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Abstract— This paper presents a post-processing-based Spectral-

Spatial Classification (SSC) approach for Hyperspectral (HS) 

images. The approach effectively overcomes the limitations of 

traditional pixel-based classifiers by integrating spectral and 

spatial information to achieve improved classification results. 

Specifically, the proposed method uses Principal Component 

Analysis (PCA) to transform the HS image and Naive Bayes (NB) 

classifier to quickly derive spectral-posterior probabilities. 

Spatial-posterior probabilities are then computed using an 

Adaptive Fast Fourier Transform (AFFT) and a probabilistic 

closeness function. These probabilities are then combined to 

generate a precise spectral-spatial classification map. The 

proposed approach is available in two distinct styles: the 

conventional NB-AFFT-SSC method and the proposed Iteration-

wise Variable Sequencing-based NB-AFFT-SSC (IVS-NB-AFFT-

SSC) method, which classifies one designated class in each 

iteration. Additionally, two wrapper-based feature selection 

methods are proposed to obtain a set of Principal Components 

(PCs) for each class of the HS image, significantly improving 

classification accuracy. The approach's efficacy is demonstrated 

through extensive experimentation on three real HS datasets, 

including Washington DC Mall (WDC-M), Salinas-A, and 

Botswana. The generality of the approach has been proven 

through the use of other well-known Machine Learning algorithms 

such as Support Vector Machine and K-Nearest Neighbor as 

wrappers in the approach. The results confirm that the proposed 

approach is highly effective, with the IVS approach helping users 

concentrate on a particular set of PCs for the class of interest.  

 
Index Terms— Hyperspectral Image Spectral-Spatial 

Classification, Iteration-wise Variable Sequencing (IVS), Naive 

Bayes, Adaptive Fast Fourier Transform. 

I. INTRODUCTION 

Hyperspectral (HS) images are rich in information and are 

essential in land cover, land use, climate, and environmental 

applications. Classification is one of the significant tasks in HS 

image processing. The methods that utilize the spectral 

signature to determine class belongingness are called pixel-

based classifiers, for example, Bayesian estimation methods 

[1], K-Nearest Neighbor (KNN) classifiers [2], kernel-based 

techniques [3], neural networks [4], and decision trees [5]. The 

performance of pixel-based classifiers is limited due to high 

heterogeneity within the same class and relatively more 

homogeneity between pixels of different classes of the HS 

image, which arise due to high spatial resolution [6], natural 

spectrum variations, unwanted shade and shadow, atmospheric 

effects, incident illumination, and instrument noises [7] during 

the image acquisition. Therefore, the classification maps 

produced by the pixel-based classifiers exhibit salt and pepper 

noise. Moreover, the classification performance of pixel-based 

classifiers has a strong relationship with the quality of training 

pixels [8]. As pixel-based classifiers do not consider spatial 

information, they cannot alone constitute good classifiers. 

Therefore, the need for Spectral-Spatial Classification (SSC) 

arises. In the literature, based on the fusion stage, three 

categories of SSC were proposed for HS images, such as pre-

processing techniques as in [9], [10], where the spatial 

information is pre-extracted before fed to the classifier, 

integrated techniques [11], [12], where spatial information and 

spectral information are simultaneously used without explicit 

separation, and post-processing techniques [13]-[17], where 

spectral information via a classifier and spatial information 

mostly using Markov Random Fields are extracted, which leads 

to computational overhead and over smoothening.  

Recently, the focus of SSC of HS images has been shifted 

to Deep Learning-based methods and has become the 

mainstream [18], [19]. The advantage of DL methods is that 

they do not require dimensionality reduction, feature selection, 

or a combination of spatial-spectral information exclusively for 

the SSC of HS images. Due to this advantage, a series of Deep 

Learning (DL) methods have emerged for HS image 

classification [20]. For example, the 2-dimensional 

Convolutional Neural Network (2DCNN) method is used for 

SSC of HS images, which suffers from significant performance 

degradation as the training data drops from 20% to 3%, as 

shown in [21]. Another DL method that is widely used and 

considered a State-Of-The-Art (SOTA) is the 3-dimensional 

Convolutional Neural Network (3DCNN) which extracts both 

spectral and spatial information, and it offers better execution 

speed and performance than 2DCNN [21]-[23]. In addition, 

various CNN-based methods with the combination of 2DCNN 

and 3DCNN are being explored for better classification 

accuracy of HS images. A common need for all these methods 

is the requirement of a higher percentage of training data for a 

reasonably good classification performance.  

Unlike conventional image processing applications, it is 

well known that in hyperspectral image processing, there is a 

scarcity of availability of sufficient training data or one cannot 

have the luxury of or use the leverage of using a higher 

percentage of available data for training purposes alone [24]. 

The labeling of pixels in HS images is particularly time-

consuming and expensive. The task requires experts to obtain 

ground-truth data by field sampling. Therefore, exploring an 

HS image classification methodology for good performance 

with few labeled samples becomes particularly significant [25]. 

Further in DL methods, Generative Adversarial Networks 

(GANs) that combine the benefits of CNNs and the generative 
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models are used to improve classification performance with few 

labeled samples [26]. However, the GANs suffer from the class 

imbalance problem due to the uncontrolled generation of 

synthetic training samples. In the context of the limited 

availability of training samples and the high dimensional nature 

of HS image data, DL methods perform quite ineffective in 

generalizing the distribution of HSI data. In addition, DL 

methods require excessive adjustment at the training stage, 

while the performance on the test data is generally poor with a 

low percentage of training data [20]. Moreover, the block box 

nature of the training of DL models makes the interpretation of 

internal dynamics quite hard. Further, the stacking of layers in 

DL methods does not guarantee desirable improvement in 

classification accuracy.  This forces the users to carefully select 

the DL methods that best suit the HSI data. This involves a 

proper selection of the DL architecture, learning strategy, and 

improvement strategies that best fit the HSI data, which makes 

them dataset-specific, handcrafted, and complex. In addition, a 

high computational burden due to a large number of parameters 

that need to be maintained in a DL architecture demands 

computationally expensive and memory-intensive methods 

[27]. Hence, the exploration of the SSC approach devoid of DL 

models that work with a low percentage of training data for 

improved classification accuracy of HS images is the main 

focus of the paper. It may be noted that the HS image and HS 

dataset are interchangeably used in the paper.  

The proposed SSC approach adopts the post-processing-

based approach, which is widely used among the three 

categories for the classification of hyperspectral images mainly 

due to higher classification accuracy and also attempts to 

address the computational overhead issue. Initially, the given 

HS image is transformed into a lower dimension using Principal 

Component Analysis (PCA) as it is a widely used 

dimensionality reduction technique for HS images [17]. The 

rationale for the choice of PCA is that the usage of Naive Bayes 

(NB) insists on conditional independence of features to be fed 

as an input. In the proposed SSC approach, the spectral 

information in terms of posterior probabilities is obtained by the 

NB classifier, which is selected due to its inherent advantages, 

such as implementation ease, execution speed, and less 

complexity [28]-[29], whereas the spatial information in terms 

of posterior probabilities is obtained through the application of 

an Adaptive Fast Fourier Transform (AFFT) on a defined 

spatial window. The window-based method is an effective and 

widely used method to describe spatial information [30], [31]. 

In the proposed method, spectral posterior probabilities and 

spatial posterior probabilities are combined to obtain spectral-

spatial posterior probabilities to construct the SSC map. 

The proposed SSC approach has been implemented in two 

ways: 1) the conventional approach of classification where the 

classification of all classes of the HS image is carried out at one 

shot and the method is named NB-AFFT-SSC, and 2) the 

proposed Iteration-wise Variable Sequencing (IVS) approach 

where only one designated class of the HS image is classified 

in each iteration and the method is named as IVS-NB-AFFT-

SSC. The proposed IVS approach is iterative and each iteration 

is designated with a class index as per the predefined class 

selection sequence. In addition, each iteration is wrapped with 

a predetermined classifier (NB classifier), which produces a 

classification map. The pixels from the classification map that 

match with the iteration class index are extracted and the 

remaining pixels are then fed to the next iteration, this process 

continues until all classes in the given HS image are classified. 

