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I 

I 
Introduction 

n physics, a complex system is a set of dynamical systems that is characterized by the presence of a large 
number of interconnected components that interact with each other1 . Complex systems may arise and 

evolve through self-organization (a dynamical process by which a system spontaneously forms non-trivial 
macroscopic structures and/or behaviours over time), such that they are neither completely regular nor 
random2 , permitting the development of emergent behaviours at macroscopic scales [2]. 

Figure I.1: Venn diagram describ-
ing the research areas that this 
thesis covers and tries to merge 
in order to study and control 
complex systems. The main goal 
of our research is to elucidate 
the interconnection between in-
formation geometry, stochastic 
thermodynamics, and control en-
gineering to obtain effcient and 
organised behaviours in complex 
systems. 

Since emergent behaviours in complex systems can be interpreted as the resistance of entropic decay and 
dissipation, similar to controlled systems (for instance, see [3]) that maintain their states around set-points 
despite perturbations from the environment [4; 5], our hypothesis is that: 

We can mimic emergent behaviours principles to artifcially construct organised (controlled) complex 
systems. Furthermore, by interpreting entropy as a level of ignorance via information-theoretic 
constructs, we can diagnose abrupt changes, describe causal relations, or control the level of ignorance 
we have on the system dynamics. 

In this regard, the present work aims to develop a set of tools to understand and control a set of complex 
systems through the interconnection of the felds of information geometry, stochastic thermodynamics, and 

1 While these interactions often exhibit nonlinearity, it is important to note that this is not a necessary condition for a system to 
be considered complex. Rather, the defning characteristic of a complex system lies in the emergent behavior that arises from the 
interactions among its components, which can exhibit surprising and unpredictable patterns [1]. 
2 In this work, randomness refers to the degree of uncertainty or unpredictability associated with the occurrence of an event. Hence, a 
regular event is one whose level of uncertainty is minimum. 
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control engineering (see Figure I.1). From information geometry, we establish a metric that helps us quantify 
variability in the given complex systems subject to randomness. From control engineering, we recover the 
concept of “feedback” to inform, in this manner, a suitable control algorithm that will organise the system 
dynamics. Since effciency is usually defned thermodynamically, Stochastic thermodynamics gives us the 
effects of the proposed regulator on the entropy production linked to Helmholtz free energy. Additionally, 
information geometry and stochastic thermodynamics give us tools to detect abrupt events and correlations 
between the variables in stochastic dynamics. 

Specifcally, this thesis contains the following results3 

• Chapters II and III: The analysis of complex systems described by linear and non-linear stochastic 
differential equations (Langevin equations) via the so-called Laplace assumption, their corresponding 
Fokker-Planck equation, information geometry and stochastic thermodynamics. 

• Chapter IV: Study the effects of information fow between the variables in the dynamical system, 
referring to some sort of causality. 

• Chapter IV: Detection of “ongoing” abrupt changes (perturbations) in stochastic dynamics. 

• Chapter V: Creating organised behaviour (with minimum statistical variability) when the system is 
clearly subject to randomness. 

• Chapter VI: Development of integrated techniques to study complex systems described via time 
series. 

• Chapters IV, V, and VI: Presentation of different case studies, including the analysis of classical 
Brownian motion and an electrical power system. 

These results have also been previously published in the following journals (some of them currently under 
review) 

List of published and submitted journal papers: 

[6] Guel-Cortez, Adrian-Josue, and Eun-jin Kim. "Information length analysis of linear au-
tonomous stochastic processes." Entropy 22.11 (2020): 1265. 

[7] Guel-Cortez, Adrian-Josue, and Eun-jin Kim. "Information geometric theory in the prediction 
of abrupt changes in system dynamics." Entropy 23.6 (2021): 694. 

[8] Chamorro, Harold R., Guel-Cortez, Adrian-Josue, et al. "Information length quantifcation 
and forecasting of power systems kinetic energy." IEEE Transactions on Power Systems 37.6 

(2022): 4473-4484. Harold R. Chamorro and Adrian-Josue Guel-Cortez contributed equally to 
this work. 

3 Throughout the thesis, each chapter contains an abstract discussing the chapter’s goal and, depending on the nature of the chapter, 
an introduction with the challenges and proposed solutions. 
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[9] Guel-Cortez, Adrian-Josue, and Eun-Jin Kim. "Relations between entropy rate, entropy pro-
duction and information geometry in linear stochastic systems." Journal of Statistical Mechanics: 
Theory and Experiment 2023.3 (2023): 033204. 

[10] Guel-Cortez, Adrian-Josue, Eun-jin Kim, and Mohamed W. Mehrez. "Minimum Information 
Variability in Linear Langevin Systems Via Model Predictive Control." Available at SSRN 
4214108 (2022). 

Throughout the development of this thesis, the author also participated in different international events 
and collaborations, some of which included the publication of an article. The following summarises such 
results 

List of published and submitted conference papers: 

[11] Guel-Cortez, Adrian-Josue, and Eun-jin Kim. "Information Geometry Control under the 
Laplace Assumption." Physical Sciences Forum. Vol. 5. No. 1. Multidisciplinary Digital 
Publishing Institute, 2022. 

[12] Guel-Cortez, Adrian-Josue, and Eun-jin Kim. "A Fractional-Order Model of the Cardiac 
Function." 13th Chaotic Modeling and Simulation International Conference 13. Springer 
International Publishing, 2021. 

[13] Guel-Cortez, Adrian-Josue, and Eun-jin Kim. "Model reduction and control design of a multi-
agent line formation of mobile robots." Recent Trends in Sustainable Engineering: Proceedings 
of the 2nd International Conference on Applied Science and Advanced Technology. Springer 
International Publishing, 2022. Received the frst place award in the conference best-submitted 
paper contest. 

[14] Guel-Cortez, Adrián-Josué, et al. "Further Remarks on Irrational Systems and Their Applica-
tions." Computer Sciences & Mathematics Forum. Vol. 4. No. 1. MDPI, 2022. 

[15] Guel-Cortez, Adrian-Josue, et. al. "Parameter Estimation of Fractional-Order Systems via 
Evolutionary Algorithms and the Extended Fractional Kalman Filter." The International Con-
ference on Fractional Differentiation and its Applications (ICFDA 2023)At: Ajman University, 
14-16 March, 2023. 

List of published journal papers that come from collaborations: 

[16] Kim, Eun-jin, and Adrian-Josue Guel-Cortez. "Causal information rate." Entropy 23.8 (2021): 
1087. 

[3] Guel-Cortez, Adrian-Josue, et al. "Fractional-order controllers for irrational systems." IET 
Control Theory & Applications 15.7 (2021): 965-977. 
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List of presentations given for international conferences or research groups: 

• “Minimum information variability control” talk at Thermodynamics 2.0, Online, July 18, 2022. 

• “Information geometry under the Laplace assumption” talk at International Workshop on 
Bayesian Inference and Maximum Entropy Methods in Science and Engineering, IHP, Paris, 
July 18-22, 2022. 

• “Information Length in Dynamical Systems” seminar at the Wellcome Centre for Human 
Neuroimaging, London. 17 January 2022. Link to video 

• “Information Length Analysis of Linear Autonomous Stochastic Processes” at the The British 
Mathematical Colloquium (BMC) and the British Applied Mathematics Colloquium (BAMC). 
From 6 Apr. 2021 to 9 Apr. 2021. Link to poster 

• “Model reduction and control design of a multi-agent line formation of mobile robots” at The 
2021 International Conference on Applied Science and Advanced Technology. 3 Jun. 2021. 

• “System dynamics simulation using Processing and Python” Workshop instructor at The 2021 

International Conference on Applied Science and Advanced Technology. 3 Jun. 2021. 

