, subdir( i ).name, dat1( j )); 

        datpath = cell2mat(datpath); 

        a=cell2mat(struct2cell(load( datpath ))); 

        Len=length(a); 

        Lenset(i1)=Len; 

        signalset(i1,1:Len)=a; 

        i1=i1+1; 

         

    end 

end 

%% ???? 

clearvars -except signalset Lenset signalsper 

data=signalset; 

[m,n2]=size(data); 
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cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

namedelay=0; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    plot(d); 

    axis off 

    saveas(gcf,['C:\image900\Time domain\',num2str(i1),'.jpg']); 

end 

% ???? 

clearvars -except signalset Lenset signalsper namedelay fs 

data=signalset; 

[m,~]=size(data); 

D=[]; 

DA=[]; 

fs1=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    FFT_Data1 = fft(d); 

    power2 = abs(FFT_Data1).^2/fs1;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    [B1,~] = mapminmax(power2',0,1); 

    ff2=(1:floor(s0/2))*fs1/s0; 

    i1=i+namedelay; 

    plot(ff2,B1) 

    axis off 

    saveas(gcf,['C:\image900\Frequency domain\',num2str(i1),'.jpg']); 

end 

% ??????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

D=[]; 

DA=[]; 

fs1=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    %[popen,fopen] = periodogram(xs1,[],[],fs1); 

    [pbutt,fbutt] = periodogram(d,[],[],fs1); 

    i1=i+namedelay; 
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    plot(fbutt,20*log10(abs(pbutt))) 

    axis off 

    saveas(gcf,['C:\image900\Power spectrum 

density\',num2str(i1),'.jpg']); 

end 

% ????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

D=[]; 

DA=[]; 

Fs=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    signal = d'; 

    nw=512;ni=nw/4; 

    c=1; 

    d=FrequencyCal(signal,nw,ni); 

  

    framerate=1:60; %1:257 

    d=d(framerate,1:end); 

  

    tt=(0:ni:(length(signal)-nw))/Fs; 

    ff=(0:(nw/2))*Fs/nw; 

    ff=ff(framerate); 

    imagesc(tt,ff,20*log10(c+abs(d))); 

    i1=i+namedelay; 

    axis off 

    saveas(gcf,['C:\image900\Power spectrum\',num2str(i1),'.jpg']); 

end 

% power spectrum II 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

%namedelay=0; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    s0=length(d); 

    FFT_Data1 = fft(d); 
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    power2 = abs(FFT_Data1).^2/fs;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    plot(power2); 

    axis off 

    saveas(gcf,['C:\image900\power spectrumII\',num2str(i1),'.jpg']); 

end 

  

% periodogram 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    [pbutt,fbutt] = periodogram(d,[],[],fs); 

    plot(fbutt,20*log10(abs(pbutt)),'--'); 

    axis off 

    saveas(gcf,['C:\image900\periodogram\',num2str(i1),'.jpg']); 

end 

% pkurtosis 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    pkurtosis(d1,fs); 

    axis off 

    saveas(gcf,['C:\image900\pkurtosis\',num2str(i1),'.jpg']); 

end 

% kurtogram 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 



 

231 

 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    kurtogram(d1,fs); 

    axis off 

    saveas(gcf,['C:\image900\kurtogram\',num2str(i1),'.jpg']); 

end 

%% instfreq 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    instfreq1(d1,fs); 

    axis off 

    saveas(gcf,['C:\image900\instfreq\',num2str(i1),'.jpg']); 

end 

% hht 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    hht(d1,fs); 

    axis off 

    saveas(gcf,['C:\image900\hht\',num2str(i1),'.jpg']); 

end 

% ??? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 
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fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    cepstrum = real(ifft(log(abs(fft(d))))); 

    during_time = 1/fs:1/fs:length(d)/fs; 

    plot(during_time,cepstrum,'color',[29/255 176/255 

184/255]);ylim([0 0.01]); 

    axis off 

    saveas(gcf,['C:\image900\???\',num2str(i1),'.jpg']); 

end 

% ?????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    audioIn=d; 

    audioBuffered = 

buffer(audioIn,round(fs*0.03),round(fs*0.02),'nodelay'); 

    [p,cf] = poctave(audioBuffered,fs);%Calculate the centroid of the 

octave power spectrum over time. Plot the results. 

    centroid = spectralCentroid(p,cf); 

    t = linspace(0,size(audioIn,1)/fs,size(centroid,1)); 

    plot(t,centroid); 

    axis off 

    saveas(gcf,['C:\image900\??????\',num2str(i1),'.jpg']); 

end 

% %% ?? 

% clearvars -except signalset Lenset signalsper namedelay 

% data=signalset; 

% [m,n2]=size(data); 

% cd 'D:\localisation system + machine learning algorithm\laser 

welding analysis' 

% fs=50000; 

% for i=1:1:m 

%     d=data(i,1:Lenset(i)); 

%     i1=i+namedelay; 

%      

%     x=d; 
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%     Length=length(x); 

%     framlen = 100; 

%     M=fs*framlen/1000; 

%     m = mod(Length,M); 

%     if m >= M/2 % ?? 

%         % ?????? 

%         x = [x,zeros(1,M-m)]; 

%         % ???????? 

%         Length = length(x); 

%     else   % ?m < M/2??????????? 

%         % l?Length/M????? 

%         l = floor(Length/M); 

%         % ?????? 

%         x=x'; 

%         x = x(1:M*l,1); 

%         % ???????? 

%         Length = length(x); 

%     end 

%     % ?????????? 

%     N = Length/M; 

%     %%------------------------?????------------- 

%     s = zeros(1,N); 

%     % N???????????spl??? 

%     spl = zeros(1,N); 

%     for k = 1:N 

%         % ???k??? 

%         s =x((k-1)*M + 1:k*M); 

%         % ???k???????? 

%         spl(1,k) = SPLCal(s,fs,framlen); 

%     end 

%     %%------------??------ 

%     t = 1:Length; 

%     SPL = zeros(1,Length); 

%     for r = 1:N 

%         SPL(1,(r-1)*M+1:r*M) = spl(r); 

%     end 

%      

%     plot(t/fs,x); 

%     axis off 

%     saveas(gcf,['D:\image\??\',num2str(i1),'.jpg']); 

% end 

% 

% ??? 

clearvars -except signalset Lenset signalsper namedelay 
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data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

      x=d; 

    Length=length(x); 

    framlen = 100; 

    M=fs*framlen/1000; 

    m = mod(Length,M); 

    if m >= M/2 % ?? 

        % ?????? 

        x = [x,zeros(1,M-m)]; 

        % ???????? 

        Length = length(x); 

    else   % ?m < M/2??????????? 

        % l?Length/M????? 

        l = floor(Length/M); 

        % ?????? 

        x=x'; 

        x = x(1:M*l,1); 

        % ???????? 

        Length = length(x); 

    end 

    % ?????????? 

    N = Length/M; 

    %%------------------------?????------------- 

    s = zeros(1,N); 

    % N???????????spl??? 

    spl = zeros(1,N); 

    for k = 1:N 

        % ???k??? 

        s =x((k-1)*M + 1:k*M); 

        % ???k???????? 

        spl(1,k) = SPLCal(s,fs,framlen); 

    end 

    %%------------??------ 

    t = 1:Length; 

    SPL = zeros(1,Length); 

    for r = 1:N 
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        SPL(1,(r-1)*M+1:r*M) = spl(r); 

    end 

     

    stairs(t/fs,SPL,'r'); 

    axis off 

    saveas(gcf,['C:\image900\???\',num2str(i1),'.jpg']); 

end 

% amp_pks 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    f=fft_sonar; 

    fft_amp=abs(f); 

    amp_pks = [];   %???? 

    amp_pkfs = [];  %????????? 

    amp_max = max(fft_amp);     %????? 

    amp_min = min(fft_amp);     %????? 

    amp_median = median(fft_amp);   %????? 

    amp_mean = mean(fft_amp);       %????? 

    amp_pk = amp_max - amp_min;     %???? 

    amp_mph = amp_pk * 0.75;  

    N=length(fft_amp); 

    for i2 = 1:N 

        if amp_mph < fft_amp(i2) 

            amp_pks = [amp_pks,fft_amp(i2)]; 

            amp_pkfs = [amp_pkfs,i2 / N * fs/ 2]; 

        end 

    end 

     

    plot(amp_pks); 

    axis off 

    saveas(gcf,['C:\image900\amp_pks\',num2str(i1),'.jpg']); 

end 

% amp_pkfs 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 
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[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    f=fft_sonar; 

    fft_amp=abs(f); 

    amp_pks = [];   %???? 

    amp_pkfs = [];  %????????? 

    amp_max = max(fft_amp);     %????? 

    amp_min = min(fft_amp);     %????? 

    amp_median = median(fft_amp);   %????? 

    amp_mean = mean(fft_amp);       %????? 

    amp_pk = amp_max - amp_min;     %???? 

    amp_mph = amp_pk * 0.75;  

    N=length(fft_amp); 

    for i2 = 1:N 

        if amp_mph < fft_amp(i2) 

            amp_pks = [amp_pks,fft_amp(i2)]; 

            amp_pkfs = [amp_pkfs,i2 / N * fs/ 2]; 

        end 

    end 

     

    plot(amp_pkfs); 

    axis off 

    saveas(gcf,['C:\image900\amp_pkfs\',num2str(i1),'.jpg']); 

end 

%% amdf 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m %1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    N1=length(d); 

    amdf=zeros(N1,1); 
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    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1)));%???????????? 

    end 

     

    plot(amdf); 

    axis off 

    saveas(gcf,['C:\image900\amdf\',num2str(i1),'.jpg']); 

end 

  

for i=1:1:m %1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    N1=length(d); 

    amdf=zeros(N1,1); 

    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1)));%???????????? 

    end 

     

    plot(amdf); 

    axis off 

    saveas(gcf,['C:\image900\amdf\',num2str(i1),'.jpg']); 

end 

% formantband 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    Formantband=formant(d,fs); 

     

    plot(Formantband); 

    axis off 

    saveas(gcf,['C:\image900\formantband\',num2str(i1),'.jpg']); 

end 

%% 

clear all;clc; 

tic; 

signalsper=5; 
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points=8; 

signals=signalsper*points; 

signalset=zeros(signals,100000); 

Lenset=zeros(signals,1); 

maindir = 'D:\data for localisation 1050mm'; 

subdir  = dir( maindir ); 

i1=1; 

load('D:\data for localisation 1050mm\errorlog.mat','berrorall'); 

% 

for i = 1 : length( subdir ) 

    if( isequal( subdir( i ).name, '.' )||... 

        isequal( subdir( i ).name, '..')||... 