The proposed novel IVS approach serves the dual purpose of 

feature selection and classification of HS images. The proposed 

IVS approach obtains a set of PCs for each class of the HS 

image when used for feature selection, and performs the 

classification using these PCs to improve the classification 

accuracy. In addition, two Feature Selection (FS) methods, 

namely Include Discard-based Feature Selection (IDFS) and 

IVS-FS are proposed. The IDFS method wraps a classifier (NB 

classifier) and employs the Sequential Forward Selection (SFS) 

to obtain a set of PCs for all classes of the HS image based on 

a defined criterion. 

 In contrast, the IVS-FS method is iterative and it wraps the 

NB classifier in each iteration and employs the SFS search 

strategy to obtain a set of PCs for each class of the HS image. 

The IVS-FS method helps the user select a set of relevant PCs 

for a class of interest for further processing, such as 

classification. The PCs obtained by IDFS are used for the 

classification using the NB-AFFT-SSC method, whereas a set 

of PCs for each class is used for the classification using the IVS-

NB-AFFT-SSC method. To the best of our knowledge, there is 

no attempt towards the SSC of HS images using ‘a set of PCs 

for each class’ or ‘class-wise PCs’. Experiments conducted on 

three widely used real HS datasets, namely Washington DC 

Mall (WDC-M) [32], Salinas-A [33], and Botswana [34], 

substantiate the effectiveness of the proposed SSC method in 

terms of classification accuracy of the HS datasets. 

The major contributions of the paper are as follows. 

(1) The IDFS method with an improved objective 

criterion for the selection of PCs for all classes of HS 

image is illustrated. 

(2) A unique IVS-FS method for class-wise PC selection 

of HS images is introduced. 

(3) A flexible post-processing-based SSC approach both 

in the conventional classification approach and IVS 

approach, with an explanation related to concepts 

behind the derivation of spectral information (using 

NB) and spatial information (by the proposed 

closeness function through AFFT), is presented. 

(4) The generality of the proposed SSC approach using 

other Machine Learning (ML) algorithms such as 

widely used Support Vector Machine (SVM) [35] and 

KNN [36] is demonstrated. 

(5) A comparison of the proposed SSC approach-based 

methods along with other competitive SSC methods to 

substantiate the effectiveness of the proposed SSC 

approach is also presented. 

The rest of the paper is organized as follows: Section II 

introduces the details of the proposed feature selection 

algorithms for the proposed SSC approach with NB classifier 

as wrapper, Section III presents the conceptual basis and 

formulation of the proposed SSC approach with NB classifier 

as wrapper, Section IV describes the datasets used for all 

simulations including other well-known ML algorithms such as 

SVM and KNN to prove the generalization ability of the 

proposed approach, Section V presents the experimental results 
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followed by a detailed discussion on the obtained results, and 

Section VI highlights some conclusions of the SSC approach.  

II. IMPLEMENTATION OF PROPOSED FEATURE SELECTION 

ALGORITHMS FOR THE PROPOSED SSC APPROACH 

In a traditional sense, the selection of PCs is based on the 

cumulative variance of PCs. In classification algorithms, the 

class discrimination aspect is neglected in the selection of the 

number of PCs and this in turn leads to poor classification 

results. Hence, the class discrimination aspect cannot be 

neglected in the selection of the number of PCs. The imposition 

of the threshold for the initial dominant PCs is aimed as a 

pragmatic measure to overcome the absence of the class 

discrimination aspect. The proposed feature selection 

algorithms such as IDFS and IVS-FS address these problems by 

searching for PCs beyond the first few PCs, while maintaining 

classification accuracy. The proposed feature selection 

algorithms use SFS as a search strategy. In SFS-based feature 

selection, the objective function considers only the Overall 

Accuracy for feature selection leading to the issue of non-

consideration of class imbalance. However, in IDFS and IVS-

FS, the objective function is derived based on the confusion 

matrix. This in turn overcomes the prevalent class imbalance in 

the feature selection algorithms. This section introduces the 

implementation details of the proposed feature selection 

algorithms with the NB classifier as a wrapper in IDFS and 

IVS-FS to obtain a set of PCs for all classes of the HS image 

and to obtain a set of PCs for each class of the HS image, 

respectively.  

A. IDFS 

This section presents the proposed IDFS method (wrapped 

with NB classifier), which uses the SFS strategy.  

For the illustration of the algorithm, let the PCA-

transformed HS image be given by, 

𝑃 = {𝑝𝑧}𝑧=1
Z                                                         (1) 

where,  𝑝𝑧 is the 𝑧th PC of the HS image, Z is the total number 

of PCs, and  𝑃 is the set of PCs.  

The IDFS decision metric to either add a PC or discard a PC 

requires the confusion matrix. The confusion matrix for the 

holdout test set using the NB classification map with the 

𝑧𝑡ℎcandidate PC set (𝑅𝑧) is given by, 

𝐖𝑅𝑧
= [

𝑤11 𝑤12 𝑤13

𝑤21 𝑤22 𝑤23

⋮    ⋮    ⋮
𝑤𝑘1 𝑤𝑘2 𝑤𝑘3

    

… … 𝑤1𝑘

⋯ … 𝑤2𝑘

⋮   ⋱ ⋮
⋯ … 𝑤𝑘𝑘

]                   (2) 

where, 𝑤11is the 1st class pixels correctly classified as 1st class, 

𝑤21 represents the 2nd class pixels incorrectly classified as 1st 

class, and 𝑤𝑘𝑘is the 𝑘th class pixels correctly classified as 𝑘th 

class.  

The decision metric for the 𝑧𝑡ℎcandidate PC set (𝑅𝑧), denoted 

by 𝜓𝑅𝑧
, using (2) can be given by, 

𝜓𝑅𝑧
=

∑ 𝑤𝑘𝑗
K
𝑘=1,   𝑘≠𝑗

∑ 𝑤𝑘𝑘
K
𝑘=1

                                 (3) 

The set of PCs that minimizes (3) will be given by, 

ℛ = argmin
𝑅𝑧 ⊆ 𝑃,   𝑧={1,2,3,…,Z} 

𝜓𝑅𝑧
                        (4) 

where ℛ will have a set of PCs for all classes of the HS image. 

The pseudocode of the proposed IDFS method is shown in 

Algorithm 1 for a better understanding of the method. 

 

Algorithm 1: Pseudocode for IDFS method 

Inputs: 

Principal Components                 :  𝑃 = {𝑝𝑧}𝑧=1
Z  

Training data                               : train 

Holdout test data                         : htest  

Method: 

Initialize feature set 𝑅 to zero and a variable 𝜂 to ∞ 

     for (𝑧 = 1; 𝑧 ≤  Z; 𝑧 ++) 

Update feature set 𝑅𝑧 = {𝑅 ∪  𝑝𝑧}; 

Execute the NB_classifier(train, htest, 𝑅𝑧)  

     Compute 𝜓𝑅𝑧
 using (3) 

               if  𝑧 > 1 

                          if (𝜓𝑅𝑧
< 𝜂)  

Update 𝑅 = {𝑅𝑧};  

Update 𝜂 = 𝜓𝑅𝑧
; 

                         else 

Update 𝑅 = {𝑅𝑧 − 𝑝𝑧}; 

                         end 

                else 

                            Update  𝜂 = 𝜓𝑅𝑧
; 

                                  Update  𝑅 = {𝑅𝑧}; 

                End 

end 

Assign ℛ = 𝑅; 

Output:  

             A set of PCs: ℛ 

 

B. IVS-FS  

This section presents the details of the proposed IVS-FS 

method. The IVS-FS is an iterative approach that uses the NB 

classifier as a wrapper in each iteration, employs the SFS search 

strategy, and requires a sequence of classes to obtain class-wise 

PCs for each defined class of the HS image. The input image to 

the method is the PCA-transformed HS image. The output is the 

class-wise PCs for each defined class of the HS image. 

For the 𝑘𝑡ℎ class iteration, using the 𝑧𝑡ℎcandidate PC set 

(𝑅𝑧
𝑘), a classification map is produced by the NB classifier. 

However, for the computation of the confusion matrix, only the  
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pixels that match with the 𝑘𝑡ℎ class index are considered, and 

the resultant confusion matrix is given by, 

𝐖𝑅𝑧
𝑘 = [

𝑤00 𝑤01

𝑤10 𝑤11
]                                         (5) 

where, 𝑤00 is the 0th class pixels correctly classified as 0th class, 

𝑤01denotes the 0th class pixels incorrectly classified as 1st class, 

𝑤10 represents the 1st class pixels incorrectly classified as 0th 

class, and 𝑤11is the 1st class pixels correctly classified as 1st 

class.  

