

Levelwise construction of a single
cylindrical algebraic cell

Nalbach, J., Abraham, E., Specht, P., Brown, C., Davenport, J.
H. & England, M.

Published PDF deposited in Coventry University’s Repository

Original citation:
Nalbach, J, Abraham, E, Specht, P, Brown, C, Davenport, JH & England, M 2024,
'Levelwise construction of a single cylindrical algebraic cell', Journal of Symbolic
Computation, vol. 123, 102288.
https://dx.doi.org/10.1016/j.jsc.2023.102288

DOI 10.1016/j.jsc.2023.102288
ISSN 0747-7171
ESSN 1095-855X

Publisher: Elsevier

This is an open access article distributed under the terms of the Creative Commons
CC-BY license, which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Journal of Symbolic Computation 123 (2024) 102288
Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

Levelwise construction of a single cylindrical
algebraic cell

Jasper Nalbach a, Erika Ábrahám a, Philippe Specht a,
Christopher W. Brown b, James H. Davenport c,
Matthew England d

a RWTH Aachen University, 52056 Aachen, Germany
b United States Naval Academy, 597 McNair Road, Annapolis, MD 21402-5002, United States
c University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
d Coventry University, Coventry CV1 2TL, United Kingdom

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 July 2023
Accepted 30 November 2023
Available online 5 December 2023

Keywords:
Satisfiability modulo theories
Cylindrical algebraic decomposition
Non-linear real arithmetic
Model-constructing satisfiability calculus
Formal proofs

Satisfiability modulo theories (SMT) solvers check the satisfiability
of quantifier-free first-order logic formulae over different theories.
We consider the theory of non-linear real arithmetic where the
formulae are logical combinations of polynomial constraints. Here a
commonly used tool is the cylindrical algebraic decomposition (CAD)
to decompose the real space into cells where the constraints are
truth-invariant through the use of projection polynomials.
A CAD encodes more information than necessary for checking
satisfiability. One approach to address this is to repackage the CAD
theory into a search-based algorithm: one that guesses sample
points to satisfy the formula, and generalizes guesses that conflict
constraints to cylindrical cells around samples which are avoided
in the continuing search. This can lead to a satisfying assignment
more quickly, or conclude unsatisfiability with far fewer cells.
A notable example of this approach is Jovanović and de Moura’s
NLSAT algorithm. Since these cells are being produced locally to a
sample there is scope to use fewer projection polynomials than the
traditional CAD projection. The original NLSAT algorithm reduced
the set a little; while Brown’s single cell construction reduced
it much further still. However, it refines a cell polynomial-by-
polynomial, meaning the shape and size of the cell produced
depends on the order in which the polynomials are considered.

E-mail addresses: nalbach@cs.rwth-aachen.de (J. Nalbach), abraham@cs.rwth-aachen.de (E. Ábrahám),
philippe.specht@rwth-aachen.de (P. Specht), wcbrown@usna.edu (C.W. Brown), j.h.davenport@bath.ac.uk (J.H. Davenport),
matthew.england@coventry.ac.uk (M. England).
https://doi.org/10.1016/j.jsc.2023.102288
0747-7171/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://
creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.jsc.2023.102288
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsc.2023.102288&domain=pdf
mailto:nalbach@cs.rwth-aachen.de
mailto:abraham@cs.rwth-aachen.de
mailto:philippe.specht@rwth-aachen.de
mailto:wcbrown@usna.edu
mailto:j.h.davenport@bath.ac.uk
mailto:matthew.england@coventry.ac.uk
https://doi.org/10.1016/j.jsc.2023.102288
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
The present paper proposes a method to construct such cells
levelwise, i.e. built level-by-level according to a variable ordering
instead of polynomial-by-polynomial for all levels. We still use a
reduced number of projection polynomials, but can now consider
a variety of different reductions and use heuristics to select
the projection polynomials in order to optimize the shape of
the cell under construction. The new method can thus improve
the performance of the NLSAT algorithm. We formulate all the
necessary theory that underpins the algorithm as a proof system:
while not a common presentation for work in this field, it is
valuable in allowing an elegant decoupling of heuristic decisions
from the main algorithm and its proof of correctness. We expect
the symbolic computation community may find uses for it in other
areas too. In particular, the proof system could be a step towards
formal proofs for non-linear real arithmetic.
This work has been implemented in the SMT-RAT solver and the
benefits of the levelwise construction are validated experimentally
on the SMT-LIB benchmark library. We also compare several
heuristics for the construction and observe that each heuristic
has strengths offering potential for further exploitation of the new
approach.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open
access article under the CC BY license (http://

creativecommons .org /licenses /by /4 .0/).

1. Introduction

In this paper we present a new method to construct around a sample point a single cylindrical
cell that is truth-invariant for a set of polynomial constraints. We demonstrate how the new method
allows for improved decision procedures to determine the satisfiability of formulae involving such
constraints. We use a proof system presentation for our method, which we consider an important
contribution for such algebraic decision procedures. We take this opportunity to explain the benefit
of such a presentation to the symbolic computation community. This introduction continues with a
broad overview of context for the contribution, followed by the plan of the paper.

1.1. Non-linear real arithmetic and CAD

We are concerned with non-linear real arithmetic whose formulae are Boolean combinations of
polynomial constraints with rational coefficients. This is a powerful logic that can express a wide va-
riety of problems. This logic admits quantifier elimination (Tarski, 1948), i.e. any quantified formula
in the logic may be replaced by an equivalent quantifier-free one. In this paper we restrict our at-
tention to the problem of determining the satisfiability of quantifier-free formulae, or equivalently,
determining the truth of purely existentially quantified formulae.

The most commonly used complete methods here are based on the idea of the cylindrical algebraic
decomposition (CAD) introduced by Collins (1975). A CAD is a finite decomposition of Rn into cells,
traditionally produced relative to a set of polynomials in n variables such that each polynomial has
constant sign on each cell. It thus allows us to use a finite set of sample points (one for each cell) to
study sign-constraints on those polynomials over the infinite space Rn . The CAD method offered the
first tractable approach to real quantifier elimination and found numerous applications in the years
that followed. However, its practical use is restricted by a doubly exponential worst case complexity
in the number of variables (Davenport and Heintz, 1988), that is felt often in practice: the algorithm
makes use of iterated resultants (Collins, 1975) leading to polynomials of doubly-exponential degree.

It was soon realized that a CAD encoded far more information than needed even for quantifier
elimination: a CAD for a set of polynomials can be used to study any logical formula built from those
2

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
polynomials, not just the one of interest. Some progress was since made in adapting the core CAD
algorithm to the logical formula, e.g. Collins and Hong (1991); England et al. (2020), but these were
only partial solutions.

1.2. NLSAT, MCSAT and single cylindrical cells

A novel framework for satisfiability modulo theories (SMT) solving was introduced with the NLSAT
algorithm of Jovanović and de Moura (2012) in 2012. This was since generalized into the model con-
structing satisfiability calculus (MCSAT) framework (de Moura and Jovanović, 2013) and has been applied
to other logics such as non-linear integer arithmetic (Jovanović, 2017). In MCSAT the search at the
Boolean and theory levels are carried out concurrently, mutually guided by each other away from
unsatisfiable regions. Partial solution candidates for the Boolean structure and for the corresponding
theory constraints are constructed incrementally in parallel, with Boolean conflicts generalized using
propositional resolution and, for real algebra, theory conflicts generalized by CAD technology.

For the latter, when a theory model (sample point) is determined not to satisfy all those con-
straints which should hold according to the current Boolean search, then we seek to guide the future
search by an explanation which generalizes the sample point to a region containing the point on
which the same constraints fail for the same reasons. This can be achieved by having the polynomials
involved in the combination of constraints which cause the failure all have invariant sign upon this
region. Such regions are constructed as cylindrical algebraic cells, but they are not necessarily cells
from the CAD that would be built for the problem. Instead, they are usually larger since not all con-
straints are involved in every conflict. The exclusion of the cell is learned by adding a new clause: the
negation of the semi-algebraic description of the cell.

This motivates the optimization of sub-algorithms to produce single cells from a point and a set of
polynomial constraints. Savings can be made not just by building cells with only a subset of the con-
straints, but also by restricting the combinations of those constraints that we do consider in reference
to the current model. Until now, the state-of-the-art approach is that of Brown and Košta (2015). We
continue this research in the present paper by developing a new method for single cell construction.

1.3. First contribution: proof system presentation

In contrast to Brown and Košta (2015), our new method allows for different choices of how to
construct the cell. We will describe and evaluate some of these choices, however, it is important
to distinguish that area of work from the broader method to build the cell introduced in the next
subsection. The choices do not affect the correctness of the cell produced: in all cases the cell meets
the essential criteria of containing the sample and being invariant for the truth of the conflicting
constraints. Nor do the choices have an effect on high-level measures of complexity: they achieve
similar reductions in algebraic work. However, it can be observed that the choices do greatly effect
the cells produced and thus the performance of the algorithm and so it is worth to try to make an
optimal choice. We do these choices heuristically, i.e. using methods not guaranteed to give an optimal
answer but hopefully giving a reasonable answer quickly. To expedite and simplify future research on
heuristics it is helpful to clearly separate out these heuristic choices from the broader algorithm and
its proof of correctness.

To achieve that, we present our work as a proof system. Such a presentation clearly achieves the
separation of heuristic decisions from correctness proof of the method. Essentially, we must find a
chain of proof rules to prove our desired property, and if there is freedom in how the chain can be
built then we can employ a heuristic method. The system is flexible, extensible, allows for detailed
optimizations without changing the fundamental algorithm, and allows for correctness proofs to be
portioned nicely. We plan to build on that in future work. We note that this is not just a presentation
for the purpose of the paper, but also present in the underlying implementation we report on.

We acknowledge that a proof system presentation is uncommon in symbolic computation. It is
more prevalent in the SAT and SMT communities where there is more intense work on the optimiza-
tion of such heuristic choices and proof systems are an established presentation method. However,
such a system has not been used before for CAD theory, even when deployed in the SMT context. We
3

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
view our proof system presentation as a contribution in its own right, which allowed for greater ex-
ploration of heuristic choices in our work. We also hope the wider symbolic computation community
may find it interesting as a potential new tool to use elsewhere. In particular, there is increasing inter-
est in formal proofs. While SMT solvers are now able to generate these proofs for a variety of theories
(Barbosa et al., 2022), the case of non-linear arithmetic is challenging. Our proof system might pave
the way for mechanically-verifiable proofs for non-linear real arithmetic.

1.4. Second contribution: levelwise single cells

The current state-of-the-art for single cylindrical cell construction is that of Brown and Košta
(2015). This constructs the single cell gradually, processing one polynomial at a time, initializing
the cell as the entirety of Rn and then gradually refining it according to the sign of each polyno-
mial considered. For each refinement the method needs to consider only the interaction of the next
polynomial with the ones currently defining the cell, rather than all those that went before, which al-
lows for savings compared to the original approach used by Jovanović and de Moura (2012). However,
this approach introduces a sensitivity to the order in which polynomials are considered. A machine
learning approach to select the order was considered by Brown and Daves (2020).

The alternative method contributed in this paper allows to produce the single cell incrementally by
level (i.e. dimension / variable). This removed the direct sensitivity to the polynomial ordering, instead
introducing at each level decisions about which polynomials to use first. This approach uncovers a
greater range of decisions than the polynomial ordering, and allows for more reasoned heuristics
than black-box machine learning. By allowing for these better heuristic decisions we can produce
more optimal cells, in turn improving the performance of algorithms which use them.

1.5. Plan of the paper

We continue in Section 2 by introducing the necessary preliminaries and notations used, followed
by background material on CAD. Then in Section 3 we present the existing state-of-the-art in single
cell construction and an informal motivation for our new levelwise approach.

In Section 4 we establish the proof system, and in Section 5 we present our new algorithm and
some heuristics that may be used with it. In Section 6 we give some qualitative analysis on our
new method and the heuristics. Then an experimental evaluation on the use of the new method for
explanation generation in MCSAT is given in Section 7. Finally, we conclude in Section 8 with an
outlook on further research and open questions.

2. Preliminaries

Let N denote the set of all natural numbers including 0, N>0 = N \ {0}, Q be the ratio-
nal numbers, and R be the real numbers. For i, j ∈ N with i < j, we define the sets of integers
[i.. j] = {i, . . . , j} and [i] = [0..i]. For i, j ∈N>0, j ≤ i and r ∈Ri , we denote by r j the j-th component
of r and by r[j] the vector (r1, . . . , r j). For a tuple t = (a, b, c, . . .) we denote by t.a, t.b, t.c, . . . the
corresponding tuple entries.

Let f : D → E be a function, then the domain D of f is denoted by dom(f), and the restriction of
f to A ⊆ D is denoted by f |A (i.e. f |A : A → E with f |A(a) = f (a) for all a ∈ A). Let f , g : D → E and
let < be a total order on E . We write f < g if f (d) < g(d) for all d ∈ D and f ≤ g if f (d) ≤ g(d) for
all d ∈ D .

2.1. Variables and polynomials

We assume that the reader is familiar with the common definitions and terminology related to
polynomials. We introduce some notation in this section; for further reading we refer to Cox et al.
(2006).

We work with the variables x1, . . . , xn with n ∈ N>0 under a fixed ordering x1 ≺ x2 ≺ ... ≺ xn . A
polynomial is built from a set of variables and numbers from Q using addition and multiplication.
4

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
We use Q[y] to denote univariate polynomials in some variable y and Q[x1, . . . , xi] for multivariate
polynomials in those variables. We say that a polynomial p is of level j (denoted as level(p) = j) if x j
is the largest variable appearing in p: i.e. either j = 0 and p ∈Q; or j ∈ [1..n] and p ∈Q[x1, . . . , x j] \
Q[x1, . . . , x j−1].

Assume in the following some i ∈ [n] and polynomials p, q ∈Q[x1, . . . , xi].
We write p(x1, . . . , xi) to indicate p’s variable domain. For j ∈ [1..i] and r = (r1, . . . , r j) ∈ R j we

write p(r, x j+1, . . . , xi) for the polynomial p after substituting r1, . . . , r j for x1, . . . , x j in p and indi-
cating the remaining free variables in p.

We use realRoots(p) ⊆Ri to denote the set of real roots of p, degx j
(p) to denote the degree of p in

x j , ldcfx j (p) the leading coefficient of p in x j , factors(p) to denote the irreducible factors of p, discx j (p)

to denote the discriminant of p with respect to x j , and resx j (p, q) to denote the resultant of p and q
with respect to x j .

2.2. Real algebraic numbers, constraints and cells

Real algebraic numbers are real roots of univariate polynomials with rational coefficients. Although
we will not distinguish between real and real algebraic numbers in the following for simplicity, the
algorithms are complete when restricting all choices of constants to real algebraic numbers.

A constraint p ∼ 0 compares a polynomial p ∈ Q[x1, . . . , xi], level(p) = i to zero using a relation
symbol, ∼∈ {=, �=,<,>,≤,≥}, and has the solution set {r ∈Ri | p(r) ∼ 0}.

A subset of Ri for some i ∈ [n] is called semi-algebraic if it is the solution set of a Boolean com-
bination of polynomial constraints. A cell is a non-empty connected subset of Ri for some i ∈ [n]. A
cell is called algebraic if it is a semi-algebraic set.

For simplifying the notation throughout this paper, we define R0 = {()}. Given i, j ∈ N>0 with
j < i, we call Ri an extension of R j and define the projection of a set R ⊆ Ri onto R j by R ↓[j]=
{(r1, . . . , r j) | (r1, . . . , ri) ∈ R}.

Given a cell R ⊆ Ri , i ∈ [1..n] and continuous functions f , g : R → R, we define the sets
R × (f , g) = {(r, ri+1) | r ∈ R, ri+1 ∈ (f (r), g(r))}, analogously R × (−∞, g) = {(r, ri+1) | r ∈ R, ri+1 <

g(r)}, R × (f ,∞) = {(r, ri+1) | r ∈ R, f (r) < ri+1}, and R × f = {(r, ri+1) | r ∈ R, ri+1 = f (r)}. Note that
if f ≤ g (on R), then these sets are cells (as a continuous image of a connected set is connected).

The sign of r ∈ R, denoted sgn(r), is defined to be 1 if r > 0, −1 if r < 0, and 0 otherwise. A
polynomial p ∈Q[x1, . . . , xi] is sign-invariant on a set R ⊆Ri if sgn(p(r)) = sgn(p(r′)) for all r, r′ ∈ R .
A set of polynomials P ⊆Q[x1, . . . , xi] is sign-invariant on R ⊆Ri if all p ∈ P are sign-invariant on R .

2.3. CAD definition

A set D = {R1, . . . , Rk} of cells of Rn such that ∪i=1,...,k Ri = Rn and Ri ∩ R j = ∅ is called a de-
composition of Rn . A decomposition is called algebraic if its cells are algebraic. A decomposition D
of Rn is called cylindrical over a decomposition D ′ of Rm, m < n if all projections of cells R ∈ D
onto Rm are themselves cells in D ′ . I.e. the cells in Rn stack up in cylinders over the cells in Rm . A
cylindrical algebraic decomposition (CAD) is produced relative to a variable ordering: it is an algebraic
decomposition D such that there exists a sequence of algebraic decompositions (D1, . . . , Dn), D = Dn
with each Di a cylindrical decomposition of Ri over Di−1 for i ∈ [2..n].

A decomposition inherits the invariance properties for polynomials and constraints defined above
if they apply to all its cells. A CAD will usually be computed relative to an input polynomial set
to ensure such an invariance property. Collins (1975) first introduced the notion of a CAD and an
algorithm for computing a sign-invariant CAD. A central notion for this algorithm is delineability.

Definition 2.1 (Delineability (Collins, 1975)). Let i ∈ N , R ⊆ Ri be a cell, and p ∈ Q[x1, . . . , xi+1] \ {0}.
The polynomial p is called delineable on R if and only if there exist finitely many continuous functions
θ1, . . . , θk : R →R (for k ≥ 0) such that

• θ1 < . . . < θk;
• the set of real roots of the univariate polynomial p(r, xi+1) is {θ1(r), . . . , θk(r)} for all r ∈ R; and
5

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
• there exist constants m1, . . . , mk ∈ N>0 such that for all r ∈ R and all j ∈ [1..k], the multiplicity
of the root θ j(r) of p(r, xi+1) is m j .

The θ j are called real root functions of p on R . The cells R × θ j, j ∈ [1..k] are called p-sections over
R . The cells R × (−∞, θ1), R × (θk, ∞), and R × (θ j, θ j+1) for j ∈ [1..k − 1], and in case k = 0 also
R × (−∞, ∞), are called p-sectors over R .