        ~subdir( i ).isdir)              

        continue; 

    end 

    subdirpath = fullfile( maindir, subdir( i ).name, '*.mat' ); 

    dat = dir( subdirpath ); 

    % ?? 

    nameCell = cell(length(dat)-2,1); 

    for i2 = 1:length(dat) 

        %disp(dat(i2).name); 

        nameCell{i2} = dat(i2).name; 

    end 

    dat1 = sort_nat(nameCell); 

    % ?error?? 

    [m,n]=size(berrorall); 

    nameCell1 = cell(m,1); 

    for i3 = 1 : m 

        nameCell1{i3}=cell2mat(berrorall(i3,1)); 

    end 

    for i4 = 1 : 5%length(dat) 

        i5 = 1:1:m; 

        jg=strcmp(dat1(i4),nameCell1(i5)); 

        if sum(jg)>0 

            dat1(i4)=[]; 

        end 

    end 

    %?????????? 

    section=0000; 

    for j = 1+section : section + signalsper%length( dat ) 

        datpath = fullfile( maindir, subdir( i ).name, dat1( j )); 

        datpath = cell2mat(datpath); 

        a=cell2mat(struct2cell(load( datpath ))); 

        Len=length(a); 
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        Lenset(i1)=Len; 

        signalset(i1,1:Len)=a; 

        i1=i1+1; 

         

    end 

end 

%% ???? 

clearvars -except signalset Lenset signalsper 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

namedelay=0; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    plot(d); 

    axis off 

    saveas(gcf,['C:\image1050\Time domain\',num2str(i1),'.jpg']); 

end 

% ???? 

clearvars -except signalset Lenset signalsper namedelay fs 

data=signalset; 

[m,~]=size(data); 

D=[]; 

DA=[]; 

fs1=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    FFT_Data1 = fft(d); 

    power2 = abs(FFT_Data1).^2/fs1;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    [B1,~] = mapminmax(power2',0,1); 

    ff2=(1:floor(s0/2))*fs1/s0; 

    i1=i+namedelay; 

    plot(ff2,B1) 

    axis off 

    saveas(gcf,['C:\image1050\Frequency 

domain\',num2str(i1),'.jpg']); 

end 

% ??????? 

clearvars -except signalset Lenset signalsper namedelay 
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data=signalset; 

[m,n2]=size(data); 

D=[]; 

DA=[]; 

fs1=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    %[popen,fopen] = periodogram(xs1,[],[],fs1); 

    [pbutt,fbutt] = periodogram(d,[],[],fs1); 

    i1=i+namedelay; 

    plot(fbutt,20*log10(abs(pbutt))) 

    axis off 

    saveas(gcf,['C:\image1050\Power spectrum 

density\',num2str(i1),'.jpg']); 

end 

% ????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

D=[]; 

DA=[]; 

Fs=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    signal = d'; 

    nw=512;ni=nw/4; 

    c=1; 

    d=FrequencyCal(signal,nw,ni); 

  

    framerate=1:60; %1:257 

    d=d(framerate,1:end); 

  

    tt=(0:ni:(length(signal)-nw))/Fs; 

    ff=(0:(nw/2))*Fs/nw; 

    ff=ff(framerate); 

    imagesc(tt,ff,20*log10(c+abs(d))); 

    i1=i+namedelay; 

    axis off 

    saveas(gcf,['C:\image1050\Power spectrum\',num2str(i1),'.jpg']); 

end 

% power spectrum II 

clearvars -except signalset Lenset signalsper namedelay 
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data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

%namedelay=0; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    s0=length(d); 

    FFT_Data1 = fft(d); 

    power2 = abs(FFT_Data1).^2/fs;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    plot(power2); 

    axis off 

    saveas(gcf,['C:\image1050\power 

spectrumII\',num2str(i1),'.jpg']); 

end 

  

% periodogram 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    [pbutt,fbutt] = periodogram(d,[],[],fs); 

    plot(fbutt,20*log10(abs(pbutt)),'--'); 

    axis off 

    saveas(gcf,['C:\image1050\periodogram\',num2str(i1),'.jpg']); 

end 

% pkurtosis 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 
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    d1=d'; 

    pkurtosis(d1,fs); 

    axis off 

    saveas(gcf,['C:\image1050\pkurtosis\',num2str(i1),'.jpg']); 

end 

% kurtogram 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    kurtogram(d1,fs); 

    axis off 

    saveas(gcf,['C:\image1050\kurtogram\',num2str(i1),'.jpg']); 

end 

%% instfreq 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    instfreq1(d1,fs); 

    axis off 

    saveas(gcf,['C:\image1050\instfreq\',num2str(i1),'.jpg']); 

end 

% hht 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 
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    i1=i+namedelay; 

    d1=d'; 

    hht(d1,fs); 

    axis off 

    saveas(gcf,['C:\image1050\hht\',num2str(i1),'.jpg']); 

end 

% ??? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    cepstrum = real(ifft(log(abs(fft(d))))); 

    during_time = 1/fs:1/fs:length(d)/fs; 

    plot(during_time,cepstrum,'color',[29/255 176/255 

184/255]);ylim([0 0.01]); 

    axis off 

    saveas(gcf,['C:\image1050\???\',num2str(i1),'.jpg']); 

end 

% ?????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    audioIn=d; 

    audioBuffered = 

buffer(audioIn,round(fs*0.03),round(fs*0.02),'nodelay'); 

    [p,cf] = poctave(audioBuffered,fs);%Calculate the centroid of the 

octave power spectrum over time. Plot the results. 

    centroid = spectralCentroid(p,cf); 

    t = linspace(0,size(audioIn,1)/fs,size(centroid,1)); 

    plot(t,centroid); 

    axis off 

    saveas(gcf,['C:\image1050\??????\',num2str(i1),'.jpg']); 

end 
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% %% ?? 

% clearvars -except signalset Lenset signalsper namedelay 

% data=signalset; 

% [m,n2]=size(data); 

% cd 'D:\localisation system + machine learning algorithm\laser 

welding analysis' 

% fs=50000; 

% for i=1:1:m 

%     d=data(i,1:Lenset(i)); 

%     i1=i+namedelay; 

%      

%     x=d; 

%     Length=length(x); 

%     framlen = 100; 

%     M=fs*framlen/1000; 

%     m = mod(Length,M); 

%     if m >= M/2 % ?? 

%         % ?????? 

%         x = [x,zeros(1,M-m)]; 

%         % ???????? 

%         Length = length(x); 

%     else   % ?m < M/2??????????? 

%         % l?Length/M????? 

%         l = floor(Length/M); 

%         % ?????? 

%         x=x'; 

%         x = x(1:M*l,1); 

%         % ???????? 

%         Length = length(x); 

%     end 

%     % ?????????? 

%     N = Length/M; 

%     %%------------------------?????------------- 

%     s = zeros(1,N); 

%     % N???????????spl??? 

%     spl = zeros(1,N); 

%     for k = 1:N 

%         % ???k??? 

%         s =x((k-1)*M + 1:k*M); 

%         % ???k???????? 

%         spl(1,k) = SPLCal(s,fs,framlen); 

%     end 

%     %%------------??------ 

%     t = 1:Length; 
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%     SPL = zeros(1,Length); 

%     for r = 1:N 

%         SPL(1,(r-1)*M+1:r*M) = spl(r); 

%     end 

%      

%     plot(t/fs,x); 

%     axis off 

%     saveas(gcf,['D:\image\??\',num2str(i1),'.jpg']); 

% end 

% 

% ??? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

      x=d; 

    Length=length(x); 

    framlen = 100; 

    M=fs*framlen/1000; 

    m = mod(Length,M); 

    if m >= M/2 % ?? 

        % ?????? 

        x = [x,zeros(1,M-m)]; 

        % ???????? 

        Length = length(x); 

    else   % ?m < M/2??????????? 

        % l?Length/M????? 

        l = floor(Length/M); 

        % ?????? 

        x=x'; 

        x = x(1:M*l,1); 

        % ???????? 

        Length = length(x); 

    end 

    % ?????????? 

    N = Length/M; 

    %%------------------------?????------------- 

    s = zeros(1,N); 
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    % N???????????spl??? 

    spl = zeros(1,N); 

    for k = 1:N 

        % ???k??? 

        s =x((k-1)*M + 1:k*M); 

        % ???k???????? 

        spl(1,k) = SPLCal(s,fs,framlen); 

    end 

    %%------------??------ 

    t = 1:Length; 

    SPL = zeros(1,Length); 

    for r = 1:N 

        SPL(1,(r-1)*M+1:r*M) = spl(r); 

    end 

     

    stairs(t/fs,SPL,'r'); 

    axis off 

    saveas(gcf,['C:\image1050\???\',num2str(i1),'.jpg']); 

end 

% amp_pks 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    f=fft_sonar; 

    fft_amp=abs(f); 

    amp_pks = [];   %???? 

    amp_pkfs = [];  %????????? 

    amp_max = max(fft_amp);     %????? 

    amp_min = min(fft_amp);     %????? 

    amp_median = median(fft_amp);   %????? 

    amp_mean = mean(fft_amp);       %????? 

    amp_pk = amp_max - amp_min;     %???? 

    amp_mph = amp_pk * 0.75;  

    N=length(fft_amp); 

    for i2 = 1:N 

        if amp_mph < fft_amp(i2) 
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            amp_pks = [amp_pks,fft_amp(i2)]; 

            amp_pkfs = [amp_pkfs,i2 / N * fs/ 2]; 

        end 

    end 

     

    plot(amp_pks); 

    axis off 

    saveas(gcf,['C:\image1050\amp_pks\',num2str(i1),'.jpg']); 

end 

% amp_pkfs 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    f=fft_sonar; 

    fft_amp=abs(f); 

    amp_pks = [];   %???? 

    amp_pkfs = [];  %????????? 

    amp_max = max(fft_amp);     %????? 