 

Algorithm 2: Pseudocode for IVS-FS method 

Inputs: 

Principal Components                 :  𝑃 = {𝑝𝑧}𝑧=1
Z  

Class selection sequence index   :  𝑘  

Total number of classes               :  K   

Training data with class labels    :  train 

Hold out test data                         :  htest  

Method: 

Initialize 𝑅 to zero and a variable 𝜂 to ∞ 

Loop1: for (𝑘 = 1; 𝑘 ≤  K; 𝑘 ++) 

   Loop2: for (𝑧 = 1; 𝑧 ≤  Z; 𝑧 ++) 

                 Update 𝑅𝑧
𝑘 = {𝑅 ∪  𝑝𝑧}; 

                 Execute NB_classifier (train, htest, 𝑅𝑧
𝑘)  

                  Compute 𝜓𝑅𝑧
𝑘  using (6) 

               if  𝑧 > 1 

                          if (𝜓𝑅𝑧
𝑘 < 𝜂)  

Update 𝑅 = {𝑅𝑧
𝑘};  

Update 𝜂 = 𝜓𝑅𝑧
𝑘; 

                         else 

Update 𝑅 = {𝑅𝑧
𝑘 − 𝑝𝑧}; 

                         end 

                else 

                            Update  𝜂 = 𝜓𝑅𝑧
𝑘; 

                                  Update  𝑅 = {𝑅𝑧
𝑘}; 

                end 

         end: Loop2 

Assign  ℛ𝑘 =  𝑅; 

Update train to consist of only (K − 𝑘) classes 

Update htest by removing classified pixels belonging to 

𝑘𝑡ℎclass   

Update 𝑅 to zero 

end: Loop1 

Output:  

            Class-wise PCs for each class index 𝑘: ℛ𝑘 

 

The IVS-FS decision metric at the 𝑘𝑡ℎ class iteration and for 

the 𝑧𝑡ℎcandidate PC set (𝑅𝑧
𝑘) using (5) can be given by, 

𝜓𝑅𝑧
𝑘 =

∑ 𝑤𝑖𝑗
1
𝑖=0,   𝑖≠𝑗

∑ 𝑤𝑖𝑖
1
𝑖=0

                                    (6) 

The set of PCs that minimizes (6) for the 𝑘𝑡ℎ iteration class 

will be given by, 

ℛ𝑘 = argmin
𝑅𝑧

𝑘 ⊆ 𝑃,   𝑧={1,2,3,…,Z} ,𝑘={1,2,3,…,K}  

𝜓𝑅𝑧
𝑘                   (7) 

where ℛ𝑘 represents a set of PCs for the 𝑘𝑡ℎ class (class-wise 

PCs). The pseudocode of the method is shown in Algorithm 2. 

To the best of our knowledge, obtaining class-wise PCs has not 

yet been explored. Hence, the proposed IVS-FS method adds a 

major contribution to the manuscript. 

III. PROPOSED SSC APPROACH- CONCEPTUAL BASIS AND 

FORMULATION 

The proposed SSC approach considers both the spatial and 

spectral information separately. It employs the NB classifier to 

produce a spectral classification map using the spectral 

information. For accounting the spatial information, an adaptive 

FFT (AFFT) based probabilistic closeness function is 

developed. The spectral posterior probabilities produced by the 

NB classifier and the spatial posterior probabilities obtained 

using the AFFT are used to generate spectral-spatial posterior 

probabilities, which are subsequently used for developing the 

final spectral-spatial classification map. The test pixel which 

has the highest posterior probability for a class will be assigned 

to the class. The proposed SSC approach is implemented in two 

classification approaches, namely the conventional approach 

(where the classification of all constituent classes is performed 

at a time), and the IVS approach (where the classification is 

carried out by a predefined class sequence). The proposed SSC 

approach implemented in the conventional approach is named 

as NB-AFFT-SSC and that in the IVS approach is designated 

as IVS-NB-AFFT-SSC.  

A. NB-AFFT-SSC Method 

This section presents the NB-AFFT-SSC method. In this 

method, the NB classifier is used to generate spectral posterior 

probabilities, and then the AFFT on a defined spatial window is 

used to compute spatial posterior probabilities. The NB-AFFT-

SSC method is depicted in Fig. 1.  

For the PCA transformed HS image with K number of 

classes, the spectral posterior probabilities using the NB 

classifier for the kth class, given a data vector 𝐱𝑞 = {𝑥𝑧}𝑧=1
Z , 

where 𝑧 is the index to denote the 𝑧th PC, and 𝑞 is the pixel 

number, can be obtained by, 

p𝑠𝑝𝑒𝑐(𝑘|𝐱𝑞) =
[p(𝑘) × p(𝐱𝑞|𝑘)]

∑ p(𝑘) × p(𝐱𝑞|𝑘)] K
𝑘=1

                      (8) 
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where, k is the index to denote 𝑘th class (𝑘 = {1,2, … , K}), 

p𝑠𝑝𝑒𝑐(𝑘|𝐱𝑞) represents the posterior probability of the pixel 

vector 𝐱𝑞belonging to the 𝑘th class, and p(𝑘) is the priori 

probability of the 𝑘th class. According to (9), each test pixel of 

the input HS dataset is assigned the class with which it has the 

highest posterior probability, and it can be given by, 

𝐇(𝐱𝑞) =   p𝑠𝑝𝑒𝑐(𝑘|𝐱𝑞) 𝑘 Є {1 𝑡𝑜 K}
arg 𝑚𝑎𝑥

                         (9)                           

where, 𝐇(𝐱𝑞) is the classification map of the class index for 𝐱𝑞.  

Using (9), a binary mask by comparing the center pixel (𝐱𝑞) 

with the neighboring pixels of the defined spatial window is 

generated, which is multiplied element by element with the 

corresponding input PCA transformed HS image and then 

averaged over the selected PCs.  

The FFT is applied adaptively on the averaged PCA 

transformed HS image of the size of spatial window, and the 

vector of test spectral magnitudes is denoted by 𝐟Test(ω), where 

ω denotes the frequency component. A vector of FFT spectral 

magnitudes for training data, denoted by 𝐟Tr(ω, 𝑘), is computed 

for each class 𝑘. The closeness function/metric for the 𝑘th class 

can then be calculated from [37],  

ƥ(𝑘|𝐱𝑞) = |
𝐟Tr(ω,𝑘)

𝐟Test(ω)
−

𝐟Test(ω)

𝐟Tr(ω,𝑘)
|                            (10)   

In (10), the value of ω is taken to be 1 (dc component) to 

reduce computational complexity. The ideal value for  ƥ(𝑘|𝐱𝑞) 

is zero. The value of ƥ(𝑘|𝐱𝑞) can be any real value greater than 

zero (>0). Hence, it should be normalized as shown in (11) 

which is also called as probabilistic closeness function, 

ƥnorm(𝑘|𝐱𝑞) =
ƥ(𝑘|𝐱𝑞)

∑ ƥ(𝑘|𝐱𝑞)K
𝑘=1

                                (11)                                               

where 𝑘 =1 to K such that ∑ ƥnorm(𝑘|𝐱𝑞)K
𝑘=1 = 1.  

The spatial posterior probabilities can be given by, 

               p𝑠𝑝𝑎𝑡(𝑘|𝐱𝑞) = (
1−ƥnorm(𝑘|𝐱𝑞) 

∑ (1−ƥnorm(𝑘|𝐱𝑞))K
𝑘=1

)             (12) 

Using (8) and (11), the spectral-spatial posterior probabilities 

can be computed using:  

ƥss(𝑘|𝐱𝑞) =   p𝑠𝑝𝑒𝑐(𝑘|𝐱𝑞) × p𝑠𝑝𝑎𝑡(𝑘|𝐱𝑞)             (13) 

where, ƥss(𝑘|𝐱𝑞) represents the spectral-spatial posterior 

probabilities of the 𝑘th class given the pixel 𝐱𝑞. 

The SSC map can be obtained from, 

𝓗(𝐱𝑞) =   ƥss(𝑘|𝐱𝑞) 𝑘 Є {1 𝑡𝑜 K}
arg max

                           (14)                               

where, 𝓗(𝐱𝑞) is the SSC map of the predicted class index for 

𝐱𝑞. 