• “Fractional order model of the cardiac function” at Chaotic Modelling & Simulation Web 
Conference. 22-24 October 2020. Online. 

https://www.youtube.com/watch?v=_ic2jKl49KI&feature=youtu.be
https://www.linkedin.com/posts/adrianjosueguelcortez_a-summary-of-the-work-i-have-done-so-far-activity-6923018268999884800--A5o?utm_source=share&utm_medium=member_desktop


Preliminaries 
II 

Chapter summary 

In this chapter, we review the basic theoretical concepts and results that have been 
applied throughout this dissertation. When introducing the theoretical results, 

specially the ones which can be found in many published textbooks, the discussion 
This chapter includes ma-

does not intend to be a formal or complete presentation but rather to act as a gentle 
terial that has been pub-

descriptive/conceptual guide to them. The section also contains various links to codes 
lished by the author in

made by the author that may serve as a practical introduction to future employed 
[6], [9], and [11].

algorithms. We also highlight that not all the concepts we use may be introduced 
within this section. If the discussion requires it, we also introduce new concepts in the 
subsequent chapters as we make use of them in our results. 

keywords: Stochastic dynamics; Stochastic thermodynamics; Fokker-Planck equation; Entropy 

II.1 Stochastic systems 

A stochastic system is a process characterised by the presence of ran-
domness. In such dynamical systems1 , we commonly use x(t) to 1 A dynamical system can be defned as 

a system in which a function describes describe the current state at time t and identify a corresponding prob-
the time dependence of a point in space. 

ability p of x(t) to occur. In continuous time, we denote p(x, t) the For instance, a particle whose state varies 
probability density function (PDF) of fnding the system in x(t) at time over time is governed by differential 

equations (for further details, see [17]).t. 
From the PDF, we can obtain the so-called statistical moments. For 

example, the expected value2 defned by 2 The discrete version of the expected Z value is given by 

µ(t) = ⟨x(t)⟩ = x(t)p(x, t) dx. (II.2) ⟨X⟩ = ∑ xi P(xi), (II.1)
R i 

The expected value parameterises the random variable x(t), as well as where P(xi) is called the probability 
mass function (PMF) which describes the its higher moments ⟨xn⟩ and its moments about the mean ⟨(x − µ)n⟩. 
probability of observing outcome xi of

From the latter, we recover the defnition of the variance of the random the random variable X [18] and the sum 
state x(t) as3 is over all the distinct possible outcomes 

2 of X.Σ = ⟨(x − µ) ⟩. (II.3) 
3 The variance is sometimes denoted by√We can also study stochastic systems by analysing their trajectories, σ2 instead of Σ, and σ2 = σ is called 

denoted by the standard deviation of x. 

X = [x(t)]. (II.4) 

Here, X identifes the whole function x(t) over a given time interval, 
i.e. the stochastic system trajectory. For instance, Figure II.1 shows the 
three-dimensional space describing the evolution of x and its probability 

p(x, t) 

x(t) 

t 

P0 

P1 

P2 

P3 

X 

over time. In red, we see a trajectory X . In blue, the shape of the PDF 
Figure II.1: Graphical descrip-

at different instants of time (denoted here as Pk where k = 0, 1, 2, 3, . . . ). 
tion of stochastic dynamics. The 
behaviour of a stochastic pro-
cess can be analysed by the sys-
tem trajectory X or the time-
varying probability density func-
tion p(x, t). 
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Figure II.1 also shows a typical kind of PDF p(x, t) called “Normal” 
or Gaussian. The Gaussian distributions are a type of continuous PDFs 
defned as 

1 − 1 (x−µ)2 

p(x) = √ e 2 Σ . (II.5)
2πΣ 

As we can see from Equation (II.5), Gaussian distributions are com-
pletely parametrised if we fx only the frst two moments about the 
mean µ of the random variable x (for instance, see Figure II.2). When 
we refer to a variable that follows a normal distribution, we use the 
notation x ∼ N (µ, Σ). 

II.1.1 Stochastic calculus 

The analysis of dynamical systems subject to probabilities is described 
via stochastic differential equations (SDEs). In mathematics and fnance 
SDE are written as follows [19] 

dXt = µ(Xt, t) dt + σ(Xt, t) dWt, (II.6) 

where Wt denotes a Wiener process4 . The terms µ(Xt, t) and σ(Xt, t) are 
called the drift and diffusion terms of the SDE, respectively. Equation 
(II.6) can be rewritten using the corresponding integral equation Z Zt+s t+s 

Xt+s − Xt = µ(Xu, u) du + σ(Xu, u) dWu. (II.7) 
t t 

If we consider the integral from of the SDE given by (II.7), we come up 
with the problem of defning the integral of the rightmost term. But, 
before discussing the solution to stochastic integrals, let us introduce 
a commonly used SDE in the feld of Physics called the Langevin 
equation. 

II.1.2 Langevin equation 

In physics, a basic application of SDEs lies in the description of the so-
called Brownian motion, a motion associated with the random motion 
of particles suspended in a medium (a liquid or a gas) 5 . 

As an example of Brownian motion mathematical modelling, Figure 
II.3 shows a particle of mass m modelled as a mass-spring-damper 
system subject to a deterministic force and a random force describing 
the random environment to avoid the many-body interactions problem. 
Additionally, in this scenario, we assume that the environment is at 
thermal equilibrium and it is defned by a given temperature. 

The description of the trajectories of a Brownian particle with drift 
µ(x, t) and diffusion D(x, t) coeffcients are solutions of6 the Langevin 
equation 

dx 
= µ(x, t) + σ(x, t)ξ(t), (II.8)

dt 

Figure II.2: Plots of Gaus-
sian distributions with dif-
ferent values of variance σ2 

and mean µ = 23 https: 

//github.com/AdrianGuel/ 

PhDThesis/blob/main/ 

Chapter1/Gaussianplots.py 

4 Properties of the Wiener process: 

1. W0 = 0 

2. ∀t > 0, the future increments Wt+u − 
Wt, u ≥ t are independent of the past 
values Ws, s ≤ t. 

3. Wt+u − Wt ∼ N (0, u). 

4. Wt is continuous in t. 

ξ is random force 
describing 

ω2 

m

x(t) 

u(t) 

γ 

random position 
random enviroment 

deterministic 
forces 

Figure II.3: Example of a typical 
application of the Langevin equa-
tions. The Langevin equation is 
used to describe the position of 
a particle under a random envi-
ronment. 
5 Einstein described Brownian motion as 
a phenomenon where bodies of micro-
scopic size suspended in a liquid perform 
random movements that can be perceived 
via a microscope. [20] 

6 For simplicity, in this work, we com-
monly will avoid writing the term σ(x, t) 
in Equation (II.8), as our analysis will rely 
completely on the value of D(x, t). 

https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/Gaussianplots.py
https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/Gaussianplots.py
https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/Gaussianplots.py
https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/Gaussianplots.py
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p
where σ(x, t) = 2D(x, t), ξ(t) is a random quantity considered un-
biased, ⟨ξ(t)⟩ = 0 ∀t, and with uncorrelated displacements in non-
overlapping time intervals, i.e. ⟨ξ(t)ξ(t ′ )⟩ = 0 for t and t ′ suffciently 
far apart. Assuming that the latter holds, it is useful to rewrite the 
second moment as ⟨ξ(t)ξ(t ′ )⟩ = 2D(x, t)δ(t − t ′ ). When the random 
variable ξ satisfes these properties, we call it “white noise”. 

The solution of the Langevin equation requires the evaluation of a 
stochastic integral of the form7 7 Like the rightmost term of Equation 

(II.7) but written following the Langevin Z Zt f t f equation notation dtξ(t)σ(x(t), t) = dW(t)σ(x(t), t), (II.9) 
t0 t0 

where σ(x, t) is any given function. The solution of stochastic integrals 
can be obtained by the Stratonovich or Itô conventions8 . 8 A more formal and complete study of 

both conventions can be found in [21; 22]Itô convention The Itô integration is defned as follows [23] 

N 

∑ [W(tk + dt) − W(tk)] σ(x(tk), tk), (II.10)II = lim 
dt→0 k=0 

t f −t0where tk = t0 + k dt and N = dt . Note that in this convention, σ(x(t), t) is evaluated at the beginning of 
each infnitesimal time interval [tk, tk + dt]. When written in the continuos time domain, the Itô integral is 
denoted by a dot product symbol Z t f 

II = dW · σ(x(τ), τ). (II.11) 
t0 

Stratonovich convention The Stratonovich integral is defned by � �N x(tk + dt) + x(tk) dt 
[W(tk + dt) − W(tk)] σ , tk +∑IS = lim 

dt→0 2 2k=0 
N 1 

[σ(x(tk + dt), tk + dt) + σ(x(tk), tk)] .∑lim [W(tk + dt) − W(tk)] (II.12)= 
2dt→0 k=0 

From (II.12), we see that σ(x(t), t) is evaluated at the midpoint of each infnitesimal interval [tk, tk + dt] in the 
Stratonovich integral. In continuos time , we denote the Stratonovich convention by a circle product symbol 
as follows Z t f 

IS = dW ◦ σ(x(τ), τ). (II.13) 
t0 

To decide which convention to use, we consider the following result 

Proposition II.1: Stratonovich to Ito transformation [23] 

The relationship between the Stratonovich and Ito integral is given by Z Z Zt f 1 t f dσ(x(τ), τ) t f 
dW ◦ σ(x(τ), τ) = σ(x(τ), τ) dt + dW · σ(x(τ), τ). (II.14) 

t0 2 t0 dx t0 

From Proposition II.1, it becomes clear that both conventions are the same if σ does not depend on the 
random variable x. Here, we highlight that, throughout this work, we only consider additive noises, i.e., σ is 
always independent of x, giving us the freedom to write any stochastic integral using either notation. From 
now on, we will consider the Ito convention and avoid the symbol · for simplicity. 
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II.1.3 Numerical methods 

The following are the most common numerical methods to solve SDEs 
of the type (II.6). 

