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ABSTRACT The application of machine learning in healthcare, financial, social media, and other sensitive
sectors not only involves high accuracy but privacy as well. Due to the emergence of the Cloud as
a computation and one-to-many access paradigm; training and classification/inference tasks have been
outsourced to Cloud. However, its usage is limited due to legal and ethical constraints regarding privacy.
In this work, we propose a privacy-preserving neural networks-based classification model based on
Homomorphic Encryption (HE) where the user can send an encrypted instance to the cloud and receive an
encrypted inference from it to preserve the user’s query privacy. In contrast to existing works, we demonstrate
the realistic limitations of HE for privacy-preserving machine learning by changing its parameters for
enhanced security and accuracy.We showcase scenarios where the choice of HE parameters impedes accurate
classification and present an optimized setting for achieving reliable classification.We present several results
to demonstrate its effectiveness using MNIST dataset with highly improved inference time for a query as
compared to the state of the art.

INDEX TERMS Convolutional neural network, homomorphic encryption, activation function, cloud server,
approximation techniques, security and privacy, encrypted computations.

I. INTRODUCTION
Technological advancement and data sharing in the current
era of Big Data introduce a new type of concern in everyday
human life known as individual privacy. The data being
shared by entities and individuals helps learn patterns, draw
conclusions, make decisions, and provide ease in most
aspects of life. However, this is at the expense of a breach
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of an individual’s privacy and should be catered subject to
the GDPR [1] regulations.

Machine Learning (ML), as a technical front-runner that
plays a leading role in data analytics, is strongly reliant on
the utilization of personal data. Analytical models are used
in machine learning to create well-informed predictions on
given datasets. Furthermore, a lot of machine learningmodels
require a significant computing resource to analyze enormous
volumes of data efficiently.

Cloud on the other hand provides the ease to access
data and use on-demand resource sharing from anywhere
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in the world. With the expansion of cloud infrastructure,
machine learning (ML) models can be trained and deployed
on cloud servers. Users may utilize the models to make
predictions once they have been deployed, and they don’t
have to be concerned with the models or the service being
maintained. This is what is meant by machine learning
as a service (MLaaS), similar to the services provided by
Microsoft (Microsoft Azure ML [2]) and Google (Google
Prediction API [3]). Both the training and classification
phases can be outsourced to the cloud. While performing
these phases the ML algorithm, training data, the model, and
the feature vector must all be kept secret by one or more of
the parties involved in applications that handle sensitive data.
One important setting of MLaaS over the cloud involves the
cloud having a pre-trained ML model and the client issues a
query for inference [4]. This setting is particularly common
in healthcare for disease inference, identifying fraudulent
transactions by banks, and social media personalized feeds
based on clients’ previous activities.

Although, the cloud provides numerous advantages in this
setting, however, when it comes to security a cloud-based
solution invites several problems regarding the individual’s
privacy. Specifically, for inference or prediction from a
pre-trained machine learning model being outsourced to the
cloud, the user query privacy is breached. Even if the channel
between the user/client and the cloud is secure via traditional
means of encryption, the third-party cloud will be able to
decrypt user data to properly perform inference operations.
However, as the cloud is untrusted, it is a natural practice to
encrypt data before outsourcing it to the cloud for performing
operations. To cater to this issue, Homomorphic Encryption
(HE) is one such alternative to help in cloud settings for
performing computations over encrypted data while ensuring
client query privacy.

Although the client can issue queries and perform many
privacy-preserving inferences from the trained model known
as Privacy of Client (PoC), on the other hand, the client should
not be able to infer anything beyond the expected output
from the trained model stored over the cloud known as the
Privacy of Model (PoM). Both PoC and PoM are important
metrics for Privacy-Preserving Classification Model (PPCM)
in outsourced computation settings. However, attaining these
with HE is a difficult task as the underlying functions
are non-linear and the biggest challenge is creating the
homomorphic version of these functions as inherently the
HE schemes [5], [6], [7], [8] supports only addition and
multiplication operations.

Some of the HE challenges are summarized as: Firstly,
the input data must be encoded as homomorphic plaintexts,
and this encoding impacts the efficiency of the resulting
circuit. Secondly, HE schemes only support basic arithmetic
operations like addition and multiplication and they cannot
support high-level functions like rounding, and evaluating
non-polynomial functions. Finally, the multiplicative depth
of an evaluation function has a direct relation with the HE
parameters, so higher depth functions demand bigger HE

parameters, which decreases the efficiency of the HE scheme
and increases computing time.