    amp_min = min(fft_amp);     %????? 

    amp_median = median(fft_amp);   %????? 

    amp_mean = mean(fft_amp);       %????? 

    amp_pk = amp_max - amp_min;     %???? 

    amp_mph = amp_pk * 0.75;  

    N=length(fft_amp); 

    for i2 = 1:N 

        if amp_mph < fft_amp(i2) 

            amp_pks = [amp_pks,fft_amp(i2)]; 

            amp_pkfs = [amp_pkfs,i2 / N * fs/ 2]; 

        end 

    end 

     

    plot(amp_pkfs); 

    axis off 

    saveas(gcf,['C:\image1050\amp_pkfs\',num2str(i1),'.jpg']); 

end 

%% amdf 
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clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m %1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    N1=length(d); 

    amdf=zeros(N1,1); 

    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1)));%???????????? 

    end 

     

    plot(amdf); 

    axis off 

    saveas(gcf,['C:\image1050\amdf\',num2str(i1),'.jpg']); 

end 

  

for i=1:1:m %1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    N1=length(d); 

    amdf=zeros(N1,1); 

    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1)));%???????????? 

    end 

     

    plot(amdf); 

    axis off 

    saveas(gcf,['C:\image1050\amdf\',num2str(i1),'.jpg']); 

end 

% formantband 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 
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    i1=i+namedelay; 

     

    Formantband=formant(d,fs); 

     

    plot(Formantband); 

    axis off 

    saveas(gcf,['C:\image1050\formantband\',num2str(i1),'.jpg']); 

end 

%% 

clear all;clc; 

tic; 

signalsper=5; 

points=8; 

signals=signalsper*points; 

signalset=zeros(signals,100000); 

Lenset=zeros(signals,1); 

maindir = 'D:\data for localisation 1100mm'; 

subdir  = dir( maindir ); 

i1=1; 

load('D:\data for localisation 1100mm\errorlog.mat','berrorall'); 

% 

for i = 1 : length( subdir ) 

    if( isequal( subdir( i ).name, '.' )||... 

        isequal( subdir( i ).name, '..')||... 

        ~subdir( i ).isdir)              

        continue; 

    end 

    subdirpath = fullfile( maindir, subdir( i ).name, '*.mat' ); 

    dat = dir( subdirpath ); 

    % ?? 

    nameCell = cell(length(dat)-2,1); 

    for i2 = 1:length(dat) 

        %disp(dat(i2).name); 

        nameCell{i2} = dat(i2).name; 

    end 

    dat1 = sort_nat(nameCell); 

    % ?error?? 

    [m,n]=size(berrorall); 

    nameCell1 = cell(m,1); 

    for i3 = 1 : m 

        nameCell1{i3}=cell2mat(berrorall(i3,1)); 

    end 

    for i4 = 1 : 5%length(dat) 

        i5 = 1:1:m; 
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        jg=strcmp(dat1(i4),nameCell1(i5)); 

        if sum(jg)>0 

            dat1(i4)=[]; 

        end 

    end 

    %?????????? 

    section=0000; 

    for j = 1+section : section + signalsper%length( dat ) 

        datpath = fullfile( maindir, subdir( i ).name, dat1( j )); 

        datpath = cell2mat(datpath); 

        a=cell2mat(struct2cell(load( datpath ))); 

        Len=length(a); 

        Lenset(i1)=Len; 

        signalset(i1,1:Len)=a; 

        i1=i1+1; 

         

    end 

end 

%% ???? 

clearvars -except signalset Lenset signalsper 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

namedelay=0; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    plot(d); 

    axis off 

    saveas(gcf,['C:\image1100\Time domain\',num2str(i1),'.jpg']); 

end 

% ???? 

clearvars -except signalset Lenset signalsper namedelay fs 

data=signalset; 

[m,~]=size(data); 

D=[]; 

DA=[]; 

fs1=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    FFT_Data1 = fft(d); 
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    power2 = abs(FFT_Data1).^2/fs1;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    [B1,~] = mapminmax(power2',0,1); 

    ff2=(1:floor(s0/2))*fs1/s0; 

    i1=i+namedelay; 

    plot(ff2,B1) 

    axis off 

    saveas(gcf,['C:\image1100\Frequency 

domain\',num2str(i1),'.jpg']); 

end 

% ??????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

D=[]; 

DA=[]; 

fs1=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    %[popen,fopen] = periodogram(xs1,[],[],fs1); 

    [pbutt,fbutt] = periodogram(d,[],[],fs1); 

    i1=i+namedelay; 

    plot(fbutt,20*log10(abs(pbutt))) 

    axis off 

    saveas(gcf,['C:\image1100\Power spectrum 

density\',num2str(i1),'.jpg']); 

end 

% ????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

D=[]; 

DA=[]; 

Fs=50000; 

for i=1:1:m 

    s0=Lenset(i); 

    d=data(i,1:s0); 

    signal = d'; 

    nw=512;ni=nw/4; 

    c=1; 

    d=FrequencyCal(signal,nw,ni); 

  

    framerate=1:60; %1:257 



 

252 

 

    d=d(framerate,1:end); 

  

    tt=(0:ni:(length(signal)-nw))/Fs; 

    ff=(0:(nw/2))*Fs/nw; 

    ff=ff(framerate); 

    imagesc(tt,ff,20*log10(c+abs(d))); 

    i1=i+namedelay; 

    axis off 

    saveas(gcf,['C:\image1100\Power spectrum\',num2str(i1),'.jpg']); 

end 

% power spectrum II 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

%namedelay=0; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    s0=length(d); 

    FFT_Data1 = fft(d); 

    power2 = abs(FFT_Data1).^2/fs;   % power spectrum 

    power2 = power2(1:floor(s0/2)); 

    plot(power2); 

    axis off 

    saveas(gcf,['C:\image1100\power 

spectrumII\',num2str(i1),'.jpg']); 

end 

  

% periodogram 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    [pbutt,fbutt] = periodogram(d,[],[],fs); 

    plot(fbutt,20*log10(abs(pbutt)),'--'); 

    axis off 
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    saveas(gcf,['C:\image1100\periodogram\',num2str(i1),'.jpg']); 

end 

% pkurtosis 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    pkurtosis(d1,fs); 

    axis off 

    saveas(gcf,['C:\image1100\pkurtosis\',num2str(i1),'.jpg']); 

end 

% kurtogram 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    kurtogram(d1,fs); 

    axis off 

    saveas(gcf,['C:\image1100\kurtogram\',num2str(i1),'.jpg']); 

end 

%% instfreq 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    instfreq1(d1,fs); 
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    axis off 

    saveas(gcf,['C:\image1100\instfreq\',num2str(i1),'.jpg']); 

end 

% hht 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    d1=d'; 

    hht(d1,fs); 

    axis off 

    saveas(gcf,['C:\image1100\hht\',num2str(i1),'.jpg']); 

end 

% ??? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

    cepstrum = real(ifft(log(abs(fft(d))))); 

    during_time = 1/fs:1/fs:length(d)/fs; 

    plot(during_time,cepstrum,'color',[29/255 176/255 

184/255]);ylim([0 0.01]); 

    axis off 

    saveas(gcf,['C:\image1100\???\',num2str(i1),'.jpg']); 

end 

% ?????? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 
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    i1=i+namedelay; 

    audioIn=d; 

    audioBuffered = 

buffer(audioIn,round(fs*0.03),round(fs*0.02),'nodelay'); 

    [p,cf] = poctave(audioBuffered,fs);%Calculate the centroid of the 

octave power spectrum over time. Plot the results. 

    centroid = spectralCentroid(p,cf); 

    t = linspace(0,size(audioIn,1)/fs,size(centroid,1)); 

    plot(t,centroid); 

    axis off 

    saveas(gcf,['C:\image1100\??????\',num2str(i1),'.jpg']); 

end 

% %% ?? 

% clearvars -except signalset Lenset signalsper namedelay 

% data=signalset; 

% [m,n2]=size(data); 

% cd 'D:\localisation system + machine learning algorithm\laser 

welding analysis' 

% fs=50000; 

% for i=1:1:m 

%     d=data(i,1:Lenset(i)); 

%     i1=i+namedelay; 

%      

%     x=d; 

%     Length=length(x); 

%     framlen = 100; 

%     M=fs*framlen/1000; 

%     m = mod(Length,M); 

%     if m >= M/2 % ?? 

%         % ?????? 

%         x = [x,zeros(1,M-m)]; 

%         % ???????? 

%         Length = length(x); 

%     else   % ?m < M/2??????????? 

%         % l?Length/M????? 

%         l = floor(Length/M); 

%         % ?????? 

%         x=x'; 

%         x = x(1:M*l,1); 

%         % ???????? 

%         Length = length(x); 

%     end 

%     % ?????????? 

%     N = Length/M; 
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%     %%------------------------?????------------- 

%     s = zeros(1,N); 

%     % N???????????spl??? 

%     spl = zeros(1,N); 

%     for k = 1:N 

%         % ???k??? 

%         s =x((k-1)*M + 1:k*M); 

%         % ???k???????? 

%         spl(1,k) = SPLCal(s,fs,framlen); 

%     end 

%     %%------------??------ 

%     t = 1:Length; 

%     SPL = zeros(1,Length); 

%     for r = 1:N 

%         SPL(1,(r-1)*M+1:r*M) = spl(r); 

%     end 

%      

%     plot(t/fs,x); 

%     axis off 

%     saveas(gcf,['D:\image\??\',num2str(i1),'.jpg']); 

% end 

% 

% ??? 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

      x=d; 

    Length=length(x); 

    framlen = 100; 

    M=fs*framlen/1000; 

    m = mod(Length,M); 

    if m >= M/2 % ?? 

        % ?????? 

        x = [x,zeros(1,M-m)]; 

        % ???????? 

        Length = length(x); 

    else   % ?m < M/2??????????? 
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        % l?Length/M????? 

        l = floor(Length/M); 

        % ?????? 

        x=x'; 

        x = x(1:M*l,1); 

        % ???????? 

        Length = length(x); 

    end 

    % ?????????? 

