

Agent-based decentralised data-
acquisition and time-synchronisation in
critical healthcare applications

Haghighi, M, Woznowski, P, Zhu, N, Tsimbalo, E, Hannuna, S,
Burrows, A, Tan, B, Tao, L & Piechocki, R

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:
Haghighi, M, Woznowski, P, Zhu, N, Tsimbalo, E, Hannuna, S, Burrows, A, Tan, B, Tao, L &
Piechocki, R 2016, Agent-based decentralised data-acquisition and time-synchronisation in
critical healthcare applications. in 2015 IEEE 2nd World Forum on Internet of Things (WF-
IoT)., 7389031, Institute of Electrical and Electronics Engineers Inc., pp. 81-86, 2nd IEEE
World Forum on Internet of Things, Milan, Italy, 14-16 December.
https://dx.doi.org/10.1109/WF-IoT.2015.7389031

DOI 10.1109/WF-IoT.2015.7389031
ISBN 978-1-5090-0367-9
ISBN 978-1-5090-0365-5
ISBN 978-1-5090-0366-2

Publisher: IEEE

© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must
be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

https://dx.doi.org/
https://dx.doi.org/
http://dx.doi.org/10.1109/WF-IoT.2015.7389031

Abstract— AAL platforms for health and care purposes are
designed to be used by diverse stakeholders, such as household
residents, carers and healthcare professionals, with equally
diverse needs. Reducing the latency of such systems is key to
achieving a positive user experience, as well as enabling
appropriate responses to critical incidents. This paper
introduces a distributed middleware solution that can improve
data-acquisition, run computational algorithms locally and
seamlessly deliver notifications to various subscribers. The
paper further describes three time-synchronisation methods to
achieve correct time-stamping of packets, using a combination
of centralised and distributed packet processing.

Index Terms—SPHERE, WSN, Agents, Synchronisation,
Decentralised, Multi-threading, healthcare, Sensomax.

I. INTRODUCTION
SPHERE (Sensor Platform for HEalthcare in Residential
Environment) aims to develop a multi- purpose,
multi-modal AAL (Ambient Assisted Living) platform of
home sensors not only to extend the state of the art in a
number of technology domains, but to engage with
stakeholders across disciplines to illuminate the applications
of current and new technologies to emerging health needs.
The aim of AAL technologies is to provide 24/7, reliable
health-monitoring service. Health-monitoring covers a
wide-range of features such as issuing alerts (medicine
reminders), real-time monitoring of non-critical parameters
(weight, blood pressure, temperature, etc.) and critical
episodes e.g. fall detection, hearth attacks, etc. Therefore, it
is crucial that these solutions are not subject to a single point
of failure [1].
The SPHERE system architecture in Fig. 1 is made up of
three sensor networks: Body, Environmental and Video
sensor networks. Each sensor network communicates with
the central SPHERE Home Gateway (SHG) via its own
dedicated gateway, which we refer to as Access Point
throughout this paper. Each part of the network is
NTP-synchronised to ensure correct time-stamping of
individual data items. The IP-based communication between
sensor gateways and the SHG is based on the MQTT
protocol. The SHG acts as an MQTT broker, collecting and
distributing information captured by individual sensors and
relayed by SBG, SVG and SEG gateways (MQTT clients) –
detailed system description in [1-2]. To avoid confusion,
hereafter SBG and SEG are referred to as the Access Points
(AP).
Such architecture is fairly simple to understand and
implement, yet has its drawbacks. The bottleneck and a
single point of failure (SPOF) is the MQTT broker without
which in-network communication and communication with
the outside World is not possible.

Figure'1:'An'overview'of'the'SPHERE'system'architecture.'