Euler–Maruyama method 

Given the SDE (II.6), we wish to solve it at some interval of time 
[0, T]. To develop an approximate solution, we partition the interval 
[0, T] into N equal subintervals of width ∆t > 0 

T
0 = τ0, τ1, τ2, . . . , τN = T s.t. ∆t = . (II.15)

N 
Then, we set the initial random value Y0 = x0 where x0 comes from, 

for instance, N(µ0, σ0) such that µ0 and σ0 are the moments describing 
the initial PDF. Now, recursively defne 

Yn+1 = Yn + µ(Yn, τn)∆t + σ(Yn, τn)∆Wn, (II.16) 

where ∆Wn = Wτn+1 − Wτn . Each random number ∆Wn is computed as 
[24] √ 

∆Wn = zn ∆t s.t. zn ∼ N(0, 1). (II.17) 

Algorithm 1 and Figure II.4 show the description of the Euler-Maruyama 
method and a plot with the solution of an SDE implementing the Euler-
Maruyama method, respectively. 

Algorithm 1: Euler-Maruyama method. 

Figure II.4: Simulation of an 
SDE with µ(Xt, t) = θ(µ − Xt) 
and σ(Xt, t) = Σ where θ, µ 

and Σ are some constant 
parameters using the Euler-
Maruyama method. Code avail-
able at https://github.com/ 

AdrianGuel/PhDThesis/blob/ 

main/Chapter1/eulermaruyama. 

ipynb. 

Data: Consider the simulation time t = T ∈ R, the number of points in the solution N ∈ N and the 
probability distribution described by the parameters µ0 ∈ R, and σ0 ∈ R+ . 

Result: The vector Y := [Y0, Y1, . . . , YN ] ∈ RN containing the approximate solution to the SDE (II.6). 
1 

/* The function randn(µ, σ) generates a random number from normal distribution with 

mean µ and variance σ. */ 

2 Y0=randn(µ0, σ0) 

3 ∆t = T/N 
4 n = 0 
5 while n < T do 
6 ∆Wn =randn(0, ∆t) 

7 Yn+1 = Yn + µ(Yn, τn)∆t + σ(Yn, τn)∆Wn 

8 n = n + 1 
9 end 

10 return Y 

Milstein method 

Similarly to the Euler-Maruyama method, the Milstein method is an approximate solution to the SDE (II.6) 
obtained by doing the same time partition (II.15) but employing the following recursive solution update � � 

Yn+1 = Yn + µ(Yn, τn)∆t + σ(Yn, τn)∆Wn + 
1

σ(Yn, τn)σ
′ (Yn, τn) (∆Wn)

2 − ∆t , (II.18)
2 

https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/eulermaruyama.ipynb
https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/eulermaruyama.ipynb
https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/eulermaruyama.ipynb
https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/eulermaruyama.ipynb
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where σ′ denotes the derivative of σ(Xt, t) with respect to Xt. ∆Wn is defned as in (II.17). Note that when 
σ′ = 0 (the diffusion term does not depend on Xt); this method is equivalent to the Euler–Maruyama method. 

Runge–Kutta method 

Runge-Kutta methods are a family of numerical methods used to obtain more accurate solutions to ordinary 
differential equations. Regarding SDE, these methods can become complex as their order of approximation 
increases [25]. The simplest Runge-Kutta scheme was introduced by [26], in this method, the solution of the 
SDE (II.6) is solved via the following recursive equation 

1
Yn+1 = Yn + (K1 + K2) , (II.19)

2 

where � √ � 
K1 = µ(Yn, τn)∆t + ∆Wn − Sn ∆t σ(Yn, τn), (II.20) � √ � 
K2 = µ(Yn + K1, τn+1)∆t + ∆Wn + Sn ∆t σ(Yn + K1, τn+1), (II.21) 

Sn = ±1, each alternative chosen with probability 1
2 , and ∆Wn as in (II.17) 9 . 

II.2 The Fokker-Plack equation 

As it was mentioned in Section II.1, the behaviour of dynamics subject to probability can also be described in 
terms of PDFs. A classical approach to determine the system PDF at every instant of time corresponds to the 
multiple solutions of the dynamics via the numerical solution of its SDE (see Figure II.5). 

Figure II.5: PDF estimation via 
stochastic numerical simulations. 
A given SDE is solved multi-
ple times in parallel to create 
samples at every time t. Then, 
we create a histogram represent-
ing the statistical behaviour of 
the system at every t. For in-
stance, in the Figure we have a 
histogram of x at time t = 0.4 
of the numerical solution of the 
linear Langevin equation ẋ =In this method, the multiple numerical solutions to the SDE generate 
−3x + ξ, ⟨x(0)⟩ = 1 and ⟨(x −a sample at every t, which can be used to estimate a PDF. If we plot 
⟨x(0)⟩)2⟩ = 0.1.every histogram, we obtain the time evolution of the statistics associated 

with the stochastic process. In Figure II.6, we show an example of such 
methodology. In the example, we see that every histogram is used to ft 
a probability distribution function p(x, t), again, used to describe the 
probability of fnding x in a given value at time t. 

9 Code example of the Runge-Kutta method to solve a frst-order SDE https://github.com/AdrianGuel/PhDThesis/blob/main/ 
Chapter1/RKmethod.py 

https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/RKmethod.py
https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter1/RKmethod.py
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This method requires large amount of computational memory. Fur-
thermore, it becomes more complicated to estimate the PDF in high-
dimensional spaces. Thus, it is sometimes important to look for a 
different approach allowing us to describe the PDF time-evolution of 
the stochastic dynamics. A popular method consists of the so-called 
“Fokker-Planck equation”, a differential equation describing the time-
evolution of the system’s PDF. The idea behind the Fokker-Planck 
equation relies on the following reasoning. 

First, we describe the expectation of an arbitrary function f (x) at 
time t as Z Figure II.6: PDF estimation via 

⟨ f (x)⟩ = dx f (x)p(x; t), (II.22) stochastic numerical simulations 
and histograms. and its time rate of change Zd⟨ f (x)⟩ ∂ 

= dx f (x) p(x; t). (II.23)
dt ∂t 

Then, we can use the Chapman-Kolmogorov10 equation to describe the expectation of f at the next instant of 
time t + ∆t11 Z Z 

⟨ f (x)⟩t+∆t = d∆x dx f (x + ∆x)p(x + ∆x; t + ∆t|x; t)p(x; t). (II.24) 

Now, assuming the ∆x is small, we expand f (x + ∆x) in a Taylor series to second order to obtain 

Z Z � 2 �
∂ f (x) ∆x ∂2 f (x)⟨ f (x)⟩t+∆t ≈ d∆x dx f (x) + ∆x +

∂x 2 ∂x2 

× p(x + ∆x; t + ∆t|x; t)p(x; t), Z � �
∂ f (x) ⟨∆x2⟩x ∂

2 f (x) 
= dx f (x) + ⟨∆x⟩x + p(x; t). (II.25)

∂x 2 ∂x2 R 
Here, we defne ⟨· · · ⟩x = d∆x · · · p(x + ∆x; t + ∆t|x; t). Rearranging (II.25) Z � �

∂ ∂ ⟨ f ⟩t+∆t − ⟨ f ⟩t = dx (⟨∆x⟩x f (x, p(x; t))) − (⟨∆x⟩x p(x; t)) f (x)
∂x ∂x Z � � � � � � �

∂ 1 ∂ ∂ ∂ 1 ∂ 
+ dx ⟨∆x2⟩x p(x; t) f (x) − ⟨∆x2⟩x p(x; t) f (x)

∂x 2 ∂x ∂x ∂x 2 ∂x � � � 
+ 

∂2 1 ⟨∆x2⟩x p(x; t) f (x)
∂x2 2 Z � � �� 

= dx f (x) − 
∂ 

(⟨∆x⟩x p(x; t)) + 
∂2 1 ⟨∆x2⟩x p(x; t) . (II.26)

∂x ∂x2 2 

Considering that ∆t in (II.25) is also small (a condition that Brownian motion satisfes), the following ∆t-limit 
can be operated in (II.26) Z � � � � �� 

⟨ f ⟩t+∆t − ⟨ f ⟩t ∂ ⟨∆x⟩x ∂2 ⟨∆x2⟩xlim = dx f (x) − lim p(x; t) + lim p(x; t) . (II.27)
∆t→0 ∆t ∂x ∆t→0 ∆t ∂x2 ∆t→0 2∆t 

10 The Chapman-Kolmogorov equation is an expression indicating the decomposition of the transition probability into the state-space 
integral of products of probabilities to and from a location in state space (for further details, see [27; 28]). 
11 The symbol | in Equation (II.24) refers to the conditional probability. The conditional probability is a measure of the probability of 
an event occurring, given that another event has already occurred [29]. 
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Then, defning the drift µ(x, t) and diffusion coeffcient D(x, t) of the associated Langevin equation II.8, 
respectively, by the following expressions 