    N = Length/M; 

    %%------------------------?????------------- 

    s = zeros(1,N); 

    % N???????????spl??? 

    spl = zeros(1,N); 

    for k = 1:N 

        % ???k??? 

        s =x((k-1)*M + 1:k*M); 

        % ???k???????? 

        spl(1,k) = SPLCal(s,fs,framlen); 

    end 

    %%------------??------ 

    t = 1:Length; 

    SPL = zeros(1,Length); 

    for r = 1:N 

        SPL(1,(r-1)*M+1:r*M) = spl(r); 

    end 

     

    stairs(t/fs,SPL,'r'); 

    axis off 

    saveas(gcf,['C:\image1100\???\',num2str(i1),'.jpg']); 

end 

% amp_pks 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    f=fft_sonar; 
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    fft_amp=abs(f); 

    amp_pks = [];   %???? 

    amp_pkfs = [];  %????????? 

    amp_max = max(fft_amp);     %????? 

    amp_min = min(fft_amp);     %????? 

    amp_median = median(fft_amp);   %????? 

    amp_mean = mean(fft_amp);       %????? 

    amp_pk = amp_max - amp_min;     %???? 

    amp_mph = amp_pk * 0.75;  

    N=length(fft_amp); 

    for i2 = 1:N 

        if amp_mph < fft_amp(i2) 

            amp_pks = [amp_pks,fft_amp(i2)]; 

            amp_pkfs = [amp_pkfs,i2 / N * fs/ 2]; 

        end 

    end 

     

    plot(amp_pks); 

    axis off 

    saveas(gcf,['C:\image1100\amp_pks\',num2str(i1),'.jpg']); 

end 

% amp_pkfs 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    [~,f_range,fft_sonar] = positiveFFT(d,fs); 

    f=fft_sonar; 

    fft_amp=abs(f); 

    amp_pks = [];   %???? 

    amp_pkfs = [];  %????????? 

    amp_max = max(fft_amp);     %????? 

    amp_min = min(fft_amp);     %????? 

    amp_median = median(fft_amp);   %????? 

    amp_mean = mean(fft_amp);       %????? 

    amp_pk = amp_max - amp_min;     %???? 

    amp_mph = amp_pk * 0.75;  

    N=length(fft_amp); 
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    for i2 = 1:N 

        if amp_mph < fft_amp(i2) 

            amp_pks = [amp_pks,fft_amp(i2)]; 

            amp_pkfs = [amp_pkfs,i2 / N * fs/ 2]; 

        end 

    end 

     

    plot(amp_pkfs); 

    axis off 

    saveas(gcf,['C:\image1100\amp_pkfs\',num2str(i1),'.jpg']); 

end 

%% amdf 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m %1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    N1=length(d); 

    amdf=zeros(N1,1); 

    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1)));%???????????? 

    end 

     

    plot(amdf); 

    axis off 

    saveas(gcf,['C:\image1100\amdf\',num2str(i1),'.jpg']); 

end 

  

for i=1:1:m %1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    N1=length(d); 

    amdf=zeros(N1,1); 

    for k = 1:length(d) 

        amdf(k) = sum(abs(d(k:end)-d(1:end-k+1)));%???????????? 

    end 

     

    plot(amdf); 
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    axis off 

    saveas(gcf,['C:\image1100\amdf\',num2str(i1),'.jpg']); 

end 

% formantband 

clearvars -except signalset Lenset signalsper namedelay 

data=signalset; 

[m,n2]=size(data); 

cd 'D:\localisation system + machine learning algorithm\laser welding 

analysis' 

fs=50000; 

for i=1:1:m 

    d=data(i,1:Lenset(i)); 

    i1=i+namedelay; 

     

    Formantband=formant(d,fs); 

     

    plot(Formantband); 

    axis off 

    saveas(gcf,['C:\image1100\formantband\',num2str(i1),'.jpg']); 

end 
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Appendix B DAQ-2010 configuration and codes  

B.1 Signal acquisition with DAQ-2010 

B.1.1 The flow chart of the DAQ-2010 data acquisition card 

 

Figure B-1 DAQ-2010 configurations 
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B.1.2 API functions 

The DAQ-2010 has a powerful sampling functionality. The data acquisition card 

samples acoustic signals in the two-dimensional and three-dimensional localisation 

tests.  

The data acquisition card is controlled with MATLAB Application Programming 

Interface (API) functions. The operational code is as follows: 

function datacollectionforlocalisation 

clc; 

clear all; 

close all; 

% Profile on 

addpath('D:\MATLAB.m'); 

loadlibrary('D:\MATLAB.m\D2KDask64.dll','D:\MATLAB.m\D2KDask64.h') 

LIB = 'D2KDask64'; 

libfunctions D2KDask64 -full; 

% running counter 

load('D:\DAQ-2010 MATLAB MEX\rounds_of_rawdata','rounds_of_rawdata'); 

sequence=find(rounds_of_rawdata==0); 

rounds_of_rawdata(sequence(1))=1; 

save('D:\DAQ-2010 MATLAB 

MEX\rounds_of_rawdata.mat','rounds_of_rawdata'); 

% variable name 

global name 

name=['sample_40dB_testID_',int2str(sequence(1))]; 

%% 

card_type = D2KDASK.DAQ_2010;  

card_num = uint16(0); 

Channel_Index = uint16(D2KDASK.All_Channels);  

Channel = uint16(4);  

Last_Channel = Channel - 1; 

AdRange_RefGnd = D2KDASK.AD_B_10_V; 

SyncMode = D2KDASK.ASYNCH_OP;  

ConfigCtrl = 

bitor(D2KDASK.DAQ2K_AI_ADSTARTSRC_Int,D2KDASK.DAQ2K_AI_ADCONVSRC_Int)

;  

TrigCtrl = D2KDASK.DAQ2K_AI_TRGMOD_POST|D2KDASK.DAQ2K_AI_TRGSRC_SOFT; 

MidOrDlyScans = uint32(0); 

MCnt = uint32(0); 

ReTrgCnt = uint32(1); 

P2010_TIMEBASE = D2KDASK.P2010_TIMEBASE; 
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% Sampling rate control/Scan for single channel while sample for 

multiple 

ScanIntrv = uint32(200)*uint32(Channel);  

SampIntrv = uint32(200);  

ScanningRate = double(P2010_TIMEBASE / ScanIntrv);  

SamplingRate = double(P2010_TIMEBASE / SampIntrv);  

% Size per upload 

AI_ReadCount = uint32(ScanningRate);  

colum = 

14500; %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Data matrix 

voltageArray = zeros(AI_ReadCount*uint32(Channel),1,'double');  

buffer0 = zeros(AI_ReadCount*uint32(Channel),1,'uint16'); 

buffer1 = zeros(AI_ReadCount*uint32(Channel),1,'uint16'); 

AutoReset = uint32(1); 

StartPos = uint32(0); 

AccessCnt = uint32(0);  

bEnable = uint32(1);  

Stopped = uint32(0);  

HalfReady = uint32(0);  

bufferID0 = uint16(0); 

bufferID1 = uint16(0); 

% matfile setting 

v1=zeros(AI_ReadCount,colum); 

%% 

card = calllib(LIB,'D2K_Register_Card',card_type,card_num); 

if card < 0 

        unloadlibrary(LIB); 

        error = card; 

        fprintf('D2K_Register_Card failed with error 

code %d\n',error); 

        return; 

end 

error = 

calllib(LIB,'D2K_AI_CH_Config',card,Channel_Index,AdRange_RefGnd); 

    if error < 0 

        calllib ('dasklib','D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_CH_Config failed with error code %d\n',error); 

        return; 

    end 
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error = 

calllib(LIB,'D2K_AI_Config',0,ConfigCtrl,TrigCtrl,MidOrDlyScans,MCnt,

ReTrgCnt,AutoReset); 

    if error < 0 

        calllib ('dasklib','D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_Config failed with error code %d\n',error); 

        return; 

    end 

error = calllib(LIB,'D2K_AI_AsyncDblBufferMode',0,bEnable); 

    if error < 0 

        calllib(LIB,'D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_AsyncDblBufferMode failed with error 

code %d\n',error); 

        return; 

    end 

%% 

pbuffer0 = libpointer('uint16Ptr',buffer0);  

[error,tpbuffer0,bufferID0] = 

calllib(LIB,'D2K_AI_ContBufferSetup',card,pbuffer0,AI_ReadCount*uint3

2(Channel),bufferID0); 

if error < 0 

        calllib(LIB,'D2K_AI_ContBufferReset',card); 

        calllib(LIB,'D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_ContBufferSetup failed with error 

code %d\n',error); 

        return; 

end 

  

pbuffer1 = libpointer('uint16Ptr',buffer1); 

[error,tpbuffer1,bufferID1] = 

calllib(LIB,'D2K_AI_ContBufferSetup',card,pbuffer1,AI_ReadCount*uint3

2(Channel),bufferID1); 

if error < 0 

        calllib(LIB,'D2K_AI_ContBufferReset',card); 

        calllib(LIB,'D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_ContBufferSetup failed with error 

code %d\n',error); 

        return; 

end 
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error = 

calllib(LIB,'D2K_AI_ContScanChannels',card,Last_Channel,bufferID0,AI_

ReadCount,ScanIntrv,SampIntrv,SyncMode); 

if error < 0 

        calllib(LIB,'D2K_AI_AsyncClear',card,StartPos,AccessCnt); 

        calllib(LIB,'D2K_AI_ContBufferReset',card); 

        calllib(LIB,'D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_ContScanChannel failed with error 

code %d\n',error); 

        return; 

end 

%%  

margin = 10.0;  

TimeOut = double(AI_ReadCount*uint32(Channel)) / SamplingRate + 

margin;  

tic;  

index = 0;  

TimeLeft = TimeOut - toc; 

fprintf('Start AI, press anykey on figure to stop\n'); 

figh = figure('keypressfcn',@(obj,ev) set(obj,'userdata',1)); 

bcounting=0; 

while isempty(get(figh,'userdata')) && TimeLeft >= 0 

    pause(0.1) 