These notions are extended to finite sets of polynomials P ⊆ Q[x1, . . . , xi+1] \ {0} such that P is
delineable on R if the product of the polynomials in P is delineable on R . Accordingly, we define
the real root functions of P , the P -sections and P -sectors; for the empty polynomial set there are no
sections and a single sector Ri+1.

A CAD projection operator is a function proj that maps a set of polynomials P to a set of lower-
level polynomials such that the sign-invariance of proj(P) on R implies the delineability of P on R .
The operator proj induces a sign-invariant CAD of P , recursively defined as follows. In the case where
all polynomials in P are of level 1, then the CAD is the set of all sections and sectors of P . If the
polynomials are of higher level, then the CAD contains all sections and sectors of P over each cell of
the CAD of proj(P).

2.4. McCallum’s projection operator

Although Collin’s original projection operator is complete, the projection set is large and thus
relatively inefficient. McCallum (1998) presented an improved operator by making the projection set
smaller. To do so, his proof of correctness relies not on sign-invariance but on the stronger property
of order-invariance. Although a stronger property, the induced cells in McCallum’s CAD are actually
bigger than in Collin’s CAD. In the following, we present a simplified version of the McCallum CAD
projection (simplified as we do not describe the optimization using delineating polynomials).

McCallum’s theory relies on some notions which we will mention here only on the level of intu-
ition: for more details, we refer to McCallum (1985, 1998). An i-dimensional (analytic) submanifold of
Rn is a non-empty subset R ⊆ Rn that “looks locally like Ri ”. Given an open subset U ⊆Ri , a func-
tion f : U → R is called analytic if it has a multiple power series representation (McCallum, 1985)
around each point of U . Given an i-dimensional submanifold R of Rn , a function f : R →R is called
analytic if for all r ∈ R , R looks locally like Ri with respect to a coordinate system about r and f
looks locally like an analytic function Ri →R. Every open subset of Ri, i ∈ [1..n] is an analytic sub-
manifold. To simplify notation, we say R0 is an analytic submanifold. Given an analytic submanifold
R ⊆ Ri and analytic functions f , g : R → R with f < g , the sets R × (f , g) and R × f are analytic
submanifolds as well (McCallum, 1985, Theorem 2.2.3 and Theorem 2.2.4). Note that analytic sub-
manifolds are cells. Additionally, the notion of delineability is extended to analytic delineability, which
is only defined on connected analytic submanifolds and the real root functions are required to be
analytic.

Let p ∈Q[x1, . . . , xn] be a polynomial and r ∈Rn be a point. Then the order of p at r is defined as

ordr(p) = min({k ∈N | some partial derivative of total order k of p does not vanish at r}
∪ {∞}).

We call p order-invariant on R ⊆Rn if ordr(p) = ordr′ (p) for all r, r′ ∈ R . Note that if p has no root in
R , then ordr(p) = 0 for all r ∈ R and p is trivially order-invariant on R . Note also that order-invariance
implies sign-invariance.

McCallum’s operator requires a smaller projection set than Collins’ operator. It does so by main-
taining the stronger property of order-invariance instead of sign-invariance; however, order-invariance
can only be concluded if no polynomial is nullified on a point in the underlying cell.

Definition 2.2 (Nullification). Let i ∈ N , r ∈ Ri , and p ∈ Q[x1, . . . , xi+1], level(p) = i + 1. The polyno-
mial p is nullified on r if p(r, xi+1) = 0.
6

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
The McCallum projection operator is thus incomplete. We note the recent validation of Lazard
projection by McCallum et al. (2019) as an alternative to McCallum projection which is complete
and is no bigger than McCallum except for those cases where McCallum cannot be applied (Brown
and McCallum, 2020). We choose to formalize here with McCallum projection as it is extended to
optimizations such as equational constraints (McCallum, 1999; England et al., 2020) which are very
powerful in practice (see Section 4.6) and the existing single cell approach (Brown and Košta, 2015)
is also based on McCallum projection. We expect that our work could be reformulated in Lazard
projection if so desired.

2.5. Computing a CAD

In many applications, a decomposition of a set of polynomials P is not computed explicitly but
instead the projection of P is used to generate sample points for every sign-invariant cell that would
be formed in such a decomposition. The generation of cells / samples from the projection is called
lifting. Polynomials can be evaluated at these sample points to check the satisfiability of constraints
and formulae which involve them.

For representing cells explicitly, we need to give witnesses for the real root functions θ j : R → R
from Definition 2.1 defining the sectors and sections over a cell R .

Definition 2.3 (Indexed root expression). Let i ∈ N , p ∈ Q[x1, . . . , xi+1], level(p) = i + 1, and j ∈ N>0.
The indexed root expression rootxi+1 [p, j] : Ri → R ∪ {undef} is the j-th real root of p in xi+1 at the
given sample if it exists, and undef otherwise. That is for each s ∈Ri :

rootxi+1 [p, j](s) =
{

undef if j > | realRoots(p(s, xi+1))| or p(s, xi+1) = 0, and otherwise

ξ j where realRoots(p(s, xi+1)) = {ξ1, . . . , ξk} and ξ1 < . . . < ξk.

Indexed root expressions of this form are also called indexed root expression of level i + 1. Assuming ξ
denotes the above indexed root expression, we use ξ.p to refer to p and ξ. j to refer to j.

In the algorithms presented in this paper, we only need to evaluate the indexed root expressions
for real algebraic numbers. Note that the existence and index of a real root function depends on the
given sample. Thus, the same indexed root expression may refer to different real root functions at
different sample points.

Definition 2.4 (Symbolic intervals, single cell and CAD data structures). A symbolic interval I of level i is
either (i) of the form I= (sector, l, u) where l is either an indexed root expression of level i or −∞,
and u is either an indexed root expression of level i or ∞; or (ii) of the form Ii = (section, b) where
b is an indexed root expression of level i. The polynomials I.l, I.u respectively I.b are the defining
polynomials of I (if they exist).

A cell data structure is a sequence R = (I1, . . . , In) of symbolic intervals Ii of level i. For an
empty cell data structure, we define setOf(()) = {()}. For a cell data structure (I1, . . . , Ii), i ≥ 1,
we define the corresponding subset of Ri as setOf(I1, . . . , Ii) = {(r, r′) | r ∈ setOf(I1, . . . , Ii−1), r′ ∈
(Ii .l(r), Ii .u(r))}, respectively setOf(I1, . . . , Ii) = {(r, r′) | r ∈ setOf(I1, . . . , Ii−1), r′ = Ii .b(r)} if the
respective indexed root expressions are not undef, and setOf(I1, . . . , Ii) = undef otherwise. Similarly,
we define setOf(R, Ii) for arbitrary subsets R ⊆Ri−1 and setOf(r, Ii) for points r ∈Ri−1.

A CAD data structure D is a set of cell data structures. We define setOf(D) = {setOf(R) | R ∈ D}.

In our algorithms, indexed root expressions occurring in a cell data structure will always be de-
fined; the above definition covers the undef case just for the sake of completeness. Furthermore,
note that given a cell data structure R = (I1, . . . , Ii), the restrictions of members Ii .l|setOf(I1,...,Ii−1) ,
Ii .u|setOf(I1,...,Ii−1) , Ii .b|setOf(I1,...,Ii−1) are real root functions of their defining polynomials as θ j in
Definition 2.1.
7

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Definition 2.5 (Indexed root expressions of polynomials). Let i ∈ N , s ∈ Ri , and p ∈ Q[x1, . . . , xi+1] of
level i + 1. The set of indexed root expressions of p at s is defined as

irExpr(p, s) =
{

undef p(s, xi+1) = 0,

{rootxi+1 [p, j] | j ∈ [1..| realRoots(p(s, xi+1))|]} otherwise.

Let P ⊆Q[x1, . . . , xi+1] be a set of polynomials of level i + 1. The set of indexed root expressions of P at
s is defined as

irExpr(P , s) =
⋃
p∈P

irExpr(p, s).

Let ξ ∈R. The set of indexed root expressions of P for s and ξ is defined as

irExpr(P , s, ξ) = {rootxi+1 [p, j] | p ∈ P , j ∈N>0, ξ = rootxi+1 [p, j](s)}.

A description of a sign-invariant CAD defined by a projection operator with respect to a set of
polynomials can be computed as follows. First the projection operator is applied from level n to 1,
called the projection phase. This is followed by the lifting phase where, starting from level 1, all cells
from level i − 1 are extended to the level i such that all sections and sectors in the cylinder above
every cell of level i − 1 are identified as cells. To achieve this, for each cell R of dimension i − 1,
the polynomials on level i are partially evaluated up to their last dimension using a sample s from
R. This results in univariate polynomials whose roots can be isolated and sorted to give intervals:
point intervals at the roots of the polynomials, the open intervals between them, and the two open
intervals below and above all roots (or the whole real line if there are no roots). Delineability allows
the conclusions drawn at the sample to generalize over R. For each interval a symbolic description is
determined that together extend R to level i.

3. Single cell computation

For our problem of study, we are not interested in computing a full sign-invariant CAD, but only a
single sign-invariant algebraic cell. That is, given a set of polynomials P ⊆Q[x1, . . . , xn] and a sample
s ∈Rn , we need to compute a cell R ⊆Rn such that s ∈ R and P is sign-invariant on R .

In this paper, we focus on the computation of algebraic cells that adhere to Definition 2.4. These
cells have a triangular algebraic description with respect to the variable ordering (i.e. a condition
on x1 alone; then one on (x1, x2), and so on). Such cells are called (locally) cylindrical (Brown and
Košta, 2015; Ábrahám et al., 2021) as this shape is implied by the cylindricity property of a full CAD.
Although we do not construct entire decompositions in this paper, we make use of CAD theory which
results in cells having this property. Such cells have the advantage of being easy to visualize and
compute with. For example, projection with respect to the variable ordering is trivial, as is checking
whether a point is inside such a cell, which is particularly important for our use of such cells.

3.1. Previous work on optimizing single cell computations

As described in Section 1.2, Jovanović and de Moura use a single cell construction for model ex-
planation in their algorithm to decide satisfiability for non-linear arithmetic (Jovanović and de Moura,
2012). This was based on Collins’ CAD projection operator (Collins, 1975) but did not compute a full
CAD projection: it left out coefficients based on the current sample (as we only need to consider
subsequent coefficients when the leading coefficient vanishes).

This single cell construction was enhanced, first in the open case (i.e. building only cells with
maximal dimension) by Brown (2013), and then for the general case by Brown and Košta (2015). This
work was based on McCallum projection theory, and in addition to coefficients also avoided some
computation of resultants and discriminants based on the current sample. The work led in turn to
the consideration of entire decompositions built one cell at a time (Brown, 2015), and their use for
quantifier elimination (Brown, 2017).
8

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Fig. 1. Refinement-based construction of a single cell for Example 3.1. In the upper row the original cell (the entire plane) is
refined first by polynomial p1, then by p2, then by p3. In the lower row a different order of refinement is used: p3, p2, p1

giving a larger cell. Note that in the figures of this paper we label the varieties of polynomials with their name, i.e. p1 labels
p1 = 0.

The approach of Brown (2015) started with a cell data structure describing the whole of Rn which
was continually refined by merging in new polynomials one at a time. The process maintains several
invariants: (1) the cell contains the sample point s; (2) the cell is cylindrical; and (3) all polynomials
merged so far have constant sign (more precisely, constant order) in the cell. The polynomials are
merged one-by-one, and the order in which they are merged affects the cell that gets produced. Fig. 1
illustrates this process for Example 3.1 below, showing different results for two different orderings of
the polynomials. From now on we will refer to this approach as refinement-based single cell construction.
The merge operation, unless on the lowest level, projects the current polynomial p and then calls
itself iteratively on the projection result. When the call returns to p, the polynomial is used to refine
the bounds of the cell in the dimension that corresponds to the level of p. This is done by isolating
the roots of the univariate polynomial resulting from partially evaluating p up to its last dimension
using the sample s. If there is a root closer to si than the current bound then it becomes the new
bound of the sector. In the special case that a root coincides with si , the sector collapses into a
section described by said root. By this recursive refinement, the transitivity of the ordering on real
root functions of polynomials induced by the order-invariance of resultants is exploited, so that at
most two resultants are calculated per merge-operation and polynomial. Furthermore, as soon as a
section is identified, some superfluous discriminants can be detected, and using the current sample
irrelevant coefficients can be identified.

Example 3.1. We consider the point s = (1
8 , − 3

4) and polynomials p1 = x1 − 2x2 + 1, p2 = x2
1 + x2

2 − 1
and p3 = x1 −2x2 −1. These are the polynomials studied in Fig. 1 which demonstrates the refinement-
based single cell construction process for two different orderings. We see that one produces a larger
cell than the other. It is not obvious how to choose good orders for adding polynomials in this ap-
proach (a machine learning heuristic was presented by Brown and Daves (2020)). Moreover, because
the method works by refining the cell by the chosen polynomial, the order in which lower-level
polynomials resulting from projections are added is not very flexible.

Our approach will build a single cell levelwise, i.e. constructing the cell level-by-level according
to a variable ordering instead of polynomial-by-polynomial for all levels. We note that there exists
another levelwise single cell construction in an unpublished work on the arXiv by Li and Xia (2020). In
9

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Fig. 2. Construction of a single cell for Example 3.1 following the new levelwise approach as described in Example 3.2.

comparison, our formulation using a proof system enables the use of more sophisticated optimizations
in the later sections.

3.2. Our levelwise approach to single cell computation

Our new levelwise approach is based on using information about the ordering of the roots of
polynomials relative to the sample point s and to one another to make decisions during the cell
construction process that are likely to lead to larger cells.

We will exploit said information and the transitivity of the ordering on the roots induced by order-
invariance of resultants. Thus, before projection, the roots of the polynomials on the current level are
isolated and ordered to see which resultants are required for maintaining sign- or order-invariance of
the given polynomials.

Example 3.2. Fig. 2 shows how our new levelwise approach would operate on the formula from Ex-
ample 3.1. We start by considering x1 = s1, the first coordinate of the sample s. We evaluate the
polynomials at this coordinate and isolate the real roots to find ξ1 = rootx2 [p2, 1], ξ2 = rootx2 [p3, 1],
ξ3 = rootx2 [p1, 1], and ξ4 = rootx2 [p2, 2]. We order these, along with the second coordinate of s, as in
the top-left image.

Our sample lies in the interval for x2 denoted I2 = (sector, ξ1, ξ2) in the top-right image. We thus
know that, local to s1, the cell we want will be bounded from below by p2 and from above by p3.
We also know that the other section of p2 and the section of p1 are above the cell. In this figure the
graphs of the polynomials are greyed out because the algorithm is not aware of them: it knows only
their roots when evaluated at the sample. However, this is enough to allow the algorithm to infer
behaviour around the sample, as illustrated by the thick partial lines.

As we generalize from the sample we must ensure than ξ1 and ξ2 remain well-defined and that
no root function crosses the symbolic interval described by I2. To achieve this we compute a pro-
10

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
jection consisting of p4 = discx2 (p2) and p5 = resx2 (p3, p2) (also discx2 (p1) and discx2 (p3) but they
do not have any real roots and so play no further role in this example). Crucially, because p1 has
only one section and that section lies above the cell of interest, the resultant of p1 and the lower-
boundary polynomial p2 is not required or computed. The bottom-left figure shows how the zeros of
the projection map onto the geometric features.

Analogously to x2, we isolate the real roots ξ ′
1 = rootx1 [p4, 1], ξ ′

2 = rootx1 [p5, 1], ξ ′
3 = rootx1 [p4, 2]

in x1. We determine the interval I1 = (sector, ξ ′
2, ξ

′
3) around s1 for x1 and thus generate the cell in

the bottom-right image.

So we see that for Example 3.2 the new levelwise approach produces the second of the two
possible outcomes from the refinement-based construction (Fig. 1). The example illustrates how the
levelwise approach avoids “mistakes” that the refinement-based construction can make due to poor
choices of orderings for the polynomials.

The levelwise approach also allows greater flexibility in how polynomials resulting from projection
are handled, but that aspect of the algorithm requires more variables than in this simple example in
order to be observed.

4. Proof system for single cells

In Section 5 we will present our new levelwise procedure to construct a single cell. We lay the
basis for this by first formalizing our work as a proof system in this section. The system expresses
how the properties we want to conclude rely on other “smaller” properties. From this, the procedure
in the next section gains maximal freedom to make heuristic choices. Before we go into the formal
presentation, we outline the idea for our running example.

4.1. Motivating example

Example 4.1. Recall Example 3.1 and Fig. 2 where we sought to construct a cell R ⊆ R2 around
s = (s1, s2) such that the sign-invariance of p1, p2, p3 hold on R . We started by eliminating x2: we
isolated real roots of p j(s1, x2) to define ξ1, . . . ξ4, sorted them, and observed that ξ1(s1) < s2 < ξ2(s1),
thus we determined that in the second level the cell was represented by I2 = (sector, ξ1, ξ2).

This root ordering and the representation should now be generalized such that the underlying cell
R1 is restricted by specifying certain properties ensuring ξ1 and ξ2 remain as cell boundaries: they
must remain well-defined over R1; no further root of p1, p2, p3 should appear that intersects I2 over
R1; and the other roots, ξ3 and ξ4, should remain outside the symbolic interval I2 over R1. For the
latter, we extend to a partial ordering � with ξ2 � ξ3 and ξ2 � ξ4.

To conclude that p1, p2, p3 are sign-invariant in R , the proof system shows we need to maintain
the properties that: the sample s is included in R; I2 describes the cell’s boundaries on the cur-
rent level; the underlying cell R1 is a connected analytic submanifold; and p1, p2, p3 are delineable.
Furthermore, we maintain that the partial ordering � is maintained over R1.

To maintain these properties the proof system concludes that we must also prove order-invariance
and sign-invariance of some coefficients, resultants, and discriminants of the input polynomials. After
simplification, we find that on level 1 the polynomial p4 = discx2 (p2) and p5 = resx2 (p3, p2) must be
ensured sign-invariant. This leads to a representation I1 = (sector, ξ ′

2, ξ
′
3) and then since all polyno-

mials are univariate and their zeros are algebraic numbers, no further projection or proof steps are
necessary. The constructed cell is described by R= (I1, I2).

The graph of the proof constructed is shown in Fig. 3, in which the sign-invariance properties
sgn_inv(p1), sgn_inv(p2), sgn_inv(p3) lead to R = setOf(R ↓[1], I2) and R ↓[1]= setOf(I1). The exact
proof rules used in that figure will be defined in the rest of this section.

