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Abstract
Many problems in Multi-Agent Systems (MASs) research are formulated in terms of
the abilities of a coalition of agents. Existing approaches to reasoning about coalitional
ability are usually focused on games or transition systems,which are described in terms
of states and actions. Such approaches however often neglect a key feature of multi-
agent systems, namely that the actions of the agents require resources. In this paper,
we describe a logic for reasoning about coalitional ability under resource constraints
in the probabilistic setting. We extend Resource-bounded Alternating-time Temporal
Logic (RB-ATL) with probabilistic reasoning and provide a standard algorithm for
the model-checking problem of the resulting logic Probabilistic resource-bounded
ATL (pRB-ATL).We implementmodel-checking algorithms and present experimental
results using simple multi-agent model-checking problems of increasing complexity.

Keywords Logic of resources · Alternating-time temporal logic · Probabilistic logic ·
Markov decision process · Multi-agent systems

1 Introduction

An increasingly important field of AI is autonomous agents and multi-agent systems,
where agents are entities that can interact with their environment or other agents
in pursuit of their goals. In general, multi-agent systems research refers to software
agents. However, the agents in aMulti-agent System (MAS) could also be for example
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humans or robots. A key feature of a MAS is that agents in the system are concurrent.
The primary aims of such systems are modularity, scalability, flexibility, robustness,
and distributed computing (Jennings & Wooldridge, 1998). In multi-agent systems,
there are many problems which also require coalition formation among the agents and
such problems can only be usefully analysed in terms of the combined abilities of
groups of agents. For example, it may be that no single agent, a potential home buyer
having some financial deposit constraint, has a strategy to reach a particular state,
buying a home, on its own, but two agents, perhaps husband and wife, cooperating
with each other are capable of achieving this outcome. Similarly, in the prisoners
dilemma (Rapoport, 1989), a single prisoner cannot ensure the optimal outcome, while
a coalition of two prisoners can. The Alternating-time Temporal Logic (ATL) (Alur
et al., 2002) was introduced as a logical formalism for analysing the strategic abilities
of coalitions with temporal winning conditions. The semantics of ATL is usually
given by a transition system specification based on concurrent game structures. In
ATL, various interesting properties of coalitions and strategies such as reachability
and controllability can be formulated. One can then encode a system and verify its
desired properties expressed in ATL using standard ATL model-checking tools, such
as jMocha (Alur et al., 2001) and MCMAS (Lomuscio et al., 2017). Coalition Logic
(CL) (Pauly, 2002) is another logical formalism similar to ATL, intended to describe
the ability of groups of agents to achieve a goal in a strategic game. It can specify what
a group of agents can (not) achieve through choices of their actions. In the literature,
several variants ofATL andCLhave been proposed (see e.g., (Goranko, 2001;Ågotnes
et al., 2009; Herzig et al., 2013)). These logics allow us to express many interesting
properties of coalitions and strategies, such as “a coalition of agents A(⊆ N , the set of
all agents) has a strategy to reach a state satisfying ϕ no matter what the other agents
and/or environment (N \ A) in the system do”, where ϕ characterises, e.g., lifting a
heavy weight by a group of robots A, saving a building from fire by a group of fire
extinguisher robots A or simply a solution to a problem. In fact, these logics can be
used to state various qualitative properties of real-world concurrent systems. However,
analysing quantitative properties of systems, such as reliability and uncertainty, which
can not be expressed trivially in the logics described above, is equally or even more
important. Reliability is the probability that a systemwill perform its specified function
over a given period of time under defined environmental conditions. For example, a
reliability property could be “if a fire is detected in a building, then the probability of
it being put out and the building being saved by a coalition of robotic agents A within
k time steps is at least p”.

Many real-world systems, such as Internet of Things (IoT) and Cyber Physical Sys-
tems (CPS) are deeply rooted in activities of our daily living (Calvaresi et al., 2017).
The multi-agent paradigm offers an excellent framework which can be used to model
and implement such systems (Leitao et al., 2016). Such systems usually operate in
unpredictable and/or uncertain environments (Faza et al., 2009; Zhang et al., 2016).
Their applications encompass many safety critical domains, and many such applica-
tions run in resource constrained devices and environments (Abbas et al., 2015; Laszka
et al., 2015). These systems therefore often require rigorous analysis and verification to
ensure their designs are correct (Kwiatkowska, 2016). Thus, working together across
theory and practice is fundamental to address real-world challenges and develop novel
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formal frameworks in tandemwith the theory and tools required to ensure desired sys-
tems’ reliability and correctness. In conventional verification via model-checking,
given a model of a system, and a specification, a model checker determines if the
system satisfies the specification by returning a yes or no answer. However, when con-
sidering stochasticity in the environment, agents in the system should be formalised in
a way so that they exhibit probabilistic behaviour. PRISM (Kwiatkowska et al., 2002)
is a tool for formalmodelling and analysis of systems that exhibit randomor probabilis-
tic behaviour. A system model in PRISM can be developed using its own modelling
language similar to reactive modules (Alur et al., 2001), and the properties can be
written in an appropriate property specification language, including PCTL (Bianco &
de Alfaro, 1995), CSL (Baier et al., 1999), PLTL (Baier, 1998), PCTL∗ (Baier, 1998),
and rPATL (Chen et al., 2013). These are fundamentally probabilistic temporal logics.
The logic rPATL allows to reason quantitatively about a system’s use of resources
and emphasises on expected reward related measures. In rPATL, we can express that
a coalition of agents has a strategy which can ensure that either the probability of an
event’s occurrence or an expected reward measure meets some threshold. However,
probabilistic resource-bounded properties such as:

• “can coalition A have a strategy so that the probability to reach a state satisfying
ϕ under the resource bound b is at least p?";

• “a coalition of agents A has a strategy to achieve a property ϕ with probability p
provided they have resources b, but they cannot enforce ϕ under a tighter resource
bound b′”;

• “a coalition of agents A can maintain ϕ until ψ becomes true with probability p
provided they have resources b”; and

• “if a property ϕ holds, then a coalition of agents A has a strategy to achieve a
property ψ within n time steps with probability p provided they have resources b"

can neither be expressed in rPATL nor in any other probabilistic temporal logics men-
tioned above in a straightforward way. In this paper, we propose a logic pRB-ATL for
reasoning about coalitional ability under resource constraints in the probabilistic set-
ting, which allows us to express such properties. The significance and novelty of the
proposed logical framework, based on probabilistic reasoning and decision-theoretic
principles, is that it allows us to analyse the implications of uncertainty and limited
computational, communication, or any other resources on the design of autonomous
agents in a more realistic and simple manner. This article is a revised and extended
version of Nguyen and Rakib (2019). The main differences from Nguyen and Rakib
(2019) are a complete literature review, addition of the complete proofs of the lem-
mas and theorems, development of the model-checking toolkit, and modeling a more
complex example system with comprehensive experimental analysis and verification
results.

The rest of this paper is organised as follows. In Sect. 2, we review related work and
discuss how our proposed logic pRB-ATL differs from other logics suggested in the
literature. In Sect. 3, we discuss the basic notions of probability distribution, and the
underlying probabilistic formalisms of our logic such as Discrete-timeMarkov chains
and Markov Decision Processes. In Sect. 4 we present the syntax and semantics of
pRB-ATL. In Sect. 5, we give a model-checking algorithm for pRB-ATL. In Sect. 6,

123



H. N. Nguyen, A. Rakib

we outline an implementation of our model-checking prototyping tool. In Sect. 7, we
model, analyse, and present experimental results applying our techniques and tool.
Finally, in Sect. 8 we conclude the paper and outline directions for future work.

2 RelatedWork

In this section, we outline recent important developments on ATL and its exten-
sions considering conventional, resource-bounded, and probabilistic reasoning by
discussing important features, such as (un)decidability results, expressiveness, and
model-checking problems.

A large number of existing studies in the multi-agent coalition literature have for-
mulated reasoning about the abilities of coalitions of agents in terms of games (Pauly,
2002;Goranko, 2001;Wooldridge&Dunne, 2004;Ågotnes et al., 2009). The coalition
logic basically generalises the notion of a strategic game, and its semantics is given
in terms of state transition systems where each state has an associated strategic game.
The logic ATL (Alur et al., 2002) was originally developed to reason about distributed
processes in adversarial environments, and CL (Pauly, 2002) can be regarded as the
one-step fragment of ATL (Goranko & Drimmelen, 2006; Goranko, 2001). That is, in
CL, the outcome of a strategic game is realised in the next state, but in ATL, properties
can be expressed holding in arbitrary future states. These logics allow us to express
many interesting properties of coalitions and strategies, as mentioned previously, such
as 〈〈A〉〉ϕ, which states that coalition A has a strategy to reach a state satisfying ϕ. The
exact semantics of the modalities of the coalition varies depending on whether or not
the knowledge that each agent has about the current state of the game is complete (in
modal logic it’s attributed as complete/incomplete information), and whether agents
can use past game state knowledge when deciding on their next move or not (in modal
logic it’s attributed as perfect/imperfect recall). It is shown in Alur et al. (2002) that the
model-checking problem for complete information is decidable in polynomial time,
and it’s undecidable for the incomplete information and perfect recall case (Dima and
Tiplea, 2011).