    [error,HalfReady,Stopped] = 

calllib(LIB,'D2K_AI_AsyncDblBufferHalfReady',card,HalfReady,Stopped); 

    if error < 0 

        calllib(LIB,'D2K_AI_AsyncClear',card,StartPos,AccessCnt); 

        calllib(LIB,'D2K_AI_ContBufferReset',card); 

        calllib(LIB,'D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_AsyncDblBufferHalfReady failed with error 

code %d\n',error); 

        return; 

    end 

    if HalfReady == true 

        TimeLeft = TimeOut-toc; 

        error = calllib(LIB,'D2K_AI_AsyncDblBufferHandled',card); 

        if error < 0 

            calllib(LIB,'D2K_AI_AsyncClear',card,AccessCnt); 

            calllib(LIB,'D2K_Release_Card',card); 

            unloadlibrary(LIB); 

            fprintf('D2K_AI_AsyncDblBufferHandled failed with error 

code %d\n',error); 
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            return; 

        end 

        if index == 0 

            buffer0 = pbuffer0.Value; 

            [error,buffer0,voltageArray] = 

calllib(LIB,'D2K_AI_ContVScale',card,AdRange_RefGnd,buffer0,voltageAr

ray,AI_ReadCount*uint32(Channel)); 

            index = 1; 

            fprintf('Buffer 0 HalfReady, press anykey on figure to 

stop\n'); 

        else 

            buffer1 = pbuffer1.Value; 

            [error,buffer1,voltageArray] = 

calllib(LIB,'D2K_AI_ContVScale',card,AdRange_RefGnd,buffer1,voltageAr

ray,AI_ReadCount*uint32(Channel)); 

            index = 0; 

            fprintf('Buffer 1 HalfReady, press anykey on figure to 

stop\n'); 

        end 

        % v storage 

        data=stack(voltageArray); 

        tic 

        bcounting=bcounting+1; 

        fprintf('Writing %d of %d\n',bcounting,colum); 

        v1(:,bcounting) = data; 

        toc 

    end 

    if bcounting == colum 

        fprintf('voltageArray full\n'); 

        break; 

    end 

    if Stopped == true 

        break; 

    end 

    TimeLeft = TimeOut - toc; 

    pause(0.1) 

end 

fprintf('Stop AI\n'); 

if TimeLeft < 0 

        calllib(LIB,'D2K_AI_AsyncClear',card,StartPos,AccessCnt); 

        calllib(LIB,'D2K_AI_ContBufferReset',card); 

        calllib(LIB,'D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_AsyncCheck time out.\n'); 
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        return; 

end 

[error,StartPos,AccessCnt] = 

calllib(LIB,'D2K_AI_AsyncClear',card,StartPos,AccessCnt); 

if error < 0 

        calllib(LIB,'D2K_AI_ContBufferReset',card); 

        calllib(LIB,'D2K_Release_Card',card); 

        unloadlibrary(LIB); 

        fprintf('D2K_AI_AsyncClear failed with error 

code %d\n',error); 

        return; 

end 

if ~AutoReset 

    error = calllib(LIB,'D2K_AI_ContBufferReset',card); 

    if error < 0 

            calllib(LIB,'D2K_Release_Card',card); 

            unloadlibrary(LIB); 

            fprintf('D2K_AI_ContBufferReset failed with error 

code %d\n',error); 

            return; 

    end 

end 

calllib (LIB,'D2K_Release_Card',card); 

unloadlibrary(LIB); 

clearvars -except v1 bcounting name 

v1=v1(:,(1:bcounting)); 

if bcounting > 48 

save(['D:\DAQ-2010 MATLAB MEX\samples\',name],'v1','-v7.3'); 

end 

%% 

B.2 Signal isolation 

Acoustic signals in the collected one-dimensional signal sequence must be separated so 

acoustic samples from different locations can be processed independently. In this 

research, a signal waveform-based separation algorithm is compiled, and it achieved 

desired results. It separates acoustic signals according to the detected peak values and 

the prediction of sampling points. The code is as follows: 

function v1 = automaticfilling(v1) 

v2=v1; 

v3=v1; 

stdlen=2555000; 

margin=50000; 
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margin2=30000; 

interval=180000; 

interval2=2400000; 

interval3=300000; 

Highvoltagecontroll =0.12; 

Highvoltagecontrol2 =max(v1)-0.4;%0.4 for 1200mm, 0.30 for 1000mm 

v2(v2<Highvoltagecontroll)=0; 

v3(v3<Highvoltagecontrol2)=0; 

%% ??????-maxl,????????-maxl1 

[~,maxl]=findpeaks(v2,'minpeakdistance',interval); 

[maxv1,maxl1]=findpeaks(v3,'minpeakdistance',interval3); 

global index_of_maxl 

index_of_maxl=isempty(maxl); 

%% ?????? 

if index_of_maxl==0 

    %% ?????????-??maxl1???????? 

    %?? 

    highestsig = find(maxv1 == max(maxv1)); 

    redun = 1000; 

    while maxl1(highestsig)<180000000-interval2-750000 

        Dbound = maxl1(highestsig)+interval2+redun; 

        maxl1(maxl1 > maxl1(highestsig) & maxl1 < Dbound)=[]; 

        highestsig=highestsig+1; 

        if highestsig > length(maxl1) 

            break 

        end 

    end 

    %?? 

    highestsig = find(maxv1 == max(maxv1));%??? 

    while maxl1(highestsig)>interval2+750000 

        Dbound = maxl1(highestsig)-interval2-redun; 

        maxl1(maxl1 < maxl1(highestsig) & maxl1 > Dbound)=[]; 

        highestsig=highestsig-1; 

        if highestsig>length(maxl1) 

            highestsig=length(maxl1); 

        end 

        if highestsig < 1 

            break 

        end 

    end 

    %???? 

    maxl1(maxl1<interval2) = []; 

    Len1 = length(maxl1); 

    maxl1(maxl1>length(v1)-stdlen)=[]; 
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    %% ??????+????? 

    %maxl2=maxl1;%sigseq1=2448000; 

    load('D:\DAQ-2010 MATLAB MEX\sigseqB','sigseqB') 

    %load('D:\DAQ-2010 MATLAB MEX\sigseq_1000mm','sigseq_1000mm') 

    load('D:\DAQ-2010 MATLAB MEX\sigseq_800mm','sigseq_800mm') 

    %sigseq=sigseq_1000mm; 

    sigseq=sigseq_800mm; 

    missingpoints=zeros(1,1); 

    newpoints=zeros(1000,1); 

    pointer=1; 

    while isempty(missingpoints) == 0 

        origseq=diff(maxl1); 

        missingpoints=find(origseq > stdlen+margin); 

        i = 1:1:length(missingpoints); 

        newpoint=maxl1(missingpoints(i))+stdlen; 

        if isempty(newpoint) == 0 

            newpoints(pointer,1)=newpoint; 

        end 

        pointer=pointer+1; 

        maxl1=[maxl1',newpoint']'; 

        maxl1=sort(maxl1); 

    end 

    % new points = 1.2 and v1 splitting 

    newpoints(newpoints==0)=[]; 

    v1(newpoints)=1.2; 

    i11=length(newpoints); 

    fprintf('%d high points have been added\n',i11); 

    %% v1??-??startpoint?endpoint 

    % 1 ??????????????? 

    sigseqA=v1(maxl1(2):maxl1(4)); 

    sigseqA(sigseqA<Highvoltagecontroll)=0; 

    [~,maxl2]=findpeaks(sigseqA,'minpeakdistance',interval); 

    diffvalue=diff(maxl2); 

    Len=8;%figure; plot(sigseqA) 

    %% 

    for i1=1:Len 

        compareseq1=diffvalue(i1:Len+i1-1); 

        compareseq1(1)=1; 

        diffvalue1=compareseq1-sigseq; 

        index(i1)=sum(abs(diffvalue1)); 

    end 

    index=abs(index(1:7)); 

    startbit=find(index==min(index)); 

    startbit1=find(maxl==maxl1(2)); 
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    sigseqA=v1(maxl(startbit1+startbit):maxl(startbit1+startbit+7)); 

    sigseqA(sigseqA<Highvoltagecontroll)=0; 

    %figure;plot(sigseqA) 

%     [maxv,~]=findpeaks(sigseqA,'minpeakdistance',interval); 

%     highestsignal=find(maxv==max(maxv)); 

%     sigseqC=sigseqB+abs(sigseqB(1)); 

%     sigseqC1=sigseqC-sigseqC(highestsignal); 

    %borderstart = maxl1(2)+sigseqC1(1)-margin;% 1000mm 

    borderstart = maxl(startbit1+startbit)-margin; 

    %% 2 ??????????????? 

    Lenomaxl1=length(maxl1); 

    sigseqA=v1(maxl1(Lenomaxl1-4):maxl1(Lenomaxl1-2)); 

    sigseqA(sigseqA<Highvoltagecontroll)=0; 

    [~,maxl2]=findpeaks(sigseqA,'minpeakdistance',interval); 

    diffvalue=diff(maxl2); 

    Len=8;%figure; plot(sigseqA) 

    %% 

    for i1=1:Len 

        compareseq1=diffvalue(i1:Len+i1-1); 

        compareseq1(1)=1; 

        diffvalue1=compareseq1-sigseq; 

        index(i1)=sum(abs(diffvalue1)); 

    end 

    index=abs(index(1:7)); 

    startbit=find(index==min(index)); 

    startbit1=find(maxl==maxl1(Lenomaxl1-3)); 

    sigseqA=v1(maxl(startbit1+startbit):maxl(startbit1+startbit+7)); 

    sigseqA(sigseqA<Highvoltagecontroll)=0; 

    %figure;plot(sigseqA) 

    borderend = maxl(startbit1+startbit-1)+margin;% -

1???A????????????A 

    v1=v1(borderstart:borderend);% new v1-?????8??? 