Priorly the privacy-preserving classification problem has
been addressed in different contexts like validation of 6 non-
linear layers [9], compare and contrast several methods
and techniques for RELU approximation function [10],
[11], acceleration on GPU’s [12], and bootstrapping HE
with plaintext model training [13]. However, this work
examines the behavior of CNN in a privacy-preserving
classification setting while considering the HE limitations
into consideration. Furthermore, the HE parameters are
extensively varied to check the efficiency and accuracy of
a given CNN that is being evaluated homomorphically on
encrypted data.

A. OUR CONTRIBUTION
This study combines the CNN with HE and uses
an open-source Microsoft cryptographic library called
SEAL [14], which is built on the BFV [5], [6], [7] and
CKKS [8] schemes. Although both encrypted training,
as well as encrypted classification, are conceivable, the main
purpose of this work is to examine the viability of encrypted
classification and the complexities of SEAL. To address
the limitations of HE functionality, the non-linear activation
functions like ReLU and Sigmoid are approximated to
low-degree polynomial approximations. The CNN is trained
using the real activation functions on plain data, but the
classification phase uses approximated activation functions
on HE-encrypted data. Along with the activation layers, the
other parts of the network e.g., convolution, pooling, and
fully-connected layers are also developed. Initial experiments
are carried out with a straightforward three-layer network
to ensure that these privacy-preserving layers are correct.
Following the success of the preliminary results, a bigger
seven-layer network is built to conduct encrypted classifica-
tion on the handwritten MNIST dataset [15]. The application
is designed and tested to ensure accuracy, performance,
efficiency, and general applicability. The findings of the
experiments highlight the potential importance of HE in
modern days cloud-based machine learning information
systems, particularly based on CNN. Finally, to explore
the security aspect of privacy-preserving classification, the
impact of parameter size on efficiency and accuracy is
studied by adjusting the HE parameters. We performed
comprehensive experiments to demonstrate the efficiency of
our model. The following are the key contributions of our
study:

• We create a PPCM model that entails training a CNN
using plaintext (unencrypted) data while conducting
the classification step using homomorphically encrypted
data.

• Our approach involves using Chebyshev polynomials to
estimate the activation functions (ReLU and Sigmoid),
and we then analyze the discrepancies between the
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estimated functions in terms of their efficiency and
accuracy.

• The security aspect of privacy-preserving classification
is being investigated by altering the HE parameters to
observe how changes in parameter size impact efficiency
and accuracy.

• We present comprehensive results by changing HE
parameters, and also illustrate the cases when correct
inference cannot be made in the privacy-preserving
setting under certain HE parameters.

B. ORGANIZATION
The following is the organization of the paper: Section II
presents a review of significant techniques related to PPML.
Section III explains the HE scheme and the polynomial
approximation techniques. The proposed privacy preserved
classification model (PPCM) is demonstrated in Section IV,
followed by extensive experimental results in Section V.
Lastly, the paper is concluded in Section VI.

II. RELATED WORK
Graepel et al. [16] trained two machine learning models
namely Linear Mean and Fisher’s Linear Discriminate
classifiers using a Somewhat HE scheme. To circumvent
HE algorithm’s limitations, they introduced division-free
algorithms. They did not take into account more complex
algorithms but instead concentrated on straightforward
classifiers like the linear means classifier. Additionally,
they took into account a weak security model and the
client can learn the model. Bost et al. [17] proposed a
privacy-preserving classification model for three distinct
machine learning algorithms named Naive Bayes, Hyper-
plane Decision, and Decision trees. They combined garbled
circuits with three homomorphic encryption schemes named
Piallier, BGV, and Quadratic Residuosity schemes and
employed SecureMultiparty Computation (SMC) as the basis
of their approach, which is effective only for small data sets
and only takes into account conventional machine learning
techniques.

Xie et al. [18] examined theoretical elements of construct-
ing neural networks in the encrypted domain using poly-
nomial approximation. Gilad-Bachrach et al. [4] extended
this work by presenting CryptoNets. It was the first detailed
studied CNN classifier for encrypted data. They employed
Microsoft SEAL, a leveled homomorphic encryption tech-
nique that supported SIMD and scaled mean-pooling layer
to solve the division operation limitation, being inaccessible
to encrypted values. The sigmoid function was replaced with
f (z) := z2 as the activation function in HE schemes. They
trained the given model using unencrypted data and utilized
it to classify encrypted data. On the MNIST dataset, they got
an overall accuracy of 98.95 percent. CryptoNets was able to
process 48068 cases per hour. The accuracy of CryptoNets
was improved in a study by Chabanne et al. [9] by combining
the solution’s original concepts with a batch-normalization

approach and employing ReLU as the activation function in
their scheme.

