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Abstract: Micro-turning is a micro-mechanical cutting method used to produce small diameter cylindrical
parts. Since the diameter of the part is usually small, it may be a little difficult to improve the surface
quality by a second operation, such as grinding. Therefore, it is important to obtain the good
surface finish in micro turning process using the ideal cutting parameters. Here, the multi-objective
optimization of micro-turning process parameters such as cutting speed, feed rate and depth of
cut were performed by response surface method (RSM). Two important machining indices, such as
surface roughness and material removal rate, were simultaneously optimized in the micro-turning of
a Ti6Al4V alloy. Further, the scanning electron microscope (SEM) analysis was done on the cutting
tools. The overall results depict that the feed rate is the prominent factor that significantly affects the
responses in micro-turning operation. Moreover, the SEM results confirmed that abrasion and crater
wear mechanism were observed during the micro-turning of a Ti6Al4V alloy.

Keywords: micro turning; surface roughness; material removal rate; RSM; Ti6Al4V alloy; tool wear

1. Introduction

Micro-mechanical machining, a form of manufacturing used to produce parts with micro dimensions,
is noted for higher material removal rates [1,2]. The application of such manufacturing is delicate and
requires the use of micro-turning and micro-milling processes. Notable industries are biomedical,
defense, aerospace and electronics industries [3]. Though there is a large degree of similarity between
traditional turning and micro-turning, turning at the micro scale needs to be accurate as well as precise,
causing the necessity for ultra-precision machining [4]. The micro-turning method is especially used
in the manufacturing of micro-screws used in orthodontic implants. In this type of small-scale case,
the enhancement of surface finish by a secondary method is hard to implement, and thereby process
parameters should be chosen so that the desired surface quality is achieved—if possible, the surface
finish should be compatible with the grinding process.

Surface roughness is considered as the prominent parameter that significantly affects the mechanical
properties as well as the fatigue strength of the machined part [5]. In addition, the surface roughness
values in conventional turning highly depend upon the feed rate. Therefore, the required feed rate for
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the desired surface quality, the cutting speed and depth of cut are taken into account [6]. On the micro
scale, the cutting tool nose radius leaves marks on the workpiece surface (Figure 1a). Depending on the
feed value and nose radius, the maximum surface roughness value can be estimated. In conventional
turning (Figure 1b), the low feed rate can be indispensable for good surface quality. However, this rule
does not always work in micro-turning. In the case of micro-turning (Figure 1c), the feed rate is small
enough to be compared to the cutting-edge radius. It has been seen that if the value of feed is smaller
than the tool edge radius, an increase in surface roughness can be observed [7–9]. The depth of cut has
also shown a similar situation. In micro-turning, the depth of cut can approach the workpiece grain
size (Figure 1b). This results in both increased thrust force and the deterioration of surface quality.
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Figure 1. (a) Illustration of turning operation showing nose radius (Re), feed rate (f ), maximum surface
roughness (Rz); (b) conventional and (c) micro-cutting process h: undeformed chip thickness, Re:
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In conventional turning, a good amount of research effort has been made regarding surface roughness
characteristics [10–12]. In conventional turning, usually the depth of cut and the feed value are
greater than the tool edge and nose radius. Therefore, the difference between the obtained surface
roughness value and the theoretical surface roughness value increases. However, in micro-turning,
especially in low feed values, the theoretical surface roughness and experimental results do not match.
Liu and Melkote [7], while micro-turning the aluminum alloy, established a prediction model for the surface
roughness. The effect of plastic side flow was considered in this subjected model. Their model combines
cutting parameters and plastic side flow effects with more accurate estimation. Rahman et al. [13] used
two different micro-turning techniques for micro-pin production. The responses measured were cutting
forces and surface roughness values during the micro-turning operation. The results depict that the
average value of surface roughness was 0.1 µm. Alauddin et al. [14] used the second-order polynomials
method to establish the surface roughness prediction model. Wang et al. [15] investigated the effect of
machining parameters and tool diameter on surface quality in a micro-milling operation. Kuram and
Özcelik [16] have developed a model for estimating the surface roughness in the micro-milling process
by using a multi-objective optimization technique. The effect of spindle speed, cutting edge radius of
the tool, and the roughness of workpiece were investigated. Vipindas et al. [17] examined the surface
roughness and top burr formation in the micro-milling of titanium alloy.