Recently, there has been growing interest in formal models of resource-bounded
agents (Alechina et al., 2009; Alechina et al., 2010; Bulling & Farwer, 2010; Della
Monica et al., 2011; Alechina et al., 2010; Nguyen et al., 2015). In resource-bounded
reasoning agent research work, the emphasis is on the behavior of agents constrained
by fixed resource bounds. For example, the authors ofAlechina et al. (2009) introduced
Coalition Logic for Resource Games (CLRG), an extension of Coalition Logic that
allows explicit reasoning about the resource endowments of coalitions of agents and
the resource bounds on strategies. Similarly, the Resource-bounded Alternating-time
Temporal Logic (RB-ATL) (Alechina et al., 2010) was developed for reasoning about
coalitional ability under resource bounds. The logic RB-ATL allows us to express
various resource-bounded properties, such as 〈〈Ab〉〉ϕ which expresses that coalition
A has a strategy to reach a state satisfying ϕ under the resource bound b. The model-
checking problem for RB-ATL is decidable and if resource bounds are encoded in
unary, the model-checking algorithm for RB-ATL runs in time polynomial in the
size of the formula and the structure, and exponential in the number of resources.
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There also exist other works on extensions of temporal logics and logics of coalitional
ability that are capable of expressing resource bounds (Bulling & Farwer, 2010; Della
Monica et al., 2011). In Bulling and Farwer (2010) Resource-bounded Tree Logics
RTL andRTL∗ were introduced. The logicRTL∗, which extendsCTL∗ with quantifiers
representing the cost of paths, can allow only to analyse single-agent systems. RTL is a
fragment of RTL∗ in which each temporal operator is immediately preceded by a path
quantifier. Fundamentally, in their proposed language the existential path quantifier
Eϕ of CTL has been replaced by 〈ρ〉ϕ, where ρ represents a set of available resources.
Intuitively, the formula 〈ρ〉ϕ states that there exists a computation feasible with the
given resources ρ that satisfies ϕ. It has been shown that the model-checking problem
for RTL and some sub-classes of RTL∗ is decidable.

The Price Resource-bounded ATL (PRB-ATL) logic proposed in Della Monica et
al. (2011) has introduced its model-checking problem and its syntax and semantics
consider resource endowment of the whole systemwhen evaluating a formula pertain-
ing to a coalition of agents. In their model the resources are convertible to money and
its amount is bounded. Example properties that can be expressed in PRB-ATL includes
〈〈A$〉〉ϕ, which states that the coalition A has a strategy such that, no matter what the
opponent agents do, ϕ can be achieved under the expenses $. Similar to the RB-ATL, $
can be∞ in the general case. That is, the meaning of 〈〈A$〉〉ϕ when $ = ∞ is the same
as its counterpart in ATL. The model-checking problem for PRB-ATL is decidable
and its complexity similar to that of RB-ATL.

In Alechina et al. (2010), the authors proposed a sound and complete logic RBCL
that allows us to express the costs of strategies under resource bounds. They have
demonstrated how to verify properties expressed in RBCL and provided a decision
procedure for the satisfiability problem of RBCL as well as a model-checking algo-
rithm. However, RBCL has some limitations. For example, properties like "coalition
C has a strategy to maintain the property ϕ with resources b", or "coalition C can
maintain ϕ until ψ becomes true provided C has resources b" cannot be expressed
in RBCL. We can express and verify such properties using RB-ATL (Alechina et al.,
2010; Nguyen et al., 2015).

In a more recent work (Belardinelli & Demri, 2021), the authors studied model-
checking problem complexity of RB±ATL+, a variant of RB±ATL (Alechina et al.,
2018). The authors investigated the RB±ATL+ version, which allows Boolean com-
binations of path formulas starting with single temporal operators, but is only able to
analyse a single resource, providing an interesting trade-off between temporal expres-
sivity and resource analysis. Its model-checking problem complexity is �P

2 -complete
when taking into account just one agent and one resource, which is similar to that of the
standard CTL+ logic. Additionally, they have demonstrated that the model-checking
problem for RB±ATL+ can be solved in EXPTIME with an arbitrary number of
agents and a fixed number of resources by using a sophisticated Turing reduction to
the parity game problem for alternating vector addition systems with states. Overall,
the paper provides a thorough and rigorous treatment of the model-checking problem
complexities of strategic reasoning in resource-bounded agents considering both the
production and consumption of resources.

A large number of multi-agent application domains, such as IoT and CPS in general
and disaster rescue andmilitary operations in particular, require not only the reasoning
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about the team behavior of agents but also require that the agents and/or the environ-
ment may have random or unreliable behaviors. In such domains, the behaviour of
an agent has to be described in terms of a distribution of probability over a set of
possibilities. There has recently been increasing interest in developing logics with a
probabilistic component and to link logical and probabilistic reasoning (see e.g., (Chen
and Lu, 2007; Bulling & Jamroga, 2009; Forejt et al., 2011; Huang et al., 2012; Chen
et al., 2013; Song et al., 2019; Fu et al., 2018; Wan et al., 2013)). These logics are
essentially extensions of CTL or ATL which allow for probabilistic quantification of
described properties. In general, probabilistic systems exhibit a combination of prob-
abilistic and nondeterministic behaviour, and the semantics of the system models are
defined in terms of probabilistic transition systems. For example, the semantics of
the probabilistic ATL logics are defined over probabilistic extension of concurrent
game structure (Alur et al., 2002), for which a commonly used underlying formalism
is Markov Decision Processes (MDPs). Probabilistic model-checking is also a well-
established technique, and a well-known tool PRISM exists based on Markov chains
(MCs) and MDPs probabilistic models (Kwiatkowska et al., 2002). In Chen and Lu
(2007), PATL/PATL∗ logics have been developed by extending ATL and interpreting
over the probabilistic concurrent game structures. Interesting properties that can be
expressed in PATL include 〈〈A〉〉[ϕp]�	 v; it can be read as: a coalition A has a strategy
such that for all strategies of agents not in A, the probability that the path formula ϕ is
satisfied is �	 v (�	∈ {≤,<,>,≥}). It was then further extended to develop the logics
rPATL/rPATL∗ (Chen et al., 2013) for expressing quantitative properties of stochastic
multi-player games. The logics rPATL/rPATL∗ extend PATL/PATL∗ with operators
that can enforce an expected reward �	 v. The logic rPATL∗ can express cumulative
rewards given by the transition system. It is know that model-checking problem for
rPATL∗ is 2EXPTME-complete.

Similar to rPATL, strategies of the agents in our proposed pRB-ATL logic are ran-
domised. An agent uses a randomised strategy by selecting a probability distribution
overmoves; and themove to be played is then chosen at random, according to the distri-
bution. However, the reasoning problem considered in our work differs from rPATL in
two importantways. First, andmost importantly, properties in rPATL related to rewards
are of statistical nature. They are expressed and computed as constraints on expected
values for rewards. In contrast, resource-bounded properties in our pRB-ATL logic lie
within the realm of crisp values and constraints; actions and strategies are allowed if
and only if they satisfy the resource-bounded constraints. That is, using pRB-ATL, it is
possible to ask whether a strategy (a sequence of actions) exists to achieve some goal
with probability 0.99 if the agents startwith e.g., 100 units of energy. Second, semantics
for rPATL is based on turn-based systems while ours is based on concurrent systems.
However, recently developed PRISM-games 3.0 (Kwiatkowska et al., 2020) supports
modelling concurrent games. We are aware that properties of resource-bounded sys-
tems can be verified by expressing them using rPATL. However, to encode a system
using rPATL,we have to expand themodel to incorporate the resource information into
the states of the model. For different formulas with different resource bounds we have
to then induce a new model to perform the model-checking algorithms. Our proposed
approach allows model-checking algorithms to work directly with the original model.
This opens up the possibility of future research including not only agents consume but
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also produce resources. In the resource production case, verifying resource-bounded
properties by encoding resource-bounded system using rPATL is no longer feasible.
Furthermore, we do not mention anything about optimal strategies in our framework.
Our aim is to check existence of a strategy (which may not be optimal), where the
resources each agent is prepared to commit to a goal are bounded.

The approach proposed by Huang et al. (2012) in developing probabilistic ATL
logic relies on interpreted system semantics. The resulting logic PATL∗ essentially
generalises the interpreted system (Fagin et al., 1995) by adding probabilistic modal-
ity and explicit local actions taken by the agents. An example property that can be
expressed in PATL∗ is 〈〈A〉〉�	vϕ which expresses that coalition A has a strategy to
enforce ϕ with a probability �	 v. However, since the semantics is based on incom-
plete information and synchronous perfect recall, model-checking problem for PATL∗
is undecidable even for a single agent system.

In Bulling and Jamroga (2009), another alternative semantics for a probabilistic
logic PATL has been proposed using the notion of prediction denotation operator.
In PATL the reasoning about probabilistic success studied over complete information
games. The success of the strategy of a coalition is measured according to a probability
measure describing the potential actions of the rest of the agents in the system. An
example property that can be expressed in PATL is 〈〈A〉〉p

ωϕ which expresses that
coalition A has a strategy to enforce ϕ with probability p when agents not in A
behave according to ω. The model-checking problem for PATL with mixed strategies
is bounded between Probabilistic polynomial time and PSPACE.

In Guan and Yu (2022), the authors presented a probabilistic continuous-time linear
logic (CLL), to reason about the probability distribution execution of continuous-time
Markov chains (CTMCs). In CLL, multiphase timed until formulas are allowed and
the semantics of the formulas focuses on relative time intervals, meaning that time
can be reset just like in timed automata. The model-checking problem is reduced to a
reachability problem of absolute time intervals.