The MQTT broker (SHG) in the SPHERE system
architecture is a single point of failure. Reasons for this can
be multiple: insufficient processing power, network
bandwidth or simply hardware failure. Since the danger of
hardware failures is unpredictable and cannot be influenced
let’s leave it out of the equation. However, the other two
causes can be minimised with a different communication
model applied. From the data consumer point of view, the
MQTT communication model is on-demand and dynamic.
MQTT clients in this pub/sub model can subscribe and
unsubscribe to/from a topic of interest and have the
information pushed to them whenever new data is available.
On the other side, the data producers have to publish their
data onto a pre-defined topic to the known (IP and port)
MQTT broker. Therefore, this part of the network is static
and defined at deployment – although can be re-configured
if a need arises. Hence, the MQTT broker is constantly
bombarded with data coming from the three sensor
networks, even if the data is not ‘consumed’ by any party. A
better-suited communication model would be one, which
reacts to the consumers’ needs. Why should some
information be streamed (and temporarily stored by the
MQTT broker) if nobody raised any interest in it? Such
approach wastes hardware and network resources, where
traffic should be only generated on demand. Reduction of
unnecessary traffic offloads the broker and network.
Another improvement applicable to the analysed SPHERE
system architecture is to eliminate a single point of failure.
Since in the SPHERE architecture all the traffic passes
through a single MQTT broker (SHG), a danger exists that if

Mo Haghighi, Pete Woznowski, Ni Zhu, Evgeny Tsimbalo, Sion Hannuna, Alison Burrows,
Bo Tan, Lili Tao, Rob Piechocki

Department of Electrical and Electronic Engineering
University of Bristol

Agent-based Decentralised Data-acquisition and
Time-synchronisation in Critical Healthcare Applications

978-1-5090-0366-2/15/$31.00 ©2015 IEEE

this machine fails, the entire system fails. Since the entire
home sensing system is made up of low-power processing
units (Raspberry Pies and the NUC), the SHG may become
unavailable due to very heavy traffic or may end up working
with 100% CPU utilisation and impose delays in serving the
real-time sensor data. However, this problem can be
addressed since the home sensing infrastructure is made up
of multiple processing units (SBG, SVG and SEG), which
we refer to as the Access Points, with IP capability and able
to serve sensor data.
Access Points (APs) run Sensomax, which is an agent-based
WSN middleware, capable of executing multiple concurrent
applications based on their required operational paradigm.
Its agent-based architecture features:

• Conveying subscribers’ requirements to the entities

of interest
• Aggregate data on the APs in order to track events of

interest
• Issue notifications to the local and external

subscribers
• Facilitates decentralized operation amongst all APs

in case of SHG failure
• Synchronizing clocks on the APs and time-stamping

the packets

As we explained in the beginning of this section, AAL
technologies need to be reliable in order to issue alerts of
critical parameters. Therefore, it is crucial that these
solutions are not subject to a single point of failure. In
Sensomax, once the interest is registered (subscribed), the
Access Points/individual sensor gateways (SBG and SEG)
can push (publish) the required information directly to the
interested party, bypassing the SHG. Distribution of roles,
where each network segment is responsible for delivering its
own information, reduces network traffic and offloads a
SPOF machine. In the case of hardware failure, only a given
segment is lost and not the whole system.
In Sensomax there exist two types of subscriptions and
publications model: External and Internal.
External model refers to publishing critical healthcare
notifications to interested parties, located outside the
SPHERE home network, bypassing the SHG when
unavailable.
Internal applies to the in-network communication e.g. for
the purpose of sensor cueing - where video cameras are to
be switched on upon activation of a PIR sensor in the same
location. This information can be exchanged between the
environmental sensor network and the video sensor network
without the involvement of the SHG, thus reducing its load.

Here the environmental sensor network and video
monitoring system are described briefly in order to provide a
better understanding of how in-network communication
between the two through their Access Points can improve
their functionalities.
The SPHERE environment sensor system includes ambient
temperature, humidity, luminosity, PIR, door contacts, dust
particle, noise level sensors, cold/hot water consumption and
electricity consumption at each appliance level. As a
sub-system of the SPHERE sensor platform, the
environment sensor system employs wireless sensor
networks (WSN) to network 30+ sensor nodes in mesh
topology, generating 90+ data points, distributed in all