⟨∆x⟩x 
µ(x, t) = lim , (II.28)

∆t→0 ∆t 
⟨∆x2⟩xD(x, t) = lim , (II.29)

∆t→0 2∆t 

we have Z � � 
⟨ f ⟩t+∆t − ⟨ f ⟩t ∂ ∂2 

lim = dx f (x) − (µ(x, t)p(x; t)) + 
∂x2 (D(x, t)p(x; t)) . (II.30)

∆t→0 ∆t ∂x 

Finally, comparing (II.23) with (II.30), it becomes clear that 

∂ ∂ ∂2 
p(x; t) = − (µ(x, t)p(x; t)) + 

∂x2 (D(x, t)p(x; t)) , (II.31)
∂t ∂x 

which describes the Fokker-Planck equation for p(x; t). 
In the following, we give some useful examples of fnding the Fokker-Planck equation associated with 

different Langevin equations. In addition, we derive the Fokker-Planck equation associated with a multi-
dimensional non-linear type of Langevin equation, which will be of core importance to many results in the 
coming Chapters. To simplify the notation, we use the Euler’s notation ∂x, ∂2 for ∂ and 

∂
∂ 
x 
2
2 , respectively. x2 ∂x 

Also, ∂t to denote the time derivative, sometimes also written using the dot notation ẋ. 

II.2.1 The Fokker-Planck equation for some Langevin equations 

Example II.1 (Ornstein-Uhlenbeck (O-U) process). The Ornstein-Uhlenbeck (O-U) process is a frst-order differential 
equation named after Leonard Ornstein and George Eugene Uhlenbeck and whose application describes the velocity of a 
Brownian particle under the infuence of friction. The O-U process is governed by the following Langevin equation 

dx 
= F(x) + ξ. (II.32)

dt 

Where, ξ is a white noise with a short correlation time with the following property: 

⟨ξ(t)ξ(t ′ )⟩ = 2Dδ(t − t ′ ). (II.33) 

Proposition II.2: The linear O-U Fokker-Planck equation 

The Fokker-Planck equation corresponding to (II.32) for F(x) = −γx and (II.33) is � �
∂ ∂ ∂ 

p(x, t) = γx + D p(x, t). (II.34)
∂t ∂x ∂x 

Proof. Following the procedure presented in chapter 4 of [30], consider the generating function 12 p̃ = e−iλx(t) 
√ 

where λ ∈ R and i = −1. Then, by defnition Z ∞ 
−iλx(t)⟨ p̃⟩ = e p(x, t)dx, (II.35) 

−∞ 

12 A moment-generating function is a function to compute a distribution’s moments (for a formal defnition see [31]). 
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this means that by applying the Inverse Fourier Transform (IFT)13 to ⟨ p̃⟩, we can obtain the value of the 
probability density function Z ∞ 

iλx(t)⟨ ̃1 
p(x, t) = e p⟩dλ. (II.36)

2π −∞ 

We start our proof by fnding the time derivative of p̃ 

−iλx(t)∂t p̃ = −iλxe˙ = −iλẋ p̃, (II.37) 

substituting (II.32) in (II.37) 

∂t p̃ = −iλ (−γx + ξ) e−iλx = −γiλ∂iλ p̃ − iλξ p̃. (II.38) 

Applying the IFT to (II.38), we get the following 

F−1 [∂t p̃] = F−1 [−γiλ∂iλ p̃] + F−1 [−iλξ p̃]Z Z Z∞ ∞ ∞1 1 1 
eiλx (∂t p̃) dλ = eiλx (−γiλ∂iλ p̃) dλ + eiλx (−iλξ p̃) dλ

2π −∞ 2π −∞ 2π −∞� Z � Z Z∞ ∞ ∞1 −γ 1
∂t eiλx p̃dλ = ∂xeiλx∂iλ p̃dλ + eiλx (−iλξ p̃) dλ

2π −∞ 2π −∞ 2π −∞� Z � �Z � Z∞ ∞ ∞1 −γ 1
∂t eiλx p̃dλ = ∂x eiλx∂iλ p̃dλ + eiλx (−iλξ p̃) dλ

2π −∞ 2π −∞ 2π −∞� � �Z ∞ 
�Z ∞ h � � i Z ∞1 −γ 1

∂t eiλx p̃dλ = ∂x ∂iλ eiλx p̃ − xeiλx p̃ dλ + eiλx (−iλξ p̃) dλ
2π −∞ 2π −∞ 2π −∞� Z � �Z � Z∞ h i∞ ∞ ∞1 iγ γx 1

∂t eiλx p̃dλ = ∂x eiλx p̃ + ∂x eiλx p̃dλ + eiλx (−iλξ p̃) dλ. (II.39)
2π −∞ 2π −∞ 2π −∞ 2π −∞ 

The last term of (II.39) can be solved by fnding its average. We fnd p̃(t) from (II.38) and substitute in such 
term to obtain the following Z Z � � Z Z �� ∞ ∞ t t

iλx1 
eiλx (−iλξ p̃) dλ = 

1 
e −iλξ p̃(0) − γiλ∂iλ p̃(τ)dτ − iλ ξ(τ) p̃(τ)dτ dλ

2π −∞ 2π −∞ 0 0 Z ∞ 
� Z t1 

λ2ξ(t) ̃= eiλx −iλξ p̃(0) − γ∂iλ p(τ)dτ
2π −∞ 0 Z �t 
− λ2ξ(t)ξ(τ) p̃(τ)dτ dλ. (II.40)

0 

We can now fnd the average of expression (II.39) and use expressions (II.36) and (II.33) as follows � Z � h �Z �∞ i∞ ∞1 iγ γx
∂t eiλx⟨ p̃⟩dλ = ∂x eiλx⟨ p̃⟩ + ∂x eiλx⟨ p̃⟩dλ

2π −∞ 2π −∞ 2π −∞ Z � Z Z �∞ t t
iλx+ 

1 
e −iλ⟨ξ⟩ p̃(0) − γ∂iλ λ2⟨ξ(t)⟩ p̃(τ)dτ − λ2⟨ξ(t)ξ(τ)⟩ p̃(τ)dτ dλ

2π −∞ 0 0 Z ∞ 
� Z t � 

iλx∂t p(x, t) = γ∂xxp(x, t) + 
1 

e − λ2⟨ξ(t)ξ(τ)⟩ p̃(τ)dτ dλ
2π −∞ 0 Z ∞ 

� Z t � 
1 iλx −λ2∂t p(x, t) = γ∂xxp(x, t) + e 2Dδ(t − τ) p̃(τ)dτ dλ

2π −∞ 0 R ∞
13 The Fourier transform of a function f defned on R is the function f̃  defned on R by the integral f̃  = −∞ f (x)e−ixλdx . On the 

1 R −∞other hand, the IFT is defned as f (x) = f̃ (λ)eixλdλ (for further details about the Fourier transform, please see [32; 33]).2π −∞ 
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Z � �∞1 iλx∂t p(x, t) = γ∂xxp(x, t) + e −2Dλ2 1 
p̃(iλ) dλ

2π −∞ 2 Z � �1 ∞ 
iλx −λ2 ˜∂t p(x, t) = γ∂xxp(x, t) + D e p(iλ) dλ

2π −∞ 

∂t p(x, t) = γ∂xxp(x, t) + D∂2 
x2 p(x, t) (II.41) 

Example II.2 (Stochastic logistic equation). In some scenarios, it is also possible to express the Fokker-Planck equation 
for systems with multiplicative noise. As an example, consider the following result. 