    %%??? 

    v2=v1; 

    v3=v1; 

    v2(v2<Highvoltagecontroll)=0; 

    v3(v3<Highvoltagecontrol2)=0; 

    [~,maxl]=findpeaks(v2,'minpeakdistance',interval); % 100% 

accurate highest detection 

    [~,maxl1]=findpeaks(v3,'minpeakdistance',interval2);% discrete 

dispersion of points. 

    cycle=8; 

    lenmaxl=length(maxl); 

    lenmaxl1=length(maxl1); 



 

271 

 

    sequence=zeros(lenmaxl1+1,1); 

    sequence(lenmaxl1+1)=lenmaxl+1; 

    pointer2=1; 

    newpoints2=zeros(600,1); 

    for pointer1=1:1:lenmaxl1 

        sequence(pointer1,1)=find(maxl==maxl1(pointer1))-1; 

    end 

    while lenmaxl/cycle < lenmaxl1 

        diffvalue=diff(sequence); 

        missinggrp=(find(diffvalue<8)); 

        for i1=1:1:length(missinggrp) 

            stdset=(sigseqB+maxl1(missinggrp(i1)))';%standard grp 

            startpoint=stdset(1)-margin2; 

            endpoint=stdset(8)+margin2; 

            compset1=find(maxl>startpoint & maxl<endpoint); 

            compset=[maxl(compset1)',endpoint]'; 

            for i2 = 1:1:length(sigseq) 

                diffvalue = abs(stdset(i2) - compset(i2)); 

                if diffvalue > margin2-1 

                    newpoint2=stdset(i2); 

                    compset=[compset',newpoint2]'; 

                    compset=sort(compset); 

                    newpoints2(pointer2,1)=newpoint2; 

                end 

                pointer2=pointer2+1; 

            end 

        end 

        maxl=[maxl',newpoints2']'; 

        sort(maxl); 

        lenmaxl=length(maxl); 

    end 

    newpoints2(newpoints2==0)=[]; 

    i12=length(newpoints2); 

    fprintf('%d low points have been added\n',i12); 

    v1(newpoints2)=0.25; 

else 

    fprintf('no signals detected\n'); 

end 
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B.3 Machine learning algorithm compilation 

B.3.1 Random Forest code in Python 

# Multiple Inputs 

import keras 

from keras.utils.vis_utils import plot_model 

from keras.models import Model 

from keras.layers import Input 

from keras.layers import Dense 

from keras.layers import Flatten 

from keras.layers.convolutional import Conv2D 

from keras.layers.pooling import MaxPooling2D 

from keras.layers.merge import concatenate 

from keras.preprocessing.image import ImageDataGenerator 

from sklearn import metrics 

import os 

import pandas as pd 

import os.path 

import numpy as np 

from random import randint 

import tensorflow as tf 

from keras.backend import set_session 

import keras.backend as KTF 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, 

MaxPooling2D 

from keras.utils import np_utils 

from keras.datasets import mnist 

import cv2 

from sklearn.model_selection import train_test_split 

import matplotlib.pyplot as plt 

import time 

from keras.models import load_model 

# import seaborn as sns 

# from PIL import Image 

# os.environ["CUDA_VISIBLE_DEVICES"] = "-1" 

# os.environ["CUDA_VISIBLE_DEVICES"] = "0" 

# os.environ['KERAS_BACKEND']='tensorflow' 

config = tf.compat.v1.ConfigProto() 

config.gpu_options.allow_growth = True   

sess = tf.compat.v1.Session(config=config) 

KTF.set_session(sess) 

 

cycle = 30 
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np.random.seed(123) 

X, y = np.arange(10).reshape((5, 2)), range(5) 

labels = ['Change of centre frequency', 'Frequency domain', 'Power 

spectrum', 'Power spectrum density', 'Time domain', 

          'amdf', 'amp_pkfs', 'cepstrum', 'formantband', 'hht', 

'instfreq', 'kurtogram', 'periodogram', 'pkurtosis', 

          'power spectrumII', 'sound pressure level', 'amp_pks'] 

img_size = 60 

 

 

def get_data(data_dir): 

    data = [] 

    ydata = [] 

    for label in labels: 

        path = os.path.join(data_dir, label) 

        class_num = labels.index(label) 

        print(path) 

        for img in os.listdir(path): 

            try: 

                img_arr = cv2.imread(os.path.join(path, 

img))[..., ::-1]  # convert BGR to RGB format 

                resized_arr = cv2.resize(img_arr, (img_size, 

img_size))  # Reshaping images to preferred size 

                # data.append([resized_arr, class_num]) 

                data.append(resized_arr) 

                ydata.append(class_num) 

                # print ("class", class_num) 

            except Exception as e: 

                print(e) 

    return np.array(data), np.array(ydata) 

 

 

Xdata, Ydata = get_data("C:\CNNdata3(CNNcode-mode-10)\\1") 

X_train, X_test, y_train, y_test = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

print(y_test) 

# load pre-shuffled MNIST data 

train = get_data("C:\CNNdata3(CNNcode-mode-10)\\1") 

X_train1, X_test1, y_train1, y_test1 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train1 = np_utils.to_categorical(y_train1, 17) 

Y_test1 = np_utils.to_categorical(y_test1, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-10)\\2") 
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X_train2, X_test2, y_train2, y_test2 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train2 = np_utils.to_categorical(y_train2, 17) 

Y_test2 = np_utils.to_categorical(y_test2, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-10)\\3") 

X_train3, X_test3, y_train3, y_test3 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train3 = np_utils.to_categorical(y_train3, 17) 

Y_test3 = np_utils.to_categorical(y_test3, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-10)\\4") 

X_train4, X_test4, y_train4, y_test4 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train4 = np_utils.to_categorical(y_train4, 17) 

Y_test4 = np_utils.to_categorical(y_test4, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-10)\\5") 

X_train5, X_test5, y_train5, y_test5 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train5 = np_utils.to_categorical(y_train5, 17) 

Y_test5 = np_utils.to_categorical(y_test5, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-10)\\6") 

X_train6, X_test6, y_train6, y_test6 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train6 = np_utils.to_categorical(y_train6, 17) 

Y_test6 = np_utils.to_categorical(y_test6, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-10)\\7") 

X_train7, X_test7, y_train7, y_test7 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train7 = np_utils.to_categorical(y_train7, 17) 

Y_test7 = np_utils.to_categorical(y_test7, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-10)\\8") 

X_train8, X_test8, y_train8, y_test8 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train8 = np_utils.to_categorical(y_train8, 17) 

Y_test8 = np_utils.to_categorical(y_test8, 17) 

# first input model 

visible1 = Input(shape=(60, 60, 3)) 

conv11 = Conv2D(28, kernel_size=4, activation='relu')(visible1) 

pool11 = MaxPooling2D(pool_size=(2, 2))(conv11) 

conv12 = Conv2D(14, kernel_size=4, activation='relu')(pool11) 

pool12 = MaxPooling2D(pool_size=(2, 2))(conv12) 

flat1 = Flatten()(pool12) 

# second input model 

visible2 = Input(shape=(60, 60, 3)) 

conv21 = Conv2D(28, kernel_size=4, activation='relu')(visible2) 
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pool21 = MaxPooling2D(pool_size=(2, 2))(conv21) 

conv22 = Conv2D(14, kernel_size=4, activation='relu')(pool21) 

pool22 = MaxPooling2D(pool_size=(2, 2))(conv22) 

flat2 = Flatten()(pool22) 

# third input model 

visible3 = Input(shape=(60, 60, 3)) 

conv31 = Conv2D(28, kernel_size=4, activation='relu')(visible3) 

pool31 = MaxPooling2D(pool_size=(2, 2))(conv31) 

conv32 = Conv2D(14, kernel_size=4, activation='relu')(pool31) 

pool32 = MaxPooling2D(pool_size=(2, 2))(conv32) 

flat3 = Flatten()(pool32) 

# forth input model 

visible4 = Input(shape=(60, 60, 3)) 

conv41 = Conv2D(28, kernel_size=4, activation='relu')(visible4) 

pool41 = MaxPooling2D(pool_size=(2, 2))(conv41) 

conv42 = Conv2D(14, kernel_size=4, activation='relu')(pool41) 

pool42 = MaxPooling2D(pool_size=(2, 2))(conv42) 

flat4 = Flatten()(pool42) 

# 17th input model 

visible5 = Input(shape=(60, 60, 3)) 

conv51 = Conv2D(28, kernel_size=4, activation='relu')(visible5) 

pool51 = MaxPooling2D(pool_size=(2, 2))(conv51) 

conv52 = Conv2D(14, kernel_size=4, activation='relu')(pool51) 

pool52 = MaxPooling2D(pool_size=(2, 2))(conv52) 

flat5 = Flatten()(pool52) 

# 6th input model 

visible6 = Input(shape=(60, 60, 3)) 

conv61 = Conv2D(28, kernel_size=4, activation='relu')(visible6) 

pool61 = MaxPooling2D(pool_size=(2, 2))(conv61) 

conv62 = Conv2D(14, kernel_size=4, activation='relu')(pool61) 

pool62 = MaxPooling2D(pool_size=(2, 2))(conv62) 

flat6 = Flatten()(pool62) 

# 7th input model 

visible7 = Input(shape=(60, 60, 3)) 

conv71 = Conv2D(28, kernel_size=4, activation='relu')(visible7) 

pool71 = MaxPooling2D(pool_size=(2, 2))(conv71) 

conv72 = Conv2D(14, kernel_size=4, activation='relu')(pool71) 

pool72 = MaxPooling2D(pool_size=(2, 2))(conv72) 

flat7 = Flatten()(pool72) 

# 8th input model 

visible8 = Input(shape=(60, 60, 3)) 

conv81 = Conv2D(28, kernel_size=4, activation='relu')(visible8) 

pool81 = MaxPooling2D(pool_size=(2, 2))(conv81) 

conv82 = Conv2D(14, kernel_size=4, activation='relu')(pool81) 
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pool82 = MaxPooling2D(pool_size=(2, 2))(conv82) 

flat8 = Flatten()(pool82) 

# merge input models 

merge = concatenate([flat1, flat2, flat3, flat4, flat5, flat6, flat7, 

flat8]) 

# interpretation model 

hidden1 = Dense(544, activation='relu')(merge) 

hidden2 = Dense(272, activation='relu')(hidden1) 

hidden3 = Dense(136, activation='relu')(hidden2) 

hidden4 = Dense(68, activation='relu')(hidden3) 

hidden5 = Dense(34, activation='relu')(hidden4) 

output1 = Dense(17, activation='softmax')(hidden5) 

output2 = Dense(17, activation='softmax')(hidden5) 

output3 = Dense(17, activation='softmax')(hidden5) 

output4 = Dense(17, activation='softmax')(hidden5) 

output5 = Dense(17, activation='softmax')(hidden5) 

output6 = Dense(17, activation='softmax')(hidden5) 

output7 = Dense(17, activation='softmax')(hidden5) 

output8 = Dense(17, activation='softmax')(hidden5) 

model = Model(inputs=[visible1, visible2, visible3, visible4, 

visible5, visible6, visible7, visible8], 

              outputs=[output1, output2, output3, output4, output5, 

output6, output7, output8]) 

