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Abstract— AAL platforms for health and care purposes are 
designed to be used by diverse stakeholders, such as household 
residents, carers and healthcare professionals, with equally 
diverse needs. Reducing the latency of such systems is key to 
achieving a positive user experience, as well as enabling 
appropriate responses to critical incidents. This paper 
introduces a distributed middleware solution that can improve 
data-acquisition, run computational algorithms locally and 
seamlessly deliver notifications to various subscribers. The 
paper further describes three time-synchronisation methods to 
achieve correct time-stamping of packets, using a combination 
of centralised and distributed packet processing.    
 

Index Terms—SPHERE, WSN, Agents, Synchronisation, 
Decentralised, Multi-threading, healthcare, Sensomax. 
 

I. INTRODUCTION 
SPHERE (Sensor Platform for HEalthcare in Residential 
Environment) aims to develop a multi- purpose, 
multi-modal AAL (Ambient Assisted Living) platform of 
home sensors not only to extend the state of the art in a 
number of technology domains, but to engage with 
stakeholders across disciplines to illuminate the applications 
of current and new technologies to emerging health needs.  
The aim of AAL technologies is to provide 24/7, reliable 
health-monitoring service. Health-monitoring covers a 
wide-range of features such as issuing alerts (medicine 
reminders), real-time monitoring of non-critical parameters 
(weight, blood pressure, temperature, etc.) and critical 
episodes e.g. fall detection, hearth attacks, etc. Therefore, it 
is crucial that these solutions are not subject to a single point 
of failure [1].  
The SPHERE system architecture in Fig. 1 is made up of 
three sensor networks: Body, Environmental and Video 
sensor networks. Each sensor network communicates with 
the central SPHERE Home Gateway (SHG) via its own 
dedicated gateway, which we refer to as Access Point 
throughout this paper. Each part of the network is 
NTP-synchronised to ensure correct time-stamping of 
individual data items. The IP-based communication between 
sensor gateways and the SHG is based on the MQTT 
protocol. The SHG acts as an MQTT broker, collecting and 
distributing information captured by individual sensors and 
relayed by SBG, SVG and SEG gateways (MQTT clients) – 
detailed system description in [1-2]. To avoid confusion, 
hereafter SBG and SEG are referred to as the Access Points 
(AP).  
Such architecture is fairly simple to understand and 
implement, yet has its drawbacks. The bottleneck and a 
single point of failure (SPOF) is the MQTT broker without 
which in-network communication and communication with 
the outside World is not possible.  
 

 
Figure'1:'An'overview'of'the'SPHERE'system'architecture.'

The MQTT broker (SHG) in the SPHERE system 
architecture is a single point of failure. Reasons for this can 
be multiple: insufficient processing power, network 
bandwidth or simply hardware failure. Since the danger of 
hardware failures is unpredictable and cannot be influenced 
let’s leave it out of the equation. However, the other two 
causes can be minimised with a different communication 
model applied. From the data consumer point of view, the 
MQTT communication model is on-demand and dynamic. 
MQTT clients in this pub/sub model can subscribe and 
unsubscribe to/from a topic of interest and have the 
information pushed to them whenever new data is available. 
On the other side, the data producers have to publish their 
data onto a pre-defined topic to the known (IP and port) 
MQTT broker. Therefore, this part of the network is static 
and defined at deployment – although can be re-configured 
if a need arises. Hence, the MQTT broker is constantly 
bombarded with data coming from the three sensor 
networks, even if the data is not ‘consumed’ by any party. A 
better-suited communication model would be one, which 
reacts to the consumers’ needs. Why should some 
information be streamed (and temporarily stored by the 
MQTT broker) if nobody raised any interest in it? Such 
approach wastes hardware and network resources, where 
traffic should be only generated on demand. Reduction of 
unnecessary traffic offloads the broker and network.  
Another improvement applicable to the analysed SPHERE 
system architecture is to eliminate a single point of failure. 
Since in the SPHERE architecture all the traffic passes 
through a single MQTT broker (SHG), a danger exists that if 
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this machine fails, the entire system fails. Since the entire 
home sensing system is made up of low-power processing 
units (Raspberry Pies and the NUC), the SHG may become 
unavailable due to very heavy traffic or may end up working 
with 100% CPU utilisation and impose delays in serving the 
real-time sensor data. However, this problem can be 
addressed since the home sensing infrastructure is made up 
of multiple processing units (SBG, SVG and SEG), which 
we refer to as the Access Points, with IP capability and able 
to serve sensor data.  
Access Points (APs) run Sensomax, which is an agent-based 
WSN middleware, capable of executing multiple concurrent 
applications based on their required operational paradigm. 
Its agent-based architecture features: 
 