In the studies conducted by Aslantas et al. [18] and Ucun et al. [19], the surface roughness and
burr width was studied for different process parameters. The result shows that the depth of cut
was prominent for surface roughness values, whereas feed per tooth was dominant for burr width.
Thepsonthi and Özel [20] optimized the process parameters for surface roughness and burr formation
in the micro-milling of a Ti6Al4V alloy. Experiments have been performed and models were obtained
by utilizing the particle swarm optimization technique. Kumar [21] also studied the effect of process
parameters in the micro-turning process. Cutting speed, depth of cut and feed value were taken as
variables, and a C360 copper alloy was used as a workpiece. The analysis shows that the depth of cut
is the dominant factor that directly affects the surface roughness and material removal rate values.
The influence of cutting parameters on the surface roughness and Material Removal Rate (MRR) is
evident from the literature. Optimization of these cutting parameters can greatly help in choosing the
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optimum cutting parameter for getting the required objective, i.e., minimum surface roughness and
high material removal rate.

Response surface method (RSM) is widely used for developing empirical relations between single
and multiple responses [22–24]. The most critical factor that affects the output responses can also
be determined with this method. Additionally, the multi-response optimization of micro-turning
process parameters was performed [25]. Therefore, in this work, the optimization of cutting parameters
affecting the surface roughness and MRR was performed in the micro-turning process. Ti6Al4V
alloy was used as the workpiece material; average surface roughness of area (Sa) and maximum
surface roughness of area (Sz) values were obtained. Single- and multi-objective optimization with
the objective of obtaining minimum surface roughness and maximum MRR were carried out by
utilizing the response surface methodology. The most dominant factor which affects the surface
roughness was also identified. In the end, the SEM was performed on used tools to understand the
wear behavior values.

2. Materials and Methods

2.1. Workpiece and Cutting Tool Material

The Ti6Al4V alloy is preferred as the workpiece. This titanium alloy, known as Grade 5, is especially
used as an implant material in the biomedical sector. It also has a wide usage area as a screw in dental
implant applications. The alloy used in the study was annealed after the manufacturing process and
no aging was done. The chemical compositions of the Ti6Al4V alloy are shown in Table 1 and the
mechanical properties are given in Table 2. The machining operation was conducted using the cutting
tool received from the Kennametal 2-µm-coated tool (ISO name TDHB07T12S0). It has a rake angle of
0◦, approach angle of 90◦ and clearance angle of 15◦ in the machining condition, nose radius of 40 µm,
and edge radius of 7.25 µm (See Figure 2).
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Table 1. Ti6Al4V alloy chemical composition (% by weight).

Element Al V Fe C O N H Ti

Wt % 6.40 4.16 0.16 0.028 0.154 0.017 0.001 Balance

Table 2. Mechanical properties of Ti6Al4V Alloy.

Properties Value

Tensile Strength (MPa) 900–1000
Yield Strength (MPa) 830–910

Elongation (%) 10–18
Elastic Modulus (GPa) 114

Hardness (Brinell) 330–340

2.2. Experimental Setup

Figure 3 shows the experimental setup—a specialized setup for high-precision cutting with high
speed. The highest speed achievable is 60,000 rpm, and the highest travel distance of guideway is
150 mm, maintaining a repeatability of 0.4 µm. The cutting tool was placed on the mini dynamometer
that is fixed to the x-axis. The feed was applied along the z-axis and the depth of cut was applied along
the y-axis. The approach angle of the cutting tool was 90◦ and a USB microscope was used to more
clearly observe the cutting zone in the experiments. The system was maintained as vibration free by
using an optical table. A constant cutting distance (75 mm) was used in experiments to observe the
effects of cutting parameters and to eliminate the effects of tool wear.
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2.3. Surface Roughness Measurement