rooms of a full-instrumented resident house – SPHERE
demo house [2].
Sensor nodes provide several fundamental functions such as
multiple-channel signal acquisition, on-board signal
conditioning, data aggregation etc. Sensed data from the
sensor nodes are collected, pre-processed, structured and
transmitted to a SHG.
Messages containing the data are sent from the sensor nodes
via the WSN in either an event-driven or a time-driven
manner. Event-driven messages are sent immediately while
sensor detects event or sensor reading passes a designed
threshold. time-driven messages, embedding a group of
sensor data, are emitted in a required frequency. All sensor
data are tagged with sensor name schema, sensor node ID,
sensor node location, UTC timestamp and message number
to build up context and temporal relationships amongst the
entire datasets.
The video monitoring system is currently comprised of 3
Asus XtionPro RGB and depth sensors recording at 30
frames per second. Each is connected via a powered USB 2
cable to a dedicated bus on the SVG machine. These
cameras are used to track human movements and return
real-time 3d coordinates of bounding boxes encapsulating
residents as they go about their daily lives. The use of video
helps to provide several advantages compare with other
types of sensing devices: they are less intrusive, less
expensive, provides rich information of the environments
and easier to integrate into already existing buildings, and
they are able to simultaneously detect multiple events [9].
In order to save power and reduce the computational burden
of the video system it is preferable to only activate the
cameras when an individual is within their field of view. To
this end, the ability to exploit the reduced latency provided
by using Access Points, other than the SHG, offers the
opportunity to maximise how much of an individual's
actions are captured as they enter a room. A higher latency
might mean the system misses the beginning of users'
activities and then goes onto record needless extra footage
after they have left a particular camera's field of view.
In the Evaluation section, we will measure the
communication latency for the local and external subscribes
using agent-based model.
In the next section we will describe how using smart agents
in Sensomax can help facilitating in-network
communication, computation and time-synchronisation
between different subsystems.

II. METHODOLOGY
Sensomax has been described in detail in previous
publications [3-7]. Sensomax is a component-based,
multi-threaded, and dynamic WSN middleware, which is
capable of running atop various Java-enabled embedded
devices, including Raspberry Pi. Sensomax provides an
end-to-end software solution for programming and updating
various types of WSN applications onto large-scale
distributed networks. It also offers a reliable mechanism for
capturing data from multiple subsections of the network
independently.
Sensomax features agent-based communications in a
multi-clustered fashion in order to abstract network
resources and optimise the dataflow. These features are
intended to satisfy a number of objectives, including:

• Distributed execution of multiple concurrent
applications/data aggregation;

• Adaptive localised behaviour through shifting
multiple operational paradigms;

• Centralised/decentralised task distribution and data
gathering;

• Time Synchronisation
• Dynamic runtime reorganisation of the network;
• Autonomous decision-making and data aggregation

through distributed live computational algorithms.

The fundamental software architecture of Sensomax is
modular, meaning that the overall functionalities of the
system are broken down into multiple modules, each with a
set of unique functionalities. The interaction of these
modules creates a dynamic execution environment in which
new modules can be created as either standalone
components or as a combination of existing ones. Modules’
activities are highly embedded, which means that they have
no effect on the operations of other independent modules.
However, in order to efficiently minimise the overheads of
such operations and maximise their performance, they
require minimal regulatory strategies, such as controlling
their communication domains through a set of agent
interaction patterns, as well as abstracting the underling
resources according to those patterns, which are imposed by
Sensomax.
The primary communication backbone of Sensomax is
based conceptually on mobile agents, and nearly all of the
operations and processing within the network and the nodes
is carried out by ‘intelligent’ agents. Mobile agents convey
data, tasks, and different configuration policies throughout
the network in order to inject or execute them in the
appropriate nodes. In Sensomax, as with other WSNs, nodes
are required to specify their required functionalities to the
agents; this is one of the major differences between
agent-based approaches in conventional
Internet-Protocol-based networks and WSNs. The mobile
agent approach originated from a client-server
communication paradigm that was developed in
conventional computer networking, where servers provide a
number of services to their clients. Sensomax, as its first
preference, therefore, partitions the network into several
clusters to implement a server-client paradigm. Another
important motivation behind such an approach is
decentralising task-allocation and data-distribution in order
to perform asynchronous operations. Utilisation of agents in
a clustered fashion helps toward the decoupling of functions
and data, which results in accelerated data-distribution and
task-allocation amongst network entities.
Sensomax incorporates concurrency in a multi-clustered
fashion in which every application is designated with a
logical cluster in an abstract form. The application itself
resides in a single node, known as the Cluster-Head, where
all the top-level executions happen. The Cluster-Head splits
the application’s requirements according to the
above-mentioned categories, and distributes them amongst
its members. In order to increase reusability and decrease
redundancy, every node can simultaneously maintain
multiple roles (operational modes) for different applications,
either as a Cluster-Head or a Cluster-Member. Nodes can
then switch their operational mode depending on the
application being executed. This multi-clustered scheme
creates a collaborative execution model with potentially