• Conveying subscribers’ requirements to the entities 

of interest   
• Aggregate data on the APs in order to track events of 

interest 
• Issue notifications to the local and external 

subscribers   
• Facilitates decentralized operation amongst all APs 

in case of SHG failure 
• Synchronizing clocks on the APs and time-stamping 

the packets  
 
As we explained in the beginning of this section, AAL 
technologies need to be reliable in order to issue alerts of 
critical parameters. Therefore, it is crucial that these 
solutions are not subject to a single point of failure. In 
Sensomax, once the interest is registered (subscribed), the 
Access Points/individual sensor gateways (SBG and SEG) 
can push (publish) the required information directly to the 
interested party, bypassing the SHG. Distribution of roles, 
where each network segment is responsible for delivering its 
own information, reduces network traffic and offloads a 
SPOF machine. In the case of hardware failure, only a given 
segment is lost and not the whole system.  
In Sensomax there exist two types of subscriptions and 
publications model: External and Internal. 
External model refers to publishing critical healthcare 
notifications to interested parties, located outside the 
SPHERE home network, bypassing the SHG when 
unavailable. 
Internal applies to the in-network communication e.g. for 
the purpose of sensor cueing - where video cameras are to 
be switched on upon activation of a PIR sensor in the same 
location. This information can be exchanged between the 
environmental sensor network and the video sensor network 
without the involvement of the SHG, thus reducing its load. 
 
Here the environmental sensor network and video 
monitoring system are described briefly in order to provide a 
better understanding of how in-network communication 
between the two through their Access Points can improve 
their functionalities. 
The SPHERE environment sensor system includes ambient 
temperature, humidity, luminosity, PIR, door contacts, dust 
particle, noise level sensors, cold/hot water consumption and 
electricity consumption at each appliance level. As a 
sub-system of the SPHERE sensor platform, the 
environment sensor system employs wireless sensor 
networks (WSN) to network 30+ sensor nodes in mesh 
topology, generating 90+ data points, distributed in all 

rooms of a full-instrumented resident house – SPHERE 
demo house [2].  
Sensor nodes provide several fundamental functions such as 
multiple-channel signal acquisition, on-board signal 
conditioning, data aggregation etc. Sensed data from the 
sensor nodes are collected, pre-processed, structured and 
transmitted to a SHG.  
Messages containing the data are sent from the sensor nodes 
via the WSN in either an event-driven or a time-driven 
manner. Event-driven messages are sent immediately while 
sensor detects event or sensor reading passes a designed 
threshold. time-driven messages, embedding a group of 
sensor data, are emitted in a required frequency. All sensor 
data are tagged with sensor name schema, sensor node ID, 
sensor node location, UTC timestamp and message number 
to build up context and temporal relationships amongst the 
entire datasets.  
The video monitoring system is currently comprised of 3 
Asus XtionPro RGB and depth sensors recording at 30 
frames per second. Each is connected via a powered USB 2 
cable to a dedicated bus on the SVG machine. These 
cameras are used to track human movements and return 
real-time 3d coordinates of bounding boxes encapsulating 
residents as they go about their daily lives. The use of video 
helps to provide several advantages compare with other 
types of sensing devices: they are less intrusive, less 
expensive, provides rich information of the environments 
and easier to integrate into already existing buildings, and 
they are able to simultaneously detect multiple events [9].  
In order to save power and reduce the computational burden 
of the video system it is preferable to only activate the 
cameras when an individual is within their field of view. To 
this end, the ability to exploit the reduced latency provided 
by using Access Points, other than the SHG, offers the 
opportunity to maximise how much of an individual's 
actions are captured as they enter a room. A higher latency 
might mean the system misses the beginning of users' 
activities and then goes onto record needless extra footage 
after they have left a particular camera's field of view. 
In the Evaluation section, we will measure the 
communication latency for the local and external subscribes 
using agent-based model. 
In the next section we will describe how using smart agents 
in Sensomax can help facilitating in-network 
communication, computation and time-synchronisation 
between different subsystems.  
 