The representative index for the surface quality after the machining was granted as the surface
roughness parameters. These parameters were measured using Nanovea optical profilometer, which
works with white light technology. In Figure 4a, the surface roughness tester is shown. The table
where the sample is placed is movable in the x and y axis directions and the focusing distance of the
optical lens is adjusted with the z axis. Scanning was performed on a 1 × 0.1 mm area (Figure 4b).
The surface roughness was measured at four different points with 90◦ angles on each workpiece.
In this study, Sa and Sz values were measured as the surface roughness and taken into consideration.
A three-dimensional surface topography of a surface is shown in Figure 4c.
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In metal-cutting operations, the material removal rate is expressed as the chip volume removed in
one minute and MRR can be calculated by using Equation (1) [26]

Q = Vc × f × ap (1)

where Q is the MRR in mm3/min, Vc is the cutting speed, f is feed rate and ap is depth of cut. MRR is an
indication of how slow or fast the machining speed works. It is an important performance parameter
for micro-machining. In micro-machining (especially micro-milling), a high MRR value results in high
surface roughness, rapid tool wear, and burr formation. It is important to determine the maximum
MRR value without compromising surface quality and for longer tool life.

2.4. Design of Experiment

The analysis consisted of determining the influence of each control factor on the surface roughness
parameters found after the micro-turning operation. For that purpose, the control factors were defined
first, as can be seen in Table 3. As we can see, the feed rate, the cutting speed and the depth of cut have
three levels of values. Afterward, these values are oriented among themselves to create the overall
design for the experimentation. This was carried out using a face centered composite design; details
can be found in Reference [20]. The process parameters with their different levels are given in Table 3.
Respective to each experiment, the measurement was conducted. The collected data were then used for
the further analysis, using complete a manual of response surface methodology (RSM)—mathematical
modeling, analysis and optimization.
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Table 3. Process variables used in cutting tests.

Levels Cutting Speed (Vc) (m/min) Feed Rate (f ) (µm/rev) Depth of Cut (ap) (µm)

1 100 25 5
2 250 10 15
3 400 40 25

2.5. Response Surface Methodology

RSM is a complete package for the mathematical modeling, statistical analysis and optimization
of the single or multiple responses within the framework of multiple inputs [27,28]. Here, the input
parameters, i.e., speed, feed and depth of cut are analyzed to derive the relationship of inputs with
the surface roughness parameters (Sa and Sz). Although linear, as well as second-order, polynomial
relations can be formed, based on the literature knowledge, it is found that for machining responses,
the second-order polynomial relationship works effectively. A general second-order relation is shown
in Equation (2)

Y = β0 +

p∑
i=1

βiXi +

p∑
i=1

βiiX2
i +

p−1∑
i=1

p∑
j=1

βi jXiX j (2)

Here, β0 is the constant. The coefficient βi is the coefficient term for the linear terms, βii are coefficients
for the square term of the variables, and the βij, are the coefficients for the interacting terms.

3. Results and Discussion

According to the objectives defined in the introduction section, the experimental results and
analysis are given in this section, under a number of sub-sections. Initially, the data found from
experiments were collected. Then, the subsequent analysis is reported. For this, full quadratic models
were constructed, and then analysis of variance, which shows the influence of each factor on the
responses, and, finally, the responses were optimized. Note that significant terms were identified
respective to a statistical significance of 0.05. This has been done for the model as well as for the single
terms (Vc, f and ap), square terms (Vc

2, f2 and ap
2) and interaction terms (Vcf, Vcap and fap). The F-value

was marked for the relative influence determination. Table 4 lists the experimental results respective
to the 20 experiments, which were oriented as per the description of the design of the experiment.
Besides the surface roughness parameters for the micro-turning operation, the material removal rate
was considered (calculated).

Table 4. Experimental results on Sa, Sz and material removal rate (MRR) for different cutting parameters.