Proposition II.3 

Given the stochastic logistic equation 

ẋ = γx − ϵx2 + ξx + η, (II.42) 

where 

⟨ξ⟩ = ⟨η⟩ = 0, (II.43) 

⟨ξ(t)ξ(τ)⟩ = 2Dξξ δ(t − τ), (II.44) 

⟨ξ(t)η(τ)⟩ = 2Dξη δ(t − τ), (II.45) 

⟨η(t)η(τ)⟩ = 2Dηη δ(t − τ). (II.46) 

The Fokker-Planck equation of (II.42) is � � 
∂t p(x, t) = −γ∂x (xp(x, t)) + ϵ∂x x2 p(x, t) − Dξξ ∂x (xp(x, t)) � � 

2+ Dξξ ∂
2 
x2 x p(x, t) − Dξη ∂x p(x, t) + 2Dξη ∂

2 
x2 (xp(x, t)) + Dηη ∂

2 
x2 p(x, t) (II.47) 

Proof. To proof this statement, we proceed in the same manner as in the proof of Proposition II.2 by fnding 
the time derivate of the generating function p̃ = e−iλx(t) and substituting (II.42) in the result. This gives the 
following 

2∂t p̃ = −iλ(γx − ϵx + ξx + η) p̃ = iλγ∂iλ p̃ + iλϵ∂2
iλ2 p̃ + iλξ∂iλ p̃ − iλη p̃, (II.48) 

with a solution Z t h i 
p̃(t) = p̃(0) + iλγ∂iλ p̃(τ) + iλϵ∂2

iλ2 p̃(τ) + iλξ(τ)∂iλ p̃(τ) − iλη p̃(τ) dτ 
0 Z Z Z Zt t t t 

= p̃(0) + iλγ∂iλ p̃(τ)dτ + iλϵ∂i
2 
λ2 p̃(τ)dτ + iλ∂iλ ξ(τ) p̃(τ)dτ − iλ η(τ) p̃(τ)dτ. (II.49)

0 0 0 0 

Now we fnd the average of the IFT of (II.48) when substituting (II.49) in its last 2 terms. First, we write * + * +� Z � Z h i Z∞ ∞ ∞1 1 1
∂t eiλx⟨ p̃⟩dλ = iλγ∂iλ p̃ + iλϵ∂i

2 
λ2 p̃ eiλxdλ + [iλξ∂iλ p̃ − iλη p̃] eiλxdλ ,

2π −∞ 2π −∞ 2π −∞| {z } | {z } 
(⋆) (∗) 

(II.50) 
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�
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then (⋆) gives 

� � � �Z ∞ h i Z ∞ h i1 iλxdλ 
1 iλx∂iλ ˜ iλx∂2iλγ∂iλ p̃ + iλϵ∂2

iλ2 p̃ e = γ∂xe p + ϵ∂xe iλ2 p̃] dλ
2π −∞ 2π −∞� �Z ∞ h i 

= 
1 

∂x γeiλx∂iλ p̃ + ϵeiλx∂i
2 
λ2 p̃] dλ

2π −∞� �Z ∞ h � � � � � � � � � �i 
= 

1 
∂x γ ∂iλ eiλx p̃ − xeiλx p̃ + ϵ ∂2

iλ2 eiλx p̃ − x∂iλ eiλx p̃ − xeiλx∂iλ p̃ dλ
2π −∞ 

= −γ∂xxp(x, t) + ϵ∂xx2 p(x, t), (II.51) 

and for (∗) we have 

� Z � � Z Z Z Z �∞ t t t t1
iλξ∂iλ p̃(0) + iλγ∂iλ p̃(τ)dτ + iλϵ∂2

iλ2 p̃(τ)dτ + iλ∂iλ ξ(τ) p̃(τ)dτ − iλ η(τ) p̃(τ)dτ
2π −∞ 0 0 0 0� Z Z Z Z �� �t t t t 

−iλη p̃(0) + iλγ∂iλ p̃(τ)dτ + iλϵ∂2
iλ2 p̃(τ)dτ + iλ∂iλ ξ(τ) p̃(τ)dτ − iλ η(τ) p̃(τ)dτ eiλxdλ 

0 0 0 0 Z ∞ 
� � Z t1 : 0 : 0 

= iλ∂iλ �⟨ p̃�(0�)ξ
�(t) 

� ⟩ + iλγ∂iλ �⟨ξ�(t)�p̃(
�τ) 

� ⟩dτ
2π −∞ 0  Z Z Zt : 0 t t  

+iλϵ∂2 
�⟨ξ�(t)�p̃(

�τ) 
� ⟩dτ + iλ∂iλ ⟨ξ(t)ξ(τ)⟩ p̃(τ)dτ − iλ ⟨ξ(t)η(τ)⟩ p̃(τ)dτ iλ2 0 0 | {z } 0 | {z } 

2Dξξ δ(τ − t) 2Dξη δ(τ − t)� Z
: 0 t : 0 

−iλ �⟨ p̃�(0�)η
�(t) 

� ⟩ + iλγ∂iλ �⟨η�(t)�p̃(�τ) 
� ⟩dτ 

0  Z Z Zt : 0 t t  
+iλϵ∂2 

�⟨η�(t)�p̃(�τ) 
� ⟩dτ + iλ∂iλ ⟨η(t)ξ(τ)⟩ p̃(τ)dτ − iλ ⟨η(t)η(τ)⟩ p̃(τ)dτ iλxdλiλ2  e 

0 0 | {z } 0 | {z } 
2Dξη δ(τ − t) 2Dηη δ(τ − t) Z � � Z Z �∞ t t1 

= iλ∂iλ iλ∂iλ 2Dξξ δ(τ − t) p̃(τ)dτ − iλ 2Dξη δ(τ − t) p̃(τ)dτ
2π −∞ 0 0� Z Z ��t t 
−iλ iλ∂iλ 2Dξη δ(τ − t) p̃(τ)dτ − iλ 2Dηη δ(τ − t) p̃(τ)dτ eiλxdλ 

0 0 

(AII.141) 1 Z ∞ � � � � �� 
= iλ∂iλ iλ∂iλ(Dξξ p̃(iλ)) − iλ(Dξη p̃(iλ)) − iλ iλ∂iλ(Dξη p̃(t)) − iλ(Dηη p̃(t)) eiλxdλ

2π −∞ 

Z ∞ � � � � ��1
iλ∂iλ iλDξξ ∂iλ p̃(iλ) − iλDξη p̃(iλ) − iλ iλDξη ∂iλ p̃(iλ) − iλDηη p̃(iλ) eiλxdλ

2π −∞ Z ∞ h i Z ∞ h i Z ∞ h i1 1 1 
= Dξξ iλ∂iλ p̃ − λ2∂i

2 
λ2 p̃ eiλxdλ + Dξη −iλ p̃ + λ2∂iλ p̃ eiλxdλ + Dξη λ2∂iλ p̃ eiλxdλ

2π −∞ 2π −∞ 2π −∞Z ∞ h i 
+ Dηη 

1 −λ2 p̃ eiλxdλ
2π −∞� Z Z � � Z Z �∞ ∞ ∞ ∞ 

= Dξξ 
1 

∂x eiλx∂iλ p̃dλ + ∂2 
x2 eiλx∂2

iλ2 p̃dλ − Dξη 
1 

∂x eiλx p̃dλ + 2∂2 
x2 eiλx∂iλ p̃dλ

2π −∞ −∞ 2π −∞ −∞� Z �∞ 
+ Dηη 

1 
∂2 

x2 eiλx p̃dλ
2π −∞ 
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� �(AII.137)−(AII.140) 2 = −Dξξ ∂x (xp(x, t)) + Dξξ ∂
2 
x2 x p(x, t) − Dξη∂x p(x, t) + 2Dξη ∂

2 
x2 (xp(x, t)) + Dηη ∂

2 
x2 p(x, t) 

(II.52) 

II.2.2 The Fokker-Planck equation for linear stochastic systems 

To obtain a description of the Fokker-Planck equation for a generalised set of dynamics, we start by considering 
the case of a generalised linear dynamical system described via the following stochastic differential equation 

ẋ (t) = Ax(t) + ξ(t), (II.53) 

where x, ξ ∈ Rn , A ∈ Rn×n , and aij are the elements of the matrix A. Besides, the input ξ contains the 
δ-correlated Gaussian Langevin forces 

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξ j(t ′ )⟩ = 2Dijδ(t − t ′ ), Dij = Dji, ∀i, j = 1, . . . , n. (II.54) 

Under this context, the following result holds. 

Proposition II.4 

The transition probability or Fokker-Planck equation of the system (II.53) is given by the partial 
differential equation 

n n n∂ � �∂p(x; t) n 

∑ Dij 
∂2 p(x; t) 
∂xi∂xj 

, (II.55)∑ ∑∑γij = − 
∂xi 

xj p(x; t) +
∂t i=1 j=1 i=1 j=1 

x i ∑n
Proof. Firstly, let the generating function p̃ = e−iλT 

= e i=1 λi xi where λ ∈ Rn such that λ = [λ1, λ2, . . . , λn]⊤ . 
Then, by defnition Z 

−iλTx⟨ p̃⟩ = e p(x; t) dnλ. (II.56) 
Rn 

This means that by applying the Inverse Fourier Transform (IFT)14 to ⟨ p̃⟩ we can obtain the value of the 
probability density function Z 

i ∑n 
p(x; t) = 

1 
e i=1 λi xi ⟨ p̃⟩ dnλ. (II.57)

(2π)n 
Rn 

We start our proof by fnding the partial time derivative of p̃ 

n 

∑ λi ẋie−i ∑n 
i=1 λi xi∂t p̃ = −i 

i=1 " # 
n n 

∑ λi ∑ γijxj + ξi p̃= −i 
i=1 j=1 

n n n 

∑∑ λiγijxj p̃ − i ∑= −i λiξi p̃. (II.58) 
i=1 j=1 i=1 

Now fnding the average of the IFT of (II.58) we obtain 

14 See [34] for a defnition of the multi-dimensional Fourier transform. 
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* ! +� Z � Z n n1 iλT 1 iλT x −i ∑∑x⟨ p̃⟩ dnλ λiγijxj p̃ dnλ ! + ∂t e e= 
(2π)n (2π)n