multiple overlapping clusters, and that results in a massive
amount of data being generated, either locally in each node,
or in a Cluster-Head when data are captured from its several
members. On the application side, Sensomax refines
application demands into four major categories (Event,
Time, Query, and Data requirements), whilst switching the
Operational Paradigm (OP) on the node side into one of the
Event-Driven, Time-Driven, Query-Driven and Data-Driven
paradigms respectively. This distinction between different
OPs allows each requirement to be identified and executed
in its own paradigm-specific environment with other
requirements of the same type. The concurrency model in
Sensomax also enables application demands to be split
based on their OP and distributed amongst others. This type
of distribution can happen in a Cluster-Head when subtasks
get allocated to its members. It is worth noting that in every
node agents are still executed in their own application
spaces within each OP.
Sensomax also abstracts both agents and available resources
into three major categories: Global, Local, and System. This
process safeguards exclusive interactions of agents and
resources, where each type of agent is only privileged to
access the resources of its own type. This mechanism
benefited Sensomax enormously, resulting in more rapid
runtime updates and better scalability. Because of this,
multiple applications run simultaneously on both network
and node levels whilst injecting their updates at runtime,
without affecting others’ processing, and they can
potentially use and/or reuse the same set of resources.

Figure'2:'Multiple'overlapping'clusters'for'concurrent'applications'

Figure 2 shows how multiple applications run
simultaneously in different cluster-heads whilst sharing the
same cluster-members, acting as a cluster-head of one
application and a cluster-member of another. In this figure
applications are synonymous with subscriber’s request,
which can run on a cluster-head or in this case on an AP.
Having implemented these adaptive behavioural reactions to
application requirements at initial deployment, the next
requirement is to ensure that the network is able to
dynamically reorganise itself according to the results of
updates received from the pre-deployed applications. The
decentralised execution modality of Sensomax, using a
multi-agent approach, and the isolated executing
environment of individual applications, facilitates an
exclusive hierarchical agent processing in nodes and
clusters.
Updates to pre-deployed applications are received from the
end-users and distributed throughout the network in the
form of System Agents, which are processed in an

 162

3.4.4. Concurrency Overview

Earlier in sections 3.4.2-3.4.3, we explained how a WSN could be divided into

multiple clusters, where each cluster-head accommodates a single application,

and sensor nodes only take a single profile. We clarified that explanation by

showing two separate clusters in Figure 20, in which each node only belongs to a

single cluster. In this section however, we will explain how nodes can take

multiple profiles simultaneously, in order to execute multiple applications, by

potentially using the same set of sensor nodes.

Figure 23: Overlapping clusters with inclusive applications.

As Figure 23 shows, Sensomax divides the network into multiple clusters, where

each cluster is dedicated to one application. Some sensor nodes however, belong

to multiple clusters whilst taking more than one profile. Therefore applications

can potentially use multiple overlapping clusters by running application-specific

agents on each cluster. This works in such a way that network peers such as

servers and clients (Cluster-Heads and Cluster-Members) execute application

agents exclusively based on the node’s profile for that specific application in the

network. This allows nodes in the overlapping regions to be used by multiple

applications simultaneously. This feature is known as resources’ reusability,

which will be discussed later in section 3.7.