Sr. NO

Inputs Outputs

Cutting Speed
(Vc)

(m/min)

Feed Rate
(f )

(µm/rev)

Depth of
Cut

(ap) (µm)

Average
Roughness
(Sa) (µm)

Maximum
Roughness

Height (Sz) (µm)

Material
Removal Rate

(mm3/min)

1 100.00 25.00 15.00 0.72 5.94 37.50
2 400.00 10.00 25.00 0.39 3.35 100.00
3 250.00 10.00 15.00 0.42 3.83 37.50
4 250.00 25.00 15.00 0.70 6.98 93.75
5 100.00 10.00 5.00 0.52 3.48 05.00
6 100.00 40.00 25.00 0.62 6.87 100.00
7 250.00 40.00 15.00 0.91 7.48 150.00
8 250.00 25.00 25.00 0.48 4.23 156.25
9 250.00 25.00 15.00 0.70 6.98 93.75
10 250.00 25.00 15.00 0.69 6.93 93.75
11 400.00 40.00 5.00 0.99 7.12 80.00
12 400.00 40.00 25.00 0.64 5.02 400.00
13 250.00 25.00 5.00 0.62 5.06 31.25
14 250.00 25.00 15.00 0.70 6.95 93.75
15 400.00 10.00 5.00 0.48 4.07 20.00
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Table 4. Cont.

Sr. NO

Inputs Outputs

Cutting Speed
(Vc)

(m/min)

Feed Rate
(f )

(µm/rev)

Depth of
Cut

(ap) (µm)

Average
Roughness
(Sa) (µm)

Maximum
Roughness

Height (Sz) (µm)

Material
Removal Rate

(mm3/min)

16 100.00 40.00 5.00 1.02 7.85 20.00
17 250.00 25.00 15.00 0.70 6.85 93.75
18 100.00 10.00 25.00 0.33 3.63 25.00
19 250.00 25.00 15.00 0.69 6.77 93.75
20 400.00 25.00 15.00 0.79 5.59 150.00

3.1. Model of Average Roughness (Sa)

As the first step, the analysis of variance is conducted for the average surface roughness (Sa)
and shown in Table 5. It should be noted that, respective to each source, the sum of square term,
the degree of freedom term, the mean square, F-value and p-value are listed. It can be seen that the
model is acceptable, as the F-value is quite high and the p-value is less than 0.05. Therefore, the model
is statistically significant. Likewise, the feed rate and the depth of cut have been found to be statistically
significant. The square term for speed and depth of cut, and the interaction terms for feed-depth of cut
were also significant. It can be said that the other terms were statistically insignificant. Based on the
F-values, it is possible to claim that the feed rate has the highest value, therefore it is most dominant
factor, followed by the influence of depth of cut, then it’s square term.

Table 5. Table of ANOVA for average surface roughness (Sa).

Source Sum of
Squares

Degree of
Freedom

Mean
Square F-Value Dominance

of Factor p-Value

Model 0.657 9 0.072 56.69 99.55% <0.0001
Vc 6.084 × 10−4 1 6.084 × 10−4 0.48 0.09% 0.5040
f 0.42 1 0.42 330.95 63.64% <0.0001
ap 0.14 1 0.14 108.67 21.21% <0.0001

Vc
2 0.015 1 0.015 12.16 2.27% 0.0059

f2 4.423 × 10−4 1 4.423 × 10−4 0.35 0.07% 0.5676
ap

2 0.047 1 0.047 37.09 7.12% 0.0001
Vcf 7.812 × 10−5 1 7.812 × 10−5 0.062 0.01% 0.8088
Vcap 3.240 × 10−3 1 3.240 × 10−3 2.56 0.49% 0.1407
f ap 0.026 1 0.026 20.26 3.94% 0.0011

Residual 0.013 10 1.266 × 10−3 - 1.97% -
Total 0.66 19 - - 100% -

The arithmetic model developed for average roughness (Sa) is given by Equation (3).

Sa = −1.78× 10−3 Vc + 0.0225 f + 0.0335ap + 3.325× 10−6Vc2
− 5.64× 10−5 f 2

−1.31× 10−3ap2
− 1.39× 10−6Vc f + 1.34× 10−5Vcap− 3.77×10−4 f ap + 0.29

(3)

This model, however, includes significant as well as non-significant terms. This means that more
refinement is required for this model to improve the model efficiency. This can be done by the removal
of non-significant terms by using backward elimination; however, those terms which are required for
hierarchy are exempted. After doing this, the new model for ANOVA for average surface roughness is
shown in Table 6. This new model then can be analyzed for comparing the R2.