Rn Rn 
i=1 j=1* Z n1 iλT x ∑ λiξi p̃ dnλ−i+ e 

(2π)n 
Rn * i=1 ! +Z n n1 iλTxxj p̃ dnλ∑∑∂t p(x; t) = γij∂xi− e 

(2π)n 
Rn 

i=1 j=1* (Z )! +Z n Zn n n t t1 iλTx ∑ ∑∑ 
0 

λjγjkxk p̃(τ) dτ − i ∑ 
j 1= 

dnλλiξi λjξ j(τ) p̃(τ) dτp̃(0) − i−i+ e 
(2π)n 

Rn 0i=1 j=1 k=1 

n n Z � �1 iλT x⟨ p̃⟩∑∑ dnλ∂t p(x; t) = − γij∂xi xj e 
(2π)n 

Rn
i=1 j=1* ( )! +ZZ n n t1 iλTx ∑ ∑ 

j 1= 
λjξ j(τ) p̃(τ) dτ dnλλiξi(t)−i −i+ e 

(2π)n 
Rn 0i=1 � Z �Z � �n n n n� � t1 iλT x∑∑ γij∂xi xj p(x; t) + ∑∑ ⟨ξi(t)ξ j(τ) p̃(τ)⟩ dτ dnλ∂t p(x; t) = − ∂xi ∂xj e 

(2π)n 
Rn 0i=1 j=1 i=1 j=1 � Z �Z � �� �n n n n t1 iλT x∑∑ ∑ 

i 1= 
∑ dnλ∂t p(x; t) = − γij∂xi ∂xi ∂xj 2Dijδ(t − τ)⟨ p̃⟩ dτxj p(x; t) + e 

(2π)n 
Rn 0i=1 j=1 j=1 � Z �� �n n n n 1 iλT x⟨ p̃⟩ dnλ∑∑ ∑∑∂t p(x; t) = − γij∂xi ∂xi ∂xjxj p(x; t) + Dij e 

(2π)n 
Rn

i=1 j=1 i=1 j=1 

n n n n� � 
∑∑ γij∂xi xj p(x; t) + Dij ∑∑∂t p(x; t) = − ∂xi ∂xj (II.59)p(x; t) 

i=1 j=1 i=1 j=1 

Dynamics described by (II.53) exhibit important features that permit us to solve its corresponding Fokker-
Planck equation. For instance, through the superposition principle15 , we can assure that if the PDF at time 
t = 0 is Gaussian, it will be maintained Gaussian at all t. This assertion is proved by the following result 

Proposition II.5: Solution from [36] 

Given that the value of the PDF at time t = 0 is Gaussian, the time-varying PDF of the linear stochastic 
system (II.53) is given by 

p(x, t|x0, t0) = p (2π)− n 
2 

e− 12 (x−µ(t−t0)x0)
T Σ−1(t−t0)(x−µ(t−t0)x0), (II.60)

det(Σ(t − t0)) 

where Σ ∈ Rn×n and µ ∈ Rn are the covariance matrix and mean value vector of the random variable + 

vector x. 

15 A system whose output can be described as a linear combination of all its inputs is a system that satisfes the superposition principle 
[35]. 
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Proof. Applying the Fourier Transform to (II.55) with respect to every variable in the vector x, we obtain 

∂ p̃ ∂ p̃ 
= γijλi − Dijλiλj p̃, (II.61)

∂t ∂λj 

considering the initial condition p̃(x, t|x0, t0) = e−iλT x0 , the solution of (II.61) is acquired through the ansatz 
as follows 

−iλTµ(t−t0)− 12 λ
T Σ(t−t0)λp̃(x, t|x0, t0) = e . (II.62) 

Applying the inverse Fourier transform to (II.62), we fnish our proof Z1 iλT x−iλT µ(t−t0)− 12 λ
T Σ(t−t0)λ dλp(x, t|x0, t0) = e 

(2π)n 
Rn Z1 − 12 λ

TΣ(t−t0)λ+λT (ix−iµ(t−t0)) dλ= e 
(2π)n 

Rn s 
(2π)n 

− 1 T Σ−1(t−t0)(x−µ(t−t0))2 (x−µ(t−t0))= e . (II.63)
det(Σ(t − t0)) 

The last integral was solved by using results explained in [37] 

II.2.3 The Fokker-Planck equation for a generalised process 

Let us now consider the case where the dynamics are non-linear. In this scenario, we focus on processes 
modelled by the following set of Langevin equations 

dζi ∂ 
= fi(ζ, t) + ξi(t) = − V(ζ, t) + ξi(t). (II.64)

dt ∂xi 

Such that fi : Rn → R is any function that maps the variables of the vector ζ ∈ Rn := {ζ1, ζ2, . . . , ζn} to a real 
value at a given time t ∈ R. Besides, ξi is a random variable with ⟨ξi(t)⟩ = 0, and ⟨ξi(t)ξ j(t ′ )⟩ = 2Dijδ(t − t ′ ) 
with Dij ≥ 0∀i, j. Finally, V(ζ, t) : Rn → R is a function involving an internal potential. 

The associated Fokker-Planck equation to the Langevin equation (II.64) is given by 

Dij 
∂2 p(x; t) 
∂xi∂xj 

. (II.65)
∂p(x; t) ∂ 

( fi(x, t)p(x; t)) +∑ ∑∑= −
∂t ∂xii i j 

Equation (II.65) gives the time evolution of the probability distribution p(x; t) : Rn → R+ with x := 
{x1, x2, . . . , xn} for system (II.64). Sometimes, it is convenient to rewrite Equation (II.65) as follows 

∂p(x; t) ∂ 
Ji(x; t), (II.66)∑= −

∂t ∂xii 

where Ji is the i-th component of the current probability/fow J, defned by 

∂
∑Ji(x; t) = fi(x, t)p(x; t) − Dij p(x; t). (II.67)

∂xjj 

Figure II.7 shows an example of the application of models (II.53) and (II.64) to a set of Brownian particles in 
one-dimension subject to forces due to the interactions between them. 
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xi−1 xi xi+1 

mi mi+1mi−1 

fi(x; t) 

fi−1(x; t) 

x = [xi−1, xi, xi+1] 
Figure II.7: A set of Brow-
nian particles moving in one-
dimension. The displacements 
are described via the state vector 
x and the forces due to interac-
tions via the non-linear function 
f (x : t). 

II.3 Statistical properties of a type of generalised Langevin equations 

According to Proposition II.5, in a linear stochastic system with an initial Gaussian PDF, we can have the value 
of the PDF at every instant of time if we give the corresponding mean value µ(t) and covariance matrix Σ(t). 
Hence, in many applications, it is useful to explicitly describe the time evolution of the statistical moments of 
the stochastic process to construct its corresponding PDF. In the following, and under certain conditions, we 
show how these values are obtained for both linear and non-linear dynamics. 

II.3.1 Linear Non-Autonomous Stochastic Processes 

A linear non-autonomous process is given by 

ẋ (t) = Ax(t) + Bu(t) + ξ(t), (II.68) 

where A and B are n × n and n × p constant real matrices, respectively; u ∈ Rp is a (bounded smooth) time 
dependent external input vector, ξ ∈ Rn is a Gaussian stochastic noise given by an n dimensional vector of 
δ-correlated Gaussian noises ξi (i = 1, 2, ...n), with the following statistical property 

⟨ξi(t)⟩ = 0, ⟨ξi(t)ξ j(t1)⟩ = 2Dij(t)δ(t − t1), Dij(t) = Dji(t), ∀i, j = 1, . . . , n. (II.69) 

By assuming an initial Gaussian probability density function (PDF), the PDF remains Gaussian for all time, 
the following holds. 
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Proposition II.6: Joint probability [6] 

The value of the joint PDF of system (II.68)-(II.69) at any time t is given by 

1 − 1 T 
2 (x−µ(t)) Σ−1(x−µ(t)) p(x; t) = p e , (II.70)

det(2πΣ) 

where Z t
Atµ(t) = e µ(0) + eA(t−τ)Bu(τ)dτ, (II.71)

0D E 
ATt 

Z t
At A(t−τ)DeAT (t−τ)dτ,Σ(t) = e δx(0)δx(0)T e + 2 e (II.72)

0 

and D ∈ Rn×n is a matrix with elements Dij(t). Here, µ(t) is the mean value of x(t) while Σ is the + 

covariance matrix. 