Jiang et al. [19] proposed a privacy-preserving deep learn-
ing model named E2DM (Encrypted Data and Encrypted
Model). A matrix was homomorphically encrypted by
E2DM before being subjected to arithmetic operations. The
primary contribution of this model was the reduction in the
complexity required for computing. They employed CNN
with a square activation function, two fully connected, and
one convolutional layer. To train a simple neural network in
privacy preserved environment Aono et al. [20] suggested
a technique based on additive homomorphic encryption by
pointing out a weakness in Shokri and Shmatikov [21] work,
that leaked client data during the training process. The main
concept was to allow a server to upgrade the model (learning)
by aggregating user gradient values.

Hesamifard et al. [10] proposed a work named CryptoDL,
which included a modified version of CNN that operated on
encrypted data. The author modified the activation function
using low-degree polynomials. This study demonstrated
the importance of polynomial approximation of activation
functions present in neural networks so that HE operations
could be performed on them. They attempted to approximate
the ReLU, sigmoid, and tanh types of activation functions.
The CNN with polynomial approximation was employed
during the training phase. The model created during the
training step was then applied to classify encrypted data.
This model did not support privacy-preserving deep neural
network training on encrypted data. Liu et al. [22] proposed
a privacy-preserving technique for CNN training as well as
classification purposes. Each activation layer was preceded
by a batch-normalization layer, and the activation layer
was approximated by using a Taylor series and Gaussian
distribution. Additionally, they substituted a convolutional
layer with a longer stride for the non-linear pooling layer.

Juvekar et al. [23] introduced a framework named Gazelle,
which combined HE with MPC, for privacy-preserving
classification purposes. The goal of this study was to retain
the model privacy in the server and to make it simpler for the
client to perform a classification without exposing his input
data to the server. Gazelle effectively blended secret-sharing
with HE for privacy-preserving classification since it could
switch between HE and GC protocols. The bias, weight,
and stride size of the convolutional layer were concealed
to protect the neural network model’s privacy. Their results
demonstrate that, in terms of runtime, Gazelle completely
surpasses other well-liked methods like MiniONN [24] and
Cryptonets [4].

Sanyal et al. [25] proposed a framework, TAPAS, which
employed encrypted data to speed up parallel processing
in privacy preserved environment. They tried to overcome
the lengthy process of classification in the context of HE.
The key contribution was to develop a novel approach to
accelerate binary computing in Binary Neural Networks
(BNN). Bourse et al. [26] proposed a technique named
FHE DiNN (Fast HE Discretized Neural Network) for
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privacy-preserving machine learning. They intended to
overcome the complexity problem when using a standard
HE approach with a neural network. The complexity of
the network increases with network depth, which increases
the cost of computation. They employed the bootstrap-
ping approach to bring the network complexity to the
liner with respect to the depth of the neural network.
Badawi et al. [12] developed an effective privacy-preserving
solution by combining cutting-edge technology such as Fully
Homomorphic Encryption, Convolutional Neural Networks
along with Graphics Processing Units (GPUs). The author
demonstrated how to use GPUs to increase the performance
of running CNNs on encrypted data. They tested two CNNs
to classify homomorphically the MNIST and CIFAR-10
datasets and obtained appropriate security (more than 80 bit)
and reasonable classification accuracy (99% and 77.55% for
MNIST and CIFAR-10, respectively).

Khan et al. [11] presented a technique called Blind
Faith which performs the machine learning classification
on user-encrypted queries using homomorphic encryption.
The primary focus of this work was to elucidate the
various methods for approximating activation functions and
to discuss the advantages and disadvantages of each of
these approximation techniques. They employed the 10-
layer convolutional network in their implementation and
their model attains the privacy of 98.50% on the MNIST
dataset. In a recent study [13], researchers utilized the
RNS-CKKS fully homomorphic encryption (FHE) scheme
with bootstrapping to implement the standard ResNet-20
model and verified its performance using the CIFAR-10
dataset and plaintext model parameters. Rather than replacing
non-arithmetic functions with basic arithmetic functions,
advanced approximation methods were utilized to accurately
evaluate these non-arithmetic functions, such as ReLU
and Softmax. Additionally, the researchers incorporated
the bootstrapping technique of the RNS-CKKS scheme
for the first time in the proposed model, which enables
the evaluation of any deep-learning model on encrypted
data.

Zhao et al. [27] proposed a privacy-preserving tree-
based inference mechanism by employing Pailliar encryption
and demonstrated results for Cancer and Heart datasets.
Han et al. [28] employed CKKS for privacy-preserving
inference using the Naive Bayes classifier. The system model
is considered a central public key shared between the data
owner, cloud, and client for encrypting data and performing
queries, whereas a system evaluation key is for performing
homomorphic operations in the cloud.