It is appreciable that the F-value of the new model was increased to 84.73 from 56.69. The p-value
was found to be under 0.05, which is an indication for a significant model. Interestingly, it is shown that
the Vc

2, being a non-significant term, is still in the model. This term is kept to maintain the hierarchy.
After such refinement, the R2 values are compared before and after the backward elimination, listed in
Table 7.
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Table 6. Table of ANOVA for average roughness (Sa) after refinement.

Source Sum of
Squares

Degree of
Freedom

Mean
Square F-Value Dominance

of Factor p-Value

Model 0.64 6 0.11 84.73 96.97% <0.0001
Vc 6.084 × 10−4 1 6.084 × 10−4 0.48 0.09% 0.4999
f 0.42 1 0.42 331.71 63.64% <0.0001
ap 0.14 1 0.14 108.92 21.21% <0.0001

Vc
2 0.016 1 0.016 12.44 2.42% 0.0037

a2 0.059 1 0.059 46.47 8.94% <0.0001
f ap 0.026 1 0.026 20.31 3.94% 0.0006

Residual 0.016 13 1.263 × 10−3 - 2.42% -
Total 0.66 19 - - 100% -

Table 7. R2 parameter for average roughness (Sa) model before and after the backward elimination.

Parameter Before After

R2 (overall) 0.98 0.98
Adjusted R2 0.96 0.96
Predicted R2 0.85 0.92

Adeq Precision 27.44 31.37

It is to be noted that the overall R2 and adjusted R2 remained the same and they are very close to
unity; however, the predicted R2 value increased from 0.85 to 0.92. Moreover, the adequate precision
value increased. This indicates that the refinement of the model improved the efficiency. As such,
the final model for Sa, which was used for further analysis and optimization, is shown by Equation (4).

Sa = −1.505× 10−3Vc + 0.0193 f + 0.0383ap + 3.114× 10−6Vc2
− 1.354

×10−3ap2
− 3.775× 10−4 f ap + 0.257

(4)

3.2. Model for Maximum Roughness Height (Sz)

The maximum roughness height (Sz) has also been analyzed statistically to develop the model.
For that purpose, the ANOVA was performed and all important values are given in Table 8.

Table 8. ANOVA table for the maximum roughness height (Sz).

Source Sum of
Squares

Degree of
Freedom

Mean
Square F-Value Dominance

of Factor p-Value

Model 40.00 9 4.44 11.29 91.03% 0.0004
Vc 0.69 1 0.69 1.74 1.57% 0.2161
F 25.54 1 25.54 64.87 58.12% <0.0001
ap 2.01 1 2.01 5.10 4.57% 0.0475

Vc
2 0.018 1 0.018 0.045 0.04% 0.8368

f2 0.099 1 0.099 0.25 0.23% 0.6264
ap

2 3.96 1 3.96 10.06 9.01% 0.0100
Vcf 1.04 1 1.04 2.65 2.37% 0.1345
Vcap 0.50 1 0.50 1.26 1.14% 0.2883
f ap 0.79 1 0.79 2.00 1.80% 0.1876

Residual 3.94 10 0.39 - 8.97% -
Total 43.94 19 - - 100% -

The model p-value was under 0.05. For roughness parameters, based on p-value criteria, most of
the terms are statistically non-significant, except three terms (f, ap and ap

2). As such, it is imperative to
refine the model by using backward elimination. That has been done here, and the new model is listed
in Table 9.
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Table 9. ANOVA table for the maximum roughness height (Sz) after the backward elimination process.