Proof. For a Gaussian PDF of x, all we need to calculate are the mean and covariance of x and substitute them 
in the general expression for multi-variable Gaussian distribution (II.70). To this end, we frst write down the 
solution of Equation (II.68) as follows Z t

Atx(t) = e x(0) + eA(t−t1)ξ(t1) dt1. (II.73)
0 

By taking the average of Equation (II.73), we fnd the mean value of x(t) of (II.73) as follows Z t
At At⟨x(t)⟩ = ⟨e x(0)⟩ + eA(t−t1)⟨ξ(t1)⟩ dt1 = e µ(0), (II.74)

0 

which is Equation (II.71). On the other hand, to fnd covariance Σ(t), we let x = ⟨x⟩ + δx, and use the property 
⟨δx(0)ξ(t)⟩ = 0 to fnd D E 

Σ(t) = δxδxT *� +Z �� Z �Tt t 
= eAtδx(0) + eA(t−t2)⟨ξ(t2)⟩ dt2 eAtδx(0) + eA(t−t1)⟨ξ(t1)⟩ dt1 

0 0 �� Z �� Z �� t t � �T 
= eAtδx(0) + eA(t−t2)ξ(t2) dt2 δx(0)TeAT t + ξ(t1)

T eA(t−t1) dt1 D 0 E ��Z t ��Z 0 
t �� 

At AT t= e δx(0)δx(0)T e + eA(t−t2)ξ(t2) dt2 ξ(t1)
TeAT (t−t1) dt1 

0 0 D E Z t Z t
At AT t = e δx(0)δx(0)T e + eA(t−t2)⟨ξ(t2)ξ(t1)

T⟩eAT (t−t1) dt2 dt1 
0 0 D E Z t

At AT t A(t−t1)De= e δx(0)δx(0)T e + 2 e AT (t−t1) dt1. (II.75)
0 

Here δx(0) = δx(t = 0) is the initial fuctuation at t = 0. Equation (II.75) thus proves Equation (II.72). 
Substitution of Equations (II.71) and (II.72) in Equation (II.70) thus gives us a joint PDF p(x; t) 

We recall that in Proposition II.6, the computation of the exponential matrix eAt can be done by using the 
following result [38] h i 

Ate =L −1 (sI − A)−1 . (II.76) 
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Here, L −1 stands for the inverse Laplace transform16 of the complex variable s. Equations (II.71) and (II.72) 
can be rewritten in terms of its time derivatives as follows [19] 

µ̇ (t) = Aµ(t) + Bu(t), (II.77) 

Σ̇ (t) = AΣ(t) + Σ(t)A⊤ + 2D(t). (II.78) 

As we will describe in Chapter V, the application of Equations (II.77)-(II.78) will permit us to derive a general 
framework for controlling stochastic systems as they describe stochastic dynamics in terms of deterministic 
equations of motion. 

II.3.2 Non-linear stochastic processes under the Laplace assumption 

In the case of non-linear dynamics, we certainly can no longer assure the existence of a Gaussian PDF at 
every instant of time. Yet, we can describe an uncertain number of statistical moments depending on the 
nature of the problem. Such computation creates plenty of practical and technical issues that can be eased if 
we saturate the estimation to the frst two moments via the so-called “Laplace assumption”. In other words, 
we describe the solution of (II.65) through a fxed multivariable Gaussian distribution given by [41] 

1 1 
2 Q(x;t)p(x; t) = p e , (II.79)

|2πΣ| 
⊤where Q(x; t) = − 12 (x − µ(t)) Σ−1(t) (x − µ(t)); µ(t) ∈ Rn and Σ(t) ∈ Rn×n are the mean and covariance 

value of the random variable x. The value of the mean µ(t) and covariance matrix Σ(t) can be obtained from 
the following result. 

Proposition II.7: The Laplace assumption [11] 

Under the Laplace assumption, the dynamics of the mean µ and covariance Σ at any time t of a 
non-linear stochastic differential system (II.64) are governed by the following differential equations � ��⊤� � � � �1 1 1 

µ̇ = f1(µ, t) + Tr ΣH f1 , f2(µ, t) + Tr ΣH f2 , . . . , fn(µ, t) + Tr ΣH fn , (II.80)
2 2 2 

Σ̇ = J f Σ + ΣJ⊤ + D + D⊤ , (II.81)f 

where H fi 
is the Hessian matrix of the function fi(x, t) and J f is the Jacobian of the function f (x, t). 

Proof. We start by defning the frst two moments of the ensemble density p(x). This is given as follows Z 
µ̇i = xi ṗ(x; t) dnx, (II.82) 

Rn 

16 Given a function F of the complex variable s that is analytic throughout the fnite complex plane except for a fnite number of 
isolated singularities, a new function f of the real variable t (time) is defned for positive values of t by the following equation Z1 st F(s) dsf (t) = lim e (t > 0),

2π R→∞ Lr 

where LR denotes a vertical line segment from s = σ − iR to s = σ + iR such that the constant σ is positive and large enough that the 
singularities of F all lie to the left of that segment. Furthermore, the function f is the inverse Laplace transform of the function Z ∞ 

−st f (t) dt.F(s) = e 
0 

For further details, see chapter 7 of [39] and [40]. 
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Z 
Σ̇ ij = xixj ṗ(x; t) dnx. (II.83) 

Rn 

Here, xi = xi − µi. Using (II.82)-(II.83) and (II.65) while avoiding the arguments for simplicity, we have " #Z n n � � 
∑ ∂xi ( fi p) + ∑ ∂xi Dij∂xj p dnxµ̇i = 

Rn 
xi − 

i=1 i,j=1 !Z Z n 

∑xi∂xi ( fi p) dnx + dnxxi∂xi Dij∂xj p−= 
Rn Rn 

j=1 Z 
= fi p dnx = ⟨ fi⟩. (II.84) 

Rn " #Z n n � � 
Σ̇ ij ∑ ∂xi ( fi p) + ∑ ∂xi Dij∂xj p dnx= 

Rn 
xixj − 

i=1 i,j=1 ! !Z Z Z Z nn 

∑ ∑( fi p) dnx − xixj∂xj ( f j p) dn Dij∂xj p dnx + dnxxixj∂xi Dji∂xi p= − x + xi xj
Rn Rn Rn Rn

j=1 i=1 

= ⟨xj fi + xi f j⟩ + Dij + Dji. (II.85) 

A closed-form solution to (II.84)-(II.85) can be obtained by exploiting the Laplace assumption, i.e., we recover 
the suffcient statistics (II.82)-(II.83) of system (II.64) through the frst three terms the non-linear fow fi(x, t) 
Taylor expansion around the expected state µ. This is given as follows 

∂2 fi(µ, t)n n∂ fi(µ, t) 1
∑ ∑fi(x, t) = fi(µ, t) + (II.86)xj + xjxk + . . .

∂xj ∂xj ∂xk2j=1 j,k=1 

Under Gaussian assumptions, ⟨xi⟩ = 0 and ⟨xixj⟩ = Σij and applying (II.86) to (II.84)-(II.85) we have * + 
∂2 fi(µ, t)n ∂ fi(µ, t) n1

∑ ∑µ̇ = fi(µ, t) + xj + xjxk∂xj ∂xj ∂xk2j=1 j,k=1 

∂2 fi(µ, t)n1
fi(µ, t) + ∑ Σjk. (II.87)= 

∂xj ∂xk2 j,k=1* !+ � � n ∂ fi(µ, t)
Σ̇ ij ∑fi(µ, t) + xk + Dij + Dji xj + xi= 

∂xkk=1 
n ∂ fi(µ, t) n ∂ fi(µ, t)
∑ ∑Σjk + Σik + Dij + Dji. (II.88)= 

∂xk ∂xkk=1 k=1 

Equations (II.87)-(II.88) are the expansion of the equations shown in Proposition II.7. This fnishes the 
proof. 

Example II.3. To illustrate the application of Proposition II.7, consider the following Langevin form of the Duffng 
equation 

ẋ(t) = v(t) + ξ1(t) 

v̇(t) = −δv(t) − αx(t) − βx(t)3 + γ cos(ωt) + ξ2(t) 
, (II.89) 

where x(t) is the displacement at time t, v(t) = ẋ(t) is the frst derivative of x with respect to time, i.e. velocity, ξ is a 
delta correlated noise and the values δ, α, β, γ, and ω are given constants. 
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Figure II.8 shows a simulation of (II.89) using the deterministic equations of the mean vector µ = [⟨x⟩, ⟨v⟩]⊤ 

and covariance matrix Σ as described by Proposition II.7. Specifcally, Figure II.8 includes the time evolution 
of the random variables x and v with its phase portrait, and the time evolution of Σ11, Σ12, and Σ22. In the 
plot, time is scaled by the factor T = 2π/ω. 

Figure II.8: Time evolution of 
the stochastic Duffng equation 
(II.89). The plot includes the time 
evolution of the values in the co-
variance matrix Σ and the ran-
dom states x and ẋ [11]. 