Note how in the example there were multiple choices for �. Choosing ξ2 � ξ3 and ξ3 � ξ4 would
have been a valid choice but that leads to a smaller cell (the one depicted in the top right of Fig. 1).
We will discuss ordering heuristics to make this choice in Section 6.1.
11

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
sgn_inv(p1)(R) �sample(s)(R), repr(I2, s1)(R), ir_ord(�, s1)(R),an_del(p1)(R),

an_sub(1)(R), connected(1)(R)

sgn_inv(p2)(R) �sample(s)(R), repr(I2, s1)(R), ir_ord(�, s1)(R),an_del(p2)(R),

an_sub(1)(R), connected(1)(R)

sgn_inv(p3)(R) �sample(s)(R), repr(I2, s1)(R), ir_ord(�, s1)(R),an_del(p3)(R),

an_sub(1)(R), connected(1)(R)

sample(s)(R) �repr(I2, s1)(R), sample(s1)(R)

repr(I2, s1)(R) �R = setOf(R↓[1],I2),an_del(p2)(R),an_del(p3)(R), sample(s1)(R)

ir_ord(�, s1)(R) �an_del(p1)(R),an_del(p2)(R),an_del(p3)(R),ord_inv(resx2 (p3, p1))(R),

ord_inv(resx2 (p3, p2))(R),an_sub(1)(R), connected(1)(R), sample(s1)(R)

an_del(p1)(R) �non_null(p1)(R),ord_inv(discx2 (p1))(R), sgn_inv(ldcfx2 (p1))(R),

an_sub(1)(R), connected(1)(R)

an_del(p2)(R) �non_null(p2)(R),ord_inv(discx2 (p2))(R), sgn_inv(ldcfx2 (p2))(R),

an_sub(1)(R), connected(1)(R)

an_del(p3)(R) �non_null(p3)(R),ord_inv(discx2 (p3))(R), sgn_inv(ldcfx2 (p3))(R),

an_sub(1)(R), connected(1)(R)

non_null(p1)(R) �true

non_null(p2)(R) �true

non_null(p3)(R) �true

ord_inv(discx2 (p1))(R) �true

ord_inv(discx2 (p2))(R) �sgn_inv(p4)(R), sample(s1)(R)

ord_inv(discx2 (p3))(R) �true

sgn_inv(p4)(R) �repr(I1)(R)

ord_inv(resx2 (p3, p1))(R) �true

ord_inv(resx2 (p3, p2))(R) �sgn_inv(p5)(R), sample(s1)(R)

sgn_inv(p5)(R) �repr(I1)(R)

sgn_inv(ldcfx2 (p1))(R) �true

sgn_inv(ldcfx2 (p2))(R) �true

sgn_inv(ldcfx2 (p3))(R) �true

an_sub(1)(R) �repr(I1)(R)

connected(1)(R) �true

sample(s1)(R) �repr(I1)(R)

repr(I1)(R) �R↓[1]= setOf(I1)

Fig. 3. Proof for Example 4.1 (slightly truncated, read in columns). Q � P1, . . . , Pk means that Q is derived from P1, . . . , Pk .

4.2. Proof system: properties and rules

Our system is for constructing cells. We will define properties of the cell that is being constructed
and rules of inference to infer that a property holds for a cell given some other properties and condi-
tions. As indicated in the previous example, there may be different rules that can be used to prove a
property.

Definition 4.1 (Property). Let i ∈ N . A property of level i is a function q : {R | R ⊆ Ri} → B. A property
q of level i holds on a set R ⊆ Ri if q(R) = 1. The set Prop denotes the set of all properties of any
level. For a set Q ⊆ Prop, we denote by Q |i the set of properties of level i and by Q |[i] the set of
properties of level at most i.
12

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Note that the concept of levels of polynomials has been extended to properties in the sense that
the satisfaction of a property of level i cannot be influenced by values of the variables xi+1, . . . , xn .

We denote a rule of inference in the form P1, . . . , Pk � Q , where P1, . . . , Pk are the antecedents
and Q is the consequent.

For convenience, we allow lifting properties from lower levels to higher levels as follows.

Definition 4.2. We extend every property q of level i to q : {R | R ⊆R j, j ≥ i} →B such that q(R) =
q(R ↓[i]) for any R ⊆R j, j ≥ i. Accordingly, we introduce the following rule of inference:

R ⊆ Ri+1, q ∈ Prop|i, q(R↓[i]) � q(R)

So, for example, this rule allows us to say that because the property of sign-invariance holds for
x2 − 2 in the one-level cell −1 < x < 1, sign-invariance holds for x2 − 2 in the two-level cell which is
the interior of the unit circle, since this projects down to −1 < x < 1.

The set of inference rules will be defined in such a way that the property of sign-invariance of
a polynomial is reduced to the property of sign-invariance of polynomials at a lower level: thus the
chain of rules is finite. On each level, we will additionally determine a representation describing the
symbolic boundaries of the cell on this level as well as an ordering of the indexed roots of some
polynomials assuring their sign-invariance which will be used later for heuristic decisions.

4.3. Basic cell properties

We will first define the basic properties on polynomials and cells that follow from the original
work on McCallum CAD projection. Throughout, i will refer to the level of the given property and
s refers to algebraic points. It is important to recall that an i-level property is a function that maps
subsets of Ri to Boolean values. Consider for example the first element of Property 4.1: “sample(s)”
for s ∈ Ri is a property, meaning that sample is a function that maps a point (and a level i that is
given implicitly by the point) to a function mapping subsets of Ri to Booleans. Thus, sample(s) is
not a true/false value. Rather, it is the function sample(s) applied to a given subset of Ri that yields
a true/false value. Note that for the fifth and sixth items in Property 4.1 the level i must be given
explicitly, while with the others the level is implicit in other arguments.

Property 4.1. Let i ∈N , and R ⊆Ri .

1. Let s ∈Ri be a sample point. The property sample(s) holds on R if and only if s ∈ R.
2. Let p ∈ Q[x1, . . . , xi] be a polynomial of level i. The property ord_inv(p) holds on R if and only if p is

order-invariant on R.
3. Let p ∈ Q[x1, . . . , xi] be a polynomial of level i. The property sgn_inv(p) holds on R if and only if p is

sign-invariant on R.
4. Let p ∈Q[x1, . . . , xi+1] be a polynomial of level i + 1. The property non_null(p) holds on R if and only if

p is not nullified on any point in R.
5. The property an_sub(i) holds on R if and only if R is an analytic submanifold.
6. The property connected(i) holds on R if and only if R is connected.
7. Let p ∈ Q[x1, . . . , xi+1] be a polynomial of level i + 1. The property an_del(p) holds on R if and only if

p is analytically delineable on some connected superset R ′ ⊇ R and p is order-invariant in all p-sections
over R ′ .

Note that an_del(p) is defined such that it holds on a subset R ⊆ Ri if and only if there is a
connected superset of R on which p is analytically delineable. This is due to the fact that in general,
we cannot assume that R is a connected set, but delineability is only defined on connected sets. We
will use this trick in the following for other properties as well.

Further, note that for some properties such as sgn_inv(p), if they hold on R ⊆ Ri , then they also
hold on all subsets of R . For others such as an_sub(i) or connected(i), this is not the case: a subset of
13

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
R is not necessarily an analytic submanifold nor connected! This is one of the reasons why the proof
rules below cannot cover all subsets where a given property holds, but they do cover sufficiently
many subsets for our purposes.

For the remainder of this subsection we will present proof rules for these properties (with proofs
of correctness available in Appendix A). For the ease of navigation we give references to the rules
which apply to prove each property above (and provide similar references after introducing further
properties in later subsections).

References.

sample(s) Rule 4.12
ord_inv(p) Rule 4.3, Rule 4.4, Rule 4.5
sgn_inv(p) Rule 4.3, Rule 4.4, Rule 4.6,

Rule 4.8, Rule 4.10

non_null(p) Rule 4.2
an_sub(i) Rule 4.7
connected(i) Rule 4.11
an_del(p) Rule 4.1

In the following rule definitions we list assumptions before the actual inference rule. These as-
sumptions are formally part of the inference rule, but we keep them separated to improve readability.

We start by defining rules that relate to McCallum’s projection.

Rule 4.1. Let i ∈N , R ⊆Ri , and p ∈Q[x1, . . . , xi+1], level(p) = i + 1. Assume that p is irreducible.

an_sub(i)(R), connected(i)(R), non_null(p)(R), ord_inv(discxi+1(p))(R),

sgn_inv(ldcfxi+1(p))(R) � an_del(p)(R)

Rule 4.2. Let i ∈ N , R ⊆ Ri , s ∈ Ri , and p ∈ Q[x1, . . . , xi+1], level(p) = i + 1. Assume that p is irre-
ducible, and p = cm · xm

i+1 + . . . + c1 · xi+1 + c0 such that cm, . . . , c0 ∈Q[x1, . . . , xi].
sample(s)(R), degxi+1

(p) > 1, discxi+1(p)(s) �= 0, sgn_inv(discxi+1(p))(R) � non_null(p)(R)

sample(s)(R), ∃ j ∈ [m]. (c j(s) �= 0 ∧ sgn_inv(c j)(R)) � non_null(p)(R)

Note that the condition degxi+1
(p) > 1 ∧ discxi+1 (p)(s) �= 0 already implies that p(s, xi+1) �= 0, as

does c j(s) �= 0. In practice, it is good to delay choosing which rule to use because we may observe
that one of the non-zero c j ’s is already required to be sign-invariant from some other part of the
projection process (e.g. leading coefficients are often added to the projection). Moreover, the second
case is trivial if the c j is constant.

Rule 4.3. Let p ∈Q.

� ord_inv(p)(R0)

� sgn_inv(p)(R0)

Rule 4.4. Let i ∈ N>0, R ⊆ Ri , and p ∈ Q[x1, . . . , xi], level(p) = i. Assume that p is reducible, and
factors(p) = {q1, . . . , qk}.

ord_inv(q1)(R), . . . , ord_inv(qk)(R) � ord_inv(p)(R)

sgn_inv(q1)(R), . . . , sgn_inv(qk)(R) � sgn_inv(p)(R)

Rule 4.5. Let i ∈N>0, R ⊆Ri , s ∈Ri , and p ∈Q[x1, . . . , xi], level(p) = i. Assume that p is irreducible.

p(s) �= 0, sample(s)(R), sgn_inv(p)(R) � ord_inv(p)(R)

p(s) = 0, sample(s)(R), an_sub(i − 1)(R), connected(i)(R), sgn_inv(p)(R), an_del(p)(R) � ord_inv(p)(R)
14

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
x1

x2
s

(a) Without singularities.

x1

x2
s

(b) With singularity.

Fig. 4. Examples of the two cases of polynomials without roots at the projection s1 of the sample s = (s1, s2). Dashed lines
denote cylinder boundaries over the projected cell.

4.4. Sign invariance for polynomials without roots

For polynomials without roots over the current sample, we must ensure that no further root ap-
pears over the underlying cell. In this case, it is sufficient to make the polynomial delineable. Fig. 4
illustrates some cases.

Rule 4.6. Let i ∈N , R ⊆Ri , s ∈Ri−1, and p ∈Q[x1, . . . , xi], level(p) = i. Assume that p is irreducible,
and realRoots(p(s, xi)) = ∅.

sample(s)(R), an_del(p)(R) � sgn_inv(p)(R)

4.5. Cell boundary representations

We are aiming to generate the description of a sign-invariant cell for the input polynomials. In the
language of our proof system: at every level we identify a symbolic interval upon which we prove
sign-invariance of the polynomials of that level. To do this, we take their real roots over the current
sample into account.

We determine whether we are in a section or sector (i.e. whether a polynomial has a root exactly
at the current sample point or not) and pick indexed root expressions (as given by Definition 2.5) to
be symbolic descriptions of the cell boundaries that generalize a concrete interval around the sample
point: either the root at the current sample or the largest root below and the lowest root above.
Note that the choice of such boundaries might not be unique in the cases where two root functions
cross over the underlying sample. We will discuss more general choices of the symbolic intervals in
Section 5.2.

Our next property is designed to state that a designated representation describes the cell bound-
aries on the current level.

To do so, we define how we use indexed root expressions to refer to real root functions of a poly-
nomial. An indexed root expression has incontinuities where the number of the roots of its defining
polynomial changes. Therefore a root function of a polynomial is only uniquely determined by an
indexed root expression in combination with a given sample. In the following, we define the unique
real root function determined this way:

Definition 4.3 (Root functions). Let i ∈N>0, s ∈Ri−1, and ξ ∈ irExpr(ξ.p, s) be an indexed root expres-
sion of level i.

Let R ⊆Ri maximal such that ξ.p is delineable on R , R is connected, and s ∈ R . Then θξ,s denotes
the real root function of p on R that witnesses analytic delineability of p and equals ξ |R .
15

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Property 4.2. Let i ∈N>0 , R ⊆Ri , s ∈Ri−1 , and I be a symbolic interval of level i.
The property repr(I, s) holds on R if and only if I.l ∈ irExpr(I.l.p, s) (if I.l �= −∞), I.u ∈ irExpr(I.u.p, s)

(if I.u �= ∞) respectively I.b ∈ irExpr(I.b.p, s) and one of the following holds:

• I= (sector, l, u), dom(θl,s) ∩ dom(θu,s) ⊇ R ↓[i−1] and R = {(r, r′) | r ∈ R ↓[i−1], r′ ∈ (θl,s(r), θu,s(r))};
or

• I= (sector, −∞, u), dom(θu,s) ⊇ R ↓[i−1] and R = {(r, r′) | r ∈ R ↓[i−1], r′ ∈ (−∞, θu,s(r))}; or
• I= (sector, l, ∞), dom(θl,s) ⊇ R ↓[i−1] and R = {(r, r′) | r ∈ R ↓[i−1], r′ ∈ (θl,s(r), ∞)}; or
• I= (sector, −∞, ∞) and R = {(r, r′) | r ∈ R ↓[i−1], r′ ∈R}; or
• I= (section, b), dom(θb,s) ⊇ R ↓[i−1] and R = {(r, r′) | r ∈ R ↓[i−1], r′ = θb,s(r)},

(for the real root functions θl,s, θu,s respectively θu,b according to Definition 4.3).

References.

repr(I, s) Rule 4.13

Since the cell’s boundaries are described by real root functions, we can prove that it is an analytic
submanifold.

Rule 4.7. Let i ∈N>0, R ⊆Ri , s ∈Ri−1, and I be a symbolic interval of level i.

� an_sub(0)(R0)

repr(I, s)(R), an_sub(i − 1)(R) � an_sub(i)(R)

4.6. Equational constraint projection

An optimization to CAD which tailors it to the logical structure of the problem is the theory of
equational constraints. A polynomial equation is an equational constraint if it is logically implied by
the truth of the input formula. If the input to CAD has an equational constraint then we may perform
fewer projection and lifting operations to achieve truth-invariance. This optimization dates back to
McCallum (1999) with the recent paper by England et al. (2020) summarizing the state of the art.
The examples there demonstrate the drastic savings that are achievable in these cases (the analysis
by England et al. (2020) shows the double exponent in the complexity bound decreases for each
equational constraint).

In the context of building a single cell we have even greater scope to use equational constraint
savings. Here, any time we are generalizing in the section case, we can apply the reduced projection
and lifting. I.e., if a polynomial is zero at our sample then it must also be zero throughout the cell
we are generalizing the sample to, and so for the purposes of this cell, it is an equational constraint.
In this case we need only make the section defining polynomial delineable. All other constraints can
be made sign-invariant simply by including resultants with the section defining polynomial (but not
other projection polynomials).

Rule 4.8. Let i ∈ N>0, R ⊆ Ri , s ∈ Ri−1, p ∈ Q[x1, . . . , xi], level(p) = i, and I be a symbolic interval
of level i. Assume that p is irreducible, and I= (section, b).

Let Q := an_sub(i − 1)(R) ∧ connected(i − 1)(R) ∧ repr(I, s)(R) ∧ an_del(b.p)(R).

Q , b.p = p � sgn_inv(p)(R)

Q , b.p �= p, ord_inv(resxi (b.p, p))(R) � sgn_inv(p)(R)
16

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
4.7. Root orderings

We define a partial ordering on the indexed root expressions of the given set of polynomials, which
we will use to ensure that none of their roots crosses the cell’s boundary on the current level.

We first give a general definition of indexed root orderings.

Definition 4.4 (Indexed root ordering). Let i ∈ N , and � be a set of indexed root expressions of level
i +1. An indexed root ordering on � is a relation �⊆ � ×� such that its reflexive and transitive closure
�t is a partial order on �. Indexed root orderings of this form are also called indexed root ordering of
level i + 1, and we define dom(�) = {ξ, ξ ′ | (ξ, ξ ′) ∈�}.

Let s ∈Ri . An indexed root ordering � of level i + 1 matches s if and only if ξ ∈ irExpr(ξ.p, s) for
all ξ ∈ dom(�) and ξ(s) ≤ ξ ′(s) for all (ξ, ξ ′) ∈�.

In our algorithm we will pick an indexed root ordering such that, in the sector case, roots lower
than the interval’s lower bound remain lower, and roots greater than the interval’s upper bound
remain greater. In the section case, the lower and upper bounds in that condition both refer to a
single bound. We do not give an explicit definition here yet, as it will be part of the rules defined
below.

The motivation for introducing the general concept of indexed root orderings is to allow for choices
between different root orderings. We will discuss them in Section 5.2.

Example 4.2. Given indexed root expressions � = {ξ1, . . . , ξ5} of level i + 1 and a sample s ∈
Ri such that ξ1(s) < . . . < ξ5(s) and I = (sector, ξ1, ξ2); then �= {(ξ2, ξ3), (ξ2, ξ4), (ξ2, ξ5)}, �′ =
{(ξ2, ξ3), (ξ3, ξ4), (ξ2, ξ5)}, and �′′ = {(ξ2, ξ3), (ξ3, ξ4), (ξ4, ξ5)} are all indexed root orderings on � that
allow us to derive sign-invariance of the corresponding polynomials above the sample s and the in-
terval I.

We need to maintain that an indexed root ordering holds over the underlying cell. First, we will
define this property formally.

Property 4.3. Let i ∈N , R ⊆Ri , s ∈Ri , � be an indexed root ordering of level i + 1, and �t be the reflexive
and transitive closure of �.

The property ir_ord(�, s) holds on R if and only if � matches s, for all ξ ∈ dom(�) it holds R ⊆ dom(θξ,s),
and for all ξ, ξ ′ ∈ dom(�) it holds that

ξ �t ξ ′ ∧ ξ(s) < ξ ′(s) =⇒ θξ,s(r) < θξ ′,s(r) for all r ∈ R

and

ξ �t ξ ′ ∧ ξ(s) = ξ ′(s) =⇒ θξ,s(r) = θξ ′,s(r) for all r ∈ R

(for the real root functions θξ,s, θξ ′,s according to Definition 4.3).

References.

ir_ord(�, s) Rule 4.9

Note that the semantics of an indexed root expression ξ is only defined in combination with the
sample s, as this uniquely determines the real root function θξ,s; thus, we add s to the signature
of the property. To clarify this further: the sample s is only used to identify the referred real root
functions and is not necessarily contained in the constructed cell by definition of the above property
(although in the following proof rules, this will be required).

The property is maintained by delineability and adding resultants for the defining polynomials of
a pair of indexed root expressions to the projection. We essentially prove that the ordering of root
17

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
x1

x2

ξ1

ξ2

ξ3

s

(a) Assume �= {(ξ1, ξ2), (ξ2, ξ3)}. All three real root
functions are defined over the underlying cell. Only
two resultants are necessary to maintain the order-
ing of the root functions, e.g. resx2 (ξ1.p, ξ2.p) and
resx2 (ξ2.p, ξ3.p). We conclude the ordering between ξ1
and ξ3 by transitivity.

x1

x2

ξ1

ξ2

ξ3

s

(b) Assume �= {(ξ1, ξ2), (ξ1, ξ3)}. The lower bound on
x1 is due to the delineability of the common defining
polynomial of ξ1 and ξ2. The ordering ξ1 � ξ2 is main-
tained by discx2 (ξ1.p) and the ordering ξ1 � ξ3 by the
resultant resx2 (ξ1.p, ξ3.p). Note that latter causes the
upper bound on x1 to be smaller than necessary, as
ξ3.p intersects θξ2,s “before” it intersects θξ1,s . More so-
phisticated rules circumventing this are future work.

Fig. 5. Two examples for the property ir_ord(�, s).

functions ensured by the order-invariance of resultants is transitive. Fig. 5 shows an example where
transitivity is maintained for three root functions.

Rule 4.9. Let i ∈N , R ⊆Ri , s ∈Ri , and � be an indexed root ordering of level i + 1. Assume that ξ.p
is irreducible for all ξ ∈ dom(�), and that � matches s.

sample(s)(R), an_sub(i)(R), connected(i)(R), ∀ξ ∈ dom(�). an_del(ξ.p)(R),

∀(ξ, ξ ′) ∈� . ord_inv(resxi+1 (ξ.p, ξ ′.p))(R) � ir_ord(�, s)(R)

Now we are ready to define the rule for ensuring the sign-invariance of a polynomial p, given a
representation I and an indexed root ordering �. The latter will be used to ensure that no real root
function of p crosses the cell’s boundaries. The cases are depicted in Fig. 6.

Rule 4.10. Let i ∈ N>0, R ⊆ Ri , s ∈ Ri−1, p ∈ Q[x1, . . . , xi], level(p) = i, I be a symbolic interval of
level i, � be an indexed root ordering of level i, and �t be the reflexive and transitive closure of �.

We choose l, u such that either I= (sector, l, u) or (I= (section, b) for b = l = u).
Assume that p is irreducible, irExpr(p, s) �= ∅, ξ.p is irreducible for all ξ ∈ dom(�), � matches s,

and for all ξ ∈ irExpr(p, s) it holds either ξ �t l or u �t ξ .

sample(s)(R), repr(I, s)(R), ir_ord(�, s)(R), an_del(p)(R) � sgn_inv(p)(R)

4.8. Connectedness

For maintaining properties (in particular the order-invariance of some polynomials) on higher lev-
els, we need to maintain connectedness. Besides some preconditions, i.e. that the cell’s boundaries
are described by two well-defined real root functions, we need to ensure that the lower and upper
bound of a sector do not cross as illustrated in Fig. 7.
18

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
x1

x2

s

p1

p2

p3

p3

(a) The indexed root ordering ensures that real root
functions remain outside the cell. As p3 is delineable,
this is sufficient to prove sign invariance.

x1

x2

s

p1

p2

p3

p3

p3

(b) We note that if p3 has singularities, the cell might
be made smaller than required for ensuring sign-
invariance due to the strong notion of delineability. Re-
laxing this notion is part of future research.

Fig. 6. Two examples for maintaining the sign-invariance of a polynomial p3 in a cell (here defined by the enclosed region
between the graphs of p1 and p2).

Fig. 7. Let I= (sector, ξ1, ξ2). Then repr(Is1) holds in the whole blue shaded area, thus forming a non-connected subset of R2.
By adding resx2 (ξ1.p, ξ2.p) to the projection, the subset is made connected by restricting the underlying cell as indicated by the
dashed vertical lines. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

Rule 4.11. Let i ∈ N>0, R ⊆ Ri , s ∈ Ri−1, I be a symbolic interval of level i, � be an indexed root
ordering of level i, and �t be the reflexive and transitive closure of �. Assume that � matches s.

Let Q := connected(i − 1)(R) ∧ repr(I, s)(R).

� connected(0)(R0)

Q , I= (sector, l, u), l �= −∞, u �= ∞, l �t u, ir_ord(�, s) � connected(i)(R)

Q , I= (sector, l, u), l = −∞ ∨ u = ∞ � connected(i)(R)

Q , I= (section,b) � connected(i)(R)

4.9. Generalization of the current sample

We define a mapping for generalizing the sample to the cell on the current level.

Rule 4.12. Let i ∈ N>0, R ⊆ Ri , s ∈ Ri , and I be a symbolic interval of level i. Assume that si ∈
setOf(s[i−1], I).
19

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
� sample(())(R0)

sample(s[i−1])(R), repr(I, s[i−1])(R) � sample(s)(R)

4.10. Cell descriptions

Now, we define a property that states that the cell is described by its representation.

Property 4.4. Let i ∈N>0 , R ⊆Ri , and I be a symbolic interval of level i.
The property holds(I) holds on R if and only if R = setOf(R ↓[i−1], I).

This property is the only one that cannot be mapped to a set of other properties, i.e. properties of
this kind are the assumptions in our proof system.

Given holds(I), we can maintain repr(I, s). To do so, we need to ensure that the indexed root
expressions describing the cell’s boundaries always refer to the same roots on the underlying cell.
This can be achieved by making their defining polynomials delineable (such that the referred real
root function is defined and the number of roots below the referred root function is constant over the
underlying cell).

Rule 4.13. Let i ∈N>0, R ⊆Ri−1, s ∈Ri−1, and I be a symbolic interval of level i. Assume that I.l ∈
irExpr(I.l.p, s) (if I.l �= −∞), I.u ∈ irExpr(I.u.p, s) (if I.u �= ∞) respectively I.b ∈ irExpr(I.b.p, s).

sample(s)(R), holds(I)(R), I= (section,b), an_del(b.p)(R) � repr(I, s)(R)

sample(s)(R), holds(I)(R), I= (sector, l, u), l = −∞ ∨ an_del(l.p)(R), u = ∞ ∨ an_del(u.p)(R) � repr(I, s)(R)

4.11. Ordering of properties

We observe that the rules of inference defined in Rules 4.1 to 4.13 are cycle-free in the sense
that all properties in the antecedents are smaller than the consequent property according to some
ordering �:

Definition 4.5. The ordering � is defined such that properties of level i are greater than any property
of level i −1, and such that it satisfies the following partial order of properties of each level i (starting
with the greatest element):

1. ir_ord(�, s) for all � for roots of level i and s ∈Ri−1

2. an_del(p) for all p of level i
3. non_null(p) for all p of level i
4. ord_inv(p) for all reducible p of level i
5. ord_inv(p) for all irreducible p of level i
6. sgn_inv(p) for all reducible p of level i
7. sgn_inv(p) for all irreducible p of level i
8. connected(i)
9. an_sub(i)

10. sample(s) for all s ∈Ri of level i
11. repr(I, s) for all I of level i and s ∈Ri−1

12. holds(I) for all I of level i

The proof rules introduced in this section are visualized in Fig. 8 which shows the relationships
between rules of different levels.
20

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
ir_ord(�, s)

an_del(p)

non_null(p) an_sub(i) ord_inv(p)

sgn_inv(p) ord_inv(p), p irred

sgn_inv(p), p irred connected(i)

sample(s)

repr(I, s)holds(I)

ir_ord(�, s)

an_del(p)

an_sub(i − 1) ord_inv(p)

sgn_inv(p)

connected(i − 1)

sample(s)

level i

level i − 1

Fig. 8. Proof rule relationships; irred stands for irreducible.

5. Levelwise construction of a single cell

So far, we presented an abstract proof system, i.e. a set of rules which allow us to construct a
proof for sign-invariance of some polynomials in a cell. In the following, we will give an algorithm
for constructing a single cell in a levelwise manner by specifying how the proof rules are applied. We
first give the algorithmic framework and then define heuristics needed to instantiate the algorithm.

5.1. Algorithm to construct a single cell

Algorithm 1 constructs a single cell. The input to the algorithm is a set of polynomials for which
a cell is to be computed on which these polynomials are sign-invariant. This initializes the set of
properties Q on Line 1 which is maintained to contain properties that need to be fulfilled by the yet
to be chosen representations on the lower levels. I.e. at the beginning of iteration i, the data structure
(I1, . . . , Ii) needs to maintain all properties in Q . To do so, Algorithm 1 iteratively calls Algorithm 2
to process the properties and construct the interval on level i, taking note of any failure cases due to
nullifications that might occur.

Algorithm 3 is a sub-algorithm that replaces a property in Q by a set of properties Q ′ induced
by a proof rule if no such set is already contained in Q , and otherwise simply removes the property
from Q . FAIL is returned here if and only if no proof rule is applicable; which is the case only when a
polynomial is nullified (i.e. Rule 4.2) and equational constraint projection does not allow us to ignore
that fact. The sets Q ′ induced by a proof rule are determined in Line 1 as follows. Assume we want
to derive the property non_null(p) of R ⊆Ri for some polynomial p of level i + 1 with respect to the
current sample s ∈Ri . The algorithm would check if the conditions of the proof rules in Rule 4.2 are
satisfied, and then determine the corresponding properties of R which form the set Q ′ . In the first
21

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
case, we check whether p is irreducible, degxi+1
(p) > 1, and discxi+1 (p)(s) �= 0 hold; if yes, we add the

set Q ′ = {sample(s), sgn_inv(discxi+1 (p))} to the set of choices. In the second case, we check whether
p is irreducible and there exists a coefficient c j of p such that c j(s) �= 0 holds; if yes, we add the set
Q ′ = {sample(s), sgn_inv(c j)} to the set of choices.

Algorithm 2 is used to extend the cell construction by a level. It applies the proof rules according
to the ordering � on the properties from Definition 4.5 until the only properties of level i remaining
are the sign-invariance of some irreducible polynomials (note that all smaller properties w.r.t. � are
provable with only the sample s present except if a nullification occurs). Then, a representation con-
sisting of a symbolic interval I, a set of polynomials E and an indexed root ordering � is chosen.
The roles of I and � are already discussed above; the polynomials in E are meant to be excluded
from the indexed root ordering, and thus the application of the equational constraint projection rule
(Rule 4.8) is enforced. The formal requirements on the representation will be defined in Definition 5.1.
Finally, the remaining properties on level i are eliminated by application of the proof rules, until only
a property of the form holds(I) is left on the level (which is the greatest property of the current level
w.r.t. �).

Algorithm 1: single_cell(i, P , s).
Input : finite P ⊆Q[x1, . . . , xn], s ∈Rn

Output : cell data structure R such that s ∈ setOf(R) and all polynomials in P are sign-invariant on setOf(R); or FAIL
1 Q := {sgn_inv(p) | p ∈ P }
2 for i = n, . . . , 1 do
3 result := construct_interval(i, Q , s) // Algorithm 2
4 if result �= FAIL then
5 Ii , Q := result

6 else
7 return FAIL

8 return (I1, . . . , In)

Algorithm 2: construct_interval(i, Q , s).

Input : i ∈N>0, finite Q ⊆ Prop|[i] , s ∈Ri

Output : an interval data structure I such that s ∈ setOf(s[i−1], I), and a set Q ′ ⊆ Prop|[i−1] such that for any R ⊆Ri−1

it holds (∀q′ ∈ Q ′. q′(R)) =⇒ (∀q ∈ Q . q(setOf(R, I))); or FAIL
1 foreach q ∈ Q |i where q is the greatest element with respect to � (from Definition 4.5) and q �= sgn_inv(p) for an irreducible p

do
2 Q := apply_pre(i,Q ,q,(s)) // Algorithm 3
3 if Q = FAIL then
4 return FAIL

5 Pnonnull := {p | sgn_inv(p) ∈ Q |i s.t. p(s[i−1], xi) �= 0}
6 � := irExpr(Pnonnull, s[i−1])
7 choose representation (I, E, �) of � with respect to s
8 if i > 1 then
9 foreach q ∈ Q |i where q is the greatest element with respect to � (from Definition 4.5) and q �= holds(I) do

10 Q := apply_pre(i,Q ,q,(s, I, �)) // Algorithm 3
11 if Q = FAIL then
12 return FAIL

/* Q |i contains now only holds(I) */
13 return I,(Q \ Q |i)

Theorem 5.1. Let P ⊆Q[x1, . . . , xn], and s ∈Rn. The method single_cell (Algorithm 1) either returns a
cell data structure R such that all polynomials in P are sign-invariant on setOf(R) and s ∈ setOf(R), or returns
FAIL.
22

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Algorithm 3: apply_pre(i, Q , q, parameters).

Input : i ∈N>0, finite Q ⊆ Prop|[i] , q ∈ Prop|i ∩ Q and either parameters = (s) or parameters = (s, I, �) with s ∈Ri ,
symbolic interval I on level i, indexed root ordering � on level i

Output : a set (Q \ {q}) ∪ Q ′ ⊆ Prop|[i] \ {q} such that for all R ⊆Ri it holds (∀q′ ∈ Q ′. q′(R)) =⇒ q(R); or FAIL
1 let choices ⊆ 2Prop such that each Q ′ ∈ choices is a set of properties from a proof rule which can be applied according to

parameters to derive q (see explanatory text above for details)
2 if choices = ∅ then
3 return FAIL

4 if �Q ′ ∈ choices. Q ′ ⊆ Q then
5 choose Q ′ ∈ choices
6 return (Q \ {q}) ∪ Q ′

7 else
8 return Q \ {q}

Proof. Note that the algorithm will terminate as Algorithm 3 replaces properties by smaller properties
according to the ordering as defined in Definition 4.5, there does exist a smallest property, and the
CAD projection of a set of polynomials is finite. The correctness follows from the correctness proofs
of the rules of inference. �
5.2. Heuristic choices

Our algorithm has two points where a choice must be made: (1) when choosing a rule of inference
to apply in Algorithm 3 Line 5; and (2) when choosing the representation in Algorithm 2 Line 7.

For the first choice, the rules of inference may define multiple possible property sets for a prop-
erty that each imply that property and so we have the freedom to choose which to use. We aim to
pick the “best” such set. One could compute each of these sets individually and compare them, or, to
avoid superfluous heavy computations of resultants or discriminants, prefer sets which seem easier to
compute. The latter approach, making the choice heuristically (with respect to e.g. estimated compu-
tational effort, or degrees of polynomials, or number of polynomials / real roots) is the approach taken
by our implementation. For instance, in Rule 4.2, we always pick a coefficient rather than computing
a discriminant. Note that even if sets involving resultants or discriminants are avoided where possible,
the algorithm should first check whether one such set is already maintained before computing any
new set.

For the second choice, we formalize what we mean by a representation. As already discussed, there
might be multiple choices for the cell description I on the current level and the indexed root ordering
� for fulfilling the requirements for Rule 4.10. Additionally, if I is a section, we can make use of the
equational constraints projection in Rule 4.8. A representation determines all these parameters.

Definition 5.1 (Representation for �). Let i ∈ N>0, s ∈ Ri , and � be a set of indexed root expressions
of level i such that ξ ∈ irExpr(ξ.p, s[i−1]) for every ξ ∈ �.

A representation for � with respect to s is a tuple (I, E, �) where I is a symbolic interval of level
i, E is a set of polynomials of level i, and � is an indexed root ordering of level i such that

• s ∈ setOf(s[i−1], I),
• either p ∈ E or irExpr(p, s[i−1]) ⊆ dom(�) for all p ∈ {ξ.p | ξ ∈ �},
• if E �= ∅ then I= (section, b) for some indexed root expression b,
• � matches s[i−1] , and
• ξ �t I.l or I.u �t ξ for all ξ ∈ � if I= (sector, l, u) respectively ξ �t I.b or I.b �t ξ for all ξ ∈ �

if I= (section, b).

This definition is quite general by allowing additional indexed root expressions in �′ compared
to the set � describing the roots of the present polynomials. This for example enables heuristics
23

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
to under-approximate the constructed cell to reduce heavy computations in future work (see Sec-
tion 8.1).

In the following however, we will assume that �′ = �, that is, I and � will only consider roots
from � corresponding to the polynomials for which we need to derive sign-invariance.

Note that we omit the requirements of Rule 4.11 here yet for readability reasons and as the adap-
tion is trivial. If required, we only need to add the pair (I.l, I.u) to the indexed root ordering.

For the symbolic interval I, we minimize the degrees in the main variable of the defining polyno-
mials.

Definition 5.2 (Choice of the symbolic interval). Let i ∈ N>0, P ⊆ Q[x1, . . . , xi] be a set of irreducible
polynomials of level i, s ∈ Ri be a sample such that no p ∈ P is nullified on s[i−1] , and � ⊆
irExpr(P , s[i−1]).

We define the sets �lo and �up of the closest lower respectively upper bounds of si as follows:

�lo = {ξ ∈ � | ξ(s[i−1]) ≤ si ∧ ∀ξ ′ ∈ �.
(
ξ ′(s[i−1]) ≤ si =⇒ ξ ′(s[i−1]) ≤ ξ(s[i−1])

)},
�up = {ξ ∈ � | si ≤ ξ(s[i−1]) ∧ ∀ξ ′ ∈ �.

(
si ≤ ξ ′(s[i−1]) =⇒ ξ(s[i−1]) ≤ ξ ′(s[i−1])

)}.
We pick ξlo ∈ �lo such that degxi

(ξlo.p) is minimal and ξup ∈ �up such that degxi
(ξup.p) is minimal.

Additionally, if �lo = �up , then we require ξlo = ξup .
We define the lowest degree interval Ildeg of s with respect to � as

Ildeg = (section, ξlo) if ξlo = ξup,

Ildeg = (sector, ξlo, ξup) otherwise.

For the indexed root ordering �, there are two possibilities: aim to make the underlying cell as big
as possible; or aim to avoid heavy resultant computations. In theory, we could compute the results
for all (or all promising) possible indexed root orderings and pick the best one. However, as this is
infeasible in practice, we define below several alternative heuristics with different rationales.

To achieve this we employ a somewhat idealistic view on the problem. Recall that an indexed root
ordering is ensured by making resultants order-invariant, which is often a stronger ordering on the
roots than required by the picked indexed root ordering. We ignore this fact and base our heuristics
on the set of indexed roots without considering common defining polynomials between them (for
now). This is further discussed in Section 6.

We start with the following observation: as the given derivation rules always require delineability
for all polynomials whose sign-invariance is proven using an indexed root ordering, a fixed ordering
of all real root functions defined at s[i−1] of such polynomials is guaranteed anyway. Thus, we can
restrict the heuristics for the choice of � by computing the ordering on the set �̃ containing for each
polynomial only the closest lower and upper roots to si , and extending an ordering �̃ of �̃ to an
ordering � on �. This is formalized in the following definition.

Definition 5.3 (Choice of the indexed root ordering: reduction). Let i, P , s, � be as in Definition 5.2. Then

�̃ = {ξ ∈ � | ξ(s[i−1]) ≤ si ∧ ∀ξ ′ ∈ � \ {ξ}. (ξ ′.p = ξ.p =⇒ ¬(ξ(s[i−1]) < ξ ′(s[i−1]) ≤ si))}
∪ {ξ ∈ � | si ≤ ξ(s[i−1]) ∧ ∀ξ ′ ∈ � \ {ξ}. (ξ ′.p = ξ.p =⇒ ¬(si ≤ ξ ′(s[i−1]) < ξ(s[i−1])))}.

For any indexed root ordering �̃X on �̃ matching s[i−1] , we define the ordering �X on � matching
s[i−1] as

�X =�̃X ∪ {(ξ, ξ ′) | ξ, ξ ′ ∈ � such that ξ.p = ξ ′.p ∧ ξ(s[i−1]) < ξ ′(s[i−1]))}.

In the following definitions we give different heuristics to choose an indeed root ordering �̃X
which in each case can be extended to a corresponding ordering �X .
24

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
First, in the section case, the below equational constraint heuristic enforces simply the applica-
tion of the equational constraint rule to all polynomials.

Definition 5.4 (Equational constraint representation). Let i, P , s, �, ξlo, ξup, Ildeg be as in Defini-
tion 5.2. If ξlo = ξup , we define the Equational constraint representation as the tuple (Ildeg, P , ∅).

Next, the biggest cell heuristic defines the weakest ordering on the indexed roots according to
Definition 5.1 and thus defines the biggest possible underlying cell (under the assumption that this
ordering can be realized perfectly, i.e. the resultants have roots only below the crossing of a polyno-
mial’s root with a cell boundary) as visualized in Fig. 9a. Note that for the section case, the biggest
cell heuristic is the equational constraint heuristic plus some discriminants and coefficients; thus,
the application of biggest cell only makes sense in the sector case.

Definition 5.5 (Biggest cell representation). Let i, P , s, �, ξlo, ξup, Ildeg be as in Definition 5.2.
We define the indexed root ordering �biggest on � according to

�̃biggest = {(ξ, ξlo) | ξ ∈ �̃ \ {ξlo} s.t. ξ(s[i−1]) ≤ ξlo(s[i−1])}
∪ {(ξup, ξ) | ξ ∈ �̃ \ {ξup} s.t. ξup(s[i−1]) ≤ ξ(s[i−1])}

and the Biggest cell representation as the tuple (Ildeg, ∅, �biggest).

The below lowest degree barriers heuristic minimizes the degrees of the defining polynomials
(locally per level), and thus also the degree of the computed resultants (under the above assumption)
as visualized in Fig. 9b. Furthermore, it enforces the equational constraints rule whenever possible.

This heuristic has two motivations. First, that the polynomial degrees grow doubly exponentially
during the CAD projection, see e.g. Bradford et al. (2016, Table 1). Second, that the running time
of the resultant computation depends quadratically on the degree in the main variable of the input
polynomials, see Ducos (2000).

In the following definition, we use the lexicographical ordering on tuples, that is t = (t1, . . . , tk) <
(t′

1, . . . , t
′
k) = t′ holds if t1 < t′

1 ∨ (t1 = t′
1 ∧ t2 < t′

2) ∨ (t1 = t′
1 ∧ t2 = t′

2 ∧ t3 < t′
3) ∨

Definition 5.6 (Lowest degree barriers representation). Let i, P , s, �, ξlo, ξup, Ildeg be as in Defini-
tion 5.2.

We assume an injection o : � → N that orders the elements of � such that o(Ildeg.b) = 0 re-
spectively o(Ildeg.l) = 0, o(Ildeg.u) = 1 (if both are indexed root expressions), or o(Ildeg.l) = 0 (if
Ildeg.u = ∞), or o(Ildeg.u) = 0 (if Ildeg.l = −∞).

Let �′ ⊆ �. For ξ ∈ �′ , we define the barrier of ξ w.r.t. �′ , that is a root in �′ between ξ(s[i−1])
and si with minimal degree in the main variable:

if ξ(s[i−1]) ≤ si then barrier�′(ξ) = arg min
{ξ ′∈�′|ξ(s[i−1])≤ξ ′(s[i−1])≤si}

(degxi
(ξ ′.p), si − ξ ′(s[i−1]),o(ξ ′));

if si ≤ ξ(s[i−1]) then barrier�′(ξ) = arg min
{ξ ′∈�′|si≤ξ ′(s[i−1])≤ξ(s[i−1])}

(degxi
(ξ ′.p), ξ ′(s[i−1]) − si,o(ξ ′)).

If ξlo �= ξup , we define the indexed root ordering �barriers on � according to

�̃barriers = {(ξ,barrier�̃(ξ)) | ξ ∈ �̃ s.t. ξ(s[i−1]) < si and ξ �= barrier�̃(ξ)},
∪{(barrier�̃(ξ), ξ) | ξ ∈ �̃ s.t. si < ξ(s[i−1]) and ξ �= barrier�̃(ξ)}

and the Lowest degree barriers representation as the tuple (Ildeg, ∅, �barriers).
If ξlo = ξup , we exclude the polynomials with roots around si which do not qualify as a barrier

for some other roots from the indexed root ordering (thus enforcing the application of the equational
constraint rule). For a set of polynomials P ′ ⊆ P , we define �̃|P ′ = {ξ | ξ ∈ �̃ s.t. ξ.p ∈ P ′} and let
Peq ⊆ P be the result of the following fixed point computation (i.e. Peq = P j = P j+1 for some j):
25

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Fig. 9. Visualization of indexed root ordering heuristics.

P0 = ∅
P j+1 = P j ∪ {p ∈ P | p �= Ildeg.b.p

∧ ∃ξ ∈ �̃ \ �̃|P j . (ξ.p = p ∧ barrier�̃\�̃|P j
(ξ) = Ildeg.b

∧ �ξ ′ ∈ �̃ \ �̃|P j . barrier�̃\�̃|P j
(ξ ′) = ξ)}.

We define the indexed root ordering �barriers on � \�|Peq according the definition of �̃barriers as above
but only considering the roots �̃ \ �̃|Peq and the Lowest degree barriers representation as the tuple
(Ildeg, Peq, �barriers).

The below chain heuristic fixes the total ordering on the roots as visualized in Fig. 9c.

Definition 5.7 (Chain representation). Let i, P , s, �, ξlo, ξup, Ildeg be as in Definition 5.2.
Let {ξ1, . . . , ξk} = �̃ s.t. ξ j(s[i−1]) ≤ ξ j+1(s[i−1]) for all j ∈ [1..k − 1].
We define the indexed root ordering �chain on � according to

�̃chain = {(ξ j, ξ j+1) | j ∈ [1..k − 1]}
and the Chain representation as the tuple (Ildeg, ∅, �chain).

Finally, the full heuristic fixes the same total ordering as it is the unique transitive closure of
the chain heuristic as visualized in Fig. 9d. Note that we include this heuristic only for illustrative
purposes: it resembles the cells constructed naively by making a full projection without adapting to
the behaviour at the sample.

Definition 5.8 (Full representation). Let i, P , s, �, ξlo, ξup, Ildeg as in Definition 5.2.
Let {ξ1, . . . , ξk} = �̃ s.t. ξ j(s[i−1]) ≤ ξ j+1(s[i−1]) for all j ∈ [1..k − 1].
We define the indexed root ordering �full on � according to

�̃ f ull = {(ξ j, ξ j′) | j, j′ ∈ [1..k − 1], j < j′}
and the Full representation as the tuple (Ildeg, ∅, �full).
26

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
x1

x2

s

p1

p2

p3p4

(a) Chain heuristic

x1

x2

s

(b) Biggest cell heuristic

x1

x2

s

(c) Lowest degree barriers heuristic

Fig. 10. Root ordering heuristics; the dotted lines indicate for which pairs of polynomials the resultant is added to the projection.

6. Qualitative observations

6.1. Comparing ordering heuristics

In this section we will explain the intuition behind the various ordering heuristics. They are de-
signed to optimize desirable characteristics. We acknowledge their heuristic nature, and in particular
that the intuition is made under the idealistic view that any indexed root ordering � can be perfectly
realized: that is, the resultants calculated only have roots which indicate a crossing of two root func-
tions considered in � when in reality they also have “spurious” roots which do not have relevance
for the problem at hand.

From the full to the chain heuristic As mentioned above, both the full and the chain heuristic fix the
same ordering on the real root functions over any cell containing the current sample as depicted in
Fig. 10a.

Obviously, the chain heuristic is more efficient here as it uses a strict subset of the work done
by the full heuristic. Unlike the full heuristic, the chain heuristic takes the underlying sample into
account, and thus the resulting projection is only valid for a single cell, i.e. locally delineable. The full

heuristic is independent from the sample and makes the set of polynomials fully delineable.

From the chain to the biggest cell heuristic The chain heuristic still fixes a stronger ordering on the
root functions than necessary. As defined above, the biggest cell heuristic is the minimal requirement
on the ordering to maintain sign-invariance on the constructed cell. This way, we hope that the size
of the underlying cell is maximized, as in Fig. 10b. Note that while the chain heuristic only takes
the sample in one dimension less into account, the biggest cell heuristic also considers the highest
dimension of the sample.

From the biggest cell heuristic to the lowest degree barriers heuristic The lowest degree barriers

heuristic minimizes the degrees of the resultants, as illustrated in Fig. 10c. The rationale here is
that resultant computations are heavy and their complexity depends on the degrees of the input
polynomials, and that polynomials with lower degrees have fewer roots. Thus reducing degrees may
reduce the case of resultants having real roots that do not actually correspond to relevant points.
Note that despite the naming, the lowest degree barriers heuristic could in theory lead to bigger
cells than the biggest cell heuristic in certain cases.
27

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
x1

x2

s

degx2
(p1)=4

degx2
(p3)=2

degx2
(p2)=6

Fig. 11. Redundancies in the Lowest degree barriers heuristic.

Equational constraint projection The equational constraint projection allows us to leave out discrim-
inants and coefficients of all polynomials except the section-defining polynomial by only adding
resultants of all polynomials with the defining polynomial. Thus, we expect this rule to be more
efficient than the presented heuristics in most cases. However, we added the possibility for the
application of heuristics for cases where the section-defining polynomial has high degree and thus
computing resultants with that polynomial is desirable to be avoided.

On the gap between the idealized view and reality For the lowest degree barriers heuristic, this might
lead to the computation of a redundant set of resultants regarding the minimal requirement on the
indexed root ordering, as shown in Fig. 11, where the relation between the first roots of p2 and
p3 (depicted in red) is superfluous but its corresponding resultant is added because all roots are
considered individually and not their connection via the defining polynomials.

6.2. Comparison with the refinement-based approach

The refinement-based approach to single cell construction of Brown and Košta (2015) saves resul-
tants compared to full CAD projection in the same way as our levelwise variant, by exploiting the
transitivity of the induced ordering on real root functions. Complexity-wise, the approaches are the
same, as both add up to two resultants per polynomial on a level.

However, the influence on the ordering of constraints on the refinement-based variant means the
quality of the constructed cell varies. In the worst case, the resulting ordering corresponds to the
chain heuristic: in Fig. 10a, this is achieved for the example when the polynomials are merged in the
ordering p4, p3, p2, p1. Then, the upper cell boundary is updated in every step to a lower boundary.
In the best case, the biggest cell heuristic is achieved: for our example in Fig. 10b, this is when the
polynomial p1 defining the sector’s boundary is merged first.

For the section case, it should also be noted that the levelwise approach can always apply the
equational constraints rule as the cell description is known before the projection. The refinement-
based approach only starts applying the equational constraints rule when the cell collapses to a
section, until then it adds discriminants of all polynomials, which may not actually be needed. The
illustrating examples may be used to explain this observation. Consider Fig. 10a but with the sample
s moved to the upper root of p1. When merging polynomials in the ordering p4, p3, p2, p1, the poly-
nomials p4, p3, p2 are merged as in the sector case until the cell collapses to a section when merging
p1. When merging p1 first, then the section case is identified directly and the reduced projection
applied when merging p4, p3, p2, meaning the discriminants and coefficients for those polynomials
need not be added.
28

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
6.3. Potential for non-connected “cell” descriptions

Recall that we aim to compute a single cell on which the input polynomials are sign-invariant,
but McCallum’s CAD projection theory uses the stronger property of order-invariance. It has been
observed before that this can allow for small optimizations at the top layer. For example, when using
equational constraint projection we must take discriminants if the projection is in a middle layer (to
ensure order-invariance is provided which is a hypothesis of the next lifting) but can avoid these at
the top layer as we need never lift over that (England et al., 2020).

The visualization of our proof rules in Fig. 8 alerted us to another such optimization, which if
enacted has some strange consequences. Note that a cell being connected at level i is required for it
to be order-invariant, but not sign-invariant. Thus, we need not ensure connectivity at the top level,
i.e. we could avoid taking resultants of the upper and lower bound polynomials to satisfy Rule 4.11.
Without connectedness, it would not be accurate to describe what we are constructing as a cell, rather
it is a semi-algebraic set (see also Fig. 7). However, it is still describing a portion of space on whose
points the respective polynomials are all sign-invariant. Thus, in the context of the MCSAT search
which we discuss in the next section, the set is still describing a portion of space on whose points
the constraints are all unsatisfiable for the same reason and so its negation is still a valid explanation
clause to further that search.

We note that the resultants saved by this optimization may still have to be computed later, if
the cell is used in further propagation. However, this will not always be the case and so often this
optimization may save computation. Discovery of this optimization illustrates the advantages of the
proof system presentation used in this paper.

6.4. Factorization of polynomials and cell size

To ensure the output of CAD is correct we must compute a square-free basis of the current set of
polynomials P (i.e. a set of square-free polynomials without common factors which define the same
varieties as P) before the application of a projection operator.

The approach of the rules presented above is to fully factorize each polynomial, resulting in what
is called the finest square-free basis. This is a fairly standard choice made in CAD implementations
as the effort of computing a full factorization pays off compared to the heavy resultant, discriminant,
and real root isolation computations, which are all simpler for smaller polynomials.

When building a full CAD the choice of a square-free basis does not affect the decomposition
computed, just the time taken to compute it. However, for the single-cell construction, this makes a
difference also in the size of the resulting cell, specifically the cell can be larger if we factor. This can
easily be observed by considering Example 3.1. Here polynomial p1 · p2 · p3 is already square-free.
Using this directly in the one-cell construction algorithm without factorization as a whole would sim-
ply result in computing the discriminant of the polynomial (and some coefficients): the discriminant
must have as factors all the cross resultants of p1, p2, p3 by definition. So in this case, no improve-
ment over a full projection is achieved, and we would find the smaller cell from Fig. 1. However, if
we factor to consider the set {p1, p2, p3} instead then we can obtain the larger cell from Fig. 1.

The limits of factorization We note that this described gain in size of the computed cell from factor-
ization does not mean we build optimal cells for all problems where there is a geometric separation.
Fig. 12a shows an example with two circles and a linear polynomial for which the constructed cell we
ideally build is the inside of the circle defined by p1. If we were originally presented with p1 · p2, then
factorization would allow a one-cell algorithm to ignore the intersections of p2 and p3 to construct
the entire inner circle. But consider the similar example from Fig. 12b, in which we have perturbed
the problem to consider the irreducible polynomial p1 · p2 + 1. Graphically, the two problems seem
to be similar, and the delineation of the roots are identical. But in the second case the single cell
construction cannot treat the two ovals separately: we must consider the irrelevant intersection and
thus build a smaller than ideal cell.
29

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
x1

x2

s p1

p2

p3

(a) Original problem

x1

x2

s

p1 · p2 + 1

p3

(b) Perturbed problem

Fig. 12. By perturbing a problem making a reducible polynomial irreducible, the problem gets harder.

This shows some limits of the single cell construction by way of a well observed truth in computer
algebra: problems which appear similar to human beings (i.e. when viewed geometrically) are not
always equally hard algebraically.

7. Experimental evaluation

The presented proof rules are, due to their generality, potentially applicable with only small ad-
ditions to a variety of problems and algorithms related to non-linear arithmetic, such as quantifier
elimination by CAD (Collins, 1975), various CAD optimizations e.g. (McCallum, 1999; Collins and Hong,
1991), non-uniformly cylindrical decompositions for quantifier elimination (Brown, 2015, 2017), the
generation of explanations when using cylindrical algebraic coverings for a traditional SMT solver
(Ábrahám et al., 2021), and the generation of explanations in MCSAT (Jovanović and de Moura, 2012;
Jovanovic et al., 2013; Brown and Košta, 2015). As the latter was the main motivation for our work,
the evaluation of this paper will focus on generating theory explanations in MCSAT for non-linear
arithmetic.

7.1. Generating explanations for MCSAT

Recall the description of MCSAT in Section 1.2. We are interested in when MCSAT resolves theory
conflicts. I.e. when there is a set of constraints C in real variables x1, . . . , xn, xn+1 that should be
satisfied according to the Boolean model and an assignment s : {x1, . . . , xn} →R such that s cannot be
extended to a value for xn+1 satisfying C . The task then is to exclude a cell around s that generalizes
this conflict, i.e. a region cell where the reason for unsatisfiability of C is invariant.

This reason of unsatisfiability is maintained when all input polynomials are sign-invariant on the
generalized cell. To achieve this, we could do a full McCallum projection step, obtaining a set of
properties of one level below allowing to construct a cell around s.

However, this is already too strong, as we need the set of input polynomials P = {p | (p ∼ 0) ∈
C} ⊂ Q[x1, . . . , xn, xn+1] to be delineable over a cell containing the current sample s ∈ Rn for main-
taining the desired property. We achieve this by determining the indexed root expression of the real
roots of the set {p ∈ factors(P)| level(p) = n + 1} over s in xn+1 and ordering them such that ξ1(s) ≤
ξ2(s) ≤ . . . ≤ ξk(s). Finally, we ensure that all lower level factors {p ∈ factors(P)| level(p) < n + 1} are
30

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
sign-invariant, check that each polynomial is not nullified (if not, we stop), make each polynomial in-
dividually delineable and add the resultants of the pair of polynomials (ξ j .p, ξ j+1.p) for j ∈ [1..k − 1].
Thus, the input of the presented one-cell algorithm is given as

Q = {sgn_inv(p) | p ∈ factors(P), level(p) < n + 1}
∪ {an_del(p) | p ∈ factors(P), level(p) = n + 1}
∪ {ord_inv(resxn+1(ξ j.p, ξ j+1.p)) | j ∈ [k − 1]}.

This approach is similar to the chain heuristic for indexed root orderings presented in Definition 5.7.
Note that this approach could be embedded nicely into our system as a proof rule, taking over

some optimizations. Furthermore, there are alternative approaches for elimination in the first levels,
i.e. by computing a covering of unsatisfying intervals of input constraints. These possibilities are part
of our plans for future work.

Further, note that in MCSAT, conflicts might also depend on previously computed cells which are
expressed by conjunctions of extended constraints where a variable is compared with an indexed root
expression; these constraints can also occur in the input. To handle an extended constraint xn+1 ∼
rootxi+1 [p, j] with p ∈Q[x1, . . . , xn+1], we simply add p to the set P of input polynomials.

7.2. Implementation

For the evaluation of the presented algorithm, we employ the SMT-RAT (SMT-RAT, 2023; Corzilius
et al., 2015) solver, which provides an MCSAT engine allowing the combination of multiple explanation
backends. Several incomplete and complete methods are combined in the sense that these backends
are called sequentially until one returns an explanation.

Currently available backends are the Fourier-Motzkin variable elimination (FM) (Jovanovic et al.,
2013), interval constraint propagation (ICP) (Kremer, 2019), virtual substitution (VS) (Ábrahám et al.,
2017), the complete model-based CAD cell construction algorithm from NLSAT (Jovanović and
de Moura, 2012) using Collin’s projection operator as well as the refinement-based single cell con-
struction algorithm (Brown and Košta, 2015). Furthermore, SMT-RAT employs a fully dynamic activity-
based variable ordering heuristic for scheduling theory variable assignments and Boolean decisions
(Nalbach et al., 2019).

All variants of the presented levelwise one-cell construction algorithm are implemented as back-
ends in SMT-RAT. This is a preliminary implementation not exploiting the full power of the proof
system, in particular, it is not checked whether a property is already implied by some other proper-
ties in the projection.
For the evaluation, we compare the following solver variants:

NL The model-based projection using Collin’s operator from NLSAT (Jovanović and de Moura,
2012) as a complete explanation backend. I.e. to use when one of the following variants
which are all based on McCallum projection hits a nullification which they cannot handle
(see Definition 2.2).

OC-* The refinement-based one-cell construction algorithm (Brown and Košta, 2015). We use the
same MCSAT embedding as described above. Furthermore, the refinement-based method is
able to return an explanation when a polynomial is nullified in the sector case in some spe-
cial cases which our levelwise approach cannot handle yet; for better comparability, these
special cases are excluded from the following tests. In case of failure, the complete ex-
planation from NLSAT is called. To further specify the algorithm’s behaviour and make it
reproducible, we implemented heuristics for the order of merging of initial polynomials.
These specify the * in the variant name as follows.

ASC The merge-operation is called on the initial polynomials in ascending order by their
total degree.

DSC The merge-operation is called on the initial polynomials in descending order by
their total degree.
31

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
LW-*-* The new levelwise one-cell construction algorithm with different heuristics applied in the
section and sector case. In case of failure, the complete explanation from NLSAT is called.
The first * in the variant name dictates the employed heuristic for the section case and the
second for the sector case. Possible substitutions for the stars are as follows.

EQ equational constraint heuristic is applied (only for section case).
BC biggest cell heuristic is applied (only for sector case).
CH chain heuristic is applied.
LDB lowest degree barriers heuristic is applied.

[solver]+ with [solver] being one of the solver variants above, uses the FM-, ICP- and VS-based
backends serially, in this order, before resorting to [solver]. Furthermore, we apply general
preprocessing to the input before calling the main solver (Corzilius et al., 2015).

All variants are executed on the SMT-LIB benchmark library (Barrett et al., 2010) for quantifier-free
non-linear real arithmetic, abbreviated as QF_NRA. This set contains 11552 problem instances.

The machine used for testing has four 2.1 GHz AMD Opteron CPUs with 12 cores each. In the
created test series, each instance was solved with 15 minutes timeout and 6 GB of memory.

For reproducibility, the implementation which generated the following results is available at
https://doi .org /10 .5281 /zenodo .5764569.

7.3. Results

Examined solvers First of all, we observed that OC-ASC solves as many instances as OC-DSC but
needs slightly less time; thus, we omit OC-DSC. Furthermore, we observe that LW-EQ-CH and LW-
EQ-LDB solve more instances than LW-CH-CH and LW-LDB-LDB. In our basic implementation,
saving leading coefficients and discriminants pays off compared to the other heuristics. Thus, for
further examination, we focus on the LW-EQ-* variants which always use the equational constraints
projection in the section case. A brief summary of solved instances of all solvers can be seen in Ta-
ble 1. Furthermore, from now on, VB-LW (respectively VB-LW+) is the virtual best of the LW-EQ-*
(respectively LW-EQ-*+) solvers. VB and VB+ are the corresponding virtual bests with respect to
LW-EQ-* and OC-ASC.

General observations Before we compare the different approaches, we make some general comments
on the results based on exemplary solvers in Table 2.

As already observed in Table 1 and confirmed by Table 2, large parts of the benchmark set are
relatively easy. Around half of the benchmarks do not involve a single explanation call; and when
enabling the additional incomplete backends, 79% of the benchmarks can be solved without a single
call to the single cell construction. Considering the total number of explanation calls made, only 3.14%
of them use the single cell construction for the VB-LW+ solver, meaning that even for the problems
where single cell is needed, it is only needed rarely.

The fail rate of the levelwise backend (the cases where a nullification occurs) is smaller on the
VB-LW+ solver (6%) than on the VB-LW solver (17.98%). That means, that nullifications are more
probable on the simple parts of the problem.

It should also be noted that VB-LW+ needs significantly less explanation calls than VB-LW; which
means, that the incomplete backends have explanations of higher quality.

To summarize, we can only make meaningful statements on our heuristics based on the solver
variants without the additional backends, as otherwise, there are too few calls to the single cell
construction in solved instances. The possible reasons for this are twofold. On the one hand, our
procedure and its implementation may not yet be suitable to solve the harder instances in the bench-
mark set. On the other hand, the benchmark set might not contain enough interesting or diverse
benchmarks for an evaluation.

Overall results All solvers are depicted in the performance profile in Fig. 13.
32

https://doi.org/10.5281/zenodo.5764569

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Table 1
Details on the instances solved by each solver: the number solved (first column), the number of satisfiable and unsatisfiable
solved instances (the second and third columns) and the number of solved instances where the solver made at least one call to
the single-cell construction and the number that did not require any such call to solve (the final two columns). Note that the last
column is, for the first block of solvers, the number of instances that may be solved with Boolean reasoning and construction
of sample points alone, i.e. without any theory calls. For the second block of solvers this also includes the instances that are
solved using the additional incomplete theory backends.

solved sat unsat with single cell without single cell

NL 9057 4518 4539
OC-ASC 9316 4605 4711 4194 5122
OC-DSC 9316 4605 4711 4194 5122
LW-EQ-BC 9308 4598 4710 4186 5122
LW-EQ-CH 9311 4602 4709 4189 5122
LW-EQ-LDB 9304 4595 4709 4182 5122
VB-LW 9403 4650 4753 4281 5122
VB 9435 4671 4764 4313 5122

LW-CH-CH 9305 4600 4705 4183 5122
LW-LDB-LDB 9296 4585 4711 4174 5122
NL+ 9535 4699 4836
OC-ASC+ 9797 4788 5009 615 9182
LW-EQ-BC+ 9795 4786 5009 613 9182
LW-EQ-CH+ 9797 4787 5010 615 9182
LW-EQ-LDB+ 9795 4786 5009 613 9182
VB-LW+ 9797 4787 5010 615 9182
VB+ 9800 4790 5010 618 9182

Total 11552* 5069* 5379*

* For 1104 instances, it is not known whether they are satisfiable or unsatisfiable.

Table 2
Comparison of four exemplary solvers: firstly, the subset of all solved instances and secondly the subset of all solved instances
where at least one call to the single cell construction was made are considered. For each, the statistics describing the total
number of instances, the mean running time, the sum of constructed cells as well as the sum of attempts to generate a cell
using single cell construction or NLSAT backend are given. For the last two, these sums are included in the previous one; and
their share of the total number of constructed cells is given. Note that the explanation calls involving single cell are the ones
not being solved by the additional backends and the calls involving NLSAT are the ones where the single cell construction failed.

LW-EQ-BC LW-EQ-BC+ VB-LW VB-LW+

solved instances 9308 9795 9403 9797
mean running time (s) 4.36 5.22 5.56 5.26
sum calls to explanation 83628 58826 107964 58953

of them: sum calls to SC 83628 (100.0%) 1740 (2.96%) 107964 (100.0%) 1849 (3.14%)
of them: sum calls to NL 15394 (18.41%) 117 (0.2%) 19412 (17.98%) 119 (0.2%)

solved instances with single cell 4186 613 4281 615
mean running time (s) 9.13 20.34 11.7 21.81
sum calls to explanation 83628 10363 107964 10490

of them: sum calls to SC 83628 (100.0%) 1740 (16.79%) 107964 (100.0%) 1849 (17.63%)
of them: sum calls to NL 15394 (18.41%) 117 (1.13%) 19412 (17.98%) 119 (1.13%)

First of all, the NL and NL+ solvers perform significantly worse than the single cell variants, which
justifies the investigation of this new levelwise cell construction approach.

The refinement-based approach OC-ASC as well as LW-EQ-* perform similarly. Among the lev-
elwise variants, the LW-EQ-CH solves the most; however, these differences are not significant and
depend on the implementation and heuristics chosen in the MCSAT solver. Considering OC-ASC+
and LW-EQ-*+, these differences vanish even more when combining them with incomplete methods
handling simple sub-problems. These results are summarized in Table 1.

Virtual best and orthogonality of heuristics VB-LW performs significantly better than the LW-EQ-*
solvers. This means that although the number of solved instances is similar for all heuristics, each
33

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Fig. 13. Performance profile (running times).

LW-EQ-BC

LW-EQ-CHLW-EQ-LDB

27

3040

42

25

25

9214

Fig. 14. Commonly solved instances.

heuristic solves instances that the others do not solve. Thus these heuristics are orthogonal to some
degree. We depict the number of instances solved by differing combinations of solvers in Fig. 14. Note
that the same holds for VB, meaning that OC-ASC is orthogonal to LW-EQ-* as well.

Note that the VB-LW+ solver does not solve significantly more instances than any of the LW-
EQ-*+ solvers. That means the differences of the heuristics only become noticeable in the simple
parts of the instances. An explanation could be that harder parts of instances require heavy resultant
computations which could quickly shift the instance to unsolvable within the timeout.

Now focusing on the “pure” solvers without additional backends, we observe that on simple in-
stances the refinement based approach OC-ASC and the virtual best of the levelwise approaches
VB-LW behave similar on simple instances while they are more orthogonal on harder instances, as
indicated by Fig. 15a.

The SMT-LIB benchmark set is split up into families which each have a similar structure. We
note that all variants LW-EQ-* and OC-ASC solve roughly the same amount of benchmarks in each
family individually, as seen in Table 3, while the virtual best solvers do solve more. That means that
the orthogonality of the variants is split up over the various benchmark families.
34

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Fig. 15. Scatter plots comparing VB-LW and OC-ASC on the individual instances.

Table 3
Solved instances by solver and family. SMT-LIB benchmark families: (1) 20161105-Sturm-MBO (2) 20161105-Sturm-MGC (3)
20170501-Heizmann-UltimateInvariantSynthesis (4) 20180501-Economics-Mulligan (5) 2019-ezsmt (6) LassoRanker (7) Ulti-
mateAutomizer (8) hong (9) hycomp (10) kissing (11) meti-tarski (12) zankl.

1 2 3 4 5 6 7 8 9 20 11 12

OC-ASC 25 0 0 86 9 2 26 6 2180 8 6913 61
LW-EQ-BC 22 0 0 89 9 2 22 6 2170 8 6918 62
LW-EQ-CH 25 0 0 88 9 3 22 5 2174 8 6914 63
LW-EQ-LDB 22 0 0 88 9 2 22 7 2170 8 6913 63
VB-LW 26 0 0 90 9 4 25 7 2249 8 6918 67
VB 27 0 0 94 9 4 28 7 2267 8 6923 68

Total 405 9 69 135 63 821 61 20 2752 45 7006 166

Fig. 16. Performance profile (number of cells).

Number of constructed cells Fig. 16 depicts a performance profile where we consider the number of
constructed cells (that is, the number of times the explanation function is called by MCSAT) instead
of the running time. We can clearly see that the solvers that solve more instances tend to compute
35

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Table 4
Statistics on the 3226 instances solved by all three solvers with at least one call to the single cell construction and without a
call to the NLSAT explanation (single cell construction always succeeds): mean number of cells per instance, mean dimension of
constructed cells, mean maximum degree of polynomials occurring in an instance, mean number of resultants/discriminants/co-
efficients in the projection per instance.

mean #cells
per inst.

mean dim.
of cells

mean max
deg. per inst.

mean #res.
per inst.

mean #disc.
per inst.

mean #coeff.
per inst.

LW-EQ-BC 4.38 8.59 6.51 8.95 13.94 13.62
LW-EQ-CH 4.39 8.52 6.52 9.07 14.04 13.80
LW-EQ-LDB 4.39 8.48 6.57 9.07 14.05 13.88
VB-LW 4.32 8.49 6.52 8.77 13.75 13.48

fewer cells during a run. That is, the quality of the explanations is better. Again, considering the
refinement based approach and the levelwise approaches, differences are only significant without the
other backends. In particular, the virtual best solver clearly solves more instances with fewer cells.
Fig. 15b makes this even more clear by comparing the number of cells constructed by VB-LW and
OC-ASC for every instance.

Comparison of heuristics For further comparison of the three heuristics, we collected more statistics
for each instance: the dimension of constructed cells (i.e. the number of levels considered during
its construction), the maximum degree in the main variable of the polynomials occurring in the
computation, and the size of the computed projection (i.e. number of resultants, discriminants and
coefficients). A summary of these statistics is shown in Table 4.

First note that the virtual best has the lowest value or close to the lowest value in all categories,
which means that they might indicate the performance of a solver to some degree. However, interpre-
tation needs to be careful, as the differences are relatively small, confirming the previous observations.
Further, note that we do consider fewer instances as in previous analysis. However, we do have two
minor observations to make here.

Regarding the heuristic LW-EQ-LDB: its idea was to minimize the degrees of the polynomials
in the projection, however, the average maximum degree is slightly higher than for the other two
heuristics. LW-EQ-BC needs slightly less projection steps, but is similar to the other solvers in terms
of number of cells created. This means that the sizes of the cells are likely similar, although again,
the intention was to produce the biggest possible cells. To emphasize, in the analysis in Fig. 16 which
is based on all solved instances (including the ones where the NLSAT backend was used as fallback),
it needs more cells than LW-EQ-LDB.

To summarize, this simple analysis can not confirm that the ideas behind the different heuristics
take effect on the benchmarks or prove different behaviour on all benchmarks. However, as stated
above, on individual benchmarks, they do behave differently, as shown by the performance of the
virtual best solver.

8. Conclusions and future work

8.1. Future work

The formulation of the presented proof system allows heuristic to influence the shape of the
constructed cells. The experimental evaluation shows potential for further development of those.
Furthermore, for some applications such as incremental linearization (Cimatti et al., 2017), under-
approximations of the constructed cell might be beneficial if they can be computed more efficiently;
more concretely, the resultant computations get trivial if the lower and upper bounds are replaced by
one or more linear polynomials, resulting in boxes or polyhedra.

The proof system could be applied in the future in contexts other than MCSAT, such as the cylin-
drical algebraic coverings method (Ábrahám et al., 2021) or quantifier elimination algorithms such as
NuCAD (Brown, 2015, 2017).

By relying on the theory of McCallum projection, the presented proof system is incomplete. Re-
cently, there has been progress on the Lazard projection operator (Lazard, 1994; McCallum and Hong,
36

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
2016; McCallum et al., 2019; Brown and McCallum, 2020; Nair et al., 2019, 2020), which is com-
plete while maintaining the advantages of the McCallum operator. Thus, it is promising to extend our
framework to exploit the Lazard projection.

As indicated in Figs. 5b and 6b, the notion of delineability is stronger than we need for single cell
construction. We will investigate the role of the leading coefficients and the zeros of a resultant.

Finally, the presented set of inference rules allows producing fine-grained proof graphs, which
could enable the certification and external automated verification of results.

8.2. Conclusion

We introduced the new concept of levelwise single cell construction, motivated by maintaining
the savings of the existing refinement based approach of Brown and Košta (2015) while allowing for
more flexibility and new optimizations.

The theoretical part of this paper consists of a proof system in order to enable fine-grained projec-
tions based on a given sample. To demonstrate the possibilities of the proof system, we gave a simple
algorithm which builds upon this proof system as well as several heuristics for the application of the
given rules. Finally, we gave a qualitative evaluation as well as some notable observations.

We evaluated our algorithm by an implementation applied to explanation generation in MCSAT.
We showed that our basic heuristics yield different performances for different instances indicating
that there is room for further algorithmic development, as well as a more elaborated implementation
of the proof rules.

Importantly, our proof system allows for a wide range of improvements through experimentation
with heuristics, approximations and on theoretical matters as well as extensions to other algorithms
than the single cell construction.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relation-
ships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

Jasper Nalbach was supported by the DFG RTG 2236 UnRAVeL. James Davenport and Matthew
England were supported by the EPSRC DEWCAD Project, Pushing Back the Doubly-Exponential Wall of
Cylindrical Algebraic Decomposition (grant references EP/T015748/1 and EP/T015713/1).

Appendix A. Correctness of the proof system

Note that throughout this section, when proving the correctness of a mapping, we implicitly use
the assumptions from the mapping’s definition in the proofs.

Rule 4.1. Let i ∈N , R ⊆Ri , and p ∈Q[x1, . . . , xi+1], level(p) = i + 1. Assume that p is irreducible.

an_sub(i)(R), connected(i)(R), non_null(p)(R), ord_inv(discxi+1(p))(R),

sgn_inv(ldcfxi+1(p))(R) � an_del(p)(R)

Lemma A.1. Rule 4.1 on page 14 is correct.

Proof. Follows immediately from Brown (2001, Theorem 3.1) and McCallum (1998, Theorem 2). �

37

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Rule 4.2. Let i ∈ N , R ⊆ Ri , s ∈ Ri , and p ∈ Q[x1, . . . , xi+1], level(p) = i + 1. Assume that p is irre-
ducible, and p = cm · xm

i+1 + . . . + c1 · xi+1 + c0 such that cm, . . . , c0 ∈Q[x1, . . . , xi].
sample(s)(R), degxi+1

(p) > 1, discxi+1(p)(s) �= 0, sgn_inv(discxi+1(p))(R) � non_null(p)(R)

sample(s)(R), ∃ j ∈ [m]. (c j(s) �= 0 ∧ sgn_inv(c j)(R)) � non_null(p)(R)

Lemma A.2. Rule 4.2 on page 14 is correct.

Proof. The first rule follows from the definition of the discriminant by the Sylvester matrix.
For the second rule, observe that p is nullified on any point r ∈ R if and only if c j(r) = 0 for all

j ∈ [m]. Then, the statement follows immediately. See also (Brown and Košta, 2015, Lemma 5). �
Rule 4.3. Let p ∈Q.

� ord_inv(p)(R0)

� sgn_inv(p)(R0)

Lemma A.3. Rule 4.3 on page 14 is correct.

Proof. Trivial. �
Rule 4.4. Let i ∈ N>0, R ⊆ Ri , and p ∈ Q[x1, . . . , xi], level(p) = i. Assume that p is reducible, and
factors(p) = {q1, . . . , qk}.

ord_inv(q1)(R), . . . , ord_inv(qk)(R) � ord_inv(p)(R)

sgn_inv(q1)(R), . . . , sgn_inv(qk)(R) � sgn_inv(p)(R)

Lemma A.4. Rule 4.4 on page 14 is correct.

Proof. Note that if p is reducible, then p /∈ factors(p). Both statements follow by (McCallum, 1985,
Lemma 3.2.2). �
Rule 4.5. Let i ∈N>0, R ⊆Ri , s ∈Ri , and p ∈Q[x1, . . . , xi], level(p) = i. Assume that p is irreducible.

p(s) �= 0, sample(s)(R), sgn_inv(p)(R) � ord_inv(p)(R)

p(s) = 0, sample(s)(R), an_sub(i − 1)(R), connected(i)(R), sgn_inv(p)(R), an_del(p)(R) � ord_inv(p)(R)

Lemma A.5. Rule 4.5 on page 14 is correct.

Proof. In the first case, from p(s) �= 0 and the sign-invariance of p on R follows p(r) �= 0 for all r ∈ R .
Thus, p is order-invariant on R as an immediate consequence of the definition of order-invariance.

In the second case, from p(s) = 0 and the sign-invariance of p on R follows p(r) = 0 for all r ∈ R .
As p is analytically delineable on R ↓[i−1] , p is order-invariant in each p-section on R ↓[i−1] , R is a
p-section on R ↓[i−1] , thus the order-invariance of p on R follows immediately. �
Rule 4.6. Let i ∈N , R ⊆Ri , s ∈Ri−1, and p ∈Q[x1, . . . , xi], level(p) = i. Assume that p is irreducible,
and realRoots(p(s, xi)) = ∅.

sample(s)(R), an_del(p)(R) � sgn_inv(p)(R)

Lemma A.6. Rule 4.6 on page 15 is correct.
38

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Proof. By assumption p is (analytically) delineable on a connected superset R ′ ⊇ R ↓[i−1] , thus by
Definition 2.1 the number of roots of p is constant over R ′ . As realRoots(p(s, xi+1)) = ∅ and s ∈
R ↓[i−1]⊂ R ′ , p does not have any roots over R ′ , thus p is sign-invariant on R ′ ×R ⊃ R . �
Rule 4.7. Let i ∈N>0, R ⊆Ri , s ∈Ri−1, and I be a symbolic interval of level i.

� an_sub(0)(R0)

repr(I, s)(R), an_sub(i − 1)(R) � an_sub(i)(R)

Lemma A.7. Rule 4.7 on page 16 is correct.

Proof. As the endpoints of I are described by analytic functions, the statement follows immediately
from (McCallum, 1985, Theorem 2.2.3 and Theorem 2.2.4). �
Rule 4.8. Let i ∈ N>0, R ⊆ Ri , s ∈ Ri−1, p ∈ Q[x1, . . . , xi], level(p) = i, and I be a symbolic interval
of level i. Assume that p is irreducible, and I= (section, b).

Let Q := an_sub(i − 1)(R) ∧ connected(i − 1)(R) ∧ repr(I, s)(R) ∧ an_del(b.p)(R).

Q , b.p = p � sgn_inv(p)(R)

Q , b.p �= p, ord_inv(resxi (b.p, p))(R) � sgn_inv(p)(R)

Lemma A.8. Rule 4.8 on page 16 is correct.

Proof. As repr(I, s) holds on R , it holds b.p(r) = 0 for all r ∈ R .
In the first case, if p = b.p, p is trivially sign-invariant on R .
In the second case, if p �= b.p, by the order-invariance of resxi (b.p, p) on R ↓[i−1] , (McCallum, 1999,

Theorem 2.2) yields that p is sign-invariant on R . �
Rule 4.9. Let i ∈N , R ⊆Ri , s ∈Ri , and � be an indexed root ordering of level i + 1. Assume that ξ.p
is irreducible for all ξ ∈ dom(�), and that � matches s.

sample(s)(R), an_sub(i)(R), connected(i)(R), ∀ξ ∈ dom(�). an_del(ξ.p)(R),

∀(ξ, ξ ′) ∈� . ord_inv(resxi+1 (ξ.p, ξ ′.p))(R) � ir_ord(�, s)(R)

Lemma A.9. Rule 4.9 on page 18 is correct.

Proof. First consider ξ � ξ ′ . Either ξ.p = ξ ′.p, then θξ,s = θξ ′,s by definition of delineability (Defini-
tion 2.1), or resxi+1 (ξ.p, ξ ′.p) is order-invariant on R , then either θξ,s = θξ ′,s or θξ,s < θξ ′,s on R holds
by Theorem A.1.

Now consider ξ �t ξ ′ (where �t is the transitive closure of �), then there exist ξ1, . . . , ξk such
that ξ = ξ1 � . . . � ξk = ξ ′ . We show that either θξ,s = θξ ′,s or θξ,s < θξ ′,s on R holds by induction.
The base case for k = 2 is proven by the preceding paragraph. Assume that the statement holds
for ξ1 and ξ j with j < k (induction hypothesis), i.e. either θξ1,s = θξ j ,s or θξ1,s < θξ j ,s on R . Observe
that θξ j ,s = θξ j+1,s or θξ j ,s < θξ j+1,s on R by the preceding paragraph. It follows by transitivity that
θξ1,s = θξ j+1,s or θξ1,s < θξ j+1,s on R . �
Definition A.1 (Degree invariance). Let i ∈Z, R ⊆ Ri , and p ∈ Q[x1, . . . , xi+1] of level i + 1. Then p is
called degree-invariant on R if and only if degxi+1

(p(r, xi+1)) = degxi+1
(p(r′, xi+1)) for all r, r′ ∈ R .

Theorem A.1. Let i ∈ N , R ⊆ Ri be a connected analytic submanifold and p1, p2 ∈ Q[x1, . . . , xi+1] irre-
ducible and coprime such that level(p1) = level(p2) = i + 1, θ1, θ2 : R →R be real root functions of p1 and
p2 respectively, and ∼ ∈ {=, <, >}.
39

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
If p1, p2 are not nullified on any point in R and resxi+1 (p1, p2) is order-invariant on R and p1 and p2 are
analytically delineable on R, then θ1(r) ∼ θ2(r) ⇐⇒ θ1(r′) ∼ θ2(r′) for all r, r′ ∈ R.

Proof. The hypotheses state that θ1 and θ2 are continuous and analytic real root functions over R . If
the two functions are identical over R , then the theorem holds. So assume they are not, i.e. assume
there is a point s ∈ R at which the two functions have different values. We will show that the two
functions differ everywhere in R which, because they are continuous, proves the theorem.

Let s ∈ R , α ∈ R such that α < r′ for every r′ ∈ R such that p1(s, r′) = 0 or p2(s, r′) = 0 (we can
choose such an α as p1 and p2 are delineable on R), and choose S ⊆ R such that s ∈ S , and α > r′
for every r ∈ S and every r′ ∈R such that p1(r, r′) = 0 or p2(r, r′) = 0.

Let p∗
1 = p1(x1, . . . , xi, xi+1 − α) and p∗

2 = p2(x1, . . . , xi, xi+1 − α). The mapping that shifts xi+1 by
α is a homeomorphism that maps the roots of p1 and p2 to the roots of p∗

1 and p∗
2, respectively. So

we can study the roots of p1 and p2 by understanding the roots of p∗
1 and p∗

2. But for p∗
1 and p∗

2
we are guaranteed that p∗

1(r, 0) �= 0 and p∗
2(r, 0) �= 0 for all r ∈ S , i.e. the constant coefficients with

respect to xi+1 of p∗
1 and p∗

2 do not vanish on S . Further, by Gelfand et al. (1994), the resultant is
invariant under this transformation.

Let p1 = xd1
i+1 p∗

1(x1, . . . , xi, 1/xi+1) and p2 = xd2
i+1 p∗

2(x1, . . . , xi, 1/xi+1), where the d1 = degxi+1
(p1)

and d2 = degxi+1
(p2).

Moreover, since neither p1 nor p2 is nullified in S , p1 and p2 are non-nullified in S . The trans-
formation from p1 and p2 to p1 and p2 defines an analytic homeomorphism from S × (R \ {0}) to
S × (R \ {α}) that maps the zeros of p1 and p2 off the xi+1 = 0 hyperplane to the zeros of p1 and
p2 (which do not cross the xi+1 = α hyperplane). Specifically, the homeomorphism is given by the
mapping (x, y) �→ (x, 1/y − α). Moreover, the leading coefficients of p1 and p2, which are the same
as the constant coefficients (in xi+1) of p∗

1 and p∗
2, are non-zero throughout S . This means that p1

and p2 are not nullified anywhere in S and their leading coefficients (in xi+1) are non-vanishing on
S , and thus p1 and p2 are degree-invariant on S . We note that p1 and p2 are delineable on S (as
p1 and p2 are delineable on S and the homeomorphism); in particular, for every root function θ of
p1 or p2, there exists a corresponding root function θ of p1 or p2, respectively. Further, the resul-
tant is unchanged by this transformation, once again by Gelfand et al. (1994), so resxi+1 (p1, p2) is
order-invariant in S .

Now, let θ1 and θ2 be the root functions of p1 and p2 corresponding to θ1 and θ2. By Theorem A.2,
θ1(s) �= θ2(s) implies θ1(r) �= θ2(r) for all r ∈ S; and thus, θ1(r) �= θ2(r) for all r ∈ S .

Since we can set s to any value in R , it follows that θ1(r) �= θ2(r) for all r ∈ R . �
Theorem A.2. Let p1, p2 ∈ R[x1, . . . , xi] of level i. Let R be a connected analytic submanifold in Ri−1 on
which p1 and p2 are degree-invariant and non-nullified, and on which pr = resxi (p1, p2) is order-invariant.
Let θ1 be a real root function of p1 and θ2 be a real root function of p2, both defined on R. If there is a point
r ∈ R at which the values of θ1 and θ2 differ, then the values of θ1 and θ2 differ throughout R.

Proof. We prove this theorem by contradiction. Suppose there are points at which θ1 and θ2 have the
same value. Choose such a point r′ ∈ R and path π : [0, 1] → R such that π(0) = r, π(1) = r′ and for
all x ∈ (0, 1) we have θ1(π(x)) �= θ2(π(x)). Note that we are guaranteed to be able to find such r′ and
π by the continuity of θ1 and θ2.

Let U be a neighbourhood of r′ and V a neighbourhood of the origin, both within Ri−1. Denote by
d the dimension of R . We now refer to the concept of a coordinate system, as described by McCallum
(1985). By Theorem 2.2.1 of (McCallum, 1985), there is a coordinate system φ mapping U to V such
that R ∩ U = {x ∈ U | φd+1(x) = 0, . . . , φi−1(x) = 0}. In other words, the image S of R ∩ U is the
set of points in V with zeros for the last i − 1 − d coordinates. We view p1 and p2 in this new
coordinate system as p1 = p1(φ

−1(x1, . . . , xi−1), xi) and p2 = p2(φ
−1(x1, . . . , xi−1), xi), respectively.

Note that for any a ∈ U , p1 evaluated at a gives the same univariate polynomial in xi as p1 evaluated
at φ(a) (as is also true for p2). In particular, since p1 and p2 are degree-invariant in R , p1 and p2
are degree-invariant in S , moreover, the degrees of p1 and p1 are the same, as are the degrees of p2
and p2. Because φ−1 only acts on the coefficients of p1 and p2 (as polynomials in xi), and because
40

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
the degrees remain unchanged, the resultant construction commutes with respect to φ−1. In other
words, recalling that pr = resxi (p1, p2), we have pr ◦ φ−1 = resxi (p1, p2). Moreover, by the “Remark”
on p. 45 of (McCallum, 1985), the order of pr at point a is the same as the order of pr ◦ φ−1 at φ(a),
for any a ∈ U . This means that pr is order-invariant in R ∩ U if and only if pr ◦ φ−1 is order-invariant
in S . We will show that the order-invariance of resxi (p1, p2) in S contradicts the assumption that
θ1(r′) = θ2(r′).

For convenience, let f = θ1 ◦ φ−1 and g = θ2 ◦ φ−1, noting that f and g are themselves analytic
functions and thus proper real-root functions for p1 and p2, and that they agree in value at φ(r′). The
function f defines a root of p1 on S , not on all of V . Define f ∗(y1, . . . , yi−1) = f (y1, . . . , yd, 0, . . . , 0),
which extends the domain of f to all of V , and define g∗ analogously. Note that f ∗ and g∗ are
analytic functions of V . [This is actually the key to this proof. Had we tried in the same way to
extend θ1 and θ2 from functions of R to functions of U , we would not have been guaranteed to
get analytic functions.] By division we get p1 = (x − f ∗)q1 + p1(f ∗). The remainder, p1(f ∗), is zero
throughout S because f , which f ∗ extends, is a root function of p1 on S . However, since the value
of f ∗ is independent of yd+1, . . . , yi−1, the remainder p1(f ∗) is actually zero throughout V . Thus, p1
factors as p1 = (x − f ∗)q1 over V . By the same logic, we get the factorization p2 = (x − f ∗)q2. Note
that the coefficients of q1 are all polynomials in f ∗ , so all coefficients are analytic functions of V .

It is shown by Buchberger et al. (1983) (Theorem 1, Chapter Computing in Algebraic Extensions) that
res(A, B) = an

m
∏m

i=1 B(ri), where m is the degree of A, am is the leading coefficient of A, the ri s are
the m complex roots of A, and n is the degree of B . It easily follows that

res(A, BC) = res(A, B) · res(A, C), from which we get:

resxi ((xi − f ∗)q1, (xi − g∗)q2) = resxi (xi − f ∗, xi − g∗) · resxi (q1, xi − g∗)
· resxi (xi − f ∗,q2) · resxi (q1,q2).

For any analytic function, if there are points of order k and also of order k + j, the set of points of
order at least k + j is a closed subset of the set of all points of order at least k. This means that if
the order of a product of analytic functions is constant in S then the orders of each of the individual
factors must be constant as well. Thus, since the order of resxi (p1, p2) is constant in S , the order of
resxi (xi − f ∗, xi − g∗), which we note is f ∗ − g∗ , is constant as well. There are points in R arbitrarily
close to r′ at which θ1 and θ2 are unequal. Let r′′ be such a point, sufficiently close such that φ(r′′) ∈ S .
Then at φ(r′′), the functions f ∗ and g∗ are unequal. Thus the order of resxi (xi − f ∗, xi − g∗) is zero
at φ(r′′), which means its order is zero everywhere in S . So f ∗ �= g∗ for every point in S . However,
since θ1 and θ2 are equal at r′ , f ∗ and g∗ are equal at φ(r′), which is a contradiction. �
Rule 4.10. Let i ∈ N>0, R ⊆ Ri , s ∈ Ri−1, p ∈ Q[x1, . . . , xi], level(p) = i, I be a symbolic interval of
level i, � be an indexed root ordering of level i, and �t be the reflexive and transitive closure of �.

We choose l, u such that either I= (sector, l, u) or (I= (section, b) for b = l = u).
Assume that p is irreducible, irExpr(p, s) �= ∅, ξ.p is irreducible for all ξ ∈ dom(�), � matches s,

and for all ξ ∈ irExpr(p, s) it holds either ξ �t l or u �t ξ .

sample(s)(R), repr(I, s)(R), ir_ord(�, s)(R), an_del(p)(R) � sgn_inv(p)(R)

Lemma A.10. Rule 4.10 on page 18 is correct.

Proof. As p is delineable on R ↓[i−1] , the variety of p on R ↓[i−1] is described by the real root func-
tions θξ,s, ξ ∈ irExpr(p, s). As repr(I, s) holds on R , it follows that if l �= −∞, then θl,s exists on
R ↓[i−1] , and if u �= ∞, then θu,s exist on R ↓[i−1] .

As s ∈ R ↓[i−1] , � matches s, and either ξ �t l or u �t ξ for all ξ ∈ irExpr(p, s), it holds ξ(s) ≤ l(s)
or u(s) ≤ ξ(s) for all ξ ∈ irExpr(p, s). To prove sign-invariance of p on R , we thus only need to show
that either θξ,s < θl,s on R (if ξ(s) < l(s)), θu,s < θξ,s on R (if u(s) < ξ(s)), or θξ,s = θb,s on R (if
ξ(s) = b(s)) for all ξ ∈ irExpr(p, s).

This statement holds as � matches s, ξ �t l or u �t ξ for all ξ ∈ irExpr(p, s), and ir_ord(�, s) holds
on R ↓[i−1] . �
41

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Rule 4.11. Let i ∈ N>0, R ⊆ Ri , s ∈ Ri−1, I be a symbolic interval of level i, � be an indexed root
ordering of level i, and �t be the reflexive and transitive closure of �. Assume that � matches s.

Let Q := connected(i − 1)(R) ∧ repr(I, s)(R).

� connected(0)(R0)

Q , I= (sector, l, u), l �= −∞, u �= ∞, l �t u, ir_ord(�, s) � connected(i)(R)

Q , I= (sector, l, u), l = −∞ ∨ u = ∞ � connected(i)(R)

Q , I= (section,b) � connected(i)(R)

Lemma A.11. Rule 4.11 on page 19 is correct.

Proof. We only consider the case I = (sector, l, u), l �= −∞, u �= ∞, l.p �= u.p, as the other cases are
similar but simpler.

As repr(I, s) holds, θl,s and θu,s are well-defined on R ↓[i−1] . As s ∈ R , � matches s, l �t u, and
ir_ord(�, s) holds on R ↓[i−1] , it either holds θl,s < θu,s on R ↓[i−1] or θl,s = θu,s on R ↓[i−1] . The prop-
erty repr(I, s) holds on R and R ↓[i−1] is connected, thus R is connected (noting that empty sets are
connected). �
Rule 4.12. Let i ∈ N>0, R ⊆ Ri , s ∈ Ri , and I be a symbolic interval of level i. Assume that si ∈
setOf(s[i−1], I).

� sample(())(R0)

sample(s[i−1])(R), repr(I, s[i−1])(R) � sample(s)(R)

Lemma A.12. Rule 4.12 on page 19 is correct.

Proof. Follows immediately from the definitions. �
Rule 4.13. Let i ∈N>0, R ⊆Ri−1, s ∈Ri−1, and I be a symbolic interval of level i. Assume that I.l ∈
irExpr(I.l.p, s) (if I.l �= −∞), I.u ∈ irExpr(I.u.p, s) (if I.u �= ∞) respectively I.b ∈ irExpr(I.b.p, s).

sample(s)(R), holds(I)(R), I= (section,b), an_del(b.p)(R) � repr(I, s)(R)

sample(s)(R), holds(I)(R), I= (sector, l, u), l = −∞ ∨ an_del(l.p)(R), u = ∞ ∨ an_del(u.p)(R) � repr(I, s)(R)

Lemma A.13. Rule 4.13 on page 20 is correct.

Proof. The graph of any delineable polynomial p over a connected subset R ′ ⊇ R is described by real
root functions θ1 < . . . < θk on R ′ . It follows that for any indexed root expression ξ with ξ.p = p and
ξ.k ≤ k it holds dom(θξ,s) ⊇ R ′ and θξ,s = θξ.k = ξ on R ′ .

Now, the result follows immediately from the definition of holds(I) and the previous statement
applied on the cell’s boundaries. �
References

Ábrahám, Erika, Nalbach, Jasper, Kremer, Gereon, 2017. Embedding the virtual substitution method in the model constructing
satisfiability calculus framework. In: Proceedings of the 2nd International Workshop on Satisfiability Checking and Symbolic
Computation (SC2 2017). In: CEUR Workshop Proceedings, vol. 1974. http://ceur-ws .org /Vol -1974/.

Ábrahám, Erika, Davenport, James, England, Matthew, Kremer, Gereon, 2021. Deciding the consistency of non-linear real arith-
metic constraints with a conflict driven search using cylindrical algebraic coverings. J. Log. Algebraic Methods Program. 119,
100633. https://doi .org /10 .1016 /j .jlamp .2020 .100633.
42

http://ceur-ws.org/Vol-1974/
https://doi.org/10.1016/j.jlamp.2020.100633

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Barbosa, Haniel, Reynolds, Andrew, Kremer, Gereon, Lachnitt, Hanna, Niemetz, Aina, Nötzli, Andres, Ozdemir, Alex, Preiner,
Mathias, Viswanathan, Arjun, Viteri, Scott, Zohar, Yoni, Tinelli, Cesare, Barrett, Clark, 2022. Flexible proof production in an
industrial-strength SMT solver. In: Proceedings of the 11th International Joint Conference on Automated Reasoning (IJCAR
2022). Springer, pp. 15–35. https://doi .org /10 .1007 /978 -3 -031 -10769 -6 _3.

Barrett, Clark, Stump, Aaron, Tinelli, Cesare, et al., 2010. The SMT-LIB standard: version 2.0. In: Proceedings of the 8th Interna-
tional Workshop on Satisfiability Modulo Theories.

Bradford, Russell, Davenport, James H., England, Matthew, McCallum, Scott, Wilson, David, 2016. Truth table invariant cylindrical
algebraic decomposition. J. Symb. Comput. 76, 1–35. https://doi .org /10 .1016 /j .jsc .2015 .11.002.

Brown, Christopher W., 2001. Improved projection for cylindrical algebraic decomposition. J. Symb. Comput. 32 (5), 447–465.
https://doi .org /10 .1006 /jsco .2001.0463.

Brown, Christopher W., 2013. Constructing a single open cell in a cylindrical algebraic decomposition. In: Proceedings of the
2013 International Symposium on Symbolic and Algebraic Computation (ISSAC 2013). ACM, pp. 133–140. https://doi .org /10 .
1145 /2465506 .2465952.

Brown, Christopher W., 2015. Open non-uniform cylindrical algebraic decompositions. In: Proceedings of the 2015 Interna-
tional Symposium on Symbolic and Algebraic Computation (ISSAC 2015). ACM, pp. 85–92. https://doi .org /10 .1145 /2755996 .
2756654.

Brown, Christopher W., 2017. Projection and quantifier elimination using non-uniform cylindrical algebraic decomposition. In:
Proceedings of the 2017 International Symposium on Symbolic and Algebraic Computation (ISSAC 2017). ACM, pp. 53–60.
https://doi .org /10 .1145 /3087604 .3087651.

Brown, Christopher W., Daves, Glenn C., 2020. Applying machine learning to heuristics for real polynomial constraint solving.
In: Proceedings of the 7th International Conference on Mathematical Software (ICMS 2020). In: LNCS, vol. 12097. Springer,
pp. 292–301. https://doi .org /10 .1007 /978 -3 -030 -52200 -1 _29.

Brown, Christopher W., Košta, Marek, 2015. Constructing a single cell in cylindrical algebraic decomposition. J. Symb. Com-
put. 70, 14–48. https://doi .org /10 .1016 /j .jsc .2014 .09 .024.

Brown, Christopher W., McCallum, Scott, 2020. Enhancements to Lazard’s method for cylindrical algebraic decomposition. In:
Proceedings of the 22nd International Workshop on Computer Algebra in Scientific Computing (CASC 2020). In: LNCS,
vol. 12291. Springer, pp. 129–149. https://doi .org /10 .1007 /978 -3 -030 -60026 -6 _8.

Buchberger, B., Collins, George E., Loos, Rudiger, Albrecht, Rudolf (Eds.), 1983. Computer Algebra: Symbolic and Algebraic Com-
putation, 2nd ed. Springer.

Caviness, Bob F., Johnson, Jeremy R., 1998. Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts & Monographs
in Symbolic Computation. Springer. https://doi .org /10 .1007 /978 -3 -7091 -9459 -1.

Cimatti, Alessandro, Griggio, Alberto, Irfan, Ahmed, Roveri, Marco, Sebastiani, Roberto, 2017. Invariant checking of NRA transition
systems via incremental reduction to LRA with EUF. In: Proceedings of the 23rd International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS 2017). Springer, pp. 58–75. https://doi .org /10 .1007 /978 -3 -
662 -54577 -5 _4.

Collins, George E., 1975. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proceedings of
the 2nd GI Conference on Automata Theory and Formal Languages (1975). Springer, pp. 134–183. https://doi .org /10 .1007 /3 -
540 -07407 -4 _17 (reprinted in the collection Caviness and Johnson (1998)).

Collins, George E., Hong, Hoon, 1991. Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12,
299–328. https://doi .org /10 .1016 /S0747 -7171(08)80152 -6.

Corzilius, Florian, Kremer, Gereon, Junges, Sebastian, Schupp, Stefan, Ábrahám, Erika, 2015. SMT-RAT: an open source C++ tool-
box for strategic and parallel SMT solving. In: Proceedings of the 18th International Conference on Theory and Applications
of Satisfiability Testing (SAT 2015). Springer, pp. 360–368. https://doi .org /10 .1007 /978 -3 -319 -24318 -4 _26.

Cox, D.A., Little, J.B., O’Shea, D.B., 2006. Ideals, Varieties and Algorithms. Springer.
Davenport, James H., Heintz, Joos, 1988. Real quantifier elimination is doubly exponential. J. Symb. Comput. 5 (1–2), 29–35.

https://doi .org /10 .1016 /S0747 -7171(88)80004 -X.
de Moura, Leonardo, Jovanović, Dejan, 2013. A model-constructing satisfiability calculus. In: Proceedings of the 14th Interna-

tional Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI 2013). In: LNCS, vol. 7737. Springer,
pp. 1–12. https://doi .org /10 .1007 /978 -3 -642 -35873 -9 _1.

Ducos, Lionel, 2000. Optimizations of the subresultant algorithm. J. Pure Appl. Algebra 145 (2), 149–163. https://doi .org /10 .1016 /
S0022 -4049(98)00081 -4.

England, Matthew, Bradford, Russell, Davenport, James H., 2020. Cylindrical algebraic decomposition with equational constraints.
J. Symb. Comput. 100, 38–71. https://doi .org /10 .1016 /j .jsc .2019 .07.019.

Gelfand, Israel M., Kapranov, Mikhail M., Zelevinsky, Andrei V., 1994. Discriminants, Resultants, and Multidimensional Determi-
nants. Springer.

Jovanović, Dejan, 2017. Solving nonlinear integer arithmetic with MCSAT. In: Proceedings of the 18th International Conference
on Verification, Model Checking, and Abstract Interpretation (VMCAI 2017). In: LNCS, vol. 10145. Springer, pp. 330–346.
https://doi .org /10 .1007 /978 -3 -319 -52234 -0 _18.

Jovanović, Dejan, de Moura, Leonardo, 2012. Solving non-linear arithmetic. In: Proceedings of the 6th International Joint Confer-
ence on Automated Reasoning (IJCAR 2012). In: LNCS, vol. 7364. Springer, pp. 339–354. https://doi .org /10 .1007 /978 -3 -642 -
31365 -3 _27.

Jovanovic, Dejan, Barrett, Clark, De Moura, Leonardo, 2013. The design and implementation of the model constructing satisfia-
bility calculus. In: Proceedings of the 13th International Conference on Formal Methods in Computer-Aided Design (FMCAD
2013). IEEE, pp. 173–180. https://doi .org /10 .1109 /FMCAD .2013 .7027033.

Kremer, Gereon, 2019. Cylindrical Algebraic Decomposition for Nonlinear Arithmetic Problems. PhD thesis. RWTH Aachen Uni-
versity. https://publications .rwth -aachen .de /record /792185.
43

https://doi.org/10.1007/978-3-031-10769-6_3
http://refhub.elsevier.com/S0747-7171(23)00102-5/bib8E464CFC102BCCAF85CF882E8B7D3AE6s1
http://refhub.elsevier.com/S0747-7171(23)00102-5/bib8E464CFC102BCCAF85CF882E8B7D3AE6s1
https://doi.org/10.1016/j.jsc.2015.11.002
https://doi.org/10.1006/jsco.2001.0463
https://doi.org/10.1145/2465506.2465952
https://doi.org/10.1145/2465506.2465952
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/2755996.2756654
https://doi.org/10.1145/3087604.3087651
https://doi.org/10.1007/978-3-030-52200-1_29
https://doi.org/10.1016/j.jsc.2014.09.024
https://doi.org/10.1007/978-3-030-60026-6_8
http://refhub.elsevier.com/S0747-7171(23)00102-5/bibDA46A53C46CBC611660635CAFE078971s1
http://refhub.elsevier.com/S0747-7171(23)00102-5/bibDA46A53C46CBC611660635CAFE078971s1
https://doi.org/10.1007/978-3-7091-9459-1
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/978-3-662-54577-5_4
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1007/3-540-07407-4_17
https://doi.org/10.1016/S0747-7171(08)80152-6
https://doi.org/10.1007/978-3-319-24318-4_26
http://refhub.elsevier.com/S0747-7171(23)00102-5/bibDD21C6D2F0AC7E813789EF371CC2EEEFs1
https://doi.org/10.1016/S0747-7171(88)80004-X
https://doi.org/10.1007/978-3-642-35873-9_1
https://doi.org/10.1016/S0022-4049(98)00081-4
https://doi.org/10.1016/S0022-4049(98)00081-4
https://doi.org/10.1016/j.jsc.2019.07.019
http://refhub.elsevier.com/S0747-7171(23)00102-5/bib8280D0490AF1B280A8984BE98AACB43Ds1
http://refhub.elsevier.com/S0747-7171(23)00102-5/bib8280D0490AF1B280A8984BE98AACB43Ds1
https://doi.org/10.1007/978-3-319-52234-0_18
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1007/978-3-642-31365-3_27
https://doi.org/10.1109/FMCAD.2013.7027033
https://publications.rwth-aachen.de/record/792185

J. Nalbach, E. Ábrahám, P. Specht et al. Journal of Symbolic Computation 123 (2024) 102288
Lazard, Daniel, 1994. An improved projection for cylindrical algebraic decomposition. In: Algebraic Geometry and Its Applica-
tions: Collections of Papers from Abhyankar’s 60th Birthday Conference. Springer, pp. 467–476. https://doi .org /10 .1007 /978 -
1 -4612 -2628 -4 _29.

Li, Haokun, Xia, Bican, 2020. Solving satisfiability of polynomial formulas by sample-cell projection. arXiv:2003 .00409.
McCallum, Scott, 1985. An improved projection operation for cylindrical algebraic decomposition. PhD thesis. Published as UW-

Madison CS Department Technical Report Number TR578. University of Wisconsin-Madison. https://minds .wisconsin .edu /
handle /1793 /58594.

McCallum, Scott, 1998. An improved projection operation for cylindrical algebraic decomposition. In: Quantifier Elimination and
Cylindrical Algebraic Decomposition. Springer, pp. 242–268. https://doi .org /10 .1007 /978 -3 -7091 -9459 -1 _12.

McCallum, Scott, 1999. On projection in CAD-based quantifier elimination with equational constraint. In: Proceedings of the
1999 International Symposium on Symbolic and Algebraic Computation (ISSAC 1999). Association for Computing Machinery,
pp. 145–149. https://doi .org /10 .1145 /309831.309892.

McCallum, Scott, Hong, Hoon, 2016. On using Lazard’s projection in CAD construction. J. Symb. Comput. 72, 65–81. https://
doi .org /10 .1016 /j .jsc .2015 .02 .001.

McCallum, Scott, Parusińiski, Adam, Paunescu, Laurentiu, 2019. Validity proof of Lazard’s method for CAD construction. J. Symb.
Comput. 92, 52–69. https://doi .org /10 .1016 /j .jsc .2017.12 .002.

Nair, Akshar, Davenport, James H., Sankaran, Gregory, 2019. On benefits of equality constraints in lex-least invariant CAD. In:
Proceedings of the 4th Workshop on Satisfiability Checking and Symbolic Computation (SC2 2019). In: CEUR Workshop
Proceedings, vol. 2460. http://ceur-ws .org /Vol -2460/.

Nair, Akshar, Davenport, James H., Sankaran, Gregory, 2020. Curtains in CAD: why are they a problem and how do we fix them?
In: Proceedings of the 7th International Conference on Mathematical Software (ICMS 2020). In: LNCS, vol. 12097. Springer,
pp. 17–26. https://doi .org /10 .1007 /978 -3 -030 -52200 -1 _2.

Nalbach, Jasper, Kremer, Gereon, Ábrahám, Erika, 2019. On variable orderings in MCSAT for non-linear real arithmetic. In:
Proceedings of the 4th Workshop on Satisfiability Checking and Symbolic Computation (SC2 2019). In: CEUR Workshop
Proceedings, vol. 2460. http://ceur-ws .org /Vol -2460/.

SMT-RAT, a toolbox for strategic and parallel satisfiability modulo theories solving. https://github .com /smtrat /smtrat.
Tarski, Alfred, 1948. A Decision Method for Elementary Algebra and Geometry. RAND Corporation, Santa Monica, CA (reprinted

in the collection Caviness and Johnson (1998)).
44

https://doi.org/10.1007/978-1-4612-2628-4_29
https://doi.org/10.1007/978-1-4612-2628-4_29
http://refhub.elsevier.com/S0747-7171(23)00102-5/bib204D418A7C62528DBAE963B7B2B807EEs1
https://minds.wisconsin.edu/handle/1793/58594
https://minds.wisconsin.edu/handle/1793/58594
https://doi.org/10.1007/978-3-7091-9459-1_12
https://doi.org/10.1145/309831.309892
https://doi.org/10.1016/j.jsc.2015.02.001
https://doi.org/10.1016/j.jsc.2015.02.001
https://doi.org/10.1016/j.jsc.2017.12.002
http://ceur-ws.org/Vol-2460/
https://doi.org/10.1007/978-3-030-52200-1_2
http://ceur-ws.org/Vol-2460/
https://github.com/smtrat/smtrat
http://refhub.elsevier.com/S0747-7171(23)00102-5/bib0C84020812B3BDC4E6EECD5C34F3C618s1
http://refhub.elsevier.com/S0747-7171(23)00102-5/bib0C84020812B3BDC4E6EECD5C34F3C618s1

	Open Access Coversheet
	1-s2.0-S0747717123001025-main
	Levelwise construction of a single cylindrical algebraic cell
	1 Introduction
	1.1 Non-linear real arithmetic and CAD
	1.2 NLSAT, MCSAT and single cylindrical cells
	1.3 First contribution: proof system presentation
	1.4 Second contribution: levelwise single cells
	1.5 Plan of the paper

	2 Preliminaries
	2.1 Variables and polynomials
	2.2 Real algebraic numbers, constraints and cells
	2.3 CAD definition
	2.4 McCallum’s projection operator
	2.5 Computing a CAD

	3 Single cell computation
	3.1 Previous work on optimizing single cell computations
	3.2 Our levelwise approach to single cell computation

	4 Proof system for single cells
	4.1 Motivating example
	4.2 Proof system: properties and rules
	4.3 Basic cell properties
	4.4 Sign invariance for polynomials without roots
	4.5 Cell boundary representations
	4.6 Equational constraint projection
	4.7 Root orderings
	4.8 Connectedness
	4.9 Generalization of the current sample
	4.10 Cell descriptions
	4.11 Ordering of properties

	5 Levelwise construction of a single cell
	5.1 Algorithm to construct a single cell
	5.2 Heuristic choices

	6 Qualitative observations
	6.1 Comparing ordering heuristics
	6.2 Comparison with the refinement-based approach
	6.3 Potential for non-connected ‘‘cell’’ descriptions
	6.4 Factorization of polynomials and cell size

	7 Experimental evaluation
	7.1 Generating explanations for MCSAT
	7.2 Implementation
	7.3 Results

	8 Conclusions and future work
	8.1 Future work
	8.2 Conclusion

	Declaration of competing interest
	Data availability
	Acknowledgements
	Appendix A Correctness of the proof system
	References