asynchronous fashion in each Cluster-Head. The isolated
executing environment of each application guarantees the
receipt of updates by the addressees only, and the updates
are pushed onto the application subtasks without affecting
the normal operations of the nodes. Once all updates have
been applied, the network will gradually adapt to the new
changes, due to its decentralised interactive nature.
Another distinct benefit of such decentralised adaptive
reorganisations is seamless data aggregation at multiple
network levels. Algorithmic operations can be carried out on
captured data in the same way that the updates are applied
dynamically, but with one key difference: algorithms are
embedded as computational components within the
middleware’s architecture. The isolated processing of agents
facilitates data aggregation by distributing the collected data
in the form of agents and applying the computational
algorithms onto them either at Cluster-Heads or right where
they are captured, at nodes. This decentralised methodology
allows decoupled computational operations in nodes, whilst
higher-level aggregation can be done independently in the
associated Cluster-Heads. This scheme not only enables
aggregation but also is the main principle behind
implementing autonomous behaviours in Sensomax.
Examples of computational operations that can be
seamlessly incorporated into the Sensomax architecture
include: data aggregation algorithms, packet error correction
using CRC, energy management strategies, statistical
analysis of captured data, and any arithmetical operations on
the captured data [6-7, 10]
SBH Access Point, uses BLE transceivers to interact with
on-body sensors via USB port. Therefore it is necessary to
process the received packets for error correcting.
In line with many communication protocols, BLE uses
Cyclic Redundancy Check (CRC) codes to detect
communication errors. CRC error correction would directly
improve the packet reception rate at the receiver and
decrease the amount of energy that is spent on
retransmissions at the transmitter [8].
Prior to transmission, a CRC encoder processes the packet.
On the receiver side, the received packet is forwarded to the
higher layers of stack only if a CRC check is successful,
otherwise the packet is considered corrupted and is dropped.
Considering that performing error correction requires
additional processing at the receiver, this approach is
essentially offering a way to decrease the retransmissions
and unburden the transmitter by moving some of these costs
to the receiver. Therefore, CRC error correction is a
compelling choice for applications where an
energy-constraint transmitter communicates with a
constraint-free infrastructure, such as wearable sensors
streaming data to a smart infrastructure [8].
This process can be implemented by the APs in a distributed
and centralised manners using Sensomax agent-based
model. Such a process requires to be multi-threading process
on the central unit (as well as every access point) in which
received data on 3 different channels are passed to a
multi-step CRC-checking algorithm by parsing packet’s
properties including Antenna polarization, Channel Number,
Relative Time stamp, Packet Sequence number and RSSI.
According to figure 3, for the purpose of CRC-checking and
subscribing local and externals subscribers, Sensomax
models the network in three modes. That is done in order to
distribute agents, fetching notifications and run
computations locally in clusters.

Figure'3:'Distributed'and'Centralised'agentFbased'model.'

Distributed: Each access point receives data from the
packet sniffer and transmits them in JSON format to the
SHG over MQTT. This transmission mode operates
regardless of other access points operations.
Centralised: One of the access point acts as a central unit
and all other access points connect with the central unit in
Star topology. Each access point sends its received data to
the central unit in JSON format. The central unit opens an
MQTT connection to home gateway and transmit data.
Dual: In this mode, both modes centralised and distributed
modes are implemented simultaneously.
Checking and correcting received packets on 3 Channels
from 4 APs facilitates more functionalities including:

1. Synchronizing real time clocks (RTC) of all access
points;

2. Optional Time-stamping of received data;
3. Parsing Sniffer’s received packets to/from JSON;

format by adding UTC timestamps as requested;

In the Centralised approach, the clock of each AP is
checked, and its time-stamping of packets is corrected by
the central node in real-time. The central node maintains an
active TCP connection (synchronous) with the SHG’s NTP
time server. In the Distributed mode, each AP corrects its
time-stamping with the SHG with respect to the link latency.
In the Dual mode however, both approaches are done
sequentially starting with Distributed mode. The next
section will evaluate all three synchronisation methods and
measure the drift in the time-stamping over time.
In the next section we will also evaluate subscribing local
and external subscribers using the centralised and distributed
modes. Latencies in both communication methods, and their
overhead on the APs’ processor and memory will also be
measured.

III. CASE STUDIES AND EVALUATION
In this section a number of experiments have been

conducted to measure the latencies for delivering the
notifications from the source of events to the local and
external subscribers for both time-driven and event-driven
applications. In the second part of this section we will
evaluate different synchronisation mechanisms in terms of
the time-drift in access points’ clocks over 120 hours.
For the purpose of this experiment, a network of 4
Raspberry Pi devices acting as the access points were set up
in 2 topologies of Centralised and Distributed, which have
been described in the previous section.
For simplicity, the following applications are devised:

Table'1:'EventFdriven'and'TimeFdriven'applications'
Application Operational

Paradigm
Parameter Frequency/

Threshold
A Event-driven PIR 200ms
B Time-driven Temperature Every 5

seconds

For the first experiment, a cluster of 4 APs in star

topology has been set up, with one AP acting as the central
node (cluster-head). Applications A contains event-driven
agents, in which any movement detected by the PIR sensor
will be delivered to the central AP and flagged to be relayed
to the relevant subscriber. The central AP will then decide
whether to send the notification to a local subscriber or an
external one. The same scenario applies to the application B,
in which time-driven agents monitor temperature value at a
5 second interval and relay the data to the central node.