II.4 Thermodynamics 

Another set of preliminary concepts and results that we will need to 
understand before we continue with our discussion comes from the 
area of thermodynamics. Again, we highlight that the following is not 
a deep presentation of the subject but rather a short introduction to 
useful concepts in the feld. 

As thermodynamics deals with the study of relations between heat, 
work, temperature, and energy, it has the following useful system’s 
classifcations (see Figure II.9) [42] 

• Isolated systems. Systems that exchange no fuxes of energy or 
matter with the environment. 

• Closed systems. Systems that share energy fuxes with the environ-
ment but not matter. 

• Open systems. Systems that share both energy and matter with the 
environment. 

Isolated 

Neither energy Not matter 

Closed 

Energy but not matter 

Open 

Both energy and material 

Figure II.9: Types of systems ac-
cording to thermodynamics. 
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Within this framework, the feld of thermodynamics also establishes the following two widely accepted 
fundamental laws 

1st law In a closed system, the change in internal energy of the system ∆U is equal to the difference 
between the heat supplied to the system Q and the work W performed by the system on its 
surroundings, i.e., 

∆U = Q − W. (II.90) 

2nd law If two isolated systems in thermal equilibrium are allowed to interact, they will reach to a 
mutual thermodynamic equilibrium but with a higher so-called entropy S (see Section II.5 for a 
more detailed discussion about entropy). 

The frst and second laws of thermodynamics give us important information about the nature of any 
system. For instance, the second law explains that while energy remains constant, there is something else 
changing. As we will see in Section II.5, a possible interpretation would be that energy is transformed in 
terms of its quality. Such a change is only in one direction, resulting in energy being unable to perform work. 

II.4.1 Stochastic thermodynamics 

Recently, the literature presents a renewed approach to thermodynamics 
called “stochastic thermodynamics” [23; 43]. Such a feld presents a 
thermodynamic theory for mesoscopic17 , non-equilibrium physical 17 Mesoscopic systems are systems char-

systems interacting with equilibrium heat reservoirs (closed systems). 
Since we are interested in dynamical systems described via stochastic 

acterised by energy differences among its 
states on the order of the thermal energy 
kBT, where kB is the Boltzmann constant, 

differential equations, stochastic thermodynamics is the optimal frame- and T is the temperature. 

work for our work. Stochastic thermodynamics fts well for applications 
such as mesoscopic systems which can be driven out of equilibrium via 
optical tweezers. 

II.5 Entropy 

Since entropy is an important concept in this work, it is necessary to expand our discussion about it. Entropy, 
as a mathematical contrivance [44], can be related to the following interpretations [45] 

Entropy as irreversibility In steam engines, the creation of heat is a less useful form of energy as this 
spreads out the energy among all the atoms, and not all of it can be retrieved back to do useful work. Note 
that the spreading of such energy is an irreversible process. It was Carnot who realised that irreversibility 
should be avoided to produce the most effcient possible engine. In principle, a reversible heat engine would 
be able to run forward, generating work by transferring heat from the hot to the cold bath and then run 
backward using the same work to pump heat back into the hot bath. For instance, let us consider Carnot’s 
prototype of a heat engine shown in Figure II.10, which consists of a piston with external pressure P, two 
heat baths at a hot temperature T1 and a cold temperature T2, and some type of gas inside the piston. During 
one cycle of his engine heat Q1 fows out of the hot bath, heat Q2 fows into our cold bath, and net work 
W = Q1 − Q2 is done by the piston on the outside world. To make his engine reversible Carnot must avoid 
friction, letting hot things touch cold things, letting systems at high pressure expand into systems at low 
pressure, and moving the walls of the container too quickly (emitting sound or shock waves). 
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In his cycle, and hence in any reversible engine, the following law is 
satisfed 

Q1 Q2 = . (II.91)
T1 T2 

If entropy is considered to be defned as [46; 45] 

Q
∆Sthermo = , (II.92)

T 

where Q is the heath fow at a fxed temperature T, we have that an 
engine is reversible if no entropy is created or destroyed. This is of 
course an idealisation as any real engine will create net entropy during 
a cycle and no engine can reduce the net amount of entropy in the 
universe. 

Entropy as disorder The notion of entropy as a measure of disorder 
is an interpretation that can be understood if we consider the Boltzmann 
entropy which creates a relation between the thermodynamic entropy 
and the microscopic properties of matter. Such a value is defned as 
follows 

S = k ln Ω, (II.93) 

where k is some constant and Ω is the number of possible microstates 
(different arrangements of a system) corresponding to the macroscopic 
state of the system [47]. 

According to Equation (II.93), if we consider a vessel divided into 
two sections (see Figure II.11) where we prepare a frst state Ω1 by 
placing two indistinguishable particles only in one section, meaning 
Ω1 = 1, and a second state where we assume that the particles can move 
freely in the vessel reaching three possible confgurations, i.e. Ω2 = 3, 
the second state will show higher entropy as compared with the frst 
state. Such a result agrees with the second law of thermodynamics: an 
isolated system changes from some prepared state to the equilibrium 
state and entropy increases. 

When analysing examples like the one in Figure II.11, we give rise 
to an opinion that entropy is related to a notion of “disorder”. Yet, 
we have to be cautious when we describe what we mean by the disor-
der. For the general public, the order is estimated only in the spatial 
three-dimensional space while not considering the interaction between 
the elements in the system. For physicists, the order considers the 
coordinate-momentum 6N-dimensional phase space and the interac-
tions [48]. 

Entropy as ignorance Entropy can also be interpreted as a measure 
of our ignorance about a system as it was presumably frst proposed by 
Edwin Jaynes in 1957 [49]. An advantage of this interpretation is that it 
poses entropy as a measure of our knowledge about the system rather 
than as a property of the system. 

P 

PQ2 

T2 

T1 

Figure II.10: Carnot’s prototype 
of a heat engine. A piston with 
external pressure P, two heat 
baths at a hot temperature T1 

and a cold temperature T2, and 
some type of gas inside the pis-
ton. 

Ω1 = 1 

Ω2 = 3 

Figure II.11: Simple model 
explaining the concept of mi-
crostates. A vessel divided into 
two sections, we prepare a frst 
state Ω1, and a second state Ω2 

where we assume that the parti-
cles can move freely in the vessel 
reaching three possible confgu-
rations. 

Remark II.4. Throughout this work, we 
pragmatically make use of entropy as a mea-
sure of irreversibility, disorder or ignorance. 
In the case that only one interpretation is 
preferred, we state it in our analysis. 
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This interpretation is also closely related to the concept of entropy 
created by Shannon in the feld of information theory. For Shannon, 
the entropy of a random variable is the average level of “information”, 
“surprise”, or “uncertainty” associated with the possible outcomes of 
the considered variable [50]. 

II.5.1 Entropy rate 

In stochastic thermodynamics, when the system is out of equilibrium, we can compute its “entropy rate” 
(ER), i.e. the time derivative of the entropy S, via its time-varying PDF. In closed systems, as shown in Figure 
II.12, the entropy rate describes a balance between the entropy produced by internal processes Π (entropy 
production) and the entropy produced by external changes Φ (entropy fow) which can be written as follows 

Ṡ(t) = 
d

S(t) = Π − Φ, (II.94)
dt 

where Π is always a non-negative value. The sign of Φ represents the direction in which the entropy fows 
between the system and the environment (specifcally, Φ > 0 (Φ < 0) when the entropy fows from the system 
(environment) to the environment (system)). The equality Π = 0 holds in an equilibrium reversible process, 
giving Ṡ = Φ. In comparison, when Ṡ = 0, we have Π = Φ ≥ 0 [51]. 

Figure II.12: In a closed system 
out of equilibrium, there is an en-
tropy balance described via the 
entropy rate equals the difference 
between the entropy production 
(entropy produced by internal 
processes) and the entropy fow 
(entropy produced by external 
exchanges) [52]. 

Given the time-varying multivariable probability distribution p(x; t) of a system described by the Langevin 
equation (II.64), we can compute its entropy rate Ṡ via the following expression [53; 54] Z 

Ṡ(t) = − ṗ(x; t)ln (p(x; t)) dnx. (II.95) 
Rn 

Specifcally, by substituting (II.66) in (II.95), we have !Zd ∂
S(t) = ∑ Ji(x; t) ln (p(x; t)) dx

dt Rn
i ∂xi Z Z � �

∂ ∂ 
= ∑ (Ji(x; t)ln (p(x; t))) − ∑ Ji(x; t) ln (p(x; t)) dnx. (II.96) 

Rn
i ∂xi Rn

i ∂xi 
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Now, if we substitute (II.67) in the frst term on the right hand side of (II.96), we obtain18 

Z � � 
d ∂

S(t) = − ∑ Ji(x; t) ln (p(x; t)) dnx. (II.97)
dt Rn

i ∂xi 

∂From (II.67), the term ∂xi 
ln (p(x; t)) in (II.97) becomