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A B S T R A C T   

Routinely collected electronic health records (EHRs) data contain a vast amount of valuable in
formation for conducting epidemiological studies. With the right tools, we can gain insights into 
disease processes and development, identify the best treatment and develop accurate models for 
predicting outcomes. Our recent systematic review has found that the number of big data studies 
from Hong Kong has rapidly increased since 2015, with an increasingly common application of 
artificial intelligence (AI). The advantages of big data are that i) the models developed are highly 
generalisable to the population, ii) multiple outcomes can be determined simultaneously, iii) ease 
of cross-validation by for model training, development and calibration, iv) huge numbers of 
useful variables can be analyzed, v) static and dynamic variables can be analyzed, vi) non-linear 
and latent interactions between variables can be captured, vii) artificial intelligence approaches 
can enhance the performance of prediction models. In this paper, we will provide several ex
amples (cardiovascular disease, diabetes mellitus, Brugada syndrome, long QT syndrome) to 
illustrate efforts from a multi-disciplinary team to identify data from different modalities to 
develop models using territory-wide datasets, with the possibility of real-time risk updates by 
using new data captured from patients. The benefit is that only routinely collected data are 
required for developing highly accurate and high-performance models. AI-driven models 
outperform traditional models in terms of sensitivity, specificity, accuracy, area under the 
receiver operating characteristic and precision-recall curve, and F1 score. Web and/or mobile 
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Table 1 
Comparisons of different risk models based on Asian (including Chinese) cohorts for predicting adverse outcomes.  

Disease Cohort size for 
model 
development 

Variables Method(s) Outcomes Ref 

ASCVD      
Chinese-PAR by 

Yang et al. 
(2016) 

21,320 Age, treated or untreated SBP, total cholesterol, HDL-C, 
current smoking, and diabetes mellitus, waist 
circumference, geographic region, urbanisation, and family 
history of ASCVD 

Cox regression 10-year ASCVD risk (sex-specific) 4 

PowerAI-CVD 
by Li et al. 
(2023) 

154,569 Age, sex, mean SBP, mean DBP, existing cardiovascular 
diseases, medications (anticoagulants, antiplatelets, 
antihypertensive drugs, and statins) and laboratory tests 
(NLR, creatinine, ALP, AST, ALT, HbA1c, fasting glucose, 
TG, LDL-C and HDL-C 

CatBoost, XGBoost, Gradient Boosting, Multilayer 
Perceptron, Random Forest, Naïve Bayes, Decision 
Tree, k-Nearest Neighbor, AdaBoost, SVM-Sigmod 

MACE, composite of myocardial infarction, heart 
failure, TIA/stroke, cardiovascular mortality 

3 

Diabetes      
Cho et al. (2008) 292 Onset age, diabetes duration, age, sex, WBC, haemoglobin, 

platelet count, cholesterol, AST, ALP, BUN, Creatinine, Uric 
acid, Na, K+, TG, HDL-C, LDL-C, HbA1C, Microalbumin, 
SBP, DBP, BMI 

Logistic regression, SVM, and SVM with a cost 
sensitive learning method 

Diabetic nephropathy 13 

Shi et al. (2020) 4,219 Disease course, BMI, TG, SBP, postprandial blood glucose 
(PBG), HbA1c, and BUN 

LASSO regression, logistic regression Diabetic nephropathy and diabetic retinopathy 7 

Liu et al. (2020) Not reported 39 features including age and gender, 13 items related to the 
urine test, HbA1c and 23 items related to the biochemical 
test 

Bayesian network model, bootstrap and Tabu 
search algorithm, Markov blanket, decision tree, 
Naïve Bayes, random forest and C5.0 

Diabetic nephropathy, retinopathy, diabetic foot, 
macrovascular complications, peripheral neuropathy 
and DKA 

8 

Wang et al. 
(2021) 

1,610 Age, HbA1c, direct bilirubin, creatinine, GGT, ALT, glucose, 
total bilirubin, Mg, total protein, IP, uric acid, HDL-C, AST, 
CO2, calcium, ALP, LDH, Urea, chloride, Sex, LDL-C, TC, TG, 
ALB, K, Na, creatine kinase 