In Wang et al. (2021), the authors proposed a new concept of probabilistic confor-
mance for Cyber-Physical Systems (CSP). This idea is based on approximately equal
satisfaction probability for a given (infinite) set of signal temporal logic (STL) formu-
las. They have presented a verification algorithm for the probabilistic compliance of
grey-box CPS, described by probabilistic uncertain systems. Their proposed statistical
verification method is based on a statistical test that can determine if two probability
distributions are equal at any chosen level of confidence. It is shown that statistically
confirming compliance is possible when the STL formula is monotonically parameter-
ized, meaning that the satisfaction probability of the formula changes monotonically
with the parameters.

We must say that after ATL (Alur et al., 2002) was introduced a remarkably rich
literature has been developed. Here we have discussed only an overview of the works
that are closely related to the topic of the paper. However, in all the approaches, at least
in the probabilistic setting, the basic idea of agents acting in an environment according
to a set of rules in the pursuit of goals does not take into account resources. In real life,
many actions that an agent may perform to achieve a goal can only be accomplished in
the availability of certain resources. Certain actions are not possible without sufficient
resources, which will lead to a plan failure. To the best of our knowledge, there are no
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existing works in the literature that address probabilistic variants of ATL for modeling
and verifying resource-bounded agents explicitly.

3 Background and Preliminaries

In this section, we discuss the basic notions that are used in the technical part of the
proposed logic. Let Q be a finite set and μ : Q → [0, 1] be a probability distribution
function over Q such that

∑
q∈Q μ(q) = 1. We denote by D(Q) the set of all such

distributions over Q. For a givenμ ∈ D(Q), supp(μ) = {q ∈ Q | μ(q) > 0} is called
the support of μ. A probability space is a measure space with total measure 1. The
standard notation of a probability space is a triple (�,F , Pr), where � is a sample
space which represents all possible outcomes, F ⊆ P(�) is a σ -algebra over �, i.e.,
it includes the empty subset and it is closed under countable unions and complement,
and Pr : F → [0, 1] is a probability measure over (�,F). The interested reader
is referred to Billingsley (1986) for a complete description relating to probability
distributions and measures. We also denote the set of all finite, non-empty finite and
infinite sequences of elements of Q by Q∗, Q+ and Qω, respectively.

3.1 DTMC andMDP

Discrete-timeMarkov chains (DTMCs) are the simplest probabilistic models in which
the systems evolve through discrete time steps.

Definition 1 A DTMC is a tuple Mc = (Q, q0,	, π, δ), where Q is a set of states,
q0 ∈ Q is the initial state, 	 is a finite set of propositional variables, π : Q → ℘(	)

is a labelling function, and δ : Q × Q → [0, 1] is a probability transition matrix such
that

∑
q ′∈S δ(q, q ′) = 1 for all q ∈ Q.

Here, δ(q, q ′) denotes the probability that the chain, whenever in state q, moves into
next state q ′, and is referred to as a one-step transition probability. The square matrix
P = (δ(q, q ′))q,q ′∈Q , is called the one-step transition matrix. Since when leaving
state q the chain must move to one of the possible next states q ′ ∈ Q, each row sums
to one.

Definition 2 A path λ in a DTMC Mc is a sequence of states q0, q1, q2 . . . such that
δ(qi , qi+1) > 0 for all i ≥ 0. The i th state in a path λ is denoted by λ(i). The set of
all finite paths starting from q ∈ Q in the model Mc is denoted by �+

Mc,q
, and the set

of all infinite paths starting from q is denoted by �ω
Mc,q

. The prefix of the path λ of
length n is q0, q1, q2 . . . qn .

Definition 3 A cylinder set Cλ is the set of infinite paths that have a common finite
prefix λ of length n. Let ��Mc ,q be the smallest σ -algebra generated by {Cλ | λ ∈
�+

Mc,q
}. Then, we can defineμ on themeasurable space (�Mc,q , ��Mc ,q ) as the unique

probability measure such that:
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μ(Cλ) =
|λ|−1∏

i=0

δ(qi , qi+1).

Markov decision processes (MDPs), an extension to ordinary DTMCs, are widely
used formalisms for modelling systems that exhibit both probabilistic and non-
deterministic behaviour (Forejt et al., 2011).

Definition 4 AnMDP is a tuple Md = (Q, q0,	, π,A, δ), whereA is a set of actions,
δ : Q × A → D(Q) is a (partial) probabilistic transition function, and all the other
components are the same as their counterparts in a DTMC.

The set of available actions at a state q is defined by A(q) = {α ∈ A | ∃q ′ ·
δ(q, α)(q ′) > 0}. Unlike DTMCs, in MDPs the transitions between states occur in
two steps. Firstly, an action α is selected from a set of actionsA(q) available at a given
state q. Secondly, a successor state q ′ is chosen randomly, according to the probability
distribution δ(q, α). For a given state q and α ∈ A(q), δ(q, α) : Q → [0, 1] is a
function such that

∑
q ′∈Q δ(q, α)(q ′) = 1.

Definition 5 A path λ in an MDP Md is an infinite alternating sequence of states and

actions λ = q0
α0−→ q1

α1−→ . . . ∈ (Q ×A)ω where αi ∈ A(qi ) and δ(qi , αi )(qi+1) > 0

for all i ≥ 0. A finite path λ = q0
α0−→ q1

α1−→ . . .
αn−1−−→ qn is defined as usual as

a prefix of an infinite path ending at a state qn . The set of finite paths is denoted by
(Q × A)∗Q.

Definition 6 A strategy in an MDP Md is a function f : (Q × A)∗Q → D(A) that

assigns each finite path λ = q0
α0−→ q1

α1−→ . . .
αn−1−−→ qn a probability distribution over

the enabled actions A(qn) such that f (λ)(α) > 0 if α ∈ A(qn).

We use a strategy to resolve the nondeterministic choices in an MDP. An MDP
Md ’s behaviour is entirely probabilistic under a specific strategy, resulting in a DTMC
Mc. For a more detailed discussion we refer the interested reader to Baier and Katoen
(2008, pp. 842–843, Definition 10.91. Scheduler).

4 Syntax and Semantics of pRB-ATL

In this section, we provide the syntax and semantics of pRB-ATL. Let us consider
a multi-agent system consisting of a set N = {1, 2, . . . n} of n(≥ 1) concurrently
executing agents. In order to reason about resources, we assume that the actions per-
formed by the agents have costs. Let R = {res1, res2, . . . , resr } be a finite set of
r ≥ 1 resources, such as money, energy, or anything else which may be required by
an agent for performing an action. Without loss of generality, we assume that the cost
of an action, for each of the resources, is a natural number. The set of resource bounds
B over R is defined as B = (N ∪ {∞})r , where r = |R|. We denote by �0 the smallest
resource bound (0, . . . , 0) and by �∞ the greatest resource bound (∞, . . . ,∞).
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4.1 Syntax of pRB-ATL

Let 	 be a finite set of atomic propositions and N be the set of agents. The syntax of
pRB–AT L is defined as follows:

ϕ := � | p | ¬ϕ | ϕ ∨ ϕ | 〈〈Ab〉〉P�	v[ψ]
ψ := ©ϕ | ϕ Uk ϕ | ¬ψ

where p ∈ 	, A ⊆ N , b ∈ B, �	∈ {<,≤,≥,>}, v ∈ Q ∩ [0, 1], and k ∈ N ∪ {∞}.
The two temporal operators have the standard meaning, © for “next” and U≤k for

“bounded until” if k < ∞ or “until” otherwise. When k = ∞, we shall simply write
U instead of U∞. Here, 〈〈Ab〉〉P�	v[©ϕ] means that a coalition A has a strategy to
make sure that the next state satisfies ϕ under resource bound b with a probability in
relation �	 with constant v, regardless of the strategies of other players. The formula
〈〈Ab〉〉P�	v[ϕ1 U ϕ2] means that A has a strategy to enforce ϕ2 while maintaining the
truth of ϕ1, and the cost of this strategy is at most b with a probability in relation �	
with constant v, regardless of the strategies of other players. Other temporal operators
are defined as abbreviations in a standard way. Particularly, “eventually” is defined as
♦ϕ ≡ � U ϕ, and “always” as � ≡ ¬♦¬ϕ. Notice that these operators when b = �∞
mean the same as their counterparts in AT L , i.e., the AT L operator 〈〈A〉〉 corresponds
to 〈〈A �∞〉〉. Similarly, if we consider the operator 〈〈A �∞〉〉P�	v , it would then be the same
as 〈〈A〉〉P�	v in PATL. Other classical abbreviations for ⊥, ∨, → and ↔ are defined as
usual.

4.2 Semantics of pRB-ATL

To interpret this language, we extend the definition of resource-bounded Concurrent
Game Structures (RB-CGS)) (Alechina et al., 2010) with probabilistic behaviours of
agents. For consistency with Alur et al. (2002), in what follows the terms ‘agents’ and
‘players’ and the terms ‘actions’ and ‘moves’ have been used interchangeably.

Definition 7 AProbabilistic Resource Concurrent Game Structure (pRCGS) is a tuple
S = (n, r , Q,	, π, d, c, δ) where:

• n ≥ 1 is the number of players (agents);
• r ≥ 1 is the number of resources;
• Q is a non-empty finite set of states;
• 	 is a finite set of propositional variables;
• π : 	 → ℘(Q) is a function which assigns a subset of Q to each variable in 	;
• d : Q × N → N+ is a function which indicates the number of moves (actions)
available at a state for each agent, where N+ = N \ {0};

• c : Q × N ×N+ → B is a partial function which maps a state q, an agent a and a
move α ≤ d(q, a) to a vector of integers where the integer in position i indicates
consumption of resource resi by the move α. We stipulate that c(q, a, 1) = �0 for
any q ∈ Q and a ∈ N ;
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• δ : Q × (N → N+) → D(Q) is a partial probabilistic transition function that for
every q ∈ Q and a joint move m gives the state resulting from executing m in q.

Given a pRCGS S = (n, r , Q,	, π, d, c, δ), we identify available moves at a state
q ∈ Q of an agent i ∈ N by 1, . . . , d(q, i); then Di (q) = {1, . . . , d(q, i)} denotes the
set of available moves; move 1 specifies idling which is always available with cost �0
by definition. Similar to ATL and RB-ATL, the zero-cost move 1 is required to avoid
deadlock and, therefore, maintain totality.

A pRCGS is closely related to an MDP (Definition 4, Sect. 3.1), where abilities of
individual agents and coalitions of agents are constrained by available resources in a
non-trivial way. Given A ⊆ N , a joint move m of A is a function m : A → N+. Given
q ∈ Q, the set of available joint moves of A at q is denoted by DA(q) = {m : A →
N+ | ∀a ∈ A : m(a) ∈ Da(q)}. When A = N , we simply write D(q) instead of
DN (q) to denote the set of all joint actions for N at q. Given q, q ′ ∈ Q and m ∈ D(q),
δ(q, m)(q ′) is the conditional probability of a transition from q to q ′ if every agent
i ∈ N performs m(i). Then, q ′ is called a successor of q if ∃m ∈ D(q) such that
q ′ ∈ supp(δ(q, m)). To this end, pRCGS is different from RB-CGS in defining the
transition function δ. While the δ of a RB-CGS (Alechina et al., 2010) is deterministic,
that of a pRCGS is amapping to a distribution function over states and, hence, specifies
non-determinism.

Example 1 Let us consider the design of an autonomous firefighting system consisting
of two firefighter agents N = {1, 2} in a building. Each agent is equipped with two
resources: electricity and water. Agents can perform three possible actions, namely,
sense, pumpwater and idle. They can sense to detect if there is a fire in the building and
pump water to stop the fire. Sensing the fire requires one unit of electricity, pumping
water requires one unit of electricity and one unit of water, and idle costs nothing. This
scenario is formalised by a pRCGS S f f as depicted in Fig.1. Here, n = 2, r = 2, Q =
{q0, q1, q2, q3, q4, q5, q6, q7, q8}, and 	 = {low-burnt, medium-burnt, high-burnt,
destroyed}. For convenience, the transition function δ is written in terms of labels on
transitions. Each transition from a state qi to a state q j is annotated with one or more
labels of the form xy/z where xy denotes the joint move, x is by agent 1’s move and
y is by agent 2’s move performed at state qi , and z denotes the probability of arriving
at the next state q j .

At the initial state q0, each agent can either stay idle (1) or perform sense (2) action.
Therefore, the possible joint moves at q0 are 11, 12, 21, and 22. The states q1 and q2
represent circumstances in which the agents detect a fire either individually or as a
coalition, respectively. The severity level of the fire is believed to be low in these two
states, that is, the building has just caught fire. At q0, if both the agents stay idle and
never sense to detect the fire, the system will enter state q8 where the building can be
burnt out completely. At q1 (only one agent detected the fire) and q2 (as a coalition both
of them detected the fire), each agent can either stay idle (1) or pump water (2). Thus,
possible joint moves at each of these two states are 11, 21, 12, and 22. The system may
then enter either q3 or q4 from both q1 and q2, depending on the actions performed by
the agents. The “green” state q3 reflects the low burnt condition of the building being
saved shortly after the fire, and it is labelled with a proposition “low-burnt”. However,
the state q4 implies an increased fire intensity level from low to medium severity. At
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Fig. 1 pRCGS S f f of the two firefighters. The proposition “low-burnt” is labelled on the “green” state q3,
“medium-burnt” is labelled on the “yellow” state q5, “high-burnt” is labelled on the “orange” state q7, and
“destroyed” is labelled on the “red” state q8. (Color figure online)

q4, agents can stay idle (1) or pump water (2). The system can then enter either q5 or
q6 from q4, depending on the actions performed by the agents. The “yellow” state q5
reflects the medium burnt condition of the building being saved sometime after the fire,
and it is labelled with a proposition “medium-burnt”. Reaching to q6 does, however,
mean a further rise in fire intensity from medium to high severity. In the same way, at
q6 agents can stay idle (1) or pump water (2), and the system can then enter either
q7 or q8 depending on the actions performed by the agents. The “orange” state q7
reflects the high burnt condition of the building being saved long after the fire ignited,
and it is labelled with a proposition “high-burnt”. However, reaching to q8 means that
the building is completely destroyed and is labelled with a proposition “destroyed”.

If a fire does occur in the building, each agent autonomously decides to detect it
or stay idle. When only one of the agents detects the fire, the chance of stopping it
with “low-burnt” condition is 25% if only one of them acts. However, the chance of
stopping it increases to 49% if both of them act. The effectiveness of stopping the fire
with “low-burnt” condition could be improved if both the agents detect the fire jointly.
The chance of stopping it with “low-burnt” condition then would be 74% if only one of
them acts, while it would be 99% if both of them act. If both the agents stay idle (i.e.,
neither of them detects the fire nor pumps the water to extinguish it), the building will
be destroyed. Note that although the aim is to save the building with the “low-burnt”
condition, it is not always possible. Thus, there are possibilities that the building fire
intensity can be increased from low to medium, and eventually to high severity.

To compare costs and resource bounds, we use the usual point wise vector compar-
ison, that is, (b1, . . . , br ) ≤ (d1, . . . , dr ) iff bi ≤ di for i ∈ {1, . . . , r} where n ≤ ∞
for all n ∈ N. We also use pointwise vector addition: (b1, . . . , br ) + (d1, . . . , dr ) =
(b1 + d1, . . . , br + dr ) where n + ∞ = ∞ for all n ∈ N ∪ {∞}. Given b ∈ B,
B≤b denotes the set of bounds less than or equal to b without taking into account ∞

123



Formal Modelling and Verification of Probabilistic Resource…

components, i.e., B≤b = {b′ ∈ B | ∀i ∈ {1, . . . , r} : b′
i = bi = ∞ ∨ b′

i ≤ bi < ∞}.
Note that |B≤b| = ∏

i∈{1,...,r},bi �=∞(bi + 1).
Given a joint move m ∈ DA(q), the cost of m is defined as:

cost(q, m) =
∑

a∈A

c(q, a, m(a)).

That is, cost(q, m) is the total cost of the actions performed by the agents in the
coalition A.

Given a pRCGS S, we adopt the Definition 5 to define runs (computations). An

infinite run is an infinite sequence λ = q0
m0−→ q1

m1−→ . . . ∈ (Q × D)ω where
mi ∈ D(qi ) and qi+1 is a successor of qi by mi , i.e., qi+1 ∈ supp(δ(qi , mi )) for all
i ≥ 0. We denote the set of all infinite computations by �ω

S ⊆ (Q × D)ω. A finite

computation is a finite prefix λ = q0
m0−→ q1

m1−→ q2 . . .
mn−1−−−→ qn ∈ (Q × D)∗Q

of some infinite sequence in �S . We denote the set of all finite computations by
�+

S and the set of all finite and infinite computations by �S , i.e., �S = �+
S ∪ �ω

S .
The length of a computation λ ∈ �S , denoted by |λ|, is defined as the number of

transitions in λ. For a finite computation λ = q0
m0−→ q1

m1−→ q2 . . .
mn−1−−−→ qn ∈ �+

S ,

|λ| = n; for an infinite computation λ = q0
m0−→ q1

m1−→ . . . ∈ �ω
S , |λ| = ∞. Given

a computation λ ∈ �+
S , λ(i) = qi for all i ∈ {0, . . . , |λ|}; λ(i, j) = qi . . . q j for all

i, j ∈ {0, . . . , |λ|} and i ≤ j ; mλ = m0m1 . . . is the projection of moves in λ and
mλ(i) = mi for i ∈ {0, . . . , |λ| − 1}. Note that λ(|λ|) is the last state in λ. Finally,
�+

S,q = {λ ∈ �+
S | λ(0) = q} denotes the set of finite computations starting from

q ∈ Q. Given a finite computation λ ∈ �+
S and a coalition A, the cost of joint actions

by A is defined as costA(λ) = ∑|λ|−1
i=0 cost(λ(i), mλ(i)).

We adopt Definition 6 (Sect. 3.1) to define strategies as follows.

Definition 8 Given a pRCGS S, a strategy of a player a ∈ N is a mapping fa :
�+

S → D(N+) which associates each finite computation λ ∈ �+
S to a distribution

μa ∈ D(Da(λ(|λ|)).
Definition 9 A strategy is called memoryless (or Markovian) if its choice of moves
depends only on the current state, i.e., fa(λ) = fa(λ(|λ|)) for all λ ∈ �+

S . It is called
deterministic if it always selects a move with probability 1, i.e., fa(λ) is a Dirac
distribution.

Definition 10 Given a pRCGS S, a coalition strategy FA : A → (�+
S → D(N+)) is

a function which associates each player a in A with a strategy.

Given a coalition strategy FA, we show that each finite computation λ ∈ �+
S gives

rise to a distribution μ
FA
λ ∈ D(DA(λ(|λ|))) over joint actions m ∈ DA(λ(|λ|)) where

μ
FA
λ (m) = ∏

a∈A fa(λ)(m(a)) and fa = FA(a) for all a ∈ A.

Lemma 1 Given a finite computation λ ∈ �+
S and a coalition strategy FA, μ

FA
λ is a

distribution over DA(λ(|λ|)).
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Proof Let q = λ(|λ|). It is trivial that μFA
λ (m) ∈ [0, 1] for all m ∈ DA(q). It remains

to show that
∑

m∈DA(q) μ
FA
λ (m) = 1. It is done by induction on the cardinality of A.

When |A| = 1, it is trivial. Assume that |A| > 1, let b be some agent in A and DX

denote DX (q), we have:

∑

m∈DA

μ
FA
λ (m) =

∑

m∈DA

∏

a∈A

FA(a)(λ)(m(a))

=
∑

i∈Db

∑

m′∈DA\{b}
FA(b)(λ)(i) ×

∏

a∈A\{b}
FA(a)(λ)(m′(a))

=
∑

i∈Db

(FA(b)(λ)(i) ×
∑

m′∈DA\{b}

∏

a∈A\{b}
FA(a)(λ)(m′(a)))

=
⎛

⎝
∑

i∈Db

FA(b)(λ)(i)

⎞

⎠ ×
⎛

⎝
∑

m′∈DA\{b}

∏

a∈A\{b}
FA(a)(λ)(m′(a))

⎞

⎠

= 1 ×
∑

m′∈DA\{b}
μ

FA\{b}
λ (m′) ih= 1 × 1 = 1

��
Given two coalition strategies FA and FB of two disjoint coalitions A and B, i.e.,

A ∩ B = ∅, their union is also a coalition strategy, denoted by FA ∪ FB , for A ∪ B.

Definition 11 Given a bound b ∈ B and a strategy FA, FA is b-bounded iff for all
λ ∈ �+

S such that costA(λ) ≤ b, it holds that supp(μ
FA
λ ) ⊆ {m ∈ DA(λ(|λ|)) |

costA(λ(|λ|), m) ≤ b − costA(λ)}.
In other words, all executions of a b-bounded strategy cost at most b resources. In order
to reason about the probabilistic behaviour of S, we need to determine the probability
that certain computations are taken. To do this, we construct for each state q ∈ Q,
a probability space over the set of infinite computations �ω

S,q starting from q. The
basis of the construction is the probability of individual finite computations induced
by the transition probability function δ. Given a state q0 ∈ Q, we can determine the

probability of every finite computation λ = q0
m0−→ q1

m1−→ q2 . . .
mn−1−−−→ qn ∈ �+

S,q0
consistent with FA as follows:

PrFA
S,q0

(λ) =
n−1∏

i=0

μ
FA
λ(0,i)(mi ) · δ(qi , mi )(qi+1).

If |λ| = 1, PrFA
S,q0

(λ) = 1 as the above product is empty.

For each finite computation λ ∈ �+
S , we can then define a cylinder set Cλ that

consists of all infinite computations prefixed by λ. Given an initial state q ∈ Q, it is
then standard (Kwiatkowska et al., 2007; Billingsley, 1986) to define a measurable
space over �ω

S,q , infinite runs of S from q, as (�ω
S,q ,FS,q) where FS,q ⊆ ℘(�ω

S,q)
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is the least σ -algebra on �ω
S,q generated by the family of all cylinder sets Cλ where

λ ∈ �+
S,q . Given a strategy FN , a strategy for all players in the game, the behaviour of

S is fully probabilistic. It then gives rise to a probability measure (�ω
S,q ,FS,q , PrFN

S,q)

where PrFN
S,q : FS,q → [0, 1] uniquely extends PrFN

S,q : �+
S,q → [0, 1] such that

PrFN
S,q(Cλ) = PrFN

S,q(λ) for all finite computations λ ∈ �+
S,q .

4.3 Truth Definition for pRB-ATL

Given a pRCGS S = (n, r , Q,	, π, d, c, δ), the truth definition for pRB-ATL is given
inductively as follows:

• S, q |� �;
• S, q |� p iff q ∈ π(p);
• S, q |� ¬ϕ iff S, q �|� ϕ;
• S, q |� ϕ1 ∨ ϕ2 iff S, q |� ϕ1 or S, q |� ϕ2;

• S, q |� 〈〈Ab〉〉P�	v[ψ] iff ∃ b-bounded FA such that∀FN\A,Pr
FA∪FN\A
S,q ({λ ∈ �S,q |

S, λ |� ψ}) �	 v;
• S, λ |� ©ϕ iff S, λ(1) |� ϕ;
• S, λ |� ϕ1 Uk ϕ2 iff ∃i ∈ N such that i ≤ k, ∀ j < i : S, λ( j) |� ϕ1 and

S, λ(i) |� ϕ2;
• S, λ |� ¬ψ iff S, λ �|� ψ .

This definition is a combination of pATL and RB-ATL. In particular, the case of
〈〈Ab〉〉P�	z[ψ] requires the existence of a strategy FA which must be b-bounded while
there is no restriction on the strategies of the remaining players Ā = N\A.

From the truth definition, the following result directly inherits the complement rule
for probability where ≥−1≡≤, >−1≡<, ≤−1≡≥ and <−1≡>:

Lemma 2 ∀S, q : S, q |� 〈〈Ab〉〉P�	v[ψ] ⇔ S, q |� 〈〈Ab〉〉P�	−11−v[¬ψ].
Proof

S, q |� 〈〈Ab〉〉P�	v[ψ] iff ∃b-bounded FA such that

∀FĀ, Pr
FA∪FĀ
S,q ({λ ∈ �S,q | S, λ |� ψ}) �	 v

iff ∃b-bounded FA such that

∀FĀ, Pr
FA∪FĀ
S,q (�S,q \ {λ ∈ �S,q | S, λ |� ψ}) �	−1 1 − v

iff ∃b-bounded FA such that

∀FĀ, Pr
FA∪FĀ
S,q ({λ ∈ �S,q | S, λ �|� ψ}) �	−1 1 − v

iff ∃b-bounded FA such that

∀FĀ, Pr
FA∪FĀ
S,q ({λ ∈ �S,q | S, λ |� ¬ψ}) �	−1 1 − v

iff S, q |� 〈〈Ab〉〉P�	−11−v[¬ψ]
��
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Example 2 Let us continue with the running Example 1. Consider a question (property
of the system): “Can agent 1 from q0, equipped with 2 units of electricity and 1 unit
of water, make sure that the building is at least 49% low-burnt safe?”. This means to
check if ϕ{1} = 〈〈{1}(2,1)〉〉P≥0.49♦low-burnt is true at q0. Unfortunately, there is no
such strategy for agent 1, i.e., S f f , q0 �|� ϕ{1}. Consider another question (property of
the system): “Can agents 1 and2 jointly fromq0, equippedwith 4 units of electricity and
2 units of water, make sure that the building is at least 74% low-burnt safe?”. Similar
to the previous question, we need to check if ϕ{1,2} = 〈〈{1, 2}(4,2)〉〉P≥0.74♦low-burnt
is true at q0. This is true, for example, when employing a strategy where both the
agents perform sensing at q0 and at least one of them pumping the water at q2. In fact,
this strategy can guarantee the low-burnt safety of the building by up to 99%. Hence,
S f f , q0 |� ϕ{1,2}.

5 Model Checking

In probabilistic model-checking, the most elementary class of properties for prob-
abilistic models is reachability. Given a state q ∈ Q, the probabilistic reachability
problem computes the probability to reach some state in a specified target set of states
in the model. That is, the basic reachability question is: “can we reach a given target
state from a given initial state with some given probability v?". More formally, given
a state q ∈ Q, and a set of target states T ⊆ Q, the reachability probability is the mea-
sure of paths starting in q and containing a state from T , i.e., Pr({λ ∈ �M,q | λ(i) ∈ T
for some i ∈ N}). The property of probabilistic reachability actually refers to the min-
imum or maximum probability. In practice, many model-checking problems can be
reduced to reachability problem; therefore, it is considered as one of the most funda-
mental properties in probabilistic model-checking. For an in-depth discussion on this
topic, we refer the interested reader to Forejt et al. (2011).

Here, we present an algorithm for the model-checking problem of pRB-ATL. In
particular, given a pRCGS S = (n, r , Q,	, π, d, c, δ) and a pRB-ATL formula ϕ,
the algorithm produces the set of states Sat(ϕ) of S that satisfy ϕ, i.e., Sat(ϕ) =
{q ∈ Q | S, q |� ϕ}. Similar to ATL and its descendants, the algorithm generally
processes ϕ recursively by computing the set of states satisfying sub-formulae of ϕ

before combining them to produce Sat(ϕ). For the propositional cases, the algorithm
can be summarised as follows:

Sat(�) = S, Sat(ϕ1 ∨ ϕ2) = Sat(ϕ1) ∪ Sat(ϕ2),

Sat(¬ϕ) = S \ Sat(ϕ), Sat(p) = {q ∈ Q | q ∈ π(p)}.

Let us focus on the last cases Sat(〈〈Ab〉〉P�	v[ψ])whereψ = ©ϕ1 andψ = ϕ1Ukϕ2
with k ∈ N ∪ {∞}. Notice that the case Sat(〈〈Ab〉〉P�	v[¬ψ]) can be reduced to
Sat(〈〈Ab〉〉P�	−11−v[ψ]) due toLemma2. Instead of following the semantics definition,
i.e., determining the existence of a b-strategy for A to achieve a certain probability v

from a state s, we compute the min and max values over all possible b-strategies for
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A. In particular:

Prmax
S,q (Ab, ψ) = sup

b-bounded FA

inf
FĀ

Pr
FA∪FĀ
S,q (ψ)

Prmin
S,q (Ab, ψ) = inf

b-bounded FA

sup
FĀ

Pr
FA∪FĀ
S,q (ψ),

where Pr
FA∪FĀ
S,q (ψ) is a shorthand for

Pr
FA∪FĀ
S,q ({λ ∈ �S,q | S, λ |� ψ}).

Then, computing states satisfying 〈〈Ab〉〉P�	v[ψ] is reduced to comparing these
min/max values with v as follows:

Sat(〈〈Ab〉〉P�v[ψ]) = {q ∈ Q | Prmax
S,q (Ab, ψ) � v} (1)

Sat(〈〈Ab〉〉P	v[ψ]) = {q ∈ Q | Prmin
S,q (Ab, ψ) 	 v}, (2)

where 	 ∈ {<,≤} and � ∈ {>,≥}. To this end, we can formulate a simple recursive
algorithm, as presented inAlgorithm1, to compute the set of states satisfying a formula
ϕ. It still remains to show how to compute Prmax

S,q (Ab, ψ) and Prmin
S,q (Ab, ψ). Based on

the structure of ψ , these values can be computed according to the following three
cases:

Algorithm 1 Computing Sat(ϕ)

function Sat(φ)
case ϕ = �

return S
case ϕ = ϕ1 ∨ ϕ2

return Sat(ϕ1) ∪ Sat(ϕ2)

case ϕ = ¬ϕ′
return S \ Sat(ϕ′)

case ϕ = p
return {q ∈ Q | q ∈ π(p)}

case ϕ = 〈〈Ab〉〉P�v[ψ]
return {q ∈ Q | Prmax

S,q (Ab, ψ) � v}
case ϕ = 〈〈Ab〉〉P	v[ψ]

return {q ∈ Q | Prmin
S,q (Ab, ψ) 	 v}

end function

Case (a): ψ = ©ϕ1. Assume that Sat(ϕ1) has been computed. Then the maximal
probability to arrive at a state in Sat(ϕ1) is obtained by players in A selecting an
allowed move (costing at most b) to maximise the probability while players outside A,
i.e., in Ā, select an arbitrary move to minimise it. Conversely, the minimal probability
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is obtained by players in A selecting an allowed move to minimise it while those
outside select one to maximise it. Therefore, we have:

Prmax
S,q (Ab, ψ) = max

m∈DA(q)

cost(q,m)≤b

min
m′∈DĀ(q)

∑

t∈Sat(ϕ1)

δ(q, m ∪ m′)(t)

Prmin
S,q (Ab, ψ) = min

m∈DA(q)

cost(q,m)≤b

max
m′∈DĀ(q)

∑

t∈Sat(ϕ1)

δ(q, m ∪ m′)(t).

Case (b): ψ = ϕ1 U≤k ϕ2. Assume that Sat(ϕ1) and Sat(ϕ2) are computed. For
convenience, we denote Prmax

S,q (Ab, ϕ1 Uk ϕ2) and Prmin
S,q (Ab, ϕ1 Uk ϕ2) by Xb

q,k and

Y b
q,k , respectively. Then, there are three trivial sub-cases:

• q ∈ Sat(ϕ2) and for any k: any computation from q satisfies ψ , hence Xb
q,k =

Y b
q,k = 1.

• q /∈ Sat(ϕ1)∪ Sat(ϕ2) and for any k: any computation from q does not satisfy ψ ,
hence Xb

q,k = Y b
q,k = 0.

• q /∈ Sat(ϕ2) and k = 0: any computation from q does not satisfy ψ before 0
transition, hence Xb

q,k = Y b
q,k = 0.

Otherwise, players in A try to choose an allowed move m from q with cost at most b
that maximises the probability to arrive at a state that can satisfyψ with the remaining
resource b′ = b − cost(q, m) and within k′ = k − 1 transitions. Formally, this can be
defined as follows:

Xb
q,k = max

m∈DA(q)

cost(q,m)≤b

min
m′∈DĀ(q)

∑

t∈Q

δ(q, m ∪ m′)(t) · Xb−cost(q,m)
t,k−1

Y b
q,k = min

m∈DA(q)

cost(q,m)≤b

max
m′∈DĀ(q)

∑

t∈Q

δ(q, m ∪ m′)(t) · Y b−cost(q,m)
t,k−1 .

Overall, one can form two linear equation systems with variables Xb
q,k and Y b

q,k ,
respectively, for each k. They can be solved by direct methods such as Gaussian
elimination or iterative methods such as Jacobi and Gauss-Seidel (Kwiatkowska et al.,
2007). In general, iterative methods suit the two linear equation systems best. It should
not iterate more than k + 1 times as Xb

q,0 and Y b
q,0 saturate to either 0 or 1 regardless

of b and q by definition.
Case (c): ψ = ϕ1 U ϕ2. Assume that Sat(ϕ1) and Sat(ϕ2) are computed. Again
for convenience, we denote Prmax

S,q (Ab, ϕ1 U ϕ2) and Prmin
S,q (Ab, ϕ1 U ϕ2) by Xb

q and

Y b
q , respectively. Similar to the approach in Chen et al. (2013), variables Xb

q can be

computed by iterating the computation of variables Xb
q,k as defined in case (b) for

k → ∞. In practice, this computation can be terminated up to a large enough k such
that max

b,q
|Xb

q,k − Xb
q,k+1| is less than some ε, a pre-specified convergence threshold.

This is based on the fact that Xb
q,k is a non-decreasing sequence that converges to Xb

q
(Raghavan & Filar, 1991).

In the following, we show the termination and the correctness of Algorithm 1.
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Theorem 1 Given a pRCGS S and a pRB-ATL formula ϕ, (i) Sat(ϕ) terminates and
(ii) q ∈ Sat(ϕ) iff S, q |� ϕ.

Proof Intuitively, termination is straightforward due to the fact that recursive calls
within Sat(ϕ) are always applied to strictly sub-formulas of ϕ. Let us prove (i) and
(ii) by induction on the structure of ϕ.
Base case:

• If ϕ = �, then Sat(�) = S. That means (i) holds immediately and (ii) follows
directly from the truth definition.

• If ϕ = p ∈ 	, then Sat(p) = π(p) by the Sat definition. That also means (i)
holds immediately and for (ii):

q ∈ Sat(ϕ) iff q ∈ π(p) by Sat definition
iff S, q |� p by the truth definition.

Induction case:

• If ϕ = ¬ϕ1, then Sat(ϕ) = S\Sat(ϕ1) by the Sat definition. By the induction
hypothesis, Sat(ϕ1) terminates, therefore, (i) holds. For (ii):

q ∈ Sat(ϕ) iff q ∈ S \ Sat(ϕ1) by the Sat definition
iff q /∈ Sat(ϕ1)

iff S, q �|� ϕ1 by the induction hypothesis
iff S, q |� ¬ϕ1 by the truth definition.

• If ϕ = ϕ1 ∨ ϕ2, then Sat(ϕ) = Sat(ϕ1) ∪ Sat(ϕ2) by the Sat definition. By the
induction hypothesis, Sat(ϕ1) and Sat(ϕ2) terminate, therefore, (i) holds. For (ii):

q ∈ Sat(ϕ) iff q ∈ Sat(ϕ1) ∪ Sat(ϕ2) by the Sat definition
iff q ∈ Sat(ϕ1) or q ∈ Sat(ϕ2)

iff S, q |� ϕ1 or S, q |� ϕ2 by the induction hypothesis
iff S, q |� ϕ1 ∨ ϕ2 by the truth definition.

• If ϕ = 〈〈Ab〉〉P�	v[ψ], then Sat(ϕ) = {q ∈ Q | Prmm
S,q (Ab, ψ) �	 v} by the Sat

definition where mm = max if �	∈ {≥,>} and mm = min if �	∈ {≤,<}.
To prove that (i) holds, we must show Prmm

S,q (Ab, ψ) terminates.

– If ψ = ©ϕ1, by the Case (a), the calculation of Prmm
S,q (Ab, ψ) terminates due

to the fact that Sat(ϕ1) terminates by the induction hypothesis, and DA(q),
DĀ(q), Sat(ϕ1) are all finite.

– If ψ = ϕ1U≤kϕ2, by the cases (b) and (c), the calculation of Prmm
S,q (Ab, ψ)

terminates due to the fact that Sat(ϕ1) and Sat(ϕ2) terminate by the induction
hypothesis, DA(q), DĀ(q), Sat(ϕ1), Sat(ϕ2) are all finite, and the solution of
the corresponding linear equation systems also terminates.
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For (ii): If mm = max,

q ∈ Sat(ϕ) iff Prmax
S,q (Ab, ψ) � v by the Sat definition

iff supb-bounded FA
infFĀ

Pr
FA∪FĀ
S,q (ψ) � v

iff ∃b-bounded FA,∀FĀ : PrFA∪FĀ
S,q (ψ) � v

since the model is finite, sup and inf are turned
into max and min, respectively,
in Cases (a), (b) and (c)

iff S, q |� ϕ by the truth definition.

When mm = min, the proof is symmetric to the one above, hence, omitted here.

��
Assuming that the natural numbers occurring in a pRB-ATL formula ϕ are encoded

in unary, we have the following result.

Theorem 2 The upper bound of the time complexity for Sat(ϕ) is O(|ϕ|3r+1 · |S|3).
Proof ϕ has at most O(|ϕ|) sub-formulae. The case (c) is the most computationally
complex. In this case, b is bounded by O(|ϕ|r ). Therefore, the number of variables for
each iteration, also that of equations, in each corresponding linear equation system is
bounded by O(|ϕ|r · |S|). It is well-known that the time complexity of solving such
a linear equation system is at most O(n3) (Golub & Van Loan, 1996), where n is the
number of equations. Therefore, the upper bound complexity of computing Sat(ϕ) is
O(|ϕ| · (|ϕ|r · |S|)3) = O(|ϕ|3r+1 · |S|3).
Furthermore, the lower bound is given by that of the ATL, i.e., linear to the size of the
input model and the input formula.

6 Tool Implementation

We have developed a prototype probabilistic model-checking tool for resource-
bounded stochasticmultiplayer games basedon the techniques proposed in this paper .1

The tool is implemented in Python. It takes two input, a pRCGSmodel and a pRB-ATL
formula. The model input is then interpreted by a parser into an instance of the class
Model. Similarly, the formula is interpreted by an another parser into an instance of
the class Formula. This formula instance may recursively include further formula
instances of the sub formulas of the input formula. Finally, the implementation of the
model-checking procedure Sat(ϕ), introduced in Sect. 5, is executed to compute the
set of states of the input model satisfying the input formula. The whole described
process is depicted in Fig. 2.

The classFormula has five sub-classes corresponding to the five cases of state for-
mulas ϕ defined in Sect. 4.1. For the last case 〈〈Ab〉〉P�	v[ψ], an auxiliary class, named

1 https://github.com/ngasoft/mcPRBATL
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Fig. 2 The implementation of pRB-ATL model-checking process

PathFormula, is introduced to represent path formulae (next, until and negation).
Similar to the class Formula, PathFormula has three sub-classes corresponding
to the three cases of the path formulae ψ .

The two parsers have been implemented based on Antlr4 (ANTLR, 2020). They
interpret pRCGS models and pRB-ATL formulae in a specification language, respec-
tively, defined as close to the syntaxes of pRCGS and pRB-ATL as possible. The
syntax of the specification language for pRCGS models is as follow:

’Structure’ NAME ’=’ ’{’ agents ’,’ resources ’,’
gstates ’,’ propositions ’,’ labellings ’,’ availables
’,’ costings ’,’ transitions ’}’

where agents is a positive number indicating the number of agents in the model,
resources is a number indicating the number of resources. The remainders describe
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Fig. 3 The syntax diagram for sets in a pRCGS model

Fig. 4 The syntax diagram for mapping in a pRCGS model

Fig. 5 The syntax diagram for an element of a state distribution

the set of their corresponding elements. In particular, sets such asgstates are defined
by the syntax diagram depicted in Fig. 3 where gstate are simply names of states.

The syntaxdiagram forpropositions is similar. Functions such asavailables
are defined as sets of mappings. Each mapping follows the syntax diagram in Fig. 4
from a pair consisting of a state and a number (identifying an agent) to the number of
available actions.

The syntaxes are similar for labellings, costings, transitions where
elements of labellings are mapping to a set, costings to a cost (a tuple of
numbers) and transitions to a state distribution. A state distribution is simply a
set of pairs consisting of a state and a natural number. The probability of a state in a
distribution is the division of its corresponding number by the sum of all the numbers
in the distribution. The syntax diagram for such a pair is depicted in Fig. 5.

The underlying implementation technique of themodel-checking procedure Sat(ϕ)

is an explicit-state model-checking. The procedure of Sat(ϕ) is implemented by a
member method, named sat, of the class Formula. This method is overridden for
each of the five sub-classes corresponding to the five cases of Sat(ϕ) described in
Sect. 5. The method sat takes only one parameter, an instance of the input model,
and recursively calls the same method of instances representing the sub-formulae of
ϕ.

7 Experimental Results

Let us illustrate the use of the pRB-ATL and quantitatively verify the system presented
in Example 1 via our model-checking tool. We generalise the properties described in
Example 2 as follows “Can a coalition from q0, equipped with e units of electricity
and w units of water, make sure that the building is at least v low-burnt safe?”. This
is formalised in pRB-ATL by ϕA = 〈〈A(e,w)〉〉P≥v♦low-burnt. To this end, we need
to check whether S f f , q0 |� ϕA. As mentioned in the previous section, this can be
reduced to determine the maximal probability:

Prmax
S f f ,q0(A(e,w),♦low-burnt) = X (e,w)

q0 .
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Table 1 Prmax
S f f ,q0

({1}(e,w), ♦ϕ)

Property type Model-checking result Time (s)

Prmax
S f f ,q0

({1}(e,w), ♦low-burnt) w/e 0 1 2 0.08

0 0.0 0.0 0.0

1 0.0 0.0 0.25

Prmax
S f f ,q0

({1}(e,w), ♦medium-burnt) w/e 0 1 2 0.08

0 0.0 0.0 0.0

1 0.0 0.0 0.0572

Prmax
S f f ,q0

({1}(e,w), ♦high-burnt) w/e 0 1 2 0.09

0 0.0 0.0 0.0

1 0.0 0.0 0.0385

Intuitively, the best strategy for one agent to help the building to be saved with low-
burnt is to sense and then to pump the water. In total, this costs two units of electricity
and one unit of water. Similarly, while cooperating, the best strategy for both the
agents would be to choose their best strategies concurrently, which will cost together
four units of electricity and two units of water. Therefore, for A = {1}, we consider
the resources bounded by (e, w) ≤ (2, 1) and for A = {1, 2} those are bounded
by (e, w) ≤ (4, 2). For each case of A and (e, w), the model-checking results are
summarised in Table 1 for A = {1} and in Table 2 for A = {1, 2}. In particular, Table
1 shows that any resource bound less than (2, 1) is not helpful for agent 1 as it has
no strategy to make sure that the building is safe with low-burnt. In the best case,
with resource bound (2, 1), the only vital strategy is to sense the fire and then pump
the water. In this case, since agent 2 is not required to cooperate, the worst case is to
end up in q1 from q0 where the chance to arrive at q3, the low-burnt safe state, is at
least 25%. That is, choosing the following actions: 21 in q0, 21 in q1, and 11 in q3.
Note that any resource bound greater than (2, 1) will also not increase the chance of
making sure the building is low-burnt safe with a higher probability. Similarly, Table
2 shows that any resource bound less than (2, 1)will not be enough for both the agents
while cooperating. However, the chance of making the building safe with low-burnt
increases to 74% as more and more resources are given. This is because from q0 both
the agents can force the arrival at q2 instead of q1. Eventually, the maximal chance of
making the building safe with low-burnt reaches 99% as both the agents have enough
resources to follow the same best strategy. That is, choosing the following actions: 22
in q0, 22 in q2, and 11 in q3.

As we mentioned earlier, if a fire occurs in the building, there are possibilities that
the building fire intensity can be increased from low (at q1 or q2) to medium (at q4),
and eventually to high (at q6) severity. If the fire intensity reaches from low tomedium,
then for a single agent with resource bound (2, 1) the maximum probability for which
the building can be saved with medium-burnt is 5.7%, choosing the following actions:
22 in q0, 12 in q2, 21 in q4, and 11 in q5. Since agent 2 is not required to cooperate, it
will try to minimize the probability. Basically, there are two paths from q0 to q5 where
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Table 2 Prmax
S f f ,q0

({1, 2}(e,w), ♦ϕ)

Property type Model-checking result Time (s)

Prmax
S f f ,q0

({1, 2}(e,w), ♦low-burnt) w/e 0 1 2 3 4 0.09

0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.25 0.74 0.74

2 0.0 0.0 0.25 0.74 0.99

Prmax
S f f ,q0

({1, 2}(e,w), ♦medium-burnt) w/e 0 1 2 3 4 0.09

0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.22 0.22 0.22

2 0.0 0.0 0.22 0.44 0.44

Prmax
S f f ,q0

({1, 2}(e,w), ♦high-burnt) w/e 0 1 2 3 4 0.10

0 0.0 0.0 0.0 0.0 0.0

1 0.0 0.0 0.19 0.19 0.19

2 0.0 0.0 0.19 0.39 0.39

agent 1 performs action 2 at q0, namely q0
22−→ q2

12−→ q4
21−→ q5 with probability 0.057

and q0
21−→ q1

12−→ q4
21−→ q5 with probability 0.165, and obviously the first pathwill be

chosen. An interesting point to note here is that increasing resource bound from (2, 1)
to (3, 2) for agent 1 will not increase the probability of saving the building anymore
with medium-burnt. For example, with resource bound (3, 2) if agent 1 senses the fire
and then pumps water twice, then agent 2, being uncooperative and its objective is the
opposite, will sense the fire and pump the water once, and ultimately will lead through
a path ending up with probability 0.002. That is, choosing the following actions: 22
in q0, 22 in q2, 21 in q4, and 11 in q5. Tables 1 and 2 demonstrate the self-explanatory
results for the coalition, as well as other situations such as high-burnt.

7.1 Modelling and Analysis of the Firefighting System

To demonstrate the usability and applicability of our proposed techniques and tool,
and to evaluate their performance, we present results from a more generalised version
of the example system discussed above. We modelled the system as a pRCGS with
n ∈ {2, 3, . . . , 13} players, and we check the same pRB-ATL properties as above con-
sidering varying A ⊆ N to be coalitions of different sizes, A ∈ {{1}, {1, 2}, . . . , N }.

We increase or decrease the problem size by parameterizing the number of agents,
and use a script to generate a complex system encoding. The script takes input as
the number of agents and resources, and creates a system model in which the agents
generate their alternative actions. The number of agents also parameterises the prob-
ability distribution of transitions. Note that, for a simple representation, Fig. 1 shows
some transitions from state qi to state q j by collapsing several possible combinations
of actions. These combinations of actions will increase as the number of agents in the
system increases. For experimental consistency, we parameterise how the probabilities
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are assigned to the transitions. In the case of two agents, we have two possible states
in which a low fire can be detected, namely q1 and q2. The possible moves from each
of these two states are 11, 12, 21 and 22. Moves 12 and 21, where only one agent acts,
have the same probability. Thus, if we leave themove 11with probability 1which takes
the system from q1 to q4 (or q2 to q4), then each of the remaining 12, 21 and 22 moves
will require appropriate probability distribution over next states. In this case, q3 in
which the building is saved with low-burnt can be reached from q1 and q2 via four dif-

ferent transitions: (1) q1
12/21−−−→ q3, (2) q1

22−→ q3, (3) q2
12/21−−−→ q3, and (4) q2

22−→ q3.
We assign probabilities to these transitions in an increasing order. The first transition
has the lowest chance of saving the building with a low burnt condition, so we assign
the lowest probability to it, whilewe assign the highest probability to the last transition,
which has the highest chance of saving the building.We assume that with the low burnt
condition the maximum chance of a building can be saved is 99%. So, we divide 0.99
by the number of these distinct moves, i.e., we assign p = 0.99/4 (= 0.2475 ≈ 0.25)
to the move (1) and 1 − p to the corresponding transition from q1 to q4. We then
increase it by p each time probability for the next transition is assigned, and the final
value of p which is basically 0.99 is assigned to the move (4) (and 1− p to the corre-
sponding transition from q2 to q4). In the case of three agents, we have three possible
states in which a low fire can be detected based on the following actions performed at
q0: (211/1, 121/1, 112/1), (221/1, 122/1, 212/1), and (222/1). From each of these
states, there will be three possible moves for which we need to assign appropriate
probabilities. Thus, the lowest probability would be p = 0.99/9, then we increase it
by p each time probability for the next transition is assigned. Table 3 demonstrates
three agents’ transitions. In general, in a model, the probability distribution to the low
fire states would be assigned using p = 0.99/(n ∗n), where n in the number of agents.
The similar type of probability distribution is used for the medium and high fire states.
Also, qn+1, qn+3, qn+5, and qn+6 represent the “green”, “yellow”, “orange”, and “red”
states of the n agent transition diagram, respectively.

We conducted an extensive set of experiments, however, Table 4 presents the most
significant results. Our purpose here is not to provide a detailed analysis of the time and
space required to model different classes of pRB-ATL formulae, but simply to give an
indication of the scalability and effectiveness of our algorithms and their implementa-
tion. Table 4 shows experiments run on an I ntel(R) Core(T M) i5-6500@3.20 G H z
using 8 G B R AM . It includes model statistics, number of agents, states and transi-
tions, and the times to construct a pRCGS S f f model and to verify a property of the
form Prmax

S f f ,q0({A}(e,w),♦ϕ). The results only include two extreme coalitions, such
as the single agent coalition {1} and the coalition N of all the agents in the system.
However, our experiments suggest that when there is an increase in the number of
players in a coalition the verification time increases.

Figures 6 and 7 depict experimental performance comparison considering the two
extreme coalitions. This illustrates how the size of the coalition and number of agents
in the system affects the performance of our model-checking algorithms. Note that our
results are not directly comparable to the existing probabilisticmodel-checking results.
The use of resource bounds make our models much more complex and increases the
non-determinism that exists within the transition relations of systems.
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Table 3 Transition table for three agents

Move q0 q1 q2 q3 q4 q5 q6 q7 q8 q9

q0 111 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

112/121/211 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

122/212/221 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

222 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

q1 111 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

112/121/211 0.0 0.0 0.0 0.0 0.11 0.89 0.0 0.0 0.0 0.0

122/212/221 0.0 0.0 0.0 0.0 0.22 0.78 0.0 0.0 0.0 0.0

222 0.0 0.0 0.0 0.0 0.33 0.67 0.0 0.0 0.0 0.0

q2 111 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

112/121/211 0.0 0.0 0.0 0.0 0.44 0.56 0.0 0.0 0.0 0.0

122/212/221 0.0 0.0 0.0 0.0 0.55 0.45 0.0 0.0 0.0 0.0

222 0.0 0.0 0.0 0.0 0.66 0.34 0.0 0.0 0.0 0.0

q3 111 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

112/121/211 0.0 0.0 0.0 0.0 0.77 0.23 0.0 0.0 0.0 0.0

122/212/221 0.0 0.0 0.0 0.0 0.88 0.12 0.0 0.0 0.0 0.0

222 0.0 0.0 0.0 0.0 0.99 0.01 0.0 0.0 0.0 0.0

q4 111 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0

q5 111 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0

112/121/211 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.9 0.0 0.0

122/212/221 0.0 0.0 0.0 0.0 0.0 0.0 0.2 0.8 0.0 0.0

222 0.0 0.0 0.0 0.0 0.0 0.0 0.29 0.71 0.0 0.0

q6 111 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

q7 111 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

112/121/211 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.09 0.91

122/212/221 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.17 0.83

222 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.26 0.74

q8 111 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0

q9 111 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0

8 Conclusions and FutureWork

In this paper, we have designed and developed a framework for automatic verification
of systems with both resource limitations and probabilistic behaviour. We proposed
a novel temporal logic pRB-ATL for reasoning about coalitional abilities of sys-
tems under resource constraints that exhibit both probabilistic and non-deterministic
behaviour. The novelty of our approach lies in complex logical combinations that tack-
les the problem of more comprehensive resource-bounded probabilistic multi-agent
system specification and verification. To model multi-agent systems where the actions
of agents consume resources, we have modified probabilistic strategy logics in two
ways. Firstly, we added resource annotations to the actions in the transition system.
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Table 4 Performance statistics

pRCGS statistics Time

#Agents Coalition Resource #States #Transitions Construction (s) Verification (s)

2 {1} (1, 2) 2621 5508 0.03 0.08

N (2,4) 6509 12, 366 0.04 0.09

3 {1} (1, 2) 3272 13, 080 0.06 0.11

N (3,6) 15, 152 50, 400 0.07 0.28

4 {1} (1, 2) 3995 31, 812 0.13 0.23

N (4,8) 29, 735 185, 262 0.13 0.83

5 {1} (1, 2) 4790 77, 328 0.30 0.52

N (5,10) 52, 310 631, 728 0.28 2.64

6 {1} (1, 2) 5657 186, 108 0.65 1.19

N (6,12) 85, 217 2, 028, 078 0.65 8.87

7 {1} (1, 2) 6596 442, 244 1.14 2.75

N (7,14) 131, 084 6, 196, 512 1.53 27.85

8 {1} (1, 2) 7607 1, 038, 420 3.54 6.80

N (8,16) 192, 827 18, 173, 790 3.60 82.24

9 {1} (1, 2) 8690 2, 410, 176 8.11 15.61

N (9,18) 273, 650 51, 516, 864 8.12 249.54

10 {1} (1, 2) 9845 5, 537, 580 18.64 36.66

N (10,20) 377, 045 141, 911, 070 18.65 734.52

11 {1} (1, 2) 11, 072 12, 609, 432 48.13 95.78

N (11,22) 506, 792 381, 521, 232 49.19 2089.57

12 {1} (1, 2) 12, 371 28, 485, 636 97.29 203.03

N (12,24) 666, 959 1, 004, 507, 694 98.02 5828.11

13 {1} (1, 2) 13, 742 63, 899, 760 217.09 450.10

N (13,26) 861, 902 2, 597, 327, 760 217.34 14417.33

Property type Prmax
S f f ,q0

({A}(e,w), ♦low-burnt)

For each individual action and each resource type, we have specified how many units
of this resource type the action consumes. Secondly, we have extended the logical
language so that we can express properties related to resources and probability. The
model-checking problem for standard strategy logics is a special case of the model-
checking problem for the corresponding resource logics. We have investigated how
much harder does the model-checking problem become when resources are added
explicitly. We have designed model-checking algorithms for the resulting logic pRB-
ATL, implemented them in a prototype tool, and used our techniques to solve simple
multi-agent model-checking problems of increasing complexity. Algorithm 1 returns
a set of states satisfying a pRB-ATL formula ϕ and its complexity is O(|ϕ|3r+1 · |S|3).
To the best of the authors’ knowledge, this is the first work on an approach that pro-
vides a straightforward way to express and verify the properties of resource-bounded
probabilistic multi-agent problems commonly found in real-world settings.
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Fig. 6 Model construction and verification time

Fig. 7 State space and transition exploration graphs

There are a number of interesting directions in this area for future research. First of
all, we would like to investigate extensions of our logical framework and techniques
to incorporate agent’s behaviour with production of resources, and analyse a wider
class of properties for the resulting logic. Secondly, we would like to study alternative
semantics of the logics, including Interpreted Systems and Strategy Logic, implement
themand report the expressivity andperformance among alternative approaches. In this
paper, we have used the example system just to explain the definitions/concepts used
in Sect. 4 and in the rest of the paper in terms of the example. However, construction
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of a model considering a more realistic scenario is a non-trivial work. In future work,
we have a plan to investigate the use of pRBATL logic for the analysis and verification
of collaborative systems, by means of several use-cases. For example, in the domain
of smart production system or similar other domains where a group of robots work
collaboratively to achieve some goals.
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