Source Sum of
Squares

Degree of
Freedom

Mean
Square F-Value Dominance

of Factor p-Value

Model 36.82 3 12.27 27.57 83.80% <0.0001
f 25.54 1 25.54 57.37 58.13% <0.0001
ap 2.01 1 2.01 4.51 4.57% 0.0497
a2 9.28 1 9.28 20.84 21.12% 0.0003

Residual 7.12 16 0.45 - 16.20% -
Total 43.94 19 - - 100% -

It is admissible that the new mode p-value is less than 0.05 and less than the previous p-value,
hence it is significant and obviously improved. In this refined model, the F-value shows that the feed
rate is the most dominant followed by the square term of depth of cut. Nevertheless, it is necessary
to compare the R2 parameters in Table 10. Table 10 shows that the overall R2 value decreased from
0.91 to 0.84. As such, the model has lack of fitness. It can also be noticed that the adjusted R2 value of
the model was closer for the backward elimination compared to the primary model. This shows that
the model efficiency was increased. Equation (5), the mathematical model of the maximum height
roughness, was achieved and used for further computation and optimization.

Sz = 6.53× 10−3Vc + 0.2202 f + 0.40895ap− 3.555× 10−6Vc2
− 8.444× 10−4 f 2

−0.012ap2
− 1.605× 10−4Vc f − 1.658× 10−4Vcap

−2.092× 10−3 f ap− 0.93
(5)

Table 10. R2 parameter for maximum roughness height (Sz) model before and after the backward elimination.

Parameter Before After

R2 0.91 0.84
Adjusted R2 0.83 0.81
Predicted R2 0.61 0.73

Adequate Precision 10.73 16.78

3.3. Adequacy Tests

The constructed models were put into trial for the adequacy test. It is noted that the residual plot
of the data should not follow any type of trend. The residual plots for both Sa and Sz are shown in
Figure 5. As it is visible the datapoints for both plots follow a straight-line path and are free from any
trend or sequence—an indication that the model is adequate for further analysis, i.e., prediction model
and optimization. However, further investigation is required to be certain about the complete adequacy
of the models. Thereafter, the models were tested for abnormality—if the datapoints shifted on either
side or were distributed fairly on the both sides with respect to the reference line. For that purpose,
the outlier’s plots were constructed and shown in Figure 6. As a rule, if the data fall outside the ±3.5
permissible range, then they are considered outliers, i.e., abnormal data. Interestingly, all the datapoints
for the present study were found within the data range of permissibility. Therefore, the models can be
claimed as adequate.
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3.4. Experimental Verification Test

The prediction models were developed and tested for verification. This has been done in five random
experimental sets of data. For each set, the experimental as well as the predicted data are plotted side
by side, as can be seen in Figure 7 (average roughness parameter) and Figure 8 (maximum height
roughness parameter). Interestingly, the agreement between the predicted value and the experimental
value is quite reasonable, and therefore the models can be accepted. However, the model of average
roughness parameter showed better accuracy in the prediction—from 1% to 5.94% error, while that of
the maximum height surface roughness parameter ranges from 3.07% to 6.8%.
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3.5. 3D Response Surface, One Factor Plots and Analysis by SEM

At this stage, 3D response surface plots and one-factor plots were plotted (as shown in Figures 9
and 10) and the effects of cutting parameters on the response were analyzed. The information extracted
from the plots was also verified with the experimental results, such as the 3D surface profiles of the
tested specimens and scanning electron micrographs (SEM) of the tool and chips. The 3D response
surface plot showing the effect of input parameter on the response (average roughness parameter
and maximum height roughness parameter) has been shown in Figures 9 and 10. As is evident from
Figures 9 and 10, both Sa and Sz increases with every increment in the Feed rate. This trend can be
verified by the 3D profiles of the machined surface obtained for varying feed rate, which are shown in
Figure 11. It is quite clear from Figure 11 that not only Sa but also Sz become higher for higher values
of feed rates. For more details, SEM images for the tool, together with the chips, were also obtained for
the varying feed rates, as shown in Figure 12.
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At a lower feed (f = 5 µm/rev), the adhered work material can be seen on the tool tip, but the tool
wear is not significant, thereby giving lower values of surface roughness parameters (Sa and Sz). At f =