# summarize layers 

print(model.summary()) 

# plot graph 

model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

print(model.metrics_names) 

A = [] 

A0 = [] 

A1 = [] 

A2 = [] 

A3 = [] 

A4 = [] 

A5 = [] 

A6 = [] 

A7 = [] 

A8 = [] 

A9 = [] 

A10 = [] 

A11 = [] 

A12 = [] 

A13 = [] 
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A14 = [] 

A15 = [] 

A16 = [] 

A17 = [] 

A18 = [] 

A19 = [] 

A20 = [] 

A21 = [] 

A22 = [] 

A23 = [] 

A24 = [] 

C = [] 

C1 = [] 

C2 = [] 

C3 = [] 

C4 = [] 

C5 = [] 

C6 = [] 

C7 = [] 

C8 = [] 

C9 = [] 

C10 = [] 

C11 = [] 

C12 = [] 

C13 = [] 

C14 = [] 

C15 = [] 

C16 = [] 

C17 = [] 

C18 = [] 

C19 = [] 

C20 = [] 

C21 = [] 

C22 = [] 

C23 = [] 

C24 = [] 

D = [] 

for i in range(cycle): 

    a = model.fit([X_train1, X_train2, X_train3, X_train4, X_train5, 

X_train6, X_train7, X_train8], 

                  [Y_train1, Y_train2, Y_train3, Y_train4, Y_train5, 

Y_train6, Y_train7, Y_train8], 

                  batch_size=40, epochs=1, verbose=1) 

    # print(a.history['dense_5_loss']) 
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    # print(a.history['dense_5_accuracy']) 

    # b = abs(float(a.history['dense_5_loss'][0])) 

    # c = abs(float(a.history['dense_5_accuracy'][0])) 

    b = abs(float(a.history['loss'][0])) 

    b1 = abs(float(a.history['dense_5_loss'][0])) 

    b2 = abs(float(a.history['dense_6_loss'][0])) 

    b3 = abs(float(a.history['dense_7_loss'][0])) 

    b4 = abs(float(a.history['dense_8_loss'][0])) 

    b5 = abs(float(a.history['dense_9_loss'][0])) 

    b6 = abs(float(a.history['dense_10_loss'][0])) 

    b7 = abs(float(a.history['dense_11_loss'][0])) 

    b8 = abs(float(a.history['dense_12_loss'][0])) 

 

    c1 = abs(float(a.history['dense_5_accuracy'][0])) 

    c2 = abs(float(a.history['dense_6_accuracy'][0])) 

    c3 = abs(float(a.history['dense_7_accuracy'][0])) 

    c4 = abs(float(a.history['dense_8_accuracy'][0])) 

    c5 = abs(float(a.history['dense_9_accuracy'][0])) 

    c6 = abs(float(a.history['dense_10_accuracy'][0])) 

    c7 = abs(float(a.history['dense_11_accuracy'][0])) 

    c8 = abs(float(a.history['dense_12_accuracy'][0])) 

 

    A.append(b) 

    A1.append(b1) 

    A2.append(b2) 

    A3.append(b3) 

    A4.append(b4) 

    A5.append(b5) 

    A6.append(b6) 

    A7.append(b7) 

    A8.append(b8) 

 

    C1.append(c1) 

    C2.append(c2) 

    C3.append(c3) 

    C4.append(c4) 

    C5.append(c5) 

    C6.append(c6) 

    C7.append(c7) 

    C8.append(c8) 

 

A0 = np.array(A1) 

C = np.array(C1) 

B = np.array(range(len(A0))) 
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D = [A, A1, A2, A3, A4, A5, A6, A7, A8, 

     C1, C2, C3, C4, C5, C6, C7, C8] 

np.savetxt("history.txt", D, delimiter=',') 

 

plt.plot(B, A0, 'o-', label='loss') 

plt.plot(B, C, 'o-', label='accuracy') 

plt.title('model accuracy') 

plt.xlabel('epoch') 

plt.ylabel('accuracy') 

plt.legend(loc='best') 

plot_model(model, to_file='multiple_inputs.png') 

model.save('final_model.h5') 

print("model saved") 

print('waiting for model save') 

time.sleep(60) 

print('model save complete') 

model = load_model('final_model.h5') 

print("Loaded model from disk") 

predict = model.predict([X_test1, X_test2, X_test3, X_test4, X_test5, 

X_test6, X_test7, X_test8]) 

l0 = [] 

for m in range(0, len(predict)): 

    l1 = predict[m] 

    l1 = l1.tolist() 

    # print(l1) 

    for i in range(0, len(l1)): 

        # print(l1[i]) 

        l0.append(l1[i].index(max(l1[i]))) 

np.set_printoptions(threshold=np.inf) 

pd.set_option('display.width', 300)  #  

pd.set_option('display.max_rows', None)  #  

pd.set_option('display.max_columns', None)  #  

l0 = np.array(l0) 

l2 = np.array([y_test1, y_test2, y_test3, y_test4, y_test5, y_test6, 

y_test7, y_test8]) 

l3 = [] 

for m in range(0, len(l2)): 

    for i in l2[m]: 

        l3.append(i) 

l3 = np.array(l3) 

accuracy = metrics.accuracy_score(l3, l0) 

Accuracy = [accuracy] 

print("Accuracy of model using test data:", Accuracy) 

np.savetxt("Accuracy of model using test data.txt", Accuracy) 
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print(plt.axis([0, cycle, 0, 1.9])) 

plt.show() 

B.3.2 CNN code in Python 

# Multiple Inputs 

import keras 

from keras.utils.vis_utils import plot_model 

from keras.models import Model 

from keras.layers import Input 

from keras.layers import Dense 

from keras.layers import Flatten 

from keras.layers.convolutional import Conv2D 

from keras.layers.pooling import MaxPooling2D 

from keras.layers.merge import concatenate 

from keras.preprocessing.image import ImageDataGenerator 

from sklearn import metrics 

import os 

import pandas as pd 

import os.path 

import numpy as np 

from random import randint 

import tensorflow as tf 

from keras.backend import set_session 

import keras.backend as KTF 

from keras.models import Sequential 

from keras.layers import Dense, Dropout, Activation, Flatten, Conv2D, 

MaxPooling2D 

from keras.utils import np_utils 

from keras.datasets import mnist 

import cv2 

from sklearn.model_selection import train_test_split 

import matplotlib.pyplot as plt 

import time 

from keras.models import load_model 

# import seaborn as sns 

# from PIL import Image 

# os.environ["CUDA_VISIBLE_DEVICES"] = "-1" 

# os.environ["CUDA_VISIBLE_DEVICES"] = "0" 

# os.environ['KERAS_BACKEND']='tensorflow' 

config = tf.compat.v1.ConfigProto() 

config.gpu_options.allow_growth = True  # RAM distribution  

sess = tf.compat.v1.Session(config=config) 

KTF.set_session(sess) 

 

cycle = 30 
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np.random.seed(123) 

X, y = np.arange(10).reshape((5, 2)), range(5) 

labels = ['Change of centre frequency', 'Frequency domain', 'Power 

spectrum', 'Power spectrum density', 'Time domain', 

          'amdf', 'amp_pkfs', 'cepstrum', 'formantband', 'hht', 

'instfreq', 'kurtogram', 'periodogram', 'pkurtosis', 

          'power spectrumII', 'sound pressure level', 'amp_pks'] 

img_size = 60 

 

 

def get_data(data_dir): 

    data = [] 

    ydata = [] 

    for label in labels: 

        path = os.path.join(data_dir, label) 

        class_num = labels.index(label) 

        print(path) 

        for img in os.listdir(path): 

            try: 

                img_arr = cv2.imread(os.path.join(path, 

img))[..., ::-1]  # convert BGR to RGB format 

                resized_arr = cv2.resize(img_arr, (img_size, 

img_size))  # Reshaping images to preferred size 

                # data.append([resized_arr, class_num]) 

                data.append(resized_arr) 

                ydata.append(class_num) 

                # print ("class", class_num) 

            except Exception as e: 

                print(e) 

    return np.array(data), np.array(ydata) 

 

 

Xdata, Ydata = get_data("C:\CNNdata3(CNNcode-mode-23)\\1") 

X_train, X_test, y_train, y_test = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

print(y_test) 

# load pre-shuffled MNIST data 

train = get_data("C:\CNNdata3(CNNcode-mode-23)\\1") 

X_train1, X_test1, y_train1, y_test1 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train1 = np_utils.to_categorical(y_train1, 17) 

Y_test1 = np_utils.to_categorical(y_test1, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-23)\\2") 
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X_train2, X_test2, y_train2, y_test2 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train2 = np_utils.to_categorical(y_train2, 17) 

Y_test2 = np_utils.to_categorical(y_test2, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-23)\\3") 

X_train3, X_test3, y_train3, y_test3 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train3 = np_utils.to_categorical(y_train3, 17) 

Y_test3 = np_utils.to_categorical(y_test3, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-23)\\4") 

X_train4, X_test4, y_train4, y_test4 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train4 = np_utils.to_categorical(y_train4, 17) 

Y_test4 = np_utils.to_categorical(y_test4, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-23)\\5") 

X_train5, X_test5, y_train5, y_test5 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train5 = np_utils.to_categorical(y_train5, 17) 

Y_test5 = np_utils.to_categorical(y_test5, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-23)\\6") 

X_train6, X_test6, y_train6, y_test6 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train6 = np_utils.to_categorical(y_train6, 17) 

Y_test6 = np_utils.to_categorical(y_test6, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-23)\\7") 

X_train7, X_test7, y_train7, y_test7 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train7 = np_utils.to_categorical(y_train7, 17) 

Y_test7 = np_utils.to_categorical(y_test7, 17) 

train = get_data("C:\CNNdata3(CNNcode-mode-23)\\8") 

X_train8, X_test8, y_train8, y_test8 = train_test_split(Xdata, Ydata, 

test_size=0.2, random_state=42) 

Y_train8 = np_utils.to_categorical(y_train8, 17) 

Y_test8 = np_utils.to_categorical(y_test8, 17) 