Based on SPHERE Requirements Specification
Document, all packets are in JSON format following SenML
mark-up language. Packets differ in terms of size and
contents. Here is a sample packet for application A and B:

{'uid':'S2_H','bt':'2-45-41','mc':'128','dt':'2015-07-07T16:44:29.513
Z','e':[{'n':'LT','v':90.811},{'n':'NS','v':69.0},{'n':'DT','v':0.143}]}

In addition to the above applications, by default the

central AP runs the clock-synchronisation service at all time.
It time-stamps the incoming packets by taking into account
the clock-offset value of the associated node, and the NTP
timeserver running on the SPHERE Home Gateway.

Figure' 4:' Latencies' associated'with' EventFdriven'and' TimeFdriven'
applications'delivered'to'Local'subscriber'via'a'central'node.'

Figure 4 shows the latencies associated with event-driven
and time-driven applications delivered to the local
subscribers via the central node.

Figure' 5:' Latencies' associated'with' EventFdriven'and' TimeFdriven'
applications'delivered'to'External'subscriber'via'a'central'node.'

Figure 5 shows the latencies associated with event-driven
and time-driven applications delivered to external
subscribers via the central node using MQTT.
As figure 4 and 5 show, the latency in the delivery of the
notifications is proportionate to the number of packets sent
to the central AP per second. Therefore connection traffic
has a huge impact to the latency of data transfer. As this
figure shows, Time-driven application has lower latency,
since time-driven agents are expected at regular intervals (in
this case every 5 seconds). Event-driven agents however, are
unpredictable and only generated when an event of interest
is detected (in this case, movement detected by PIR sensor).
The other important factor is the fact that, higher number of
packets processed by the central AP imposes a massive
overhead on the processor and the memory. Figure 6 shows
the processor and memory overheads on the Raspberry Pi
version 2 model B with Quad-core 900 MHz Cortex-A7
Processor and 1GB of RAM.
For the purpose of this experiment, Sensomax is the only
application running on the raspberry pi with active UDP
connections from 4 APs. Sensomax with no data flow
occupies 19-20% of the processor when the AP boots up.
As this figure displays, 750 packets per second is the
maximum the processor can handle. The system adds
significant delay to this process or other system processes
once the processor goes past this figure. It will also impose
huge pressure on the CPU, which results in overheating and
system failure.

Figure'6:Processor'and'Memory'overheads'based'on'the'number'of'
packets'received'per'second.'''

As this figure shows, the amount of occupied RAM based
on the maximum number of packets is around 80%, which is
within the healthy range, given the significant amount of
JSON parsing done by the AP on the incoming packets. It is
worth mentioning that SPHERE Body Gateway
configuration requires the APs to run additional Python
software, which looks after packet sniffer application
provided by Nordic Semiconductor. This software is
essential in order to interface with the Nordic USB
Receiver. Nordic software normally takes between 30-50%
of the processor based on the given load. Based on the
above figure, processing more than 550 packets per second
in addition to the Nordic library could lead to overheating of
the CPU and failure of Raspberry Pi board. Therefore for the
purpose of this experiment, Nordic software has been
removed from the APs.

Next section repeats the previous experiment, this time in a
distributed fashion without the central node. In this scenario
APs deliver the notifications to the local subscriber directly
(Figure 7) and to the external subscriber via the SHG or
directly to a remote IP address via MQTT (Figure 8).

Figure' 7:' Latencies' associated'with' EventFdriven'and' TimeFdriven'
applications'delivered'to'Local'subscribers'bypassing'the'SHG'

Figure' 8:' Latencies' associated'with' EventFdriven'and' TimeFdriven'
applications'delivered'to'External'subscribers'via'the'SHG.'

Like the previous experiment, both Figures 7 and 8 show
that time-driven applications have lower latency compared
to the event-driven ones. However, latency in a distributed
mode is significantly lower. The omission of central node
notably improves the timely delivery of notifications.
However, each AP has to synchronise its clock with the
SHG directly and time-stamping is only done on the APs in
a distributed fashion.

Figure' 9:' Drift' in' the' timeFstamping' of' the' packets' using'
Centralised,'Distributed'and'the'Dual'modes.''

It is also worth noting that this approach eliminates the

advantage of decentralised operation of APs in case of SHG
failure. As we mentioned in the previous section, another
approach for clock-synchronisation is to use both centralised
and distributed modes for adjusting the offset in the APs’
time-stampings. Figure 9 reports the drift in the
time-stamping of the packets over 120 hours using
centralised, distributed and the dual mode, which is a
combination of both approaches.
As figure 9 shows the drift in the timestamp of distributed
mode introduces around 2300ms over 120 hours, which is
equal to nearly 2 seconds over 5 days. The offset by the
centralised mode is nearly half the distributed mode. The
combined mode however, offers the best result; with only
500ms over a 5-day period.

IV. CONCLUSION
In this paper we have described how distributed

middleware can improve data-acquisition and delivering
notifications to the subscribers for critical healthcare
applications and running local computational process. We
also described three time-synchronisation methods in order
to correct time-stamping of packets using a combination of
centralised and distributed packet processing.

ACKNOWLEDGMENT
This work was performed under the SPHERE IRC, funded
by the UK Engineering and Physical Sciences Research
Council (EPSRC), Grant EP/K031910/1.

REFERENCES
[1] Woznowski, P., Fafoutis, X., Song, T., Hannuna, S., Camplani, M.,

Tao, L., Paiement, A., Mellios, E., Haghighi, M., Zhu, N., Hilton, G.,
Damen, D., Burghardt, T., Mirmehdi, M., Piechocki, R. J., Kaleshi,
D., Craddock, I., “A multi-modal sensor infrastructure for healthcare
in a residential environment.” In: In IEEE Workshop on ICT-enabled
services and technologies for eHealth and Ambient Assisted Living,
London, UK, June 2015.

[2] Zhu. N, Diethe. T, camplani. M, Tao. L, Burrows. A, Twomey. N,
Kaleshi. D, Mirmehdi. M, Flach. P, Craddock. I, "Bridging eHealth
and the Internet of Things: The SPHERE Project", IEEE Intelligent
Systems, special issue May/June 2015.

[3] M. Haghighi, D. Cliff, “Sensomax: An Agent-Based Middleware For
Decentralized Dynamic Data-Gathering in Wireless Sensor
Networks”, The 2013 IEEE International Conference on
Collaboration Technologies and Systems, San Diego, May 2013.

[4] M. Haghighi, M. Bocian, O. Oddbjornsson, J.H.G Macdonald, J.F.
Burn, “Synchronous Data Acquisition from Large-scale Clustered
Wireless Sensor Networks”, 10th IEEE Vehicular Technology Society
APWCS, Seoul, South Korea, August 2013.

[5] M. Haghighi, “An End-to-End Middleware Solution With Multiple
Concurrent Applications Support for Wireless Body Area Networks”,
The 6th IEEE International Conference on Computational Intelligence
and Applications, July 2013, Hiroshima, Japan.

[6] M. Haghighi, C.J. Musselle, “Dynamic Collaborative Change Point
Detection in Wireless Sensor Networks”, International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery,
Beijing, China, October 2013.

[7] M. Haghighi, “Market-based Resource Allocation For
Energy-efficient Execution of Multiple Concurrent Applications In
Wireless Sensor Networks”, LNEE, Springer, July 2013.

[8] Tsimbalo, E., Fafoutis, X., Piechocki, R. “Fix It, Don’t Bin It! - CRC
Error Correction in Bluetooth Low Energy”, submitted to the 2nd
IEEE world forum in IoT.

[9] A. Paiement, L. Tao, S. Hannuna, M. Camplani, D. Damen, and M.
Mirmehdi, “Online quality assessment of human movement from
skeleton data,” in British Machine Vision Conference, 2014.

[10] M. Haghighi, K. Maraslis, T. Tryfonas, G. Oikonomou, “Game
Theoretic Approach Towards Energy-Efficient Task Distribution in
Wireless Sensor Networks”, IEEE SENSORS 2015, Busan, South
Korea, November 2015.