B. IVS-NB-AFFT-SSC Method  

This section presents the details of the IVS-NB-AFFT-SSC 

method, which uses the NB-AFFT-SSC method as a wrapper 

and uses class-wise PCs obtained using the IVS-FS method. 

The schematic of the IVS-NB-AFFT-SSC method is shown in 

Fig. 2. 

For example, if there are K number of classes, the integers in 

the class selection sequence will be 1 ≤  𝑖 <  K, implying that 

there are only (K − 1) steps of successive classification. The 

classification map at an iteration, for example 𝑖𝑡ℎ iteration, will 

be written as, 

 
Fig. 1: Schematic of the proposed NB-AFFT-SSC method proposed NB-AFFT-SSC method 
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𝐂𝑖
K−𝑖+1 = 𝐂𝐁(𝑡𝑟𝑎𝑖𝑛(K − 𝑖 + 1), 𝑡𝑒𝑠𝑡(K − 𝑖 + 1), ℛ𝑖

∗, NB

− AFFT − SSC)                                           (15) 

Let 𝑝 = K − 𝑖 + 1 to simplify (15), which leads to, 

𝐂𝑖
𝑝

= 𝐂𝐁(𝑡𝑟𝑎𝑖𝑛(𝑝), 𝑡𝑒𝑠𝑡(𝑝), ℛ𝑖
∗, NB − AFFT − SSC)       (16) 

 
 

Fig. 2: Schematic of the proposed IVS-NB-AFFT-SSC method. 

 

where 𝑝 denotes the number of classes that are present, 

𝑡𝑟𝑎𝑖𝑛(𝑝) represents the training data comprising 𝑝 number of 

classes, 𝑡𝑒𝑠𝑡(𝑝) represents the test data comprising 𝑝 number 

of classes, ℛ𝑖
∗ represents a set of PCs at 𝑖𝑡ℎ iteration, and the 

NB-AFFT-SSC method is a wrapper classifier. Now, the class 

index (i.e., 𝑘) corresponding to the 𝑖𝑡ℎ iteration will have to be 

extracted from the classification map 𝐂𝑖
𝑝
 in (16). The 

classification map of extracted 𝑘𝑡ℎclass pixels is given by: 

𝐇𝑘 = {
 𝐂𝑖

𝑘 ⊂ 𝐂𝑖
𝑝

| 𝑘 ∈ 𝐂𝑖
𝑝

, 1 ≤ 𝑘 ≤ K, for 𝑝 > 2  

𝐂𝑖
𝑘 = 𝐂𝑖

𝑝
, otherwise                                      

 (17)            

where, 𝐇𝑘 is the classification map of 𝑘𝑡ℎ class pixels. The 

classification map of the IVS-NB-AFFT-SSC method is given 

by, 

𝐇IVS−NB−AFFT−SSC = ∑ 𝐇𝑘

K

𝑘=1

                              (18) 

The iterative sequence of the classes can be either in ascending, 

descending or pre-determined order. The training data for both 

feature selection using the IVS-FS method and classification 

using the IVS-NB-AFFT-SSC method is the same. 

IV. DATASETS 

The HS image datasets used for simulations are WDC-M 

[32], Salinas-A [33], and Botswana [34].  

The actual size of WDC-M after the removal of water 

absorption bands is [1208 × 307 × 191]. The spatial resolution 

of the HS image is 2.5 m. We have considered a sub-scene of 

the WDC-M of size [99 × 306 × 191], which has 7 classes, 

namely Grass, Water, Street, Roofs, Trees, Path, and Shadow 

[32]. It is a challenging dataset due to the heterogeneity in the 

spectral signature of the Roofs class and the low inter-class 

spectral variability between the Water-Shadow, Trees-Grass, 

and Roofs-Street classes [38]. 
A sub-scene, named Salinas-A, of the Salinas scene 

captured by the AVIRIS sensor is another dataset used for 
simulations. The size of Salinas-A is [86 × 83 × 204]. The 
spatial resolution of Salinas-A is 3.7 m. There are 6 classes in  
Salinas-A HS image which are named Brocoli_ 
green_weeds_1, Corn_senesced_green_weeds, Lettuce_roma 
ine_4wk, Lettuce_romaine_5wk, Lettuce_romaine_6wk, and 
Lettuce_romaine_7wk [33]. 

The third dataset used for simulations is the Botswana 

dataset from the NASA Earth Observing-1 satellite of the 

Okavango Delta, Botswana. After the noisy and water 

absorption band removal, the size of the image is 

[1476×256×145], which has 14 classes, namely, Water, Hippo 

grass, Floodplain grasses1, Floodplain grasses2, Reeds1, 

Riparian, Firescar2, Island interior, Acacia woodlands, Acacia 

shrublands, Acacia grasslands, Short mopane, Mixed mopane, 

and Exposed soils [34]. 

V. SIMULATION RESULTS AND DISCUSSION 

This section presents the feature selection results of IDFS 

and IVS-FS methods, and the classification results of various 

representative algorithms along with SOTA and the proposed 

SSC methods for three real and widely used HS datasets such 

as WDC-M, Salinas-A, and Botswana. A personal computer 

installed with MATLAB R2022a is used for all simulations on 

the datasets, with the following configuration: 1) Processor: 

Intel(R) Core (TM) i3-4170 CPU @ 3.70 GHz, RAM: 4 GB, 

System type: 64-bit Operating System with x64 based 

processor. The selection of training pixels is random. However, 

one has the choice to decide the training data by selecting either 

uniformly or empirically for each class of the given HS dataset. 

The remaining pixels other than the training pixels of the 

hyperspectral image are used as testing pixels. The choice of 

the proportion of training data should be such that the 

classification method will be able to perform very well with the 

attribute of class discrimination feature in the dataset. 

For simulations, a randomly selected training data of 2.5% 

for each HS dataset is used as shown in Table I for WDC-M, 

Salinas-A, and Botswana datasets. Five-fold cross-validation 

has been carried out for NB [29], SVM [35], and KNN [36]. 

The KNN with 3 nearest neighbors and the SVM with linear 

kernel are considered for simulations. For 3DCNN [21]-[23], 

three 3-D convolutional layers are used. Each convolutional 

layer contains filter sizes 8,16 and 32. The learning rate and 

epochs of 3DCNN are set to 0.005 and 100, respectively.    
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TABLE I 
DATASETS USED FOR EXPERIMENTS 

 
No Class # of 

training 

pixels 

# of 

test 

pixels 

Class # of 

training 

pixels 

# of 

test 

pixels 

Class # of 

training 

pixels 

# of 

test 

pixels 

#1  Grass 143 5724  Brocoli_green_weeds_1 10 391  Water 7 270 

#2  Water 121 4842  Corn_senesced_green_weeds 34 1343  Hippo grass 3 101 

#3  Street 49 1973  Lettuce_romaine_4wk 15 616  Floodplain grasses1 6 251 

#4  Roofs 4 158  Lettuce_romaine_5wk 38 1525  Floodplain grasses2 5 215 

#5  Trees 41 1647  Lettuce_romaine_6wk 17 674  Reeds1 7 269 

#6  Path 8 306  Lettuce_romaine_7wk 20 799  Riparian 7 269 

#7  Shadow 3 99  - - -  Firescar2 7 259 

#8  - - -  - - -  Island interior 5 203 

#9  - - -  - - -  Acacia woodlands 8 314 

#10  - - -  - - -  Acacia shrublands 6 248 

#11  - - -  - - -  Acacia grasslands 8 305 

#12  - - -  - - -  Short mopane 5 181 

#13  - - -  - - -  Mixed mopane 7 268 

#14  - - -  - - -  Exposed soils 2 95 

# Total       369 14749       - 134 5348  - 83 3248 

A.  Results of Proposed Feature Selection Algorithms 

This section presents the details of the set of PCs obtained 

using both IDFS and IVS-FS methods with the NB classifier 

and also with other prominent ML algorithms such as SVM and 

KNN alongside their execution times for the three HS datasets. 

The results of the proposed IDFS and IVS-FS methods have 

been shown in Tables II–IV for WDC-M, Salinas-A, and 

Botswana HS datasets, respectively.  

