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Abstract: The limitations of the established and existing creep failure models have inspired the
development of a new creep prediction model. Models like Norton–Bailey and Omega are unable
to model the tertiary creep curve for engineering materials. Kachanov–Rabotnov, Theta Projection,
and Sine hyperbolic models rely on specific material properties for accurate damage predictions.
In order to overcome these weaknesses, a new creep model combining the Norton–Bailey and
Kachanov–Rabotnov models has been further devised for the creep life prediction of metallic materi-
als. The model combination helps in covering the limitations of one model over another and to benefit
from each other’s strengths. A technique of user subroutine scripting was adapted to implement the
new creep model in finite element (FE) software of ABAQUS, manufactured by Dassault Systemes,
version 2020. The new model was tested on an FE dog bone stainless steel 304 specimen; the analysis
showed excellent agreement with the experimental creep deformation data at 600 ◦C to 700 ◦C. The
creep strain rate curves obtained by the method of user subroutine scripting were found to be 90.69%
accurate to the 1000 h experimental creep strain rate curve. Similarly, while comparing with the 336 h
experimental creep test, the new model accuracy was found to be 92.66% for the creep strain rate
curve. The new model’s precision was 91.56% when compared with the Omega and Norton–Bailey
models for creep strain rate for the same conditions. The quantitative accuracy of the new creep model
is better as compared to the existing creep models and can be an improved source of alternatives to
existing creep models for the deformation predictions.

Keywords: creep damage; stress rupture; Norton–Bailey model; Kachanov–Rabotnov model;
plastic deformation

1. Introduction

Creep deformation is a time-dependent process that occurs under constant stress at
elevated temperatures and can result in material failure if left unchecked. The phenomena
labeled as ‘cold flow’ usually occurs when the material’s temperature is greater than 40% of
its melting temperature (Tm) [1]. Creep failure is critical because, at elevated temperatures,
the strength of the material becomes dependent on strain rate and time [2]. Creep can
cause microstructure damage, such as the creation of voids at grain boundaries, resulting in
grain boundaries sliding and leading to material collapse [3]. Dislocation-climb and stress-
induced vacancy flow at higher temperatures are two diffusion-controlled mechanisms

Metals 2023, 13, 1854. https://doi.org/10.3390/met13111854 https://www.mdpi.com/journal/metals

https://doi.org/10.3390/met13111854
https://doi.org/10.3390/met13111854
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/metals
https://www.mdpi.com
https://orcid.org/0000-0002-5531-0765
https://orcid.org/0000-0002-6332-9896
https://orcid.org/0000-0002-7095-7321
https://orcid.org/0000-0002-8301-6790
https://doi.org/10.3390/met13111854
https://www.mdpi.com/journal/metals
https://www.mdpi.com/article/10.3390/met13111854?type=check_update&version=1


Metals 2023, 13, 1854 2 of 21

that cause creep in metals [4]. The movement of dislocations controls the creep intensity
and the amount of damage inflicted on the material [5]. The creep life of components is
determined by using various creep prediction models in finite element software because
creep experiment testing is tedious, complex, and not cost-efficient [6]. Although creep
tests are absolutely necessary for any type of material and condition, with the help of creep
prediction modeling and computational finite element analysis, the number of tests can be
reduced considerably. The creep tests take extensive time to complete, and there is difficulty
in testing the specimen in the laboratory at elevated temperatures. Even slight variations in
the temperature and loadings can disrupt the whole creep testing effort and the results [7].

Several empirical and theoretical creep life prediction models were developed over
the years that claimed to accurately describe and predict the creep deformation behavior
of materials [8]. These models used some assumptions in the analysis, which caused
limitations in accurately predicting the creep deformation and remaining life of engineering
components [9]. The current state-of-the-art of creep deformation prediction is mostly based
on five established models, which include Norton–Bailey, Kachanov–Rabotnov, Omega,
Theta projection, and Sine hyperbolic models [10]. Each model has its own limitations and
is found to work only in specific environments and loading conditions [11].

The Norton–Bailey model can be found in the commercial finite element software
package ABAQUS, built by Dassault Systemes, version 2020 [12], and is considered the
benchmark model for creep damage models [13]. The model uses the power law to describe
the creep strain rate with time to failure using a material constant as the power exponent [14].
The model does not take into account the primary and tertiary creep regions and only
uses strain rate in the secondary creep domain for creep deformation [15]. The material
constants used in this model vary with temperature, and the creep deformation prediction
at higher temperatures was found to have variations with experimental results [12]. The
Omega creep model has been included in ASME FFS-1 API/579-1 standards [16], initially
adapted by the American Petroleum Institute, Materials Properties Council (MPC) [17]. The
fracture strain in the MPC Omega model is difficult to estimate for the equipment under
service due to limited temperature-dependent materials data at elevated temperatures. The
model also does not provide any means for the indication of prior and ongoing damage in
the material where the crack initiates and probably grows [18]. Omega method has shown
relatively better accuracy in predicting material’s rupture time at lower temperatures, as
the margin of error is small between actual and predicted rupture time as compared to
higher temperature conditions. The model requires curve fitting for extrapolation, as it is
unable to model the exponential creep data, and the constants in the model equation are
dependent on specific material properties.

On the other hand, the Kachanov–Rabotnov (KR) model uses coupled creep damage
constitutive equations [19] and has shown more promising results. The damage evolution
parameter in the equation is responsible for modeling the tertiary creep. The drawback is
that it involves a large number of material constants and does not consider the primary
creep in life prediction [20]. The model emulates continuum creep damage and discon-
tinuous plastic damage at rupture using a continuous function, resulting in complexities
in integration in FE analysis [21]. The Theta Projection (TP) method uses four material
constants. The magnitude, curvature, and formation of the primary creep regime are
controlled by the first two constants, whereas the tertiary creep is controlled by the other
two constants. The model uses large empirical data to accurately define a single curve
for accurate modeling. The process requires several curves at multiple conditions with
intensive extrapolation within the same family of curves to precisely curve fit the data [22].
Recently, the Sine-Hyperbolic (SH) model has been successfully developed to overcome
the limitations of other models, but the model is conservative in approach as it relies on
specific material properties. The model yields good agreement with experimental results
compared to other models [23].

Therefore, there is a need to develop a more robust and reliable creep model that
can capture the complex creep deformation behavior of materials and predict the accurate
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remaining life of engineering materials and components [24]. In this paper, a new creep
prediction model based on the creep power laws was proposed [25]. The model was de-
veloped using the time-temperature superposition principle by integrating Norton–Bailey,
and Kachanov–Rabotnov models using the continuum damage mechanics approach to
cover the limitations of one model over another [26]. The model was employed in the FE
package ABAQUS using a user subroutine scripting method [27]. The developed model
was tested on FE dog bone stainless steel 304 specimens to predict the creep deformation
stages with higher accuracy than other existing models when compared with the exper-
imental data [28]. It was concluded that the numerical approach to implementing the
model provides more freedom in application for the creep life prediction of engineering
components with complex geometries [29]. The newly developed creep model has an edge
over existing models due to the less reliance on specific material properties of the material
while predicting creep damage [30].

The work undertaken in this manuscript is relevant to the field of fracture mechanics
because of the uncertainty in predicting creep crack growth and creep deformation behav-
ior of the material when exposed to extreme service conditions and to avoid catastrophic
equipment failures [31]. A number of prediction models were proposed in the past, but
they have their limitations [32]. The purpose of the research is to propose a new creep
prediction model to cover the limitations of previous models for stainless steel material [33].
The model will give FE practitioners a reliable option to select and implement the new
model for creep damage predictions in finite element (FE) software ABAQUS developed
by Dassault systemes, version 2020 [34]. The proposed model can model creep predic-
tion curves precisely covering primary, secondary, and tertiary stages for the grades of
stainless steel [35].

2. Theoretical Framework for New Creep Material Model

The new model used a similar approach of integration as used in established models
described earlier [36]. It is a well-known fact that the Kachanov–Rabotnov model was
initially derived from the Norton–Bailey power law, and the Sine hyperbolic model was
derived from McVitty’s creep law. Hence, the approach of combining the two models
used in this study was realistic. Initially, the creep power laws were used to derive the
mathematical formulation by integrating material constants. The Kachanov–Rabotnov
model is similar to the Norton–Bailey model except for the introduction of a damage
evolution parameter, which predicts the deformation in the tertiary creep stage.

The model was derived using the time-temperature superposition principle (TTP)
approach for integrating the Norton–Bailey and Kachanov–Rabotnov models. The approach
allows the shifting of experimental data along the time axis by applying an appropriate
temperature shift factor [37]. This can be used to obtain creep data at different temperatures,
which then can be integrated to obtain a master curve. It is observed that during the primary
stage of creep, the creep decelerates due to microstructural changes, such as dislocation,
multiplication, and climbing of grains and second-phase precipitation [38]. Therefore, it
is crucial to consider the first creep stage for several pure metals and alloys. The Norton–
Bailey power law is known to accurately predict primary and secondary creep regimes.
The Norton–Bailey creep law is given in Equations (1) and (2).

.
ε = A σn tm, (1)

where,
.
ε = dεcr

dt ,
.
ε is the minimum creep strain rate, εcr is the minimum creep strain, A is the

creep parameter, m is material-constant, and n is the stress exponent. They are temperature-
dependent material constants that are generally independent of stress. Considering time ‘t’
to be constant for the analysis, Equation (1) is modified to Equation (2) as follows:

.
ε = A σn, (2)
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There are two techniques for demonstrating the creep deformation and data. The first
technique involves keeping the time increments constant and measuring the strain at each
point across multiple stresses, known as time hardening. The second technique involves
measuring the time it takes to reach set increments of strain called strain hardening. In this
research study, a time-hardening technique was applied for modeling the creep data.

The new model used Norton–Bailey law’s capability of predicting primary and sec-
ondary creep and the Kachanov–Rabotnov damage model ability for the prediction of the
tertiary creep regime [39]. The Kachanov–Rabotnov model is given in Equation (3) [40].

.
ε =

dεcr

dt
= A

(
σ

1−ω

)
n, (3)

where ‘ω’ represents the damage evolution variable, which varies from 0 (no damage) to 1
(failure). Equations (1) and (3) were then combined to form the new creep damage model
in Equation (4) [41]:

Minimum Creep strain rate:

.
ε =

dεcr

dt
= A σntm + A

(
σ

1−ω

)n
, (4)

Solving Equation (4) will yield Equations (5) and (6) as follows:

.
ε = A σn

[
tm +

1
(1−ω )n

]
, (5)

.
ε = A σn

[
(1−ω)n tm + 1

(1−ω )n

]
. (6)

where
.
ε is the minimum creep strain rate and σ is the applied stress. The combined new

model was then incorporated into the commercial finite element package ABAQUS using
the user subroutine scripting methodology.

Numerical Integration of New Model by Subroutine Scripting

For the subroutine scripting, Equation (6) was converted into numerical form as shown
in Equations (7)–(9) [42]:

dε

dt
= ∆t Lim→ 0

∆ε

∆t
, (7)

∆ε

∆t
= A σn

[
(1−ω)n tm + 1

(1−ω )n

]
, (8)

and

∆ε = A σn
[
(1−ω)n tm + 1

(1−ω )n

]
∆t (9)

where, ∆t is the change in time, ∆ε
∆t is the rate of change in uniaxial deviatoric creep strain

increment represented as DECRA(1) in the creep user subroutine [43]. Differentiation of
Equation (9) with respect to stress gives Equation (10):

∆ε

∆σ
= A n σn−1

[
(1−ω)n tm + 1

(1−ω )n

]
∆t (10)

where ∆ε/∆σ, a ratio between the change in strain and the change in stress is termed von Mises
stress and represented as DECRA(5) in the creep user subroutine. Equations (9) and (10) can
be used in the creep user subroutine to implement the modified creep model in ABAQUS.
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3. Methodology
3.1. Incorporating Creep Model in ABAQUS by CREEP User Subroutine Scripting

The flowchart in Figure 1 shows the implementation of the user subroutine script
written for the new creep model [44]. The parametric study was carried out to track the
material’s creep deformation behavior while varying the input creep parameter and stress
exponent, which are useful for the model’s sensitivity analysis [45].
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CREEP user subroutine was used to define the material behavior and provide the ‘uni-
axial’ creep laws in a general time-dependent, visco-plastic material formulation [46]. The
subroutine was used in couple time-temperature displacement and modified accordingly
for the implementation of the new creep model [43].

3.2. Geometry Modeling and Pre-Processing

The dog bone shape specimen geometry was modeled in FE package ABAQUS fol-
lowing ASTM E-139 tensile creep testing standards [47]. The dimensions of the specimen
modeled are shown in Figure 2. The boundary conditions in the model were kept consistent
with those used in creep experiments. The material behavior under constant elastic stress
at room and elevated temperatures was observed, and the geometry model is based on an
elastic-perfectly-plastic model in ABAQUS [48]. The plastic hardening data of the material
with isotropic material behavior was also obtained for Norton–Bailey, MPC-Omega, and
the new model [49]. A uniaxial force was applied on the specimen in the thermal field
from one end, keeping the other end fixed. The temperature in the model was kept from
0 to 700 ◦C for creep visco-plastic thermal material behavior. A kinematic coupling con-



Metals 2023, 13, 1854 6 of 21

straint was selected for the reference point to apply uniaxial force in the thermal field in a
uniform degree of freedom in a global coordinate system [50].
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Figure 3a depicts the applied boundary conditions to the specimen, fixed at one end
and the load applied at the other end of the specimen. Figure 3b depicts the specimen for
thermal analysis as the pre-defined temperature field was defined with the temperature, the
step was initial, distribution was direct to specification, instantaneous, and kept constant
throughout the region up to 700 ◦C for running the simulations [51]. Figure 3c illustrates
the interaction which was selected as surface-to-surface contact. The coupling constraint
was selected for the reference point, and the coupling type was kinematic and with uniform
degrees of freedom for the global coordinate system [52].
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700 ◦C and constant throughout the region; and (c) Reference point with coupling constraint for the
movement of the specimen [7].

The temperature-dependent Young’s modulus, plastic strain, and yield stress of the
SS-304 material were acquired from ASME BPVC section II part D standards [46] and are
shown in Table 1. Density, thermal conductivity, and thermal expansion coefficient values
are also taken from the ASME standards. Since all the material properties are extracted
from the standards, they are the linear functions of temperature range with no non-linear
variations for stainless steel. A decrease in Young’s modulus and yield strength of the
stainless steel 304 material was observed, corresponding to the increase in temperature
while obtaining the properties from the standards.
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Table 1. Material and physical properties of SS-304 material [7].

Material Model Elastic Perfectly Plastic

Young’s Modulus (201,000–17,100) MPa @ −25 ◦C to 720 ◦C

Poisson’s ratio 0.31

Density 8000 kg/m3

Thermal Expansion Coefficient 17.3 × 10−6 ◦C−1

Thermal Conductivity 16.2 W m−1 ◦C−1

Yield Stress (207–126) MPa

Plastic Strain (0–0.015)

Figure 4 shows the meshed geometry of the FE dog bone specimen with the area of
maximum creep deformation highlighted. A mesh convergence study was carried out to
obtain the optimum mesh size for the simulations [53]. It was observed that the element
mesh size of 3 provided a consistent and concise von Mises stress value of 126 MPa for
the specimen. This mesh size resulted in a total of 1700 elements used for meshing the FE
geometric model, and the total mesh size for the model is 5100.

Metals 2023, 13, x FOR PEER REVIEW 7 of 21 
 

 

Table 1. Material and physical properties of SS-304 material [7]. 

Material Model Elastic Perfectly Plastic 
Young’s Modulus (201,000–17,100) MPa @ −25 °C to 720 °C 

Poisson’s ratio 0.31 
Density 8000 kg/m3 

Thermal Expansion Coefficient 17.3 × 10−6 °C−1 
Thermal Conductivity 16.2 W m−1 °C−1 

Yield Stress (207–126) MPa 
Plastic Strain (0–0.015) 

Figure 4 shows the meshed geometry of the FE dog bone specimen with the area of 
maximum creep deformation highlighted. A mesh convergence study was carried out to 
obtain the optimum mesh size for the simulations [53]. It was observed that the element 
mesh size of 3 provided a consistent and concise von Mises stress value of 126 MPa for the 
specimen. This mesh size resulted in a total of 1700 elements used for meshing the FE 
geometric model, and the total mesh size for the model is 5100. 

 
Figure 4. Meshing of FE dog bone model with mesh convergence plot [7]. 

The creep parameters and stress exponents, which are temperature-dependent mate-
rial constants and are independent of stresses, were obtained from curve fitting of the 
baseline Omega model to the new model for damage progression by regression analysis 
and are shown in Table 2. Tertiary-stage creep and material behavior until rupture were 
considered in the determination of these values. The results obtained for the new model 
from the creep subroutine scripting methodology were compared, and the margin of error 
was analyzed for the method. 

Table 2. Material constants for SS-304 for creep models at (680–720) °C. 

 Creep Parameters (A) Stress Exponents (n) Temperature (°C) 

New Model 

1.59818 × 10ିଶଵ 7.1138481 680 
4.25033 × 10ିଶଵ 7.0399763 690 
1.10787 × 10ିଶ଴ 6.9676230 700 
2.83197 × 10ିଶ଴ 6.8967418 710 
7.10362 × 10ିଶ଴ 6.827288 720 

Figure 4. Meshing of FE dog bone model with mesh convergence plot [7].

The creep parameters and stress exponents, which are temperature-dependent material
constants and are independent of stresses, were obtained from curve fitting of the baseline
Omega model to the new model for damage progression by regression analysis and are
shown in Table 2. Tertiary-stage creep and material behavior until rupture were considered
in the determination of these values. The results obtained for the new model from the creep
subroutine scripting methodology were compared, and the margin of error was analyzed
for the method.

Table 2. Material constants for SS-304 for creep models at (680–720) ◦C.

Creep Parameters (A) Stress Exponents (n) Temperature (◦C)

New Model

1.59818 × 10−21 7.1138481 680

4.25033 × 10−21 7.0399763 690

1.10787 × 10−20 6.9676230 700

2.83197 × 10−20 6.8967418 710

7.10362 × 10−20 6.827288 720



Metals 2023, 13, 1854 8 of 21

3.3. Creep Experimental Testing

The creep tests were conducted at 600 ◦C up to 336 h, and the other laboratory test
was conducted at 700 ◦C up to 1000 h on SS-304 dog bone specimens. The creep specimens
were firmly clamped by clevis couplings and then heated to a temperature between 600 ◦C
and 700 ◦C, surrounded by a thermostatically controlled furnace [54]. The temperature
was controlled by a thermocouple attached to the gauge length of the specimen. Once
the desired temperature was reached, a constant load of 50 N was applied to exert a
longitudinal force on the specimen. During the test, the temperatures, load, and specimen
elongation were continuously recorded, and the test continued until the specimen ruptured.
The creep curves obtained from the FE analysis were compared with the experimental creep
testing data. A regression analysis was conducted to extrapolate the creep data to convert
material constants into temperature-dependent functions and to predict the stainless steel
304 material behavior for creep deformation. The creep design maps were plotted by
making the extrapolative predictions of creep behavior practical. The creep testing plan for
conducting the creep test experiment is exhibited with the help of the flowchart in Figure 5.
The experiment tests were conducted on the creep testing machine, as in Figure 6. The
specifications of the creep testing machine are tabulated in Table 3, creep testing parameters
are tabulated in Table 4, and the testing conditions are tabulated in Table 5.
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Figure 6. Creep testing machine.

Table 3. Specifications of creep testing machine.

Features Details

Machine type Servo control

Capacity 20 tons

Load resolution 1/500,000/+/−0.5%

Test speed 0.001–500 mm/min

Speed accuracy +/−0.5%

Stroke resolution 0.00003 mm

Computer acquisition frequency 200 times/s or 500 times/s

Table 4. Creep testing parameters.

Parameters Description

Material Stainless Steel-304

Number of specimens 2 samples

Stepped Iso-thermal Method (SIM)
Pretension load at 7000 Pa

550 ◦C 600 ◦C 650 ◦C 700 ◦C

Stepped Iso-stress Method (SSM)
Temperature 700 ◦C

5000 Pa 7000 Pa 8000 Pa 10,000 Pa

Preliminary tests Pre-tension Load 6000 Pa 7500 Pa 8000 Pa 8000 Pa

Temperature 600 ◦C 650 ◦C 650 ◦C 700 ◦C

Table 5. Testing Conditions for Creep Test.

Test Duration (h) Temperature (◦C) Specimens Loading Conditions Yield Strength

336 600 1 74.28 MPa 60%

1000 700 2 52.20 MPa 60%
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The influence of continuous load growth factor was continuously monitored by a
creep testing machine in the form of specimen deformation. The load growth rate factor
used for stainless steel 304 specimen varies as the applied load was different at different
temperatures and increased gradually for the stepped iso-thermal and stepped iso-stress
methods. The loads are mentioned in Table 4; the load growth rate factor influencing the
creep test was recorded for different loading conditions and different temperatures for the
stepped iso-stress and iso-thermal methods and for pre-tension loading.

4. Results

The pre-defined boundary conditions were applied in ABAQUS for the dog bone
specimen to simulate the creep behavior up to 18,000 h at 720 ◦C and stress at 126 MPa [55].
The analysis showed promising results covering the primary, secondary, and tertiary stages
of creep for the material. The results were obtained by adapting the creep user subroutine
scripting method for the new model implementation. Figure 7 shows von Mises and
relaxed stress in the SS-304 material obtained from simulation applying the new model and
calibrating it with the baseline Omega creep model by regression analysis.
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Figure 7. von Mises stress and relaxed stress distribution with Omega-new model’s regression
visco-elastic plastic run-time of 18,000 h, at 126 MPa and 720 ◦C.

Figure 8a shows the von Mises stress distribution after 18,000 h of simulation. The
significant stresses were created at the free end, whereas the lesser stresses were dis-
tributed around the specimen’s fixed end. The material began to deform as soon as the
continuous load was applied [56]. It transitioned from an elastic to a permanent plastic
deformation state under the effect of the temperature environment and specified boundary
conditions [49]. For the imposed stresses, Figure 8b,c shows the creep and plastic strains in
the specimen, in which the deformation was apparent. Figure 9 depicts the plot of creep
strain, plastic strain, and total inelastic strain accumulated with the combination of creep
and plastic strain results for the new creep model. Section 4.1 covers the results obtained
for the new model by implementing the creep user subroutine method for the new creep
model’s implementation.
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implementing a new creep model.

4.1. New Creep Model Results by User Subroutine Scripting

The CREEP user subroutine available in ABAQUS documentation [43] was modified
as depicted in the flowchart of Figure 1. Figure 10 shows the variation in creep strain rate
obtained from the new and the established Omega and Norton–Bailey models. Similarly,
the graph in Figure 11 represents creep strain for the new model when compared with
Omega and Norton–Bailey models at the same pre-defined conditions. The results are
evidence of the accuracy of the new model for predicting creep strain rate and creep strain
curves in comparison to the Omega and Norton–Bailey models.
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Figure 11. Comparison of creep strains between the new, Omega, and Norton–Bailey model by
subroutine scripting up to 18,000 h at 720 ◦C.

As per the above comparisons and analysis, a good agreement for creep prediction
was observed between the results obtained for creep strain rate for the new model using
the user subroutine scripting method. The curves showed primary creep deformation for
200 h followed by steady-state secondary creep deformation up to 16,000 h, leading to the
sudden creep collapse until rupture for the tertiary creep stage up to 18,000 h. However,
the Omega and Norton–Bailey model’s curves are unable to model the tertiary stage creep
curve. One advantage of the parametric study with the implementation of the subroutine
method is that it can be applied to the family of stainless-steel materials to measure the
creep deformation behavior of various alloys with similar material characteristics. The
variable parameters can be applied to model the materials’ behavior at different isotherms
at various operating hours, as per experimental testing, to verify the reliability of the new
model. It was found that the new model’s accuracy was 91.56% by the subroutine method
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when compared with the Omega and Norton–Bailey models, with a 5% maximum window
of deviation for creep strain rates on ten selected points taken as a reference along the
creep strain rate curve. In addition, it was found that the new model’s accuracy for creep
strain curves was 83.1% by subroutine technique when compared with the Omega and
Norton–Bailey models, respectively, with the same 5% empirical deviation. Again, there
was good agreement in the results found for the analysis of the creep damage prediction.
Therefore, the method can be applied for the creep prediction simulations for stainless steel
using the newly developed model.

To capture the tertiary creep behavior of stainless-steel material, various damage
evolution parameter (ω) values were applied. The creep strain to reach the particular
values of (ω) does not show a similar trend. The creep strain curves at different values
of (ω) proved the evidence of nonlinear material behavior. As depicted in Figure 12, a
marginal decrease in strain to reach the value of (ω) resulted in lower applied stresses. The
kinetics evolution of coupled strain and damage does not necessarily follow the same trend.
It is well known and proven that any material would fail ifω reaches the critical damage
ωcr value of 1. The material usually fails and deforms before reaching the critical damage
(ωcr) equivalent to 1 [57].
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Figure 12. Creep strain for the new model at varying damage evolution parameters up to 18,000 h [58].

The results show good agreement for the creep strain rate obtained for varying stresses
at elevated temperatures. The adapted method of subroutine scripting can be implemented
to model the creep deformation behavior of SS-304 material for defined boundary conditions
and at elevated temperatures [59]. The increase in stress would result in the rise of creep
strain rate and creep strain. The curves at different temperatures are clearly exhibited for
the primary, secondary, and tertiary creep stages of the SS-304 material.

4.2. Experimental Creep Test Results

A series of experimental tests were conducted as per ASTM standards [53]. A total
of 11 specimens were used. Nine samples were used for tensile tests, and two tests were
used for the creep tests. Ambient tests were conducted on three samples to verify the yield
strength of SS-304, whereas hot tensile tests were conducted on the next six samples; three
samples at 600 ◦C and the remaining three at 700 ◦C, in order to verify the ultimate tensile
strength at elevated temperature prior to the creep tests.

The creep specimens were subjected to pre-load for 336 h and 1000 h. During the
test, the specimens’ deformations were recorded to estimate the primary, secondary, and
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tertiary stages of creep phenomena. High material degradation was observed by the
deformed microstructure examinations of grain distortion, elongation, and grain boundary
sliding [58]. Plots in Figure 13 indicate the creep curves obtained for both testing conditions
of SS-304 specimens at 336 h and 1000 h, respectively.
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Figure 13. Creep curves for 336 h creep test with loading conditions 60% yield strength (74.28 MPa)
at 600 ◦C and 1000 h creep test with loading conditions 60% yield strength (52.20 MPa) at 700 ◦C.

4.3. New Creep Model Validation with Creep Experimental Results

Figure 14 depicts the comparison of creep strain rate curves obtained through the
1000 h creep test with those obtained by FE simulation for the same conditions, using the
newly proposed creep model simulated using the user subroutine technique. Similarly,
Figure 15 depicts the creep strain rate curves obtained from creep experiments up to 336 h
and compared with the new creep model [60].
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Figure 15. Comparison of predicted creep strain rate by the new creep model using the user subrou-
tine method with experiment creep strain rate at 600 ◦C and 336 h.

It is calculated that the results of creep strain rate by user subroutine scripting method
are 90.69% near accurate to the actual experimental creep test results of 1000 h. Similarly,
for the comparison with the experimental results at 336 h, the creep strain rates from the
simulation indicated a comparable accuracy of 92.66%, using the subroutine scripting
method for model implementation. The percentage accuracy is based on the creep data and
is calculated by considering 10 points on the experimental creep curve with a 5% maximum
deviation. Hence, the proposed new model is validated with the help of laboratory creep
test results [61]. The validation is mandatory to prove the relevance of the proposed creep
model applied to various materials and equipment exposed to different service conditions.
The peak in the creep strain rate curve was observed while running the simulations for the
336 h creep test and was recorded [62].

It is evident that the new creep model has the capability to predict the creep deforma-
tion for stainless steel material more accurately in comparison to other models at elevated
temperatures. The new creep model successfully simulated the creep curve, starting with
the instantaneous elongation of the primary creep stage up to 300 h, followed by the steady-
state secondary creep deformation up to 16,000 h and then rapid distortion until rupture
for the tertiary creep stage up to 18,000 h.

4.4. Results Comparison of New Creep Model with the Existing Models

The following graphs in Figure 16a depict the comparison specifically between the
new model and the other models, established by performing the simulations on the same
physical conditions and applying the creep models simultaneously for creep strain rates.
The new model and the established models were calibrated with the Omega model in order
to extract stress exponents and creep parameters [63].

Similar comparisons are being made for creep strains at the same physical conditions
that indicated promising results. The results proved the capability of the new creep
model in modeling all three creep stages for SS-304 material at elevated temperatures.
Figure 16b shows the results for the creep strains of the new model when compared with
the established models for the same physical conditions while running the simulations for
up to 18,000 h, 126 MPa, and 720 ◦C [64].

The damage is apparent at the tertiary stage of creep damage, which was recorded in
the following graph by plotting the damage evolution parameter against creep strains as in
Figure 17. The comparisons were made for creep strain between established models and
the new proposed model to justify the results. The increase in creep strain result observed
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was due to the rise of the damage evolution parameter to model the tertiary creep curve
with the damage progression.
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For the case studies, a modified theta projection model was applied to ferritic steel alloy
2.25Cr–1Mo to characterize its creep behavior at an elevated temperature of 754 ◦C [65].
Similarly, the new proposed model is applied to the same material, whose material and
physical properties were obtained from the ASME BPVC, sub-part II, section D standards.
By considering the same FE dog bone model with the same geometry and running the FE
simulations at similar conditions of 754 ◦C, 110 MPa, and up to 300 h, it was found that
the new model’s accuracy was 88.5%, and the modified theta projection model accuracy
was 84.3% when compared with the published experimental creep test data. For the other
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case study, a Sine hyperbolic model was applied to predict the creep curve for ferritic steel
2.25Cr–1Mo at 90 MPa, 750 ◦C, and the test ran for up to 1000 h [66]. The new model was
applied to the same material, and the same conditions were maintained. The new model’s
precision was 92%, and the Sine hyperbolic model’s accuracy was 82% when compared
with the published experimental creep test data. Hence, the significance and relevance of
the new model is proved [67].
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5. Conclusions

The integration of the Kachanov–Rabotnov and Norton–Bailey models into the new
material model has provided a new approach to creep modeling. The model was integrated
into the ABAQUS software using the subroutine scripting methodology, which allowed for
the accurate prediction of creep behavior under various loading conditions. The following
conclusions can be deduced from the research study:

• When compared with Omega and Norton–Bailey models, the model’s accuracy in
predicting the creep strain rates was found to be 91.56% by subroutine scripting. Simi-
larly, for the creep strain, the results indicated accuracies of 83.1% by the same method
of writing subroutine while comparing with the Omega and Norton–Bailey models.

• The validation of the new model was performed by comparing the results between
finite element and experiment creep tests carried out up to 336 h and 1000 h. The
results of creep strain rate by subroutine scripting are 90.69% near accurate and close
to the 1000 h experimental creep test results.

• Similarly, for the comparison with the experimental results at 336 h, the creep strain
rates from the simulation indicated a comparable accuracy of 92.66%, using the sub-
routine scripting method.

• The new model, when applied to a couple of case studies, fetched more precise results
in comparison to the established models. The model accuracy was 88.5%, and the
modified theta projection model accuracy was 84.3% when applied to the material
2.25Cr–1Mo under the same conditions and compared with the published experiment
creep test results. Similarly, the new model’s accuracy was 92% in comparison to
the Sine hyperbolic model’s accuracy of 82%, when compared with the published
experiment test data for the material 2.25Cr–1Mo under the same conditions.

Further investigations into the application of this model for other materials and loading
conditions are needed to validate its applicability. However, the successful validation of
the model against experimental data suggests that it has a promising future and will be
useful in a wide range of engineering applications.
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Nomenclature

A Norton’s power-law constant
n Stress exponent
tr Rupture time
σ1, σ2, and σ3 Principal stresses
S1 Stress parameter
α Triaxiality parameter
ř Omega damage parameter
δΩ Omega parameter
ε0 Initial creep strain
Ω Omega material damage constant
εt Creep strain rate
FFS Fitness for service
API American Petroleum Institute
UTS Ultimate tensile strength
MPC Material Properties Council
ASME American Society for Mechanical Engineers
BPVC Boiler and pressure vessel codes
UTS Ultimate tensile strength
ASTM American Standards for Testing of Materials
CDM Continuum damage mechanics
KR Kachanov–Rabotnov model
NB Norton–Bailey Model
TP Theta Projection model
SH Sine-hyperbolic model
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