SVM models (BR, RankSVM, and WML-SSLM), ML- 
KNN, ML-RBF, and BP-MLL 

Macrovascular and microvascular complications, 
neuropatjhy 

9 

PowerAI- 
Diabetes by 
Lee et al. 
(2021) 

25,186 Age, baseline diseases, hypoglycaemia, visit-to-visit 
variability and mean in TG, HbA1c, total cholesterol, HDL- 
C, LDL-C, anti-diabetic medications 

Random survival forest Neurological complications, ophthalmological 
complications, CKD, dementia, osteoporosis, 
peripheral vascular disease, ischemic heart disease, 
atrial fibrillation and heart failure, and mortality 

10 

Fan et al. (2021) 185 Age, duration of diabetes (≥1 year), duration of unadjusted 
hypoglycemic treatment (≥1 year), number of insulin 
species, total cost (total expenditure during hospitalization) 
of hypoglycemic drugs, and number of hypoglycemic drugs 
(which were computed as continuous variables) and gender, 
genetic history of diabetes, and dyslipidemia 

ensemble model, artificial neural network, 
classification and regression tree, quick unbiased 
efficient statistical tree, discriminate and Bayesian 
network 

Diabetic nephropathy, angiopathy, peripheral 
neuropathy and eye disease 

11 

Lee et al. (2021) 273,678 Age, gender, baseline comorbidities, anemia, mean values of 
neutrophil-to-lymphocyte ratio, HDL-c, total cholesterol, 
TG, HbA1c, fasting blood glucose (FBG), measures of 
variability of both HbA1c and FBG 

Cox regression, RSF, DeepSurv Mortality 12 

Brugada 
syndrome      

PowerAI- 
Brugada, 
Lee et al. 
(2021) 

548 Spontaneous type 1 Brugada pattern, family history of SCD, 
syncope, initial VT/VF, non-ventricular arrhythmias (AT, 
AF, SVT), ER pattern on peripheral leads, aVR sign, S-wave 
in lead I, QTc ≥ 436 ms 

Risk score from Cox regression, RSF, Ada boost 
classifier, Gaussian naïve Bayes, light gradient 
boosting machine, random forest classifier, 
gradient boosting classifier and decision tree 
classifier 

Sustained VT/VF 18 

Nakamura et al. 
(2023) 

157 All ECG features deep neural network using the Keras framework 
with a TensorFlow 

VF 31 

Long QT 
syndrome      

Chen et al. 
(2021) 

327 cancer diagnosis, serum potassium and calcium levels 
combined with ECG features 

RSF All-cause mortality 20 

PowerAI-LQTS 
by Lee et al. 
(2021) 

121 Age of diagnosis, syncope, VT/VF, the presence of PVCs Cox regression, RSF Spontaneous VT/VF 22  
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versions of the risk models allow clinicians to risk stratify patients quickly in clinical settings, 
thereby enabling clinical decision-making. Efforts are required to identify the best ways of 
implementing AI algorithms on the web and mobile apps.   

Introduction 

Routinely collected electronic health records (EHRs) data contain a vast amount of valuable information for conducting epide
miological studies. With the right tools, we can gain insights into disease processes and development, identify the best treatment and 
develop accurate models for predicting outcomes. Our recent systematic review has found that the number of big data studies from 
Hong Kong has rapidly increased since 20151 with an increasingly common application of artificial intelligence (AI). The advantages of 
big data are that i) the models developed are highly generalisable to the population, ii) multiple outcomes can be determined 
simultaneously, iii) ease of cross-validation by for model training, development and calibration, iv) huge numbers of useful variables 
can be analyzed, v) static and dynamic variables can be analyzed, vi) non-linear and latent interactions between variables can be 
captured, vii) artificial intelligence approaches can enhance the performance of prediction models. In this paper, we will provide 
several examples to illustrate efforts from a multi-disciplinary team to identify data from different modalities to develop models using 
territory-wide datasets (Table 1), with the possibility of real-time risk updates by using new data captured from patients. 