II. METHODOLOGY 
Sensomax has been described in detail in previous 
publications [3-7]. Sensomax is a component-based, 
multi-threaded, and dynamic WSN middleware, which is 
capable of running atop various Java-enabled embedded 
devices, including Raspberry Pi. Sensomax provides an 
end-to-end software solution for programming and updating 
various types of WSN applications onto large-scale 
distributed networks. It also offers a reliable mechanism for 
capturing data from multiple subsections of the network 
independently.  
Sensomax features agent-based communications in a 
multi-clustered fashion in order to abstract network 
resources and optimise the dataflow. These features are 
intended to satisfy a number of objectives, including: 
 



  

• Distributed execution of multiple concurrent 
applications/data aggregation;  

• Adaptive localised behaviour through shifting 
multiple operational paradigms; 

• Centralised/decentralised task distribution and data 
gathering; 

• Time Synchronisation  
• Dynamic runtime reorganisation of the network; 
• Autonomous decision-making and data aggregation 

through distributed live computational algorithms. 

The fundamental software architecture of Sensomax is 
modular, meaning that the overall functionalities of the 
system are broken down into multiple modules, each with a 
set of unique functionalities. The interaction of these 
modules creates a dynamic execution environment in which 
new modules can be created as either standalone 
components or as a combination of existing ones. Modules’ 
activities are highly embedded, which means that they have 
no effect on the operations of other independent modules. 
However, in order to efficiently minimise the overheads of 
such operations and maximise their performance, they 
require minimal regulatory strategies, such as controlling 
their communication domains through a set of agent 
interaction patterns, as well as abstracting the underling 
resources according to those patterns, which are imposed by 
Sensomax.  
The primary communication backbone of Sensomax is 
based conceptually on mobile agents, and nearly all of the 
operations and processing within the network and the nodes 
is carried out by ‘intelligent’ agents. Mobile agents convey 
data, tasks, and different configuration policies throughout 
the network in order to inject or execute them in the 
appropriate nodes. In Sensomax, as with other WSNs, nodes 
are required to specify their required functionalities to the 
agents; this is one of the major differences between 
agent-based approaches in conventional 
Internet-Protocol-based networks and WSNs. The mobile 
agent approach originated from a client-server 
communication paradigm that was developed in 
conventional computer networking, where servers provide a 
number of services to their clients. Sensomax, as its first 
preference, therefore, partitions the network into several 
clusters to implement a server-client paradigm. Another 
important motivation behind such an approach is 
decentralising task-allocation and data-distribution in order 
to perform asynchronous operations. Utilisation of agents in 
a clustered fashion helps toward the decoupling of functions 
and data, which results in accelerated data-distribution and 
task-allocation amongst network entities. 
Sensomax incorporates concurrency in a multi-clustered 
fashion in which every application is designated with a 
logical cluster in an abstract form. The application itself 
resides in a single node, known as the Cluster-Head, where 
all the top-level executions happen. The Cluster-Head splits 
the application’s requirements according to the 
above-mentioned categories, and distributes them amongst 
its members. In order to increase reusability and decrease 
redundancy, every node can simultaneously maintain 
multiple roles (operational modes) for different applications, 
either as a Cluster-Head or a Cluster-Member. Nodes can 
then switch their operational mode depending on the 
application being executed. This multi-clustered scheme 
creates a collaborative execution model with potentially 

multiple overlapping clusters, and that results in a massive 
amount of data being generated, either locally in each node, 
or in a Cluster-Head when data are captured from its several 
members. On the application side, Sensomax refines 
application demands into four major categories (Event, 
Time, Query, and Data requirements), whilst switching the 
Operational Paradigm (OP) on the node side into one of the 
Event-Driven, Time-Driven, Query-Driven and Data-Driven 
paradigms respectively. This distinction between different 
OPs allows each requirement to be identified and executed 
in its own paradigm-specific environment with other 
requirements of the same type. The concurrency model in 
Sensomax also enables application demands to be split 
based on their OP and distributed amongst others. This type 
of distribution can happen in a Cluster-Head when subtasks 
get allocated to its members. It is worth noting that in every 
node agents are still executed in their own application 
spaces within each OP. 
Sensomax also abstracts both agents and available resources 
into three major categories: Global, Local, and System. This 
process safeguards exclusive interactions of agents and 
resources, where each type of agent is only privileged to 
access the resources of its own type. This mechanism 
benefited Sensomax enormously, resulting in more rapid 
runtime updates and better scalability. Because of this, 
multiple applications run simultaneously on both network 
and node levels whilst injecting their updates at runtime, 
without affecting others’ processing, and they can 
potentially use and/or reuse the same set of resources. 

