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ABSTRACT
Partially replacing cement with pozzolans, apart from the enormous 
technical benefits, has been reported as an effective approach to 
reducing greenhouse gases emanating from cement production. 
Calcined clay and pulverised granite, in recent years, have been 
experimented individually for their use as filler or pozzolan in 
concrete to improve workability and compressive strength. This 
research includes study of the synergistic characteristics of these 
two mineral admixtures and their influence on the mechanical and 
durability properties of mortar. Cement was partially substituted 
with 5–20% by weight of the composite material to form a ternary 
blended cement composite. The compressive strengths of the tern
ary blended cements were evaluated at 3, 7, 28 and 90 days. 
Durability properties such as alkali silica reactivity (ASR), rapid 
chloride permeability test (RCPT) and performance of the blended 
cements in aggressive media have been discussed. Test results 
indicated that, blended cements containing 5% and 10% of the 
pozzolan recorded similar compressive strengths at 28 days and 
outperformed it by 2.4% and 0.6% respectively at 90 days. Beyond 
10% replacement, compressive strengths declined. The ternary 
blended cements were found to be highly reactive, potentially 
causing ASR in concrete than the reference cement.
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1. Introduction

One of the most common challenges that has emerged in developing nations over the 
past few years is the gap between the rapid growth of the urban population and the 
availability of infrastructure for waste disposal. The difficulties of ineffective waste 
management strategies having an impact on the degrading ecosystem of fast-growing 
cities are making this disparity worse every day. Additionally, one of the main trends in 
the recent expansion of the building and construction sector is the switch to more 
economical, energy-efficient production methods while retaining the high quality of 
building materials and buildings. Industrial waste is presently utilised far more frequently 
in building construction than it ever has been due to the steep rise in energy prices and 
the need to diversify the supply of raw materials.
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The utilisation of industrial by-products has consistently become an environmental- 
friendly approach of disposing large quantities of waste materials that have the potential 
of causing harm to the environment. The current world production of cement, which is 
approximately 4 billion tons/year [1], continue to grow each year due to global popula
tion growth and the corresponding need for infrastructure. A substantial part of this 
increase in cement demand will be met using supplementary cementitious materials 
(SCM) such as calcined clay, metakaolin, ground granulated blast furnace slag (GGBS), 
fly ash, silica fume, granite dust, etc. [2]. SCMs have been used more frequently by the 
cement and concrete industries in recent years [3]. This rate of consumption is expected 
to rise because of the need to change the properties of cements and enhance the quality of 
cements and cementitious materials [4]. When industrial by-products are employed as 
a partial replacement for the energy-intensive Portland cement, significant energy and 
cost savings can be achieved. Mineral admixtures are known to significantly improve the 
workability and durability of concrete [5].

One of such supplementary materials or fillers is pulverised granite, also known as 
granite dust. Granite dust, a major by-product in granite stone quarrying, not being used 
for any application other than filling-up low-lying areas, has been identified as a partial 
replacement material for cement in concrete [6]. In most regions, there is a significant 
amount of waste produced in the form of dust due to the high production and con
sumption of granite. Environmental hazards result from this. In this sector, air and water 
pollution are the most serious and immediate issues. The action of the wind causes the 
waste to be deposited on the roads and dispersed everywhere. Additionally, over time, the 
water-borne dust slurry may cause the soil to become waterlogged, which would raise the 
soil’s alkalinity. An alternate use of this waste granite is therefore highly recommended.

As a result, studies [6–11] have been conducted by researchers to find the suitability of 
granite quarry dust in conventional concrete. According to Venkata et al. [12], 25% of 
cement can be replaced with granite dust in concrete to achieve desirable results. 
Ghorbani et al. [13] replaced up to 20% of cement with granite fines and reported an 
improved strength up to 10% replacement. Beyond 10%, compressive strength declined. 
Elmoati and Mohamed [14] also replaced up to 15% of cement with granite dust. Results 
from their experiment showed an improvement in compressive and tensile strengths at 
most replacement dosages. Concrete containing granite dust exhibited an increase in 
corrosion cracking time as compared to the reference concrete. Prokopski et al. [9] also 
studied the effect of granite dust on concrete mixes. The results indicated that, porosity, 
density and workability were improved by incorporating granite dust.

The incorporation of two or more mineral admixtures in ternary or quaternary blends 
have been investigated by several researchers [15–24] and reported to affect concrete 
properties such as porosity, density, strength and durability. Palod et al. [22] studied the 
synergistic effect of ternary blended steel slag and blast furnace slag and reported 
a significant improvement in strength, electrical resistivity and ultrasonic pulse velocity. 
The durability studies conducted by Chandru et al. [25] on ternary blended crushed stone 
and induction furnace slag in a self-compacting concrete discovered a reduction in water 
absorption, porosity, permeability and chloride penetration. As replacement increased, 
these properties decreased to improve overall durability of the concrete.

The granite waste generated by the stone crushing industries (to produce coarse 
aggregates) has accumulated over the years. Only insignificant quantities have been 
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utilised and the rest have been dumped resulting in environmental challenges. 
Valorisation of granite dust is essential and has the potential to boost the economy of 
the granite quarrying industry, with the added benefit of preserving the environment 
[7–9,11].

Calcined clay, on the other hand, is a well-known and researched supplementary 
cementitious material. Several researchers [26–36] have reported different benefits of 
utilising calcined clay for mortar and concrete applications, including improved work
ability, compressive strength and durability properties [37]. Calcined clay and pulverised 
granite have been studied and their individual influence on the properties of mortar and 
concrete are reported in several scientific publications. However, there is no information 
on the combined effect of these two pozzolans in cementitious systems. This research has, 
therefore, studied the possible utilisation of pulverised granite and calcined clay as 
a composite material in blended cement mortars, focusing on its synergistic influence 
on the physical, mineralogical, mechanical and durability properties. The effect of this 
composite material on alkali silica reactivity, porosity, electrical resistivity, chloride 
permeability and resistance to sulphate environment have been studied. A relation 
between porosity and compressive strength has been discussed. The results of this 
study contributes to forming a roadmap for the use of these mineral admixtures in 
mortar and concrete, especially in regions where conventional SCM’s are absent.

2. Materials and methods

2.1. Materials

Ordinary Portland cement (OPC) of Class 42.5N, produced by the Heidelberg Cement 
Group, and sourced from local distributors, was used as the main binder for this work. 
The granite and calcined clay were sourced from local suppliers. Pit sand which satisfied 
BS 4550: Part 6 requirements was used to prepare the mortar preparation. Pyrex glass, 
which is commonly used for the manufacture of laboratory glassware and known to be 
a reactive aggregate [34,38] was crushed and used for the ASR determination. Particle 
size of the pyrex glass ranged between 0.16 and 0.70 mm. The X-ray diffraction (XRD) of 
the calcined clay and the pulverised granite is shown in Figures 2 and 3. Figure 1 shows 
samples of the raw materials.

Figure 1. (a) calcined clay, (b) pulverized granite and (c) crushed pyrex glass.
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2.2. Methods

2.2.1. Materials preparation
The granite was crushed in a motorised jaw crusher and further pulverised by using 
a laboratory type ball mill to obtain the granite dust (also referred to as pulverised 

Figure 2. XRD of calcined clay.

Figure 3. XRD of pulverized granite.
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granite in this paper) fineness of 70 µm. It was then uniformly mixed with the 
calcined clay (1:1) in a motorised mixer to form a composite material (labelled 
CGD). The composite powder was used to replace portions of the ordinary 
Portland cement in percentages of 5%, 10%,15% and 20% by weight to obtain 
a ternary blended cement comprising ordinary Portland, calcined clay and granite 
dust. Particle size distribution of the calcined clay, pulverised granite and sand are 
shown in Figure 4.

2.2.2. Testing methods
The X-ray fluorescence (XRF) technique (Spectro X-lab 2000 equipment), due to its 
accuracy, was employed to study the elemental composition of the calcined clay, granite 
powder and blended cement samples. Determination of relevant phases in the raw 
samples and hydrated pastes was carried out by a 3rd generation Malvern Panalytical 
Empyrean equipped with multicore optics. Readings were taken from 10 to 80 2Ѳ 
degrees. The Vicat method, specified by EN 196–3 was used to determine the normal 
consistency and setting times of all the cement samples. Soundness was determined using 
the Le-Chatelier’s apparatus as prescribed by EN 196–3. Mortar cubes were prepared 
according to the methods specified in EN 196–1 compressive strength determined after 3, 
7, 28 and 90 days.

A thermometric TAM (thermal activity monitor) air conduction calorimeter was used 
to track the evolution of the hydration heat rate. Samples for this test were prepared by 
mixing distilled water with 5 g of each blended cement sample and placed in the 
calorimeter at a working temperature of 20°C. The attached computer automatically 
generated heat of hydration data continuously for up to 3 days.
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Figure 4. Particle size distribution of pulverized granite, calcined clay and sand.
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Porosity was determined using Eq. (1) [39,40], where n is the number of voids, VT is 
the total volume, VC is the change in volume of the test sample because of the existence of 
voids. 

n ¼
VT � VC

VT
(1) 

ASR was evaluated according to ASTM C 1260. In this test, 25 mm × 25 mm × 25  
mm mortar bars were prepared using the blended cement composites with a water 
to binder ratio of 0.47 and binder to aggregate ratio of 1:3. To know the effect of 
the added pozzolan, the samples were cured for 27 days in water at 20°C, after the 
initial length data were recorded on the first day. The blended cement mortar bars 
were subsequently placed in a water bath, having a temperature of 80°C for 24 
h after which readings were taken with a length comparator as specified by ASTM 
C 490. The samples were then soaked in 1N sodium hydroxide solution and 
readings were taken at specific intervals between 7 and 35 days.

For the aggressive media test, samples were cured for 28 days in water and then 
immersed in seawater and 5%-Na2SO4 solutions. It was allowed to stand for 90  
days, and the effect of the two media on their respective compressive strength 
determined.

With reference to the ASTM C 1202 RCPT procedure, electrical current was made to 
flow through sliced blended cement mortar samples for a period of 6 h. Two slices of the 
same sample were placed in sodium chloride and sodium hydroxide solutions, respec
tively. At the ends of the samples, a potential difference of 60 V was preserved.

The bulk electrical resistivity test method prescribed by ASTM C1760–12 (two-point 
uniaxial method) was used to determine the extent to which the added composite 
pozzolan can resist electrical current in the mortar. The set-up for electrical resistivity 
and a flow diagram of the methodology are shown in Figures 5 and 6.

Figure 5. Arrangement for electrical resistivity test.
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3. Results and discussion

3.1. Chemical composition

The chemical compositions of the cement, pulverised granite and the blended cements, as 
determined by XRF are presented in Table 1. The chemical compositions of the samples 
were generally found within acceptable limits [41,42]. The pulverised granite and cal
cined clay contain 71.22% and 62.77% SiO2 respectively, which exceed the 25% minimum 
requirement for pozzolans according to ASTM C618. The values of SiO2 + Al2O3 + Fe2O3 

for both the pulverised granite and calcined clay are also more than the minimum 70%, as 
required by ASTM C618. The Na2O eq (Na2Oeq = N2O +0.682 K2O) for all samples were 
higher than the maximum permissible limit of 0.6% per ASTM C150 and suggest that the 
blended cement samples could lead to alkali silica reactivity with reactive aggregates.

3.2. Normal consistencies, setting times and soundness

Setting time is the process by which cement loses its plasticity and becomes dense at the 
onset of hydration. It takes place in two stages, thus, initial and final setting time. Normal 
consistency is the amount of water needed to form a workable paste [43]. The setting 
times and normal consistencies are presented in Table 2. OPC recorded the least water 
demand of 29.1%. This, however, increased by 6.5% when it was replaced with 5% of the 

Figure 6. Flow diagram of methodology.

Table 1. Chemical composition of OPC, granite dust and calcined clay.
Composition, % SiO2 Al2O3 Fe2O3 CaO Na2O K2O N2O eq SO3

OPC 26.06 5.8 2.1 57.1 0.6 1.99 1.96 6.27
Pulverized granite 71.22 19.84 2.75 3.56 5.45 3.5 –– 0.18
Calcined clay 62.77 18.71 11.68 0.65 0.03 2.12 –– 0.19
5%CGD 30.32 6.69 2.07 52.69 0.4 2.14 1.87 6.39
10%CGD 31.36 6.98 2.06 51.3 0.97 2.14 2.44 6.37
15%CGD 31.78 6.97 1.96 50.58 1.01 2.48 2.71 5.1
20%CGD 38.28 8.84 2.09 47.08 1.58 2.39 3.22 6.3
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composite material. The normal consistency continuously increased as percentage repla
cement increased from 5% to 20%. This is due to the presence of calcined clay in the 
composite cement, which requires appreciable amount of water to form a workable paste 
[44]. It is well known that too much water reduces the mechanical strength of mortar and 
increases the likelihood of failure due to shrinkage. As a result, the mortar may become 
too fluid to deal with and the mortar–masonry interface may become less adherent, 
reducing bond strength [35].