PowerAI-CVD 

Our team was the first in Hong Kong to develop an AI model for predicting mortality in patients with a history of myocardial 
infarction2. Earlier this year, we developed PowerAI-CVD, which is the first-in-world, Chinese-specific, AI-driven, comprehensive 
predictive model incorporating physiological BP measurements, disease status, medications and laboratory tests for 10-year CVD risk3. 
This was developed using a population-wide dataset of >150,000 patients from the community, attending family medicine clinics in 
the public sector of Hong Kong. The dashboard for this prediction tool is detailed in Fig. 1. To facilitate ease of implementation, we 
further developed ChineseCVD, the first-in-world, web-based Chinese-specific Cardiovascular Risk Calculator incorporating the impact 
of long COVID, COVID-19 vaccination, SGLT2i and PCSK9i treatment effects, but without AI. In the future, we aim to combine both 
PowerAI-CVD and ChineseCVD to further improve the performance of our model whilst maintaining accessibility through web-based 
or mobile-based platforms. Currently, there are only China-PAR (Prediction for atherosclerotic CVD Risk in China)4 and absolute risk 
score model from the Japan Arteriosclerosis Longitudinal Study (JALS)5 for Chinese and Japanese users, respectively. 

PowerAI-Diabetes 

PowerAI-Diabetes is the third-in-world, Chinese-specific AI-driven predictive model for predicting diabetic complications (Fig. 2). 
A previous systematic review published in 2022 identified 11 studies which reported on model development for predicting diabetic 
complications6. Of these, five studies focused specifically on Chinese populations. Shi et al. in April 2020 described a nomogram model 

Fig. 1. PowerAI-CVD (2023), the first-in-world, Chinese-specific, AI-driven, comprehensive predictive model incorporating physiological BP 
measurements, disease status, medications and laboratory tests for 10-year CVD risk. Reproduced from3 with permission. 
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for predicting diabetic nephropathy and retinopathy using LASSO and logistic regression7. Liu et al. reported in May 2020 a Bayesian 
network model, bootstrap and Tabu search algorithm, Markov blanket, decision tree, Naïve Bayes, random forest and C5.0 for warning 
factors of diabetic complications8. Wang et al. proposed in August 2020 weighted multi-label small sphere and large margin machine 
(SSLM), constructed by introducing the binary relevance to SSLM9. Lee et al. in May 2021 described multiple models for predicting 

Fig. 2. PowerAI-Diabetes (2021), the third-in-world, Chinese-specific AI-driven predictive model for predicting diabetic complications and first-in- 
world to incorporate lipid and glycaemic variability with AI. Our model can accurately predict 9 different diabetes-related complications (neuro
logical, ophthalmological, CKD, dementia, osteoporosis, peripheral vascular disease, ischemic heart disease, atrial fibrillation and heart failure). 

Fig. 3. PowerAI-Brugada (2021), the first in world, AI-driven, comprehensive predictive model incorporating genetics, clinical findings and ECG 
features for predicting ventricular arrhythmias and sudden cardiac death in Brugada syndrome. Adapted from18 with permission. 
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complications (neurological, ophthalmological, CKD, dementia, osteoporosis, peripheral vascular disease, ischemic heart disease, 
atrial fibrillation and heart failure) and mortality in diabetes mellitus using machine learning10. Fan et al. reported in June 2021 the 
application of ensemble model, artificial neural network, classification and regression tree, quick unbiased efficient statistical tree, 
discriminate and Bayesian network for predicting diabetic nephropathy, peripheral neuropathy, angiopathy, eye disease, and gly
cosylated hemoglobin A11. Our team was also first-in-world to incorporate lipid and glycemic variability into an AI-driven predictive 
model, using random survival forest10. Using an expanded cohort of 273,678 subjects, we further explored Cox proportional hazards 
DeepSurv, a deep feed-forward neural network technique incorporating traditional Cox regression, demonstrating improvement in the 
performance compared to regression without neural network12. From Liu et al.8 we also found a study from 2008 which applied several 
AI methods in a small cohort of diabetic patients but in Koreans13. 

PowerAI-Brugada and PowerAI-LQTS 

Inherited arrhythmic syndromes represent a range of congenital disorders from cardiac ion channelopathies to cardiomyopathies, 
which predispose to the development of sudden cardiac death. AI is increasingly used to facilitate diagnosis using ECGs14. The 
application of AI for the diagnosis and management of inherited arrhythmic syndromes has recently been described in a review15. In 
2021, our team developed PowerAI-Brugada and PowerAI-LQTS, the first-in-world, AI-driven, comprehensive predictive model 
incorporating genetics, clinical findings and ECG features for predicting ventricular arrhythmias and sudden cardiac death in Chinese 
patients with Brugada syndrome and long QT syndrome (LQTS) (Figs. 3 and 4). 