# first input model 

visible1 = Input(shape=(60, 60, 3)) 

conv11 = Conv2D(28, kernel_size=4, activation='relu')(visible1) 

pool11 = MaxPooling2D(pool_size=(2, 2))(conv11) 

conv12 = Conv2D(14, kernel_size=4, activation='relu')(pool11) 

pool12 = MaxPooling2D(pool_size=(2, 2))(conv12) 

flat1 = Flatten()(pool12) 

# second input model 

visible2 = Input(shape=(60, 60, 3)) 

conv21 = Conv2D(28, kernel_size=4, activation='relu')(visible2) 
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pool21 = MaxPooling2D(pool_size=(2, 2))(conv21) 

conv22 = Conv2D(14, kernel_size=4, activation='relu')(pool21) 

pool22 = MaxPooling2D(pool_size=(2, 2))(conv22) 

flat2 = Flatten()(pool22) 

# third input model 

visible3 = Input(shape=(60, 60, 3)) 

conv31 = Conv2D(28, kernel_size=4, activation='relu')(visible3) 

pool31 = MaxPooling2D(pool_size=(2, 2))(conv31) 

conv32 = Conv2D(14, kernel_size=4, activation='relu')(pool31) 

pool32 = MaxPooling2D(pool_size=(2, 2))(conv32) 

flat3 = Flatten()(pool32) 

# forth input model 

visible4 = Input(shape=(60, 60, 3)) 

conv41 = Conv2D(28, kernel_size=4, activation='relu')(visible4) 

pool41 = MaxPooling2D(pool_size=(2, 2))(conv41) 

conv42 = Conv2D(14, kernel_size=4, activation='relu')(pool41) 

pool42 = MaxPooling2D(pool_size=(2, 2))(conv42) 

flat4 = Flatten()(pool42) 

# 17th input model 

visible5 = Input(shape=(60, 60, 3)) 

conv51 = Conv2D(28, kernel_size=4, activation='relu')(visible5) 

pool51 = MaxPooling2D(pool_size=(2, 2))(conv51) 

conv52 = Conv2D(14, kernel_size=4, activation='relu')(pool51) 

pool52 = MaxPooling2D(pool_size=(2, 2))(conv52) 

flat5 = Flatten()(pool52) 

# 6th input model 

visible6 = Input(shape=(60, 60, 3)) 

conv61 = Conv2D(28, kernel_size=4, activation='relu')(visible6) 

pool61 = MaxPooling2D(pool_size=(2, 2))(conv61) 

conv62 = Conv2D(14, kernel_size=4, activation='relu')(pool61) 

pool62 = MaxPooling2D(pool_size=(2, 2))(conv62) 

flat6 = Flatten()(pool62) 

# 7th input model 

visible7 = Input(shape=(60, 60, 3)) 

conv71 = Conv2D(28, kernel_size=4, activation='relu')(visible7) 

pool71 = MaxPooling2D(pool_size=(2, 2))(conv71) 

conv72 = Conv2D(14, kernel_size=4, activation='relu')(pool71) 

pool72 = MaxPooling2D(pool_size=(2, 2))(conv72) 

flat7 = Flatten()(pool72) 

# 8th input model 

visible8 = Input(shape=(60, 60, 3)) 

conv81 = Conv2D(28, kernel_size=4, activation='relu')(visible8) 

pool81 = MaxPooling2D(pool_size=(2, 2))(conv81) 

conv82 = Conv2D(14, kernel_size=4, activation='relu')(pool81) 
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pool82 = MaxPooling2D(pool_size=(2, 2))(conv82) 

flat8 = Flatten()(pool82) 

# merge input models 

merge = concatenate([flat1, flat2, flat3, flat4, flat5, flat6, flat7, 

flat8]) 

# interpretation model 

hidden1 = Dense(544, activation='relu')(merge) 

hidden2 = Dense(272, activation='relu')(hidden1) 

hidden3 = Dense(136, activation='relu')(hidden2) 

hidden4 = Dense(68, activation='relu')(hidden3) 

hidden5 = Dense(34, activation='relu')(hidden4) 

output1 = Dense(17, activation='softmax')(hidden5) 

output2 = Dense(17, activation='softmax')(hidden5) 

output3 = Dense(17, activation='softmax')(hidden5) 

output4 = Dense(17, activation='softmax')(hidden5) 

output5 = Dense(17, activation='softmax')(hidden5) 

output6 = Dense(17, activation='softmax')(hidden5) 

output7 = Dense(17, activation='softmax')(hidden5) 

output8 = Dense(17, activation='softmax')(hidden5) 

model = Model(inputs=[visible1, visible2, visible3, visible4, 

visible5, visible6, visible7, visible8], 

              outputs=[output1, output2, output3, output4, output5, 

output6, output7, output8]) 

# summarize layers 

print(model.summary()) 

# plot graph 

model.compile(loss='categorical_crossentropy', optimizer='adam', 

metrics=['accuracy']) 

print(model.metrics_names) 

A = [] 

A0 = [] 

A1 = [] 

A2 = [] 

A3 = [] 

A4 = [] 

A5 = [] 

A6 = [] 

A7 = [] 

A8 = [] 

A9 = [] 

A10 = [] 

A11 = [] 

A12 = [] 

A13 = [] 
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A14 = [] 

A15 = [] 

A16 = [] 

A17 = [] 

A18 = [] 

A19 = [] 

A20 = [] 

A21 = [] 

A22 = [] 

A23 = [] 

A24 = [] 

C = [] 

C1 = [] 

C2 = [] 

C3 = [] 

C4 = [] 

C5 = [] 

C6 = [] 

C7 = [] 

C8 = [] 

C9 = [] 

C10 = [] 

C11 = [] 

C12 = [] 

C13 = [] 

C14 = [] 

C15 = [] 

C16 = [] 

C17 = [] 

C18 = [] 

C19 = [] 

C20 = [] 

C21 = [] 

C22 = [] 

C23 = [] 

C24 = [] 

D = [] 

for i in range(cycle): 

    a = model.fit([X_train1, X_train2, X_train3, X_train4, X_train5, 

X_train6, X_train7, X_train8], 

                  [Y_train1, Y_train2, Y_train3, Y_train4, Y_train5, 

Y_train6, Y_train7, Y_train8], 

                  batch_size=40, epochs=1, verbose=1) 

    # print(a.history['dense_5_loss']) 
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    # print(a.history['dense_5_accuracy']) 

    # b = abs(float(a.history['dense_5_loss'][0])) 

    # c = abs(float(a.history['dense_5_accuracy'][0])) 

    b = abs(float(a.history['loss'][0])) 

    b1 = abs(float(a.history['dense_5_loss'][0])) 

    b2 = abs(float(a.history['dense_6_loss'][0])) 

    b3 = abs(float(a.history['dense_7_loss'][0])) 

    b4 = abs(float(a.history['dense_8_loss'][0])) 

    b5 = abs(float(a.history['dense_9_loss'][0])) 

    b6 = abs(float(a.history['dense_10_loss'][0])) 

    b7 = abs(float(a.history['dense_11_loss'][0])) 

    b8 = abs(float(a.history['dense_12_loss'][0])) 

 

    c1 = abs(float(a.history['dense_5_accuracy'][0])) 

    c2 = abs(float(a.history['dense_6_accuracy'][0])) 

    c3 = abs(float(a.history['dense_7_accuracy'][0])) 

    c4 = abs(float(a.history['dense_8_accuracy'][0])) 

    c5 = abs(float(a.history['dense_9_accuracy'][0])) 

    c6 = abs(float(a.history['dense_10_accuracy'][0])) 

    c7 = abs(float(a.history['dense_11_accuracy'][0])) 

    c8 = abs(float(a.history['dense_12_accuracy'][0])) 

 

    A.append(b) 

    A1.append(b1) 

    A2.append(b2) 

    A3.append(b3) 

    A4.append(b4) 

    A5.append(b5) 

    A6.append(b6) 

    A7.append(b7) 

    A8.append(b8) 

 

    C1.append(c1) 

    C2.append(c2) 

    C3.append(c3) 

    C4.append(c4) 

    C5.append(c5) 

    C6.append(c6) 

    C7.append(c7) 

    C8.append(c8) 

 

A0 = np.array(A1) 

C = np.array(C1) 

B = np.array(range(len(A0))) 
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D = [A, A1, A2, A3, A4, A5, A6, A7, A8, 

     C1, C2, C3, C4, C5, C6, C7, C8] 

np.savetxt("history.txt", D, delimiter=',') 

 

plt.plot(B, A0, 'o-', label='loss') 

plt.plot(B, C, 'o-', label='accuracy') 

plt.title('model accuracy') 

plt.xlabel('epoch') 

plt.ylabel('accuracy') 

plt.legend(loc='best') 

# save the model 

plot_model(model, to_file='multiple_inputs.png') 

model.save('final_model.h5') 

print("model saved") 

print('waiting for model save') 

time.sleep(60) 

print('model save complete') 

# load the model, test it with test dataset 

# evaluate the model 

model = load_model('final_model.h5') 

print("Loaded model from disk") 

predict = model.predict([X_test1, X_test2, X_test3, X_test4, X_test5, 

X_test6, X_test7, X_test8]) 

l0 = [] 

for m in range(0, len(predict)): 

    l1 = predict[m] 

    l1 = l1.tolist() 

    # print(l1) 

    for i in range(0, len(l1)): 

        # print(l1[i]) 

        l0.append(l1[i].index(max(l1[i]))) 

np.set_printoptions(threshold=np.inf) 

pd.set_option('display.width', 300)  # 

pd.set_option('display.max_rows', None)  # 

pd.set_option('display.max_columns', None)  #  

l0 = np.array(l0) 

l2 = np.array([y_test1, y_test2, y_test3, y_test4, y_test5, y_test6, 

y_test7, y_test8]) 

l3 = [] 

for m in range(0, len(l2)): 

    for i in l2[m]: 

        l3.append(i) 

l3 = np.array(l3) 

accuracy = metrics.accuracy_score(l3, l0) 
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Accuracy = [accuracy] 

print("Accuracy of model using test data:", Accuracy) 

np.savetxt("Accuracy of model using test data.txt", Accuracy) 

print(plt.axis([0, cycle, 0, 1.9])) 

plt.show() 

 

 

 