 
Figure'2:'Multiple'overlapping'clusters'for'concurrent'applications'

Figure 2 shows how multiple applications run 
simultaneously in different cluster-heads whilst sharing the 
same cluster-members, acting as a cluster-head of one 
application and a cluster-member of another. In this figure 
applications are synonymous with subscriber’s request, 
which can run on a cluster-head or in this case on an AP. 
Having implemented these adaptive behavioural reactions to 
application requirements at initial deployment, the next 
requirement is to ensure that the network is able to 
dynamically reorganise itself according to the results of 
updates received from the pre-deployed applications. The 
decentralised execution modality of Sensomax, using a 
multi-agent approach, and the isolated executing 
environment of individual applications, facilitates an 
exclusive hierarchical agent processing in nodes and 
clusters.  
Updates to pre-deployed applications are received from the 
end-users and distributed throughout the network in the 
form of System Agents, which are processed in an 
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3.4.4. Concurrency Overview 

Earlier in sections 3.4.2-3.4.3, we explained how a WSN could be divided into 

multiple clusters, where each cluster-head accommodates a single application, 

and sensor nodes only take a single profile. We clarified that explanation by 

showing two separate clusters in Figure 20, in which each node only belongs to a 

single cluster. In this section however, we will explain how nodes can take 

multiple profiles simultaneously, in order to execute multiple applications, by 

potentially using the same set of sensor nodes. 

 

Figure 23: Overlapping clusters with inclusive applications. 

As Figure 23 shows, Sensomax divides the network into multiple clusters, where 

each cluster is dedicated to one application. Some sensor nodes however, belong 

to multiple clusters whilst taking more than one profile. Therefore applications 

can potentially use multiple overlapping clusters by running application-specific 

agents on each cluster. This works in such a way that network peers such as 

servers and clients (Cluster-Heads and Cluster-Members) execute application 

agents exclusively based on the node’s profile for that specific application in the 

network. This allows nodes in the overlapping regions to be used by multiple 

applications simultaneously. This feature is known as resources’ reusability, 

which will be discussed later in section 3.7. 



  

asynchronous fashion in each Cluster-Head. The isolated 
executing environment of each application guarantees the 
receipt of updates by the addressees only, and the updates 
are pushed onto the application subtasks without affecting 
the normal operations of the nodes. Once all updates have 
been applied, the network will gradually adapt to the new 
changes, due to its decentralised interactive nature. 
Another distinct benefit of such decentralised adaptive 
reorganisations is seamless data aggregation at multiple 
network levels. Algorithmic operations can be carried out on 
captured data in the same way that the updates are applied 
dynamically, but with one key difference: algorithms are 
embedded as computational components within the 
middleware’s architecture. The isolated processing of agents 
facilitates data aggregation by distributing the collected data 
in the form of agents and applying the computational 
algorithms onto them either at Cluster-Heads or right where 
they are captured, at nodes. This decentralised methodology 
allows decoupled computational operations in nodes, whilst 
higher-level aggregation can be done independently in the 
associated Cluster-Heads. This scheme not only enables 
aggregation but also is the main principle behind 
implementing autonomous behaviours in Sensomax.  
Examples of computational operations that can be 
seamlessly incorporated into the Sensomax architecture 
include: data aggregation algorithms, packet error correction 
using CRC, energy management strategies, statistical 
analysis of captured data, and any arithmetical operations on 
the captured data [6-7, 10] 
SBH Access Point, uses BLE transceivers to interact with 
on-body sensors via USB port. Therefore it is necessary to 
process the received packets for error correcting.   
In line with many communication protocols, BLE uses 
Cyclic Redundancy Check (CRC) codes to detect 
communication errors. CRC error correction would directly 
improve the packet reception rate at the receiver and 
decrease the amount of energy that is spent on 
retransmissions at the transmitter [8].   
Prior to transmission, a CRC encoder processes the packet. 
On the receiver side, the received packet is forwarded to the 
higher layers of stack only if a CRC check is successful, 
otherwise the packet is considered corrupted and is dropped.  
Considering that performing error correction requires 
additional processing at the receiver, this approach is 
essentially offering a way to decrease the retransmissions 
and unburden the transmitter by moving some of these costs 
to the receiver. Therefore, CRC error correction is a 
compelling choice for applications where an 
energy-constraint transmitter communicates with a 
constraint-free infrastructure, such as wearable sensors 
streaming data to a smart infrastructure [8].  
This process can be implemented by the APs in a distributed 
and centralised manners using Sensomax agent-based 
model. Such a process requires to be multi-threading process 
on the central unit (as well as every access point) in which 
received data on 3 different channels are passed to a 
multi-step CRC-checking algorithm by parsing packet’s 
properties including Antenna polarization, Channel Number, 
Relative Time stamp, Packet Sequence number and RSSI.  
According to figure 3, for the purpose of CRC-checking and 
subscribing local and externals subscribers, Sensomax 
models the network in three modes. That is done in order to 
distribute agents, fetching notifications and run 
computations locally in clusters. 