Sarkar et al. [29] proposed a fast matrix multiplication
algorithm for the high dimensional matrix to optimize
performance for privacy-preserving logistic regression. The
system model consideredÂ the cloud as an honest entity
and PoC is taken into consideration. The results depicted
an accuracy of 82.68 for the logistic regression algorithm
employing BFV scheme. In another work, Kim and Guyot
[30] employed CKKS with bootstrapping and batch convo-

TABLE 1. Comparative analysis of existing works.

lution for optimization of interference results for CIFAR-
10/100 dataset. Table 1 depicts a comparison of existing
PPML techniques with the proposed technique.

III. PRELIMINARIES
A. HOMOMORPHIC ENCRYPTION
The FV [7] technique is the homomorphic encryption scheme
employed by the Microsoft SEAL [14] library and it is
based on the algebraic ring structure. Basically, algebraic
rings are mathematical sets of elements inside a modulus
that simultaneously enable the binary operations of addition
and multiplication. To make the FV scheme work, initial
plaintext numbers must be obtained in the ring structure
Rt . The ring Rt is defined as Rt = Zt [x]/xn+1, which
includes only those integer numbers from the set of integers
Z for which there exists a polynomial having degree less
than n with coefficients reduced modulo t [31]. The ring
structure permits polynomials with coefficients modulo t
and a degree less than n. The t and xn + 1 are referred to
as the plaintext and polynomial moduli, respectively. The
encryption process begins with the specification of both of
these moduli as encryption parameters. Since each of the
original numbers must be a member of the ring structure
Rt in order to be encryptable under this scheme, hence any
number whether it be an integer or a rational number must
be encoded into a plaintext polynomial in Rt before it can be
encrypted under the scheme, according to the ring Rt . After
the appropriate integers have been encoded into Rt they are
encrypted into a ciphertext array of at least two polynomials
in the ring structure Rq where q is the coefficient modulus and
is specified as an encryption parameter before the encryption
occurs.
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We briefly overview the algorithms that are part of the FV
scheme. A a← R2 denotes that a is sampled uniformly from
the finite setR2. The scheme’smain algorithms are as follows:

• Setup (pk, sk, evk ← λ): The algorithm takes as input
the security parameter λ to generate the public, secret,
and evaluation keys respectively as pk, sk, evk .

• Encryption (ct ← pk,m): The algorithm takes the
public key pk = (p0, p1), a message m ∈ Rt and sample
e1, e2← X and u←− R2 as random inputs and generates
the ciphertext ct as ([1m+ p0u+ e1]q, [p1u+ e2]q).

• Decryption (m ← sk, ct): The algorithm takes secret
key s = sk , ciphertext c0 = ct[0] and c1 = ct[1]
as inputs to compute m′=[⌊ tq [c0 + c1s]q⌉]t to get the
decryption of m as m′.

• Evaluation (c′← pk, ct1, ct2): This algorithm takes two
ciphertexts (ct1, ct2) and public key as input to output
a resulting ciphertext c′, which is either the addition or
multiplication of given ciphertexts (ct1, ct2) as specified
to the algorithm.

The FV scheme allows for both addition and multiplication
operations to be performed in the encrypted domain. It also
supports Single Instruction Multiple Data (SIMD), which
allows for HE operations to be performed on batches of
ciphertexts [32] to boost the performance. There are three
main parameters associated with this scheme that has a direct
impact on the security level as well as the performance of that
scheme: polynomial modulus (n), coefficient modulus (q),
and plaintext modulus (t). The polynomial modulus affects
the security level and performance of the scheme, while
the coefficient modulus tells about the Noise Margin, also
known as Noise Budget (NB) available for the encrypted
computations. On the other hand, the plaintext modulus
provides the NB present in the freshly encrypted ciphertext
and it also provides NB consumption during the encrypted
multiplications. The NB is consumed by homomorphic
operations and is based on the chosen encryption parameters.
The consumption of NB is higher in sequential multiplication
and can be reduced by choosing reasonable encryption
parameters. The decryption of ciphertext is impossible if the
NB falls to zero, hence it’s important to set parameters that
are large enough to prevent this but not too big that they lose
their effectiveness and functionality.

B. POLYNOMIAL APPROXIMATION
The HE scheme discussed above allows to perform only
addition and multiplication operations, i.e., it can only
handle linear mathematical functions that contain addition
and multiplication terms and fails to work with nonlinear
functions. Hence, the nonlinear functions must be converted
to functions that only involve addition and multiplication
terms to make them compatible with the HE scheme. For this
purpose, different polynomial approximation techniques are
used and given as follows:

• Numerical Approximation Method
• Taylor Series Method

• Chebyshev Approximation Method

We employ each of these techniques individually to
analyze the polynomial approximation of non-linear activa-
tion functions present in the neural network. Experiments
show that Numerical Approximation only works best for
higher degree polynomial approximation which leads to be
ineffective when dealing with encrypted domains using the
HE scheme. For a lower-degree polynomial approximation,
the accuracy of the activation function decreases. On the
other hand, Taylor Series [33], [34] was also found to be
ineffective due to two key problems. The first problem is that,
despite being lower than the above method, the high degree
of polynomial approximation is still too high to be used with
HE schemes. Secondly, the approximation interval is themost
crucial problem. The fundamental goal of this series is to
make an approximation of given functions in a point nearby
space. The approximation error is significantly larger for the
points outside of the input interval than for those within it. For
instance, this approach is unable to cover the [0,255] range of
integer values for pixels in the MNIST dataset.

The use of Chebyshev polynomials [34] is not as
widespread as earlier techniques. However, these are more
appropriate because we can estimate a function throughout an
interval rather than just a tiny region around a point. We were
able to cover integers since HE schemes are over integers with
message space Z . The Chybeshev polynomial is given as:

T(n+1)(x) = 2xTn(x)− T(n−1)(x) (1)

The minimax approximation is another name for the Cheby-
shev approximation. By increasing accuracy and reducing
overall computing cost, the minimax polynomial technique is
employed for function approximation. As opposed to Taylor’s
polynomial approximation, which minimizes error at the
point of expansion, the minimax technique reduces error
across a specific input segment.

IV. PRIVACY PRESERVING CLASSIFICATION MODEL
(PPCM)
A. SYSTEM AND THREAT MODEL
To maintain the privacy of the major components of the
privacy-preserving classification model (PPCM) as a service
framework, we take into account the system model shown in
Fig 1, in which the cloud server has an unencrypted (plain)
CNN model that has been trained to classify the client’s
unseen instances. The classification process in this case only
works with user-provided encrypted data, and the system
model is similar to [4], [10]. The client gives encrypted
instances to the cloud server which classifies these instances
and returns back the encrypted results to the client. The intent
of this systemmodel is to protect the privacy of feature values
of the client’s input as well as the predicted values of unseen
instances from the server known as PoC. Both the client/user
and cloud are considered honest but curious, i.e., both will
follow the protocol but will try to infer as much information
as they can from the interaction.
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FIGURE 1. PPCM system model.

FIGURE 2. CNN network.

B. CNN NETWORK
The CNN network which is used to train and categorize the
MNIST dataset is shown in Fig 2. A summary of this network
is provided below:
• 1st Convolution-Layer: It takes an image of dimension
28×28×1 as an input. The layer contains 4 kernels of
dimension 5×5, with a stride of (1,1).

• Activation-Layer: It performs the ReLU function at
every input node and is present after every convolution
layer.

• 1st Pooling-Layer: It takes an input of dimension
24×24×4 and have stride of size (2,2). Its output is
12×12×4.

• 2nd Convolution-Layer: It has input of dimension
12×12×4. This layer consists of 12 kernels of dimen-
sion 5×5 and a stride of (1,1). The outcome of this layer
is 8×8×12.

• 2nd Pooling-Layer: It takes an input of dimension
8×8×12 and have stride of size (2,2). Its output is
4×4×12.

• Flatten-Layer: The input of this layer is 4×4×12 and
returns the output of 192.

• Fully Connected-Layer: It combines incoming 192
nodes to the 10 output nodes.

C. PPCM LAYER DESIGN
The primary objective of this research work is to solely
perform classification on encrypted data. Hence, the CNN
layers are designed while considering the feed-forward
network only, and the back-propagation phase is omitted.
The only operations supported by the HE scheme are

addition and multiplications, so CNN layers are designed
while keeping these limitations in mind. Before creating a
privacy-preserving CNN model, all the layers of CNN are
researched, implemented, and then tested both in plaintext as
well as ciphertext space. The plain layers of CNN are used
as a reference only for comparison to verify the accuracy of
the encrypted classification. Below, we discuss the modifi-
cations incorporated into CCN layers for privacy-preserving
inference settings.

1) ACTIVATION FUNCTIONS DESIGN
In contrast to the layers in Fig 1, there is another layer
that contains a non-linear function commonly known as
the activation layer. This layer usually comes after each
convolutional layer. Each neuron in the preceding layer is
activated using a nonlinear activation function. This layer
adds a non-linear component to CNN, allowing them to solve
more complicated classification problems. The following
equations represent the Sigmoid and ReLU functions.

σ (z) =
1

1+ e−z
(2)

ReLU(z) =

{
Z , z > 0
0, otherwise

(3)

Since it is obvious that these equations involve nonlinear
functions, we must change them to make them compatible
with HE schemes. So, to combat this challenge, different
polynomial approximation techniques are explored as dis-
cussed in III-B. By doing analysis it is found that the Cheby-
shev approximation technique is best for approximating the
activation functions. We employ the Chebyshev polynomial
approximatemethod to approximate both the ReLU aswell as
Sigmoid activation functions in our proposedmodel, in which
the inputs are HE-encrypted images.