For the WDC-M dataset as shown in Table II, the total 

number of PCs obtained IDFS method using SVM, NB, and 

KNN as wrappers are 9, 9, and 3, respectively.   In contrast, the 

IVS-FS method is able to obtain a set of PCs for each class of 

WDC-M dataset. The total number of PCs obtained with the 

IVS-FS method using SVM, NB, and KNN as wrappers, 

respectively, can be for each class such as Grass (5, 10, 3), 

Water (1, 2, 4), Street (17, 15, 3), Roofs (4, 13, 5), Trees (2, 2, 

3), Path (1, 1, 3) and Shadow (1, 1, 3). For IVS-FS using SVM, 

classes namely Water, Path, and Shadow require only 01 PC, 

whereas the maximum number of PCs (17 PCs) is required for 

the Street class. For IVS-FS using NB, Path and Shadow classes 

are associated with the minimum number of PCs (01 PC), and 

the Street class is associated with the maximum number of PCs 

(15 PCs). Similarly, for IVS-FS using KNN, the classes namely 

Grass, Street, Trees, Path, and Shadow require the minimum 

number of PCs (03 PCs), whereas the maximum number of PCs 

(05 PCs) is associated with the Roofs class.  

From Table III, for the SalinasA dataset, the total number of 

PCs obtained IDFS method using SVM, NB, and KNN as 

wrappers are 8, 19, and 4, respectively.   In contrast, the IVS-

FS method is able to obtain a set of PCs for each class of 

SalinasA dataset. The total number of PCs are obtained with the 

IVS-FS method using SVM, NB, and KNN as wrappers, 

respectively, can be for each class namely Brocoli_green 

_weeds_1 (2, 1, 2), Corn_senesced_green_weeds (8, 14, 7),  

Lettuce_romaine_4wk (13, 6, 12), Lettuce_romaine _5wk (5, 1, 

3), Lettue_romaine_6wk (11, 4, 7), and Lettuce_ romaine_7wk 

(11, 4, 7). For IVS-FS using SVM, the Brocoli_green_weeds_1 

class requires only 02 PCs, whereas the maximum number of  

PCs (13 PCs) is required for the Lettuce_romaine_4wk class. 

For IVS-FS using NB, Brocoli_green_weeds_1 and 

Lettuce_romaine_5wk classes require only 01 PC, and the 

Corn_senesced_green_weeds class is associated with the 

maximum number of PCs (14 PCs). Similarly, for IVS-FS using 

KNN, the Brocoli_green_weeds_1 class requires only 02 PCs, 

whereas the maximum number of PCs (05 PCs) is associated 

with Lettuce_romaine_5wk class. 

From Table IV, for the Botswana dataset, the total number 

of PCs obtained IDFS method using SVM, NB, and KNN as 

wrappers are 8, 9, and 4, respectively.   In contrast, the IVS-FS 

method is able to obtain a set of PCs for each class of the 

Botswana dataset. The total number of PCs obtained with the 

IVS-FS method using SVM, NB, and KNN as wrappers, 

respectively, can be for each class namely Water (3, 2, 2), 

Hippo grass (11, 11, 6), Floodplain grasses1 (9, 13, 4), 

Floodplain grasses2 (7, 13, 6), Reeds1 (10, 12, 3), Riparian (15, 

13, 5), Firescar2 (9, 4, 4), Island interior (11, 15, 6), Acacia 

woodlands (49, 16, 5), Acacia shrublands (15, 24, 5), Acacia 

grasslands (14, 12, 8), Short mopane (14, 9, 3), Mixed mopane 

(10, 5, 2), and Exposed soils (10, 5, 2). For IVS-FS using SVM, 

the Water class requires only 03 PCs, whereas the maximum 

number of PCs (49 PCs) is required for the Acacia woodlands 

class. For IVS-FS using NB, the Water class requires only 02 

PCs, and the Acacia shrublands class is associated with the 

maximum number of PCs (24 PCs). Similarly, for IVS-FS using 

KNN, Water, Mixed mopane, and Exposed soils classes require 

only 02 PCs, whereas the maximum number of PCs (08 PCs) is 

associated with the Acacia grasslands class. 

 In all three HS datasets, the increase in the number of PCs 

for the identification of a class is dependent on the complexity 

of the class for the used wrapper classifier. The IVS-FS method 

is superior to the IDFS method. The important point noteworthy 

here is that class-wise PCs obtained by the IVS-FS method are 

state-of-the-art to improve the classification results of the HS 

datasets. The selection of PCs for each class of the given HS 

dataset will be a one-time exercise. Hence, the execution time 

of the IVS-FS method is relatively more, which may be 

acceptable in the context of offline experiments. 
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TABLE II 

PCS OBTAINED BY PROPOSED FEATURE SELECTION ALGORITHMS WITH VARIOUS CLASSIFIERS FOR WDC-M HS DATASET 

Method Class Selected PCs Execution Time (s) 

SVM        NB KNN SVM NB KNN 

IDFS All classes 1:3,8,15,20,106,107,122 1:3,5,13,27,70,109,127 1,2,3 21.38 6.94 2.68 

IVS-FS 

Grass 1,2,6,13,21 1:3,5,6, 9,15, 37, 40, 67 1,2,60 

22.51 9.75 4.72 

Water 1 1,4 1:3,5 

Street 1,2,8,12,12,15,16,20,21, 

27,31,42,47,49,70,77,97 

1,10,15,16,18,19,22, 

43,47,49,59,66,70,85,105 

1,2,8 

Roofs 1,2,3,8 1:4,8,14:17,28,35,85,171 1:3,8,11 

Trees 1,2 1,2 1,2,6 

Path 1 1 1,14,17 

Shadow 1 1 1,14,17 

 

 
TABLE III 

PCS OBTAINED BY PROPOSED FEATURE SELECTION ALGORITHMS WITH VARIOUS CLASSIFIERS FOR SALINASA HS DATASET 

Method Class Selected PCs Execution Time (s) 

SVM        NB KNN SVM  NB KNN 

IDFS All classes 1:3,5,14,15,37,

63 

1:5,9,11,14,15,19:2

2,38,41,52, 
91,145,148 

1:3,5 

10.31 3.52 1.25 

IVS-FS 

Brocoli_green_weeds_1 1,5 1 1,5 

12.59 7.23 3.76 

Corn_senesced_green_weeds 1:3,5,23,24,79,
90 

1:5,9,11,14,15, 
20,21,32,102,111 

1:3,5,8,13,23 

Lettuce_romaine_4wk 1,2,5,15,16,19,

21,36,66,71,81,
94,96 

1:3,7,19,145 1:3,8,15,18:2

0,27,30, 
139,166 

Lettuce_romaine_5wk 1:3,6,7 1 1,3,91 

Lettuce_romaine_6wk 1:5,13,20,30,63

,65,106 

1:3,6 1,3,5,6,13,14

,79 

Lettuce_romaine_7wk 1:5,13,20,30,63

,65,106 

1:3,6 1,3,5,6,13,14

,79 

 

 

 

TABLE IV 

PCS OBTAINED BY PROPOSED FEATURE SELECTION ALGORITHMS WITH VARIOUS CLASSIFIERS FOR BOTSWANA HS DATASET 

Method Class Selected PCs Execution Time (s) 

SVM        NB KNN SVM NB KNN 

IDFS All classes 1:6,13,27 1:6,9,58,71 1:4 32.47 5.61 2.15 

IVS-FS 

Water 1,2,11 1,2 1,2 

136.25 15.50 10.32 

Hippo grass 1:4,9,19,22,23,29,30,70 1:5,9,20,24,26,49, 79 1:4,6,8 

Floodplain 
grasses1 

1:5,12,14,22,26 1:9,14,15,26,40 1:3,5 

Floodplain 

grasses2 

1:4,11,13,24 1:6,9:13,58,126 1:5,9 

Reeds1 1:8,18,20 1:6,9,17,46,48,58, 92 1:3 

Riparian 1:4,6,9,11,12,33,35,38,39,104,

110,118 

1:7,9,15,19,35,128, 

136 

1:4,6 

Firescar2 1:4,7,8,19,75,87 1,2,6,24 1:3,5 

Island 
interior 

1:4,6,15,21,41,43,44,79 1:4,9,18,20,24,31,45, 
93:95,106,111 

1:4,9,91 

Acacia 

woodlands 

1:46,11,19,23 1:6,12,24,27,32,48, 

56,65,85,90,91 

1:4,6 

Acacia 
shrublands 

1:6,9,10,12,25,63,92,98,119,1
20 

1:6,8,9,14,15,23, 
25:29,32,33,36,39, 

41,56,62,64 

1:5 

Acacia 

grasslands 

1:5,7,14,16,18,26,48,61,78,10

0 

1:3,5,14,35,55,57,85, 

91,93,108 

1:5,7,9,11 

Short mopane 1:3,6:8,38,73,80,82,89,109,12

2,127 

1,2,5,14,21,27,28, 35, 

43 

1,2,4 

Mixed 

mopane 

1,7,8,11,15,23,24,40,63,98 1,33,46,71,93 1,7 

Exposed soils 1,7,8,11,15,23,24,40,63,98 1,33,46,71,93 1,7 
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B. Results of Proposed SSC Approach 

This section presents the classification results of the 

proposed SSC approach obtained by using additional ML 

algorithms such as SVM and KNN in addition to the NB 

classifier as a wrapper to prove the generality of the approach. 