 
Figure'3:'Distributed'and'Centralised'agentFbased'model.'

Distributed: Each access point receives data from the 
packet sniffer and transmits them in JSON format to the 
SHG over MQTT. This transmission mode operates 
regardless of other access points operations.  
Centralised: One of the access point acts as a central unit 
and all other access points connect with the central unit in 
Star topology. Each access point sends its received data to 
the central unit in JSON format. The central unit opens an 
MQTT connection to home gateway and transmit data. 
Dual: In this mode, both modes centralised and distributed 
modes are implemented simultaneously.  
Checking and correcting received packets on 3 Channels 
from 4 APs facilitates more functionalities including:   

1. Synchronizing real time clocks (RTC) of all access 
points; 

2. Optional Time-stamping of received data;  
3. Parsing Sniffer’s received packets to/from JSON; 

format by adding UTC timestamps as requested; 

In the Centralised approach, the clock of each AP is 
checked, and its time-stamping of packets is corrected by 
the central node in real-time. The central node maintains an 
active TCP connection (synchronous) with the SHG’s NTP 
time server. In the Distributed mode, each AP corrects its 
time-stamping with the SHG with respect to the link latency. 
In the Dual mode however, both approaches are done 
sequentially starting with Distributed mode. The next 
section will evaluate all three synchronisation methods and 
measure the drift in the time-stamping over time.  
In the next section we will also evaluate subscribing local 
and external subscribers using the centralised and distributed 
modes. Latencies in both communication methods, and their 
overhead on the APs’ processor and memory will also be 
measured.  

III. CASE STUDIES AND EVALUATION 
In this section a number of experiments have been 

conducted to measure the latencies for delivering the 
notifications from the source of events to the local and 
external subscribers for both time-driven and event-driven 
applications. In the second part of this section we will 
evaluate different synchronisation mechanisms in terms of 
the time-drift in access points’ clocks over 120 hours. 
For the purpose of this experiment, a network of 4 
Raspberry Pi devices acting as the access points were set up 
in 2 topologies of Centralised and Distributed, which have 
been described in the previous section.  
For simplicity, the following applications are devised: 



  

Table'1:'EventFdriven'and'TimeFdriven'applications'
Application Operational 

Paradigm 
Parameter Frequency/

Threshold 
A Event-driven PIR 200ms 
B Time-driven Temperature Every 5 

seconds 
 
For the first experiment, a cluster of 4 APs in star 

topology has been set up, with one AP acting as the central 
node (cluster-head). Applications A contains event-driven 
agents, in which any movement detected by the PIR sensor 
will be delivered to the central AP and flagged to be relayed 
to the relevant subscriber. The central AP will then decide 
whether to send the notification to a local subscriber or an 
external one. The same scenario applies to the application B, 
in which time-driven agents monitor temperature value at a 
5 second interval and relay the data to the central node. 

Based on SPHERE Requirements Specification 
Document, all packets are in JSON format following SenML 
mark-up language. Packets differ in terms of size and 
contents. Here is a sample packet for application A and B: 

 
{'uid':'S2_H','bt':'2-45-41','mc':'128','dt':'2015-07-07T16:44:29.513
Z','e':[{'n':'LT','v':90.811},{'n':'NS','v':69.0},{'n':'DT','v':0.143}]} 

 
In addition to the above applications, by default the 

central AP runs the clock-synchronisation service at all time. 
It time-stamps the incoming packets by taking into account 
the clock-offset value of the associated node, and the NTP 
timeserver running on the SPHERE Home Gateway. 

 
Figure' 4:' Latencies' associated'with' EventFdriven'and' TimeFdriven'
applications'delivered'to'Local'subscriber'via'a'central'node.'

Figure 4 shows the latencies associated with event-driven 
and time-driven applications delivered to the local 
subscribers via the central node.  