Table 2 and Fig 3 depict the polynomial approximation
of the ReLU activation function with degrees 5 and 7.
Since the degree and interval choices have an impact on the
model’s performance, it is necessary to select appropriate
parameters. To achieve this, we ran several experiments with
various intervals and degrees. Table 2 illustrates that by using
higher degree polynomials in shorter intervals, the activation
functions can be more accurately approximated. Specifically,
the polynomial with a degree of 7 and interval of [10,10]
provides a more precise approximation of the ReLU function
compared to other polynomials. This is also true for the
Sigmoid activation function, as shown in Table 3. However,
using higher-order polynomials incurs significant computa-
tional overhead and short intervals limit the applicability
of approximated functions. Similarly, Table 3 and Fig 4
demonstrate the approximation of the Sigmoid function.

A similar study by Khan et al. [11] utilized the same
method for polynomial approximation of activation func-
tion and they employed the degree five polynomial in
their implementation, however, a higher degree polyno-
mial approximation of activation function leads to being
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TABLE 2. Approx. of ReLU function on two intervals using
degree (ψ) 5 & 7.

FIGURE 3. Approximation of Relu functions.

TABLE 3. Approx. of sigmoid function on two intervals using
degree (ψ) 5 & 7.

computationally ineffective while performing calculations in
the encrypted domain. So, we approximated algorithms of
both the ReLU and Sigmoid activation function with two
degrees of approximation in our design of PPCM as described
below in Algorithm 1 and 2 respectively.

2) CONVOLUTIONAL LAYER DESIGN
The convolutional layer contains a sliding filter that is applied
to the input image. When a filter is applied to an image it

FIGURE 4. Approximation of sigmoid functions.

Algorithm 1 ReLU Function
Input : In, Ininput
Output: Out
Scale← 10000;
a0← 45000;
a1← 5000;
a2← 55;
Insize← Ininput ;
for j← 0, 1 to Insize do

Out[j]← In[j] ∗ In[j] ∗ a2 + In[j] ∗ a1 + a0
end

extracts a certain feature from it. Therefore, many filters may
be applied to the same layer to extract various features of an
image. The three-dimensional sliding filter is made up of the
number of weights that are learned throughout the training.
Each filter is a n×n square (e.g., n = 3 or 5) with a stride. The
stride is a set of two integers, e.g., a stride of (2, 2) means that
at each step a filter is moving two units to the right or down.
This layer calculates the dot-product between filter weights
and associated values in the pixel’s neighbor by convolving
the pixels in the image. As this layer is linear and just requires
addition and multiplication operations for convolution, hence

Algorithm 2 Sigmoid Function
Input : In, Ininput
Output: Out
Scale← 10000;
b0← 5000;
b1← 700;
b2←−300;
Insize← Ininput ;
for j← 0, 1, . . . , Insize do

Out[j]← In[j] ∗ In[j] ∗ b2 + In[j] ∗ b1 + b0
end
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one can simply transform this layer into the encrypted domain
easily by employing the HE scheme without any changes.

3) POOLING LAYER DESIGN
The pooling layer is used to decrease the size of the data by
sub-sampling it. This layer usually comes after the activation
layer and is non-linear. The two most common non-linear
pooling layers are the Average and Max pooling layers.
The maximum value inside the subsection is the outcome
of the Max pooling layer while an average of all values inside
the subsection is the outcome of the Average pooling layer.
TheMax andAverage Pool layers have to be changed because
HE does not offer any division and comparison operations.
To overcome this limitation, we replaced these layers with
a sum-pooling layer [35] as shown in Algorithm 3. The
output of the sum-pooling layer is simply the summation of
values within the sliding window and can be realized by a
homomorphic addition operation

Algorithm 3 Sum Pooling Layer
Input : In, Inheight , Inwidth, Depth, Poolx, Pooly
Output: Out
Count ← 0;
Outheight ← Inheight/Pooly;
Outwidth← Inwidth/Poolx;
for a← 0, 1, . . . ,Depth do

for b← 0, 1, . . . ,Outheight do
for c← 0, 1, . . . ,Outwidth do

for j← 0, 1, . . . ,Pooly do
for i← 0, 1, . . . ,Poolx do

Temp←
In[b×Pooly+ j][c×Poolx+ i][a];
if Count = 0 then

out[b][c][a]← Temp;
Count ← Count + 1;

end
else

Out[b][c][a]←
Out[b][c][a]+ Temp;
Count ← Count + 1;

end
if Count = Pooly× Poolx then

Count ← 0
end

end
end

end
end

end

4) FULLY CONNECTED LAYER DESIGN
It is usually the last layer of CNN. The number of classes in
the dataset is the output of this layer. Every neuron present in
this layer is linked to all other neurons of the preceding layer.

The total sum of weights in this layer is the product of the total
number of neurons in the preceding and current layers. This
layer calculates the input vector’s dot product with weight
vector, then adds bias vector to outcome elementwise as
z = wT · x + b. As this step just requires the addition and
multiplication operations as seen from the equation, hence it
can be transformed into the encrypted homomorphic domain
easily for privacy preservation.

V. PERFORMANCE AND EVALUATION
This section contains the experimental results which were
obtained through research and analysis.

A. SETUP
All the experiments were carried out in Python-3 onWindows
10 pro-64-bit (Intel Core i5, 1.60 GHz, 8GB). During the
training period, we employed the PyTorch framework in
VS code setup to train the given CNN model. Finally,
for the inference phase, we augmented the Python version
of SEAL, called Pyfhel [36] for privacy-preserving model
classification.

B. DATASET
The MNIST [15] data set is employed to train as well as
test the PPCM. This dataset is chosen specifically because
it is widely used in the field of deep learning and enables a
comparison of accuracy with prior research works. There are
60,000 total images in this dataset, fromwhich 50,000 images
are chosen for training while the remaining 10,000 images are
selected for testing. The MNIST dataset contains images of
28×28 pixel arrays, every pixel consists of a positive integer
ranging from 0-255.

C. MODEL TRAINING
The training is carried out in batches of 128 for a total
of 1000 epochs. The Adaptive Moment Estimation, often
known as Adam, is the optimization technique utilized
during training. Adam is chosen because it requires less
memory and performs well with minimal hyperparameter
adjustment. We conduct our experiments using the MNIST
dataset and the CNN model that is described in Fig 2 to
assess the performance of various approximation methods.
For comparison, we first train the given model using original
activation functions and find the accuracy against each
activation function as shown in Table 4. Then we use
the approximation polynomial of degree two for the given
activation functions in the given model and calculate the
accuracies given in Table 4. We conclude that ReLU provides
more accuracy for both the original and approximated models
and hence is employed in PPCM for the presentation of
further results.

D. INFERENCE ON ENCRYPTED DATA
The model uses an encrypted PNG image of a handwritten
digit from 0 to 9 as input, and the weights are determined
during training. The encrypted image is then classified, and
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TABLE 4. CNN accuracies based on original and approximated activation
functions.

the final layer output is decrypted. The output vector has ten
values, and each of them corresponds to a digit from 0 to 9.
The classifier’s prediction is whatever number from 0 to
9 is connected with the highest value discovered in the
output. Furthermore, images are not classified in batches
since working with encrypted data requires a considerable
amount of processing power and memory. Instead, the
privacy-preserving classier processes each image separately.

E. SECURITY AND PERFORMANCE METRICS
Privacy, accuracy, and the incurred computational time are
the three important metrics to examine when evaluating
the practicality of any privacy-preserving machine learning
technique. Although privacy is ensured by HE, however, this
is at the expense of an increase in computational time and a
reduction in accuracy. We put our privacy-preserving CNN
model to the test under various circumstances to see how
different factors affect accuracy and time in an effort to better
understand and present the capabilities and limitations of HE.
The running time is determined by counting the seconds it
took to perform operations at each layer. To determine the
accuracy, the model is typically run over the complete test
dataset, however, due to resource constraints, a very simple
test has to be constructed. The privacy-preserving CNN is
applied to a single random picture from the testing dataset
rather than testing all images at once.

1) EACH LAYER EXECUTION TIME
It was discovered during the initial testing phases that
our privacy-preserved CNN model takes 215.08 seconds to
classify an encrypted image. We evaluated the time taken
by each layer to determine where it might be spending most
of its time during the classification phase. The HE security
parameter is set to 128 bits for the evaluation of time for
each layer of our CNN model and is presented in Table 5.
As seen from Table 5, the convolution layer requires the most
computation time to execute. The activation layer is the 2nd

most expensive layer in terms of time, then comes the fully
connected layer, and lastly the pooling layer.

2) SECURITY PARAMETER λ VARIATION
From the perspective of model security, HE has a few factors
that are essential to consider while performing the CNN
classification. One of these parameters is λ, which is called
the security parameter. We use the default value of λ =

128 for experiments. The security parameters are varied in
this section to evaluate the execution time and classification
accuracy as well as the overall security. The timing values are
calculated by using the BFV scheme for polynomial modulus

TABLE 5. Running time cost of CNN layers.

TABLE 6. Encryption/Decryption time based on security parameters.

degree n = 8192, for each of three security parameters of 128,
192, and 256 as recommended in [37]. For SEAL, setting λ =

128 is comparable to AES 128-bit security, setting λ = 192 is
equivalent to AES 192-bit security, and setting λ = 256 is
similar to AES 256-bit security. Therefore, in addition to the
default λ = 128, these are the two other security settings
assessed. Fig 5 depicts the time each CNN layer takes to
run based on the variation in security parameters. According
to the stats in Fig 5, the time required to evaluate each
layer increases as the security parameter increases. When the
security parameter is increased from 128 bits to 256 bits, the
evaluated time for the layers (Conv1/Conv2/FC1) increases
approximately by 1.8 times.

Based on the sizes of the security parameter, Table 6
indicates the time taken by the model to encrypt and decrypt
the given image. It also determines whether or not the
image is properly classified. According to the timing data in
Table 6 security parameter change also has an influence on
the encryption and decryption time of the image. The time
required for the encryption of an image increases with the
increase in the security parameter. However, in comparison
to classification, this time difference is trivial because it is
only a few seconds.

Accuracy is also impacted by changes in security parame-
ters. The 256-bit security parameter is improperly classifying
the encrypted image since there aren’t enough levels available
to accommodate it. To resolve this issue, the polynomial
modulus degree size is increased from 8192 to 16384, while
keeping the same security level of 256.

3) OTHER PARAMETERS (Q & N) VARIATIONS
In this section, both the values of coefficient modulus q
and polynomial modulus n are varied to observe the change
in threshold values and overall time. All timing values are
measured by using FV [7] scheme for different values of
n (1024, 2048, 4096, 8192, 16384) with standard security
parameters of 128-bit. Fig 6 illustrates the total execution
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FIGURE 5. Execution Time of different layers based on security parameters variation.

FIGURE 6. Execution time of different layers based on polynomial degree variation.

time of each layer in our network based on variation in
polynomial modulus degree n and the corresponding number
of levels in coefficient modulus q. As the value of the
polynomial modulus degree increases, the time of execution
of each layer increases too. When the value of polynomial
degree n is changed from 1024 to 16384, there is a 2x-6x
increase in calculation time for the layers (Conv/ReLU/FC).

Table 7 shows the time to encrypt as well as decrypt the
given image and determine if the given image is classified
correctly depending on the value of polynomial modulus
degree n along with the corresponding levels in coefficient
modulus q. The timing cost in Table 7 clearly shows that
polynomial modulus degree n and coefficient modulus q do

affect the encryption and decryption time of an image. This
time increases as the values of polynomial modulus degree n
and coefficient modulus q increase.

Accuracy is also affected by varying the size of polynomial
modulus degree n and coefficient modulus q. A certain
minimum number of levels corresponding to the polynomial
modulus degree n is undoubtedly required to categorize the
given encrypted image and control the NB effectively. There
is no simple formula for calculating the required number
of levels in coefficient modulus q. However, in general,
the number of levels must be equivalent to the count of
multiplications in the evaluation function. The network put
to the test in this experiment includes a degree of two
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TABLE 7. Encryption/Decryption time based on polynomial and
Ciphertext modulus.

TABLE 8. Timing cost of each layer for optimized configuration.

polynomial computations and three dot products due to
which early tests were conducted with different levels set.
The minimal number of levels was found by guessing and
checking when the results displayed an error message.

4) OPTIMIZED CONFIGURATION
By understanding all the above-mentioned results and limita-
tions of HE, the final test for the fast configuration is carried
out. Best configuration means selecting such parameters
that yield both accurate predictions and the fastest timing
results. In this section, all the timing values are calculated
by taking the polynomial modulus degree value of 4096 and
the security parameter set to 128-bit. Table 8 represents the
all-time best value of each layer execution time based on the
best parameter selection, while still maintaining the correct
prediction. We remark that if the model is encrypted, then the
inference cost is higher because both the query and model are
in ciphertext domain.

VI. CONCLUSION
In this paper, we looked into ways to outsource computing
securely while employing homomorphic encryption on
encrypted data. We suggested cryptographic protocols for
the widely used algorithms to act as building blocks to
allow a wide range of secure data analytics and machine
learning applications on the cloud. The HE limitations
for privacy-preserving machine learning were investigated,
specifically for employing CNN for classification in an
outsourced setting. To keep these limitations in mind,
we modified the different layers of CNN to make them
compatible with HE-supported operations. In particular,
we approximated the non-linear activation functions like
Sigmoid and ReLU into functions that only include additions
and multiplications terms. We approximated these functions
on different degrees and scales to examine the impact of
these variations on the accuracy of a proposed classification
model. In the end, we calculated the time of each layer and the
overall time as well as the accuracy of the proposed model by
varying the HE parameters. Overall, this work served as an
effective demonstration of the concept for the classification
of encrypted images.
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