Similarly, both initial and final setting times increased as the composite material 
content increased. This increase is attributed to the calcined clay content which requires 
more water to form a workable paste. However, setting times and water demand were all 
within acceptable limits per EN 197–1. Similar results were reported by Li et al. [45] when 
Portland cement was replaced with metakaolin up to 20%. Normal consistency and 
setting time increased with increasing pozzolan content in the mix. This is consistent 
with results obtained in binary and ternary blended cement systems containing other 
pozzolans [45–48].

Cement is said to be sound if it maintains its volume after hardening. Excessive 
expansion of cement is mostly due to the amount of free lime, MgO and SO3 present 
in the cement [49]. The test for soundness recorded for all test samples was below the 
maximum limit of 10 mm specified by EN 197–1 and in line with other ternary blended 
pastes [11,46,50]. This could be attributed to the low amounts of MgO and SO3 in the 
blended cement [51,52]. Compared to reference cement, the composite cement was 
generally found to exhibit less expansion.

3.3. Mineralogical analysis

XRD patterns of 28-days hydrated reference cement and the 20% calcined clay-pulverised 
granite blended cement paste are shown in Figure 7. The XRD patterns, as identified by 
the ICDD database, reveal the presence of Portlandite (shown as CH) in both the 
reference and blended cement pastes. The blended cement paste was observed to have 
relatively shorter peaks after hydrating for 28 days which could be attributed to the 
reaction of the pozzolan with portlandite to produce further cementitious products 
such as calcium silicate hydrates. Furthermore, the reduction in portlandite formation 
could be due to the decrease in cement content owing to the composite pozzolan 
replacement [21,31,53]. Previous study on the effect of ternary blended rice husk ash 
and nano silica on mineralogical properties of cement showed a similar reduction in 
portlandite content which continuously decreased as curing age increased. This was 
attributed to the continuous pozzolanic reaction and the synergistic effect of the nano
particles of the pozzolans involved [54,55].

Table 2. Water demand, setting times and soundness.
Sample OPC 5%CGD 10%CGD 15%CGD 20%CGD

Normal consistency, % 29.1 31 31.6 32.4 33.0
Initial set, min 145 154 163 170 174
Final set, min 242 246 256 260 268
Soundness, mm 1.02 0.85 1.01 0.92 0.64
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3.4. Heat of hydration

Heat generated as a result of the exothermic nature of cement hydration could have 
deleterious effect on concrete structures such as thermal cracking and eventual 
strength loss [56]. One of the major roles of SCM’s in cementitious systems is use 
up this heat in a secondary reaction with the constituents of cement [57]. The heat 
flow of the reference cement and blended cement pastes in terms of the time of 
hydration are shown in Figure 8. Evidently, the inclusion of the pozzolanic material 
influenced the calorimetric characteristics of the blended cement pastes. It is observed 
that, increasing pozzolan content in the mix increased exothermic peak values and 
reduced their corresponding times. This suggests that the presence of the mineral 
admixture is likely to enhance the degree of hydration and speed up the hydration 
reaction [27]. Again, a reaction between the Al2O3 and SiO2 present in the pozzolan 
could interact with portlandite from the cement to produce heat and consequently 
speed up the hydration process [58]. As the pozzolan content increased, this effect 
becomes more noticeable. Again, the reference cement peak is seen to exhibit a peak 
bulge which usually indicates the conversion of afwillite to monosulphate [58,59]. The 
presence of the pozzolan in the paste appears to cause a disappearance of this peak 
bulge. This could be attributed to the reactivity of the pozzolan [60]. This is con
sistent with earlier research on the hydration of ternary blended cement containing 
varying pozzolan content [58]. Pastes containing 5%–20% metakaolin and limestone 
powder recorded greater exothermic peak values with shortened corresponding times 
of peak, than that of the control. This is most likely to accelerate pozzolanic reaction 
and degree of hydration [48,56,59].

3.5. Compressive strength

The 3, 7, 28 and 90 days compressive strength test results of the reference and blended 
cement samples with varying pozzolan contents are seen in Figure 9. The reference 

Figure 7. XRD of hydrated samples.
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cement, after curing for 3 and 7 days, obtained compressive strengths of 19.4 MPa and 
25.7 MPa, respectively. The addition of the pozzolan, however, caused a reduction in 
strength and as the pozzolan content increased, compressive strength also decreased. 
However, at 28 days, cement containing 5% and 10% recorded strengths comparable to 
the reference cement. Cement replaced with 15% and 20% of the pozzolan obtained 
strengths which are about 12.7% and 23.9% lower than the reference cement, respectively. 
When the curing period was extended to 90 days, compressive strengths of the blended 
cement containing 5% and 10% outperformed the reference cement by 2.4% and 0.6%, 
respectively. This is due to the slow reactive nature of pozzolans, especially at early ages 
which significantly improves at later ages [35,61]. Several reports [26,27,29,53,62] confirm 
the reduction of compressive strength of blended cement mortars at early ages but greatly 
improves at 28 days and beyond. However, 28 days results obtained from this study could 
not attain the expected strength gain. This could be due to the relatively larger particle size 
of the pulverised granite, leading to slow reactivity, even at 28 days [61].

3.6. Porosity

Scatter plots shown in Figures 10 and 11 are plotted to show the relationship between 
porosity and the pozzolan content and porosity and compressive strength, respectively. It is 
seen from Figure 10 that increase in pozzolan content caused a reduction in porosity. The 
goodness-of-fit between pozzolan content and porosity, however, was much less. This is an 
indication that some other characteristics of mortar pore structure are also likely to influence 
porosity apart from the pozzolan content [19,63]. Similarly, as shown in Figure 11, there was 

Figure 8. Rates of heat of hydration of ternary blended cement pastes.
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a reduction in compressive strength as porosity increased. A power law (R2 = 0.9035) is 
shown in Figure 11 to express this relationship. This well agrees with results reported by Jittin 
and Bahurudeen [64], Rukzon and Chindaprasirt [19] and Weiting et al. [65]. In all cases, 
porosity decreased with increasing pozzolan content.

Figure 9. Compressive strength of ternary blended cement mortars.

Figure 10. Relationship between pozzolan content and porosity.
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3.7. ASR

Expansion of the mortar bars due to ASR is shown in Figure 12. Generally, expansion 
increased as curing age increased for all composite material replacements [38,66]. 
Expansion of mortar bars consistently increased to a maximum of 0.55% at 35 days 
with a pozzolan content of 15%. Reference bars also expanded rapidly as curing age 
increased up to a maximum of 0.35% at 35 days. Expansion of the mortar bar samples was 

Figure 11. Relationship between porosity and compressive strength.

Figure 12. Expansion of ternary blended cement mortars due to alkali silica reaction.
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all higher than the maximum value of 0.1% specified in ASTM C 1260. The high 
expansions could be linked to the high Na2O and K2O contents of the cement sample 
as shown in Table 1 [34,36]. Contrary to results obtained in the study, the addition of 
25% fly ash in concrete effectively mitigated ASR as compared to the reference cement 
paste [67]. Other researchers [38,66,68] have reported the effectiveness of pozzolans in 
mitigating ASR in concrete.

3.8. RCPT

Figure 13 presents the findings for chloride permeability of the blended cement mortars at 
ages 3, 7, 28 and 90 days. It is evaluated in the form of electric charge (in coulombs) passing 
through the mortar samples. The charge passing through all samples is observed to decrease 
with increasing curing age and pozzolan replacement. The results demonstrate that, com
pared to the reference cement, incorporation of the pozzolan greatly improves chloride 
penetration resistance. At 90 days, the amount of electric charge passing through the refer
ence cement decreased by 9.1% and 26.8% when 20% of the OPC was replaced with the 
pozzolan. This improvement in chloride permeability could be attributed to the reaction 
between the pozzolan and calcium hydroxide from the cement and the low electrical 
conductivity of blended cement mortars and concrete [69]. This is in agreement with earlier 
results reported by Garg et al. [70] in studying the effect of ternary blended nano metakaolin 
and fly ash. The most impressive resistance to chloride permeability was observed in pastes 
containing 10% metakaolin and 15% fly ash, which greatly influenced strength development.

3.9. Electrical resistivity test

One technique that has been used to assess the hydration process of cementitious 
systems over the years is electrical resistivity measurements [71]. Generally, the 
electrical resistivity of blended cements depends on volume fraction and the 
resistivity of the phases present [72]. In this work, electrical resistivity 

Figure 13. Rapid chloride ions permeability of ternary blended mortars.
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measurements were taken for all ternary blended cement batches after curing for 
3, 7, 28 and 90 days. Figure 14 presents the effect of varying replacement levels on 
electrical resistivity. Electrical resistivity was seen to increase with increasing 
curing age. This is due to the formation of calcium silicate hydrates which 
influences the cementitious matrix, as curing period increased [73]. Samples 
containing 5%, 10%, 15% and 20% obtained higher electrical resistance values as 
compared to the control sample. It is observed that, all blended cement samples, 
irrespective of replacement level, obtained similar electrical resistivity. During the 
hydration process, SiO2 from the pozzolan reacts with Ca(OH)2 to form extra 
C-S-H, leading to a reduction in pore sizes and consequently decreasing the ionic 
strength and improved electrical resistance [70]. Some scientific reports [54,71,74] 
have demonstrated similar trends in the electrical resistivity properties of cements 
containing binary, ternary and quarternary blended composites.

3.10. Aggressive media test

Many concrete structures are at risk from sulphate attack, a serious durability 
issue for cement-based materials. Ternary blended mortar samples were stored in 
ordinary water, seawater and 5%-Na2SO4 solution and the results shown in 
Figure 15. Ninety-day compressive strengths of samples cured in 5%-Na2SO4 

and seawater are compared to strengths of mortar cubes stored in water. The 
reference cement obtained 22.5% and 24.6% reductions in strength when stored in 
seawater and Na2SO4 solution respectively whereas the minimum reduction in 
strength for the blended cements was 9.8% at 5% replacement. Results of 

Figure 14. Electrical resistivity of ternary blended mortar.
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durability studies in aggressive media suggest that the ternary blended cement 
samples were more stable in aggressive media as compared to the reference 
cement. Samples stored in 5%-Na2SO4 exhibited reductions in strength for all 
mixed than those exposed to seawater at all ages. Generally, blended cement 
mortars were observed to offer a better resistance to sulphate and chloride attack 
as compared to the reference cement mortars. This is attributed to improved 
porosity and particle size distribution of the blended cement samples [74–76]. 
The presence of pozzolans in concrete has been known to improve sulphate and 
chloride resistance. This is mainly due to reduced porosity, portlandite consump
tion and pore refinement [76], [77].

4. Conclusion

In this study, the behaviour of ternary blended mortar containing a blend of calcined clay 
and pulverised granite is investigated. The composite material was blended with ordinary 
Portland cement in proportions of 5%, 10%, 15% and 20%. The influence of the 
composite material on the mechanical and durability properties on mortar is investigated 
and the following conclusions presented:

(1) Blended cements containing 5% and 10% of the pozzolan recorded similar com
pressive strengths at 28 days and outperformed it by 2.4% and 0.6% respectively at 
90 days. Beyond 10% replacement, compressive strengths declined.

Figure 15. Performance of ternary blended cement samples in normal and aggressive media for 90 days.

ADVANCES IN MATERIALS AND PROCESSING TECHNOLOGIES 15



(2) Results of durability studies in aggressive media suggest that the cement samples 
were stable in aggressive media up to 90 days with the composite material appear
ing to stabilise the cement.

(3) The ternary blended cement was found to be highly reactive and had a high 
potential of causing ASR in concrete than the reference cement. This could be 
due to the reactive nature of the granite used for this study. This also contributed 
to its high Na2O equivalence.

(4) Increase in the pozzolan content caused a reduction in porosity. The goodness-of- 
fit between pozzolan content and porosity, however, was much less. This is an 
indication that some other characteristics of mortar pore structure are also likely 
to influence porosity apart from the pozzolan content. Similarly, a correlation 
between compressive strength and porosity showed a reduction in compressive 
strength as porosity increased.

(5) From the RCPT studies, the charge passing through all blended cement samples 
was observed to decrease with increasing curing age and pozzolan replacements. 
Compared to the reference cement, incorporation of the pozzolan greatly 
improves chloride penetration resistance. At 90 days, the amount of electric 
charge passing through the reference cement decreased by 9.1% and 26.8% 
when 20% of the OPC was replaced with the pozzolan.

(6) Electrical resistivity was seen to increase with increasing curing age. This could be 
due to the formation of calcium silicate hydrates which influences the cementi
tious matrix, as curing period increased. All blended cement samples, irrespective 
of replacement level, obtained similar electrical resistivity.
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