15 µm/rev, the increase in crater wear on the tool can be observed and that could be the reason for the
increase in the surface roughness values. However, for f = 25 µm/rev, a significant increase in crater
wear and also in the adhered work material was observed, as shown in Figure 12. The built-up edges
(BUE) on the tool were also observed at this feed rate. All these factors have contributed to the poor
surface finish values (higher Sa and Sz values) at this point. The chips’ morphology was more or less
the same for every variation in the feed rate, as shown in Figure 12. The serrated chips were observed
for the cases, however, the serration was clearer at a lower feed rate value. It can be concluded from the
SEM images that the lower feed rate values will be best for micro-machining in the present scenario,
which is in full agreement with the empirical model and 3D response plots obtained by the RSM
method. The effect of cutting speed (Vc) on the Sa factors was found to be mixed, as shown in Figure 9.
It was observed that the value of Sa tends to decrease with increases in the cutting speed, but it rises
again with further increases in Vc. The effect of cutting speed on the Sz value is not significant, as
shown in Figure 10. The depth of cut (ap) has a significant effect on the surface roughness values (Sa
and Sz), which is evident from the surface roughness plots shown in Figures 9 and 10. For both cases,
it was observed that surface roughness values first tend to increase when the depth of cut is increased
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from 5 to 15 µm. However, further rises in the depth of cut tend to produce lower values of surface
roughness parameters. This trend was also supported by the SEM images taken for tool and chips for
different depths of cut (5 to 15 µm), which are shown in Figure 13. The crater wear on the tool was not
significant, except for the depth of cut = 15 µm, which can be observed in Figure 13. As can be seen
from the SEM photographs of Figures 12 and 13, tool wear is minimal and BUE and chip plastering
occurs mainly at the tool tip. The nose radius is almost unchanged. Therefore, the change in surface
roughness is affected by BUE and chip plaster, not by tool wear.
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The adhered work material was highest when the depth of cut was 15 µm. These factors may
be the reason for the higher surface roughness observed at this point. A significant amount of work
material adhered on the tool was also noticed when the depth of cut was only 5 µm. This may be due
to the ploughing effect that can occur at a very low depth of cut, which is not desirable for a machining
operation as it increases the possibility of tool wear, thereby producing unacceptable surface finish [29].
Therefore, it can be concluded here that, for good surface quality results, the depth of cut should
be practiced in the higher range, as this is supportive of both the productivity as well as the finish
surface roughness.
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3.6. Optimization of Surface Roughness Parameters and Material Removal Rate

Two surface roughness parameters and the material removal rate have been considered for the
system optimization—a multi-objective optimization. For that purpose, the composite desirability
approach has been granted. Its details can be found in Reference [30–32]. The common desirability
function is presented in Equation (6).

D = (d1 × d2 × d3 . . . . . . ..× dn)
1
n =

 n∏
i=1

di


1
n

(6)

Here, the desirability has been represented by the di, and the responses are represented by n.
Depending on the condition, each response should either have a low value or high value. As the
highest is the better value, the desirability is defined as Equation (7).
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di = 0 if response < low value

0 ≤ di ≤ 1 if response in between low and high value
di = 1 if response > high value

(7)

However, if the target is to minimize the response, the desirability function becomes Equation (8).
di = 1 if response < low value

0 ≥ di ≥ 1 if response in between low and high value
di = 0 if response > high value

(8)

Four optimization cases (two single-objective and two multi-objective) were considered in the
present analysis.

i. For minimum Sa;
ii. For minimum Sz;
iii. For minimization of both Sa and Sz simultaneously;
iv. For minimum of surface roughness (Sa and Sz) and maximum MRR at the same time.

The input variables, and the responses listed with the goal of optimization, their lower limits and
upper limits and the respective importance, are shown in Table 11.

Table 11. Inputs, outputs, ranges and the importance for the optimization.

Name Goal Lower Limit Upper Limit Importance

Cutting speed (Vc) is in range 100 400 -
Feed rate (f ) is in range 10 40 -

Depth of cut (ap) is in range 5 25 -
Average roughness (Sa) Minimize 0.325 1.02 5

Maximum roughness height (Sz) Minimize 3.35 7.85 5
Material removal rate (MMR) Maximize 5 400 5

The target for the multi-objective optimization is to finalize a solution that is supportive of the best
possible outcomes from all three responses. The main objective for the multi-objective optimization
here is to gain the optimum solution for which minimum surface roughness and maximum MRR can
be obtained simultaneously. The solutions for the multi-objective optimization, i.e., minimum surface
roughness (Sa and Sz) and maximum MRR case, are summarized in Table 12.

Table 12. Multi-objective optimization solution.

Sr. No. Vc f ap Sa Sz MMR Desirability

1 400.00 23.71 25.00 0.50 4.16 239.03 0.714
Selected

2 400.00 23.88 25.00 0.50 4.17 240.45 0.714
3 400.00 23.18 25.00 0.49 4.13 234.525 0.713
4 400.00 22.24 24.97 0.49 4.08 226.261 0.712
5 400.00 22.56 24.94 0.49 4.11 228.645 0.710
6 400.00 33.41 25.00 0.59 4.70 321.503 0.700
7 400.00 10.31 25.00 0.37 3.16 125.099 0.659
8 100.00 10.00 5.01 0.47 3.21 27.4834 0.356

From Table 12, it is suggested that the best possible solution obtained here has a desirability of 0.714.
The respective solution is a cutting speed of 400 m/min, feed rate of 23.71 µm/rev and depth of cut of
25 microns. The optimum average surface roughness parameter is 0.50 µm, the optimum maximum
height roughness parameter is 4.16 µm and optimum material removal rate is 239.03 mm3/min.
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The contour plot and ramp function plot respective to the optimum solution is shown in Figures 14
and 15, respectively. Moreover, the solutions for all the cases are listed in Table 13.
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The combinations varied depending on the selectivity of the response. For instance, when the
two roughness parameters were considered, leaving the material removal rate out of consideration,
the desirability was 1.0 when the cutting speed was 340.49 m/min, feed rate was 10.24 µm/rev and the
depth of cut was 24.87 µm.
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Table 13. List of solutions for the combinations of target objectives.

Optimization Cases Vc
(m/min)

f
(µm/rev)

ap
(µm)

Sa
(µm)

Sz
(µm)

MMR
(mm3/min) Desirability

Minimum Sa 156.14 10.44 24.92 0.32 - - 1.000
Minimum Sz 339.67 10.55 24.87 - 3.34 - 1.000

Minimization of both Sa and Sz 340.49 10.24 24.87 0.32 3.30 - 1.000
Minimization of Sa and Sz and

maximization of MMR 400.00 23.71 25.00 0.50 4.16 239.03 0.714

4. Conclusions

1. Empirical relations between cutting parameters and surface roughness (Sa and Sz) of the TiAl4V
alloy was successfully developed using RSM for the micro-turning process;

2. The efficiency of both models was checked according to the different R2 terms. The developed
models showed good accuracy in terms of correlation coefficient, close to unity. The residual
plots and the outliers plot showed the adequacy of the models. Last but not least, the verification
test showed superior accuracy, an error value of less than 7% for both the average roughness
parameter and maximum height roughness parameter;

3. With the increase in feed rate, both the Sa and Sz of the TiAl4V alloy were found to be increased,
while a mixed trend was observed for other cutting parameters. Overall, the most dominant
factor which affects the Sa and Sz of the micro-turned TiAl4V was found to be the feed rate;

4. The tool wear results show that the crater wear is the dominant wear for micro-turned Ti-6Al-4V
alloys. Moreover, the higher serrations in the chips were observed at high feed rate values, which
is also the reason for the poor surface roughness values;

5. All optimization results are as follows:

a. Minimum Sa optimization: Vc = 156.14 m/min, f =10.44 µm /rev and ap = 24.92 µm;
b. Minimum Sz optimization: Vc = 339.67 m/min, f =10.55 µm /rev and ap = 24.87 µm;
c. Minimum Sa and Sz optimization: Vc = 340.49 m/min, f = 10.24 µm /rev and ap = 24.87 µm;
d. For minimum of surface roughness (Sa and Sz) and maximum MRR at the same time:

Vc = 400 m/min, f = 23.71 µm/rev and ap = 25 µm;

6. The optimized values for Sa, Sz and MRR obtained by the multi-objective optimization approach
were 0.50 µm, 4.16 µm and 239.03 mm3/min, respectively.
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