 
Figure' 5:' Latencies' associated'with' EventFdriven'and' TimeFdriven'
applications'delivered'to'External'subscriber'via'a'central'node.'

Figure 5 shows the latencies associated with event-driven 
and time-driven applications delivered to external 
subscribers via the central node using MQTT.  
As figure 4 and 5 show, the latency in the delivery of the 
notifications is proportionate to the number of packets sent 
to the central AP per second. Therefore connection traffic 
has a huge impact to the latency of data transfer. As this 
figure shows, Time-driven application has lower latency, 
since time-driven agents are expected at regular intervals (in 
this case every 5 seconds). Event-driven agents however, are 
unpredictable and only generated when an event of interest 
is detected (in this case, movement detected by PIR sensor). 
The other important factor is the fact that, higher number of 
packets processed by the central AP imposes a massive 
overhead on the processor and the memory. Figure 6 shows 
the processor and memory overheads on the Raspberry Pi 
version 2 model B with Quad-core 900 MHz Cortex-A7 
Processor and 1GB of RAM. 
For the purpose of this experiment, Sensomax is the only 
application running on the raspberry pi with active UDP 
connections from 4 APs. Sensomax with no data flow 
occupies 19-20% of the processor when the AP boots up.  
As this figure displays, 750 packets per second is the 
maximum the processor can handle. The system adds 
significant delay to this process or other system processes 
once the processor goes past this figure. It will also impose 
huge pressure on the CPU, which results in overheating and 
system failure. 

 
Figure'6:Processor'and'Memory'overheads'based'on'the'number'of'
packets'received'per'second.'''

As this figure shows, the amount of occupied RAM based 
on the maximum number of packets is around 80%, which is 
within the healthy range, given the significant amount of 
JSON parsing done by the AP on the incoming packets. It is 
worth mentioning that SPHERE Body Gateway 
configuration requires the APs to run additional Python 
software, which looks after packet sniffer application 
provided by Nordic Semiconductor. This software is 
essential in order to interface with the Nordic USB 
Receiver. Nordic software normally takes between 30-50% 
of the processor based on the given load. Based on the 
above figure, processing more than 550 packets per second 
in addition to the Nordic library could lead to overheating of 
the CPU and failure of Raspberry Pi board. Therefore for the 
purpose of this experiment, Nordic software has been 
removed from the APs. 



  

Next section repeats the previous experiment, this time in a 
distributed fashion without the central node. In this scenario 
APs deliver the notifications to the local subscriber directly 
(Figure 7) and to the external subscriber via the SHG or 
directly to a remote IP address via MQTT  (Figure 8). 

 
Figure' 7:' Latencies' associated'with' EventFdriven'and' TimeFdriven'
applications'delivered'to'Local'subscribers'bypassing'the'SHG'

 
Figure' 8:' Latencies' associated'with' EventFdriven'and' TimeFdriven'
applications'delivered'to'External'subscribers'via'the'SHG.'

Like the previous experiment, both Figures 7 and 8 show 
that time-driven applications have lower latency compared 
to the event-driven ones. However, latency in a distributed 
mode is significantly lower. The omission of central node 
notably improves the timely delivery of notifications. 
However, each AP has to synchronise its clock with the 
SHG directly and time-stamping is only done on the APs in 
a distributed fashion.  

 
Figure' 9:' Drift' in' the' timeFstamping' of' the' packets' using'
Centralised,'Distributed'and'the'Dual'modes.''

It is also worth noting that this approach eliminates the 

advantage of decentralised operation of APs in case of SHG 
failure. As we mentioned in the previous section, another 
approach for clock-synchronisation is to use both centralised 
and distributed modes for adjusting the offset in the APs’ 
time-stampings. Figure 9 reports the drift in the 
time-stamping of the packets over 120 hours using 
centralised, distributed and the dual mode, which is a 
combination of both approaches.  
As figure 9 shows the drift in the timestamp of distributed 
mode introduces around 2300ms over 120 hours, which is 
equal to nearly 2 seconds over 5 days. The offset by the 
centralised mode is nearly half the distributed mode. The 
combined mode however, offers the best result; with only 
500ms over a 5-day period.  

IV. CONCLUSION 
In this paper we have described how distributed 

middleware can improve data-acquisition and delivering 
notifications to the subscribers for critical healthcare 
applications and running local computational process. We 
also described three time-synchronisation methods in order 
to correct time-stamping of packets using a combination of 
centralised and distributed packet processing.   
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