On Brugada syndrome, our team was first-in-world to report that the consideration of latent variables using non-negative matrix 
factorisation (NMF) can enhance risk prediction16. We extended this work by developing a model that combined both RSF and NMF, 
outperforming models that used either technique alone, for predicting ventricular tachyarrhythmias and sudden cardiac death, 
achieving 0.87, 0.89 and 0.88 for precision, recall and F1 score, respectively17. Subsequently, we proposed two novel risk scores and 
seven machine learning-based models (random survival forest, Ada boost classifier, Gaussian naïve Bayes, light gradient boosting 
machine, random forest classifier, gradient boosting classifier and decision tree classifier)18. Of these, the best performing model for 
the whole cohort was based on RSF, whereas for the patients who have intermediate risk levels, Gradient boosting classifier achieved 
the best performance in terms of AUC. Consequently, we proposed PowerAI-Brugada, a clinical tool that provide rapid risk stratifi
cation based on our research findings. Another team from Japan developed a model instead based on convolutional neural network 
(CNN), with a weighted-average precision of 0.79, a recall of 0.73, and an F1 score of 0.75. 

For acquired LQTS, deep learning analysis of ECG using CNN was able to identify drug-induced arrhythmias and facilitate its 
diagnosis19. Our team developed a RSF-NMF based model using cancer diagnosis, serum potassium and calcium levels combined with 
ECG features to predict all-cause mortality20. For congenital LQTS, our team was the first to conduct the largest territory-wide analysis 
of the epidemiology, risk factors, genetics and outcomes of Chinese LQTS patients21 allowing us to develop predictive models using 

Fig. 4. PowerAI-LQTS (2021), the first in world, AI-driven, comprehensive predictive model incorporating genetics, clinical findings and ECG 
features for predicting ventricular arrhythmias and sudden cardiac death in long QT syndrome. 
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RSF, leading to improvement in precision from 0.69 to 0.80, recall from 0.68 to 0.79, AUC from 0.68 to 0.77 and c-statistic from 0.67 to 
0.79 compared to the baseline Cox model22. CPVT is the rarest ion channelopathies both globally and in Chinese23. From our 
territory-wide analysis in Hong Kong, we were only able to identify 16 patients24 which were not sufficient for us to develop a pre
dictive model25. Our subsequent systematic review of CPVT cases from China identified a total of 58 cases from 15 case reports or 
series26. Together it is anticipated that AI will be increasingly common and accessible to clinicians for the detection, risk stratification 
and management of patients with inherited arrhythmic syndromes27 leading to personalised care28. 

Fig. 5. Approach for model development: routinely collected electronic health records containing multi-modality data were used to develop high 
performing models. Important data fields include demographic details, disease coding, laboratory test results, medications history, hospital and 
clinic attendances, genetic data, electrocardiographic, echocardiographic and other imaging data. 

Fig. 6. Summary diagram of AI models and corresponding simpler, web-based calculators developed by our team.  
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Upcoming and future research 

The benefit of our approach is that only routinely collected data are required for developing highly accurate and high-performance 
models using a multimodality approach (Fig. 5). For cardiovascular diseases, we have already incorporated electrocardiographic and 
echocardiographic variables to enhance risk prediction.29,30 Our team is constantly improving our existing models by exploring 
non-traditional risk factors from the eHRs. For example, we are incorporating socioeconomic as well as functional assessment data 
from different members of the multidisciplinary team members, including nurses, physiotherapists and occupational therapists. We are 
also developing new models for different diseases and outcomes. A summary of our current and upcoming AI-driven and simpler 
web-based models is depicted in Fig. 6. 

Concluding Remarks 

AI-driven models outperform traditional models in terms of sensitivity, specificity, accuracy, area under the receiver operating 
characteristic and precision-recall curve, and F1 score. Web and/or mobile versions of the risk models allow clinicians to risk stratify 
patients quickly in clinical settings, thereby enabling clinical decision-making. Efforts are required to identify the best ways of 
implementing AI algorithms on the web and mobile apps. 
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