The implementation of the proposed SSC approach in the 

conventional classification approach has resulted in methods 

such as SVM-AFFT-SSC, NB-AFFT-SSC, and KNN-AFFT-

SSC. These methods are fed with the PCs obtained by the IDFS 

method. Similarly, the proposed SSC approach implemented in 

the proposed IVS approach has resulted in methods such as 

IVS-SVM-AFFT-SSC, IVS-NB-AFFT-SSC, and IVS-KNN-

AFFT-SSC. These methods are fed with class-wise PCs 

obtained from using the IVS-FS method. The reason for 

selection of the first three PCs for the classifiers (SVM, NB and 

KNN) is that we considered cumulative variance of 99% 

realized through the first three PCs [39]. A comparison of 

various classification methods with the first three PCs along 

with the SOTA classifier 3DCNN [21]-[23] and the SSC 

methods using the proposed SSC approach for three HS datasets 

is presented to substantiate the effectiveness of the proposed 

SSC approach. It may be noted that a detailed study has been 

carried out to address the failure of 3DCNN with low 

percentage of training data (2.5%). With 30% of training data, 

classification accuracy of 3DCNN is comparable to the results 

obtained through the proposed SSC methods using only 2.5% 

of training data. 
 The classification results of these classifiers in terms of 

Overall Accuracy (OA), Average Accuracy (AA), Kappa 

coefficient (K), and individual class accuracy are presented in 

Tables V–VII for the WDC-M, Salinas-A, and Botswana HS 

datasets, respectively. 

From Table V, for the WDC-M dataset, the OA, AA, and 

Kappa of the SVM-AFFT-SSC method are slightly higher by 

about 0.27%, 3.49% and 0.37%, respectively, whereas those of 

the IVS-SVM-AFFT-SSC method are higher by about 0.39%, 

4.77% and 0.54%, respectively, when compared to those of the 

conventional SVM classifier with the first three PCs. The OA, 

AA, and Kappa of the NB-AFFT-SSC method are slightly 

higher by about 0.08%, 0.28%, and 0.10%, respectively, 

whereas those of the IVS-NB-AFFT-SSC method are higher by 

about 0.13%, 2.46%, and 0.18%, respectively, when compared 

to those of the conventional NB classifier with the first three 

PCs. In a similar comparison, it is found that the OA, AA, and 

Kappa of the KNN-AFFT-SSC method and those of KNN with 

the first three PCs are the same, indicating that there is no 

improvement, However, the OA, AA, and Kappa of the IVS-

KNN-AFFT-SSC method are higher by 0.15%, 1.96%, and 

0.21%, respectively, when compared with those of the KNN 

classifier with the first three PCs.  

Similarly, the OA, AA, and Kappa of SVM-AFFT-SSC are 

0.7%, 3.85%, and 0.99%, respectively, higher than those of 

3DCNN, while the OA, AA, and Kappa of IVS-SVM-AFFT-

SSC are 0.82%, 5.13%, and 1.16%, respectively, higher than 

those of 3DCNN. Similarly, the OA and Kappa of NB-AFFT-

SSC are higher by 0.54% and 0.76%, whereas AA of NB-

AFFT-SSC is lower by 0.22% when compared to those of 

3DCNN. The OA, AA, and Kappa of IVS-NB-AFFT-SSC are 

higher by 0.59%, 1.96%, and 0.84%, respectively, than those of 

3DCNN. Similarly, the OA, AA, and Kappa of KNN-AFFT-

SSC are 0.42%, 0.23%, and 0.61%, respectively, higher than 

those of 3DCNN, while the OA, AA, and Kappa of IVS-KNN-

AFFT-SSC are 0.57%, 2.19%, and 0.82%, respectively, higher 

than those of 3DCNN. The highest improvement in OA 

(0.82%↑), AA (5.13%↑), and Kappa (1.16%↑) is achieved by 

the IVS-SVM-AFFT-SSC method when compared with 

3DCNN. In addition, the classification accuracy of the Roofs 

class is significantly improved by about 32.91% with the IVS-

SVM-AFFT-SSC method when compared with the SVM 

classifier with the first three PCs. The classification accuracy of 

the Shadow class is significantly improved by about 18.19% 

with the IVS-NB-AFFT-SSC method when compared with the 

NB classifier with the first 3 PCs. Similarly, there is an 

improvement in the classification accuracy of the Roofs class 

by about 6.33% with the IVS-KNN-AFFT-SSC method when 

compared with the KNN classifier with the first 3 PCs. 

From Table VI, for the SalinasA dataset, the OA, AA, and 

Kappa of the SVM-AFFT-SSC method are higher by about 

0.84%, 0.97%, and 1.06%, respectively, whereas those of the 

IVS-SVM-AFFT-SSC method are higher by about 1.36%, 

1.48% and 1.71%, respectively, when compared to those of the 

conventional SVM classifier with the first three PCs. The OA, 

AA, and Kappa of the NB-AFFT-SSC method are significantly 

higher by about 6.25%, 4.77%, and 7.77%, respectively, 

whereas those of the IVS-NB-AFFT-SSC method are 

significantly higher by about 6.32%, 4.86%, and 7.86%, 

respectively, when compared to those of the conventional NB 

classifier with the first three PCs. In a similar comparison, it is 

observed that the OA, AA, and Kappa of the KNN-AFFT-SSC 

method are higher by about 0.24%, 0.2%, and 0.3% 

respectively, whereas those of the IVS-KNN-AFFT-SSC are 

higher by 0.92%, 0.89% and 1.14%, respectively, when 

compared to those of the conventional NB classifier with the 

first three PCs.  

Further, the OA, AA, and Kappa of SVM-AFFT-SSC are 

0.10%, 0.30%, and 0.12%, respectively, higher than those of 

3DCNN, while the OA, AA, and Kappa of IVS-SVM-AFFT-

SSC are 0.62%, 0.81%, and 0.77%, respectively, higher than 

those of 3DCNN. However, the NB-AFFT-SSC and KNN-

AFFT-SSC methods are inferior to 3DCNN in terms of 

classification performance. The OA and Kappa of IVS-NB-

AFFT-SSC are higher by 0.04% and 0.04%, whereas AA of 

IVS-NB-AFFT-SSC is lower by 0.13% when compared to 

those of 3DCNN. The OA, AA, and Kappa of IVS-KNN-

AFFT-SSC are higher by 0.08%, 0.13%, and 0.09%, 

respectively, than those of 3DCNN. The highest improvement 

in OA (0.62%↑), AA (0.81%↑), and Kappa (0.77%↑) is 

achieved by the IVS-SVM-AFFT-SSC method when compared 

with 3DCNN. In addition, the classification accuracy of the 

Lettuce_romaine_7wk class is improved by about 3% with the 

IVS-SVM-AFFT-SSC method when compared with the SVM 

classifier with the first 3 PCs. The classification accuracy of the 

Corn_senesced_green_weeds class is significantly improved by 

about 19.26% with the IVS-NB-AFFT-SSC method when 

compared with the NB classifier with the first three PCs. 

Similarly, there is an improvement in the classification 

accuracy of the Lettuce_romaine_4wk class by about 1.62%  
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TABLE V 

CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT CLASSIFIERS FOR WDC-M HS DATASET.  

Approach Various classification methods and SOTA                  Conventional   IVS  

Method 

SVM 

(1:3PCs) 

NB 

(1:3PCs) 

KNN 

(1:3PCs) 

3DCNN 

 

SVM-

AFFT-

SSC 

NB-AFFT-

SSC 

KNN-

AFFT-

SSC 

IVS-SVM-

AFFT-

SSC 

IVS-NB-

AFFT-

SSC 

IVS-KNN-

AFFT-

SSC 

OA (%) 99.45±0.01 99.48±0.02 99.44±0.01 99.02±0.26 99.72±0.01 99.56±0.03 99.44±0.01 99.84±0.01 99.61±0.12 99.59±0.01 

AA (%) 93.02±0.09 92.16±0.49 92.89±0.14 92.66±1.13 96.51±0.17 92.44±0.49 92.89±0.14 97.79±0.02 94.62±0.42 94.85±0.28 

K× (%) 99.23±0.01 99.27±0.02 99.22±0.01 98.61±0.36 99.60±0.02 99.37±0.04 99.22±0.01 99.77±0.02 99.45±0.17 99.43±0.01 

Grass 99.88±0.01 99.91±0.01 99.77±0.02 99.91±0.01 99.86±0.02 99.93±0.02 99.77±0.02 99.93±0.01 99.95±0.02 99.88±0.01 

Water 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 100±0.00 

Street 100±0.00 99.59±0.01 100±0.00 96.92±1.39 100±0.00 99.90±0.05 100±0.00 100±0.00 99.54±0.40 100±0.00 

Roofs 64.56±0.63 97.47±0.63 72.78±0.01 78.27±6.96 88.61±1.26 98.73±0.64 72.78±0.01 97.47±1.90 96.20±3.17 79.11±0.01 

Trees 99.82±0.01 99.63±0.01 99.88±0.01 99.39±0.18 99.88±0.06 99.70±0.01 99.88±0.01 99.88±0.01 99.64±0.27 99.76±0.06 

Path 99.02±0.01 99.02±0.01 99.02±0.01 95.31±2.78 99.35±0.01 99.34±0.01 99.02±0.01 99.35±0.33 99.35±0.33 99.35±0.01 

Shadow 87.88±0.01 49.49±4.04 78.79±0.01 78.79±10.60 87.88±0.01 49.49±4.04 78.79±0.01 87.88±0.01 67.68±5.05 85.86±2.02 

Time (s) 0.2 0.01 0.01 32.51 0.15 0.03 0.03 0.29 0.05 0.06 

 
TABLE VI 

CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT CLASSIFIERS FOR SALINAS-A HS DATASET 

Approach Various classification methods with SOTA              Conventional IVS  

Method 

SVM 

(1:3PCs) 

NB 

(1:3PCs) 

KNN 

(1:3PCs) 

3DCNN 

 

SVM-

AFFT-

SSC 

NB-

AFFT-

SSC 

KNN-

AFFT-

SSC 

IVS-SVM-

AFFT-

SSC 

IVS-NB-

AFFT-

SSC 

IVS-KNN-

AFFT-

SSC 

OA (%) 98.21±0.01 92.67±0.02 98.11±0.01 98.95±0.20 99.05±0.07 98.92±0.09 98.35±0.04 99.57±0.06 98.99±0.04 99.03±0.11 

AA (%) 98.13±0.01 93.81±0.06 98.04±0.01 98.80±0.17 99.10±0.01 98.58±0.11 98.24±0.02 99.61±0.12 98.67±0.04 98.93±0.07 

K× (%) 97.75±0.01 90.87±0.02 97.64±0.01 98.69±0.26 98.81±0.10 98.64±0.12 97.94±0.05 99.46±0.07 98.73±0.05 98.78±0.14 

Brocoli_green_ 

weeds_1 

99.74±0.01 99.49±0.01 99.74±0.01 99.23±0.25 99.74±0.01 99.49±0.25 100±0.00 100±0.00 99.74±0.01 100±0.00 

Corn_senesced_ 

green_weeds 

97.24±0.01 79.67±0.08 96.72±0.01 98.51±0.37 98.14±0.52 99.85±0.13 97.47±0.15 98.96±0.07 99.93±0.01 98.73±0.19 

Lettuce_romaine 

_4wk 

95.94±0.01 92.53±0.32 94.48±0.02 97.73±1.95 98.38±0.01 95.13±0.01 94.48±0.01 98.86±0.81 95.13±0.16 96.10±0.95 

Lettuce_romaine 

_5wk 

100±0.00 99.48±0.13 99.93±0.01 99.90±0.1 99.74±0.13 99.93±0.01 100±0.00 99.93±0.07 100±0.00 99.80±0.07 

Lettuce_romaine 

_6wk 

100±0.00 97.48±0.30 99.85±0.01 97.77±2.07 100±0.00 99.85±0.01 100±0.00 100±0.00 99.85±0.01 99.55±0.01 

Lettuce_romaine 

_7wk 

95.87±0.01 94.24±0.01 97.50±0.01 99.69±0.18 98.62±0.63 97.25±0.25 97.50±0.01 98.87±1.13 97.37±0.01 99.37±0.38 

Time (sec.) 0.25 0.04 0.97 11.71 0.07 0.06 0.01 0.17 0.09 0.05 

 

 

with the IVS-KNN-AFFT-SSC method when compared with 

the KNN classifier with the first three PCs. 

From Table VII, for the Botswana dataset, the OA, AA, and 

Kappa of the SVM-AFFT-SSC method are significantly higher 

by about 6.81%, 6.80% and 7.37%, respectively, whereas those 

of the IVS-SVM-AFFT-SSC method are tremendously higher 

by about 13.43%, 16.17% and 14.56%, respectively, when 

compared to those of the conventional SVM classifier with the 

first three PCs. The OA, AA, and Kappa of the NB-AFFT-SSC 

method are higher by about 6.13%, 5.30%, and 6.34%, 

respectively, whereas those of the IVS-NB-AFFT-SSC method 

are significantly higher by about 12.25%, 11.99%, and 13.28%, 

respectively, when compared to those of the conventional NB 

classifier with the first three PCs. In a similar comparison, it is 

seen that the OA, AA, and Kappa of the KNN-AFFT-SSC 

method are higher by about 5.63%, 5.64%, and 6.09%, 

respectively, than those of the KNN classifier with the first 

three PCs. Also, the OA, AA, and Kappa of the IVS-KNN-

AFFT-SSC method are higher by 7.14%, 7.42%, and 7.74%, 

respectively, when compared with those of the KNN classifier 

with the first three PCs.  

Similarly, the OA, AA, and Kappa of SVM-AFFT-SSC are 

0.27%, 3.59%, and 0.32%, respectively, lower than those of 

3DCNN, while the OA, AA, and Kappa of IVS-SVM-AFFT-

SSC are significantly higher by 6.35%, 5.78%, and 6.87%, 

respectively, than those of 3DCNN. Similarly, the OA, AA, and 

Kappa of NB-AFFT-SSC are respectively higher by 1.24%, 

0.77%, and 1.03%, when compared to those of 3DCNN. The 

OA, AA, and Kappa of IVS-NB-AFFT-SSC are significantly 

higher by 7.36%, 7.46%, and 7.97%, respectively, than those of  
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TABLE VII 

CLASSIFICATION ACCURACIES IN PERCENTAGE FOR DIFFERENT CLASSIFIERS FOR THE BOTSWANA HS DATASET 

Approach  Various classification methods and SOTA Conventional IVS  

Method 

SVM 

(1:3PCs) 

NB 

(1:3PCs) 

KNN 

(1:3PCs) 

3DCNN 

 

SVM-

AFFT-

SSC 

NB-AFFT-

SSC 

KNN-

AFFT-

SSC 

IVS-

SVM-

AFFT-

SSC 

IVS-NB-

AFFT-

SSC 

IVS-

KNN-

AFFT-

SSC 

OA (%) 78.60±0.12 80.79±0.21 77.28±0.01 85.68±1.04 85.41±0.07 86.92±0.95 82.91±0.06 92.03±0.01 93.04±0.18 84.42±0.28 

AA (%) 75.65±0.05 81.51±0.20 74.95±0.02 86.04±1.31 82.45±0.11 86.81±0.66 80.59±0.14 91.82±0.05 93.50±0.26 82.37±0.17 

K× (%) 76.80±0.13 79.18±0.23 75.38±0.01 84.49±1.12 84.17±0.07 85.52±1.33 81.47±0.07 91.36±0.01 92.46±0.20 83.12±0.29 

Water 99.26±0.72 98.89±0.01 100±0.00 100±0.00 95.56±0.75 98.15±1.85 100±0.00 100±0.00 100±0.00 100±0.00 

Hippo grass 71.29±1.98 84.16±0.01 82.18±0.99 87.13±7.15 79.21±0.99 99.01±0.90 89.11±0.01 98.02±0.99 100±0.00 92.08±1.98 

Floodplain 

grasses1 

87.65±0.06 93.23±0.40 93.63±0.04 86.06±1.78 96.41±0.01 97.21±0.40 97.21±0.01 97.61±0.79 99.60±0.03 92.03±1.20 

Floodplain 

grasses2 

92.56±0.93 80.47±1.86 95.35±0.46 93.49±1.28 96.74±0.46 90.70±0.47 96.28±0.46 95.35±0.93 91.63±2.79 99.07±0.01 

Reeds1 83.27±0.37 86.24±0.01 81.04±0.37 86.25±2.84 91.45±0.37 88.10±2.23 90.33±1.85 93.68±1.11 94.80±0.38 83.27±0.74 

Riparian 59.11±0.75 51.67±0.02 50.93±0.37 40.89±7.50 72.49±0.37 71.74±3.71 59.48±0.01 73.23±1.12 76.58±7.40 56.14±8.17 

Firescar2 79.54±2.70 95.75±0.02 92.66±0.04 93.44±1.20 67.95±1.16 80.70±11.96 84.94±0.02 97.68±1.15 93.44±3.09 91.12±1.16 

Island 

interior 

75.86±0.02 78.82±0.01 73.89±2.96 100±0.00 88.67±0.99 84.24±1.47 84.24±0.02 96.06±0.49 91.13±0.50 95.57±3.34 

Acacia 

woodlands 

67.20±0.63 71.34±0.63 66.56±0.05 97.13±1.34 89.17±0.01 90.45±1.27 75.80±0.31 90.13±0.63 91.72±0.64 89.81±0.96 

Acacia 

shrublands 

76.61±0.40 60.08±0.01 62.10±0.03 96.77±6.55 88.31±0.03 79.03±3.63 77.82±1.21 89.92±0.40 91.13±0.50 77.82±1.21 

Acacia  

grasslands 

89.51±0.01 93.44±0.02 92.79±0.03 91.48±3.13 85.57±0.03 95.74±0.99 85.57±0.03 92.13±0.01 94.75±0.99 79.67±3.94 

Short 

mopane 

89.50±0.03 80.66±0.01 91.71±0.02 88.40±4.39 91.71±0.60 72.38±1.10 95.03±0.02 83.98±0.01 93.37±1.10 90.06±2.20 

Mixed 

mopane 

76.12±0.37 71.64±0.01 55.97±2.24 58.21±0.72 91.04±0.04 84.70±0.37 78.73±0.01 95.52±0.74 94.03±0.01 85.45±0.37 

Exposed soils 11.58±0.01 94.74±0.03 10.53±0.01 85.26±11.45 20.00±0.01 83.16±6.31 13.68±2.10 82.11±0.01 96.84±1.05 21.05±1.10 

Time (s) 6.18 0.06 0.01 111.80 0.037 0.08 0.01 1.80 0.10 0.10 
 

 

3DCNN. However, the performance of both KNN-AFFT-SSC 

and IVS-KNN-AFFT-SSC methods is inferior to 3DCNN. The 

highest improvement in OA (7.36%↑), AA (7.46%↑), and 

Kappa (7.97%↑) is achieved by the IVS-NB-AFFT-SSC 

method when compared with 3DCNN. In addition, the 

classification accuracy of the Exposed soils class is 

tremendously improved by about 70.53% with the IVS-SVM-

AFFT-SSC method when compared with the SVM classifier 

with the first three PCs. The classification accuracy of the 

Riparian class is significantly improved by about 24.91% with 

the IVS-NB-AFFT-SSC method when compared with the NB 

classifier with the first three PCs. Similarly, there is an 

improvement observed in the classification accuracy of the 

Exposed soils class by about 10.52% with the IVS-KNN-

AFFT-SSC method when compared with the KNN classifier 

with the first three PCs. 

The execution times of the IVS-based SSC methods (IVS-

SVM-AFFT-SSC, IVS-NB-AFFT-SSC, and IVS-KNN-AFFT-

SSC), as can be seen from Tables V to VII, for the classification 

of three HS datasets, are slightly higher when compared to their 

conventional counterparts and also the classifiers with the first 

three PCs and it is dependent on the number classes present in 

the HS dataset. The RGB/gray scale image, the Ground Truth, 

the classified images obtained by various classification methods 

including 3DCNN and the methods based on the proposed SSC 

approach for the WDC-M dataset, the Salinas-A dataset, and 

the Botswana HS datasets are shown in Fig. 3, Fig. 4, and Fig. 

5, respectively. 

 

 
Fig. 3.  (a) A Portion of WDC-M HS Image (RGB), (b) Ground Truth, Classified Images by: (c) SVM 1st three PCs, (d) NB 1st three PCs, (e) KNN 1st three PCs, 

(f) SVM-AFFT-SSC, (g) NB-AFFT-SSC, (h) KNN-AFFT-SSC, (i) 3DCNN, (j) IVS-SVM-AFFT-SSC, (k) IVS-NB-AFFT-SSC, and (l) IVS-KNN-AFFT-SSC. 

      

(a) RGB (b) GT (c) SVM (d) NB (e) KNN (f) SVM-AFFT-SSC 

      

(g) NB- AFFT-SSC (h) KNN-AFFT-SSC (i) 3DCNN (j)  IVS-SVM- AFFT-

SSC 

(k) IVS-NB- AFFT-

SSC 

(l) IVS-KNN- AFFT-

SSC 
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Fig. 4.  (a) SalinasA HS Image (gray scale), (b) Ground Truth, Classified Images by: (c) SVM 1st three PCs, (d) NB 1st three PCs, (e) KNN 1st three PCs, (f) SVM-

AFFT-SSC, (g) NB-AFFT-SSC, (h) KNN-AFFT-SSC, (i) 3DCNN, (j) IVS-SVM-AFFT-SSC, (k) IVS-NB-AFFT-SSC, and (l) IVS-KNN-AFFT-SSC. 

 

 

 
Fig. 5.  (a) Botswana HS Image (gray scale), (b) Ground Truth, Classified Images by: (c) SVM 1st three PCs, (d) NB 1st three PCs, (e) KNN 1st three PCs, (f) SVM-

AFFT-SSC, (g) NB-AFFT-SSC, (h) KNN-AFFT-SSC, (i) 3DCNN, (j) IVS-SVM-AFFT-SSC, (k) IVS-NB-AFFT-SSC, and (l) IVS-KNN-AFFT-SSC. 
 

 

VI. CONCLUSION 

The proposed SSC approach based on the NB classifier and 

the Adaptive FFT yielded superior classification results for 

three real hyperspectral datasets. The generality of the approach 

with the well-known additional ML classifiers such as SVM 

and KNN has been demonstrated. It is found that the NB 

classifier as a wrapper in the proposed SSC approach continues 

to exhibit relatively better performance compared to the SVM 

and the KNN classifiers for the Botswana dataset. On the 

contrary, the SVM classifier as a wrapper in the SSC approach 

exhibits relatively better performance than the NB and the KNN 

classifiers for WDC-M and Salinas A datasets. In the overall 

sense, the IVS-SVM-AFFT-SSC method yielded the highest 

accuracy, achieving impressive OA, AA, and Kappa (with 

percentage of increase) of 99.84% (0.82%↑), 97.79% (5.13%↑), 

and 99.77% (1.16%↑) for the WDC-M dataset, 99.57% 

(0.62%↑), 99.61% (0.81%↑), and 99.46% (0.77%↑) for the 

Salinas-A dataset, whereas the IVS-NB-AFFT-SSC method 

achieved OA, AA, and Kappa of 93.04% (7.36%↑), 93.50% 

(7.46%↑), and 92.46% (7.97%↑) for the Botswana image              

(when compared to the SOTA 3DCNN method). The novel 

approach of using the IVS-FS method to obtain class-wise PCs 

contributed significantly to the superior accuracy achieved by 

the IVS-NB-AFFT-SSC and IVS-SVM-AFFT-SSC methods. 

Notably, this approach not only enhanced classification 

accuracy but also provided users with the ability to concentrate 

on a specific set of PCs for the class of their interest, further 

improving the applicability and usefulness of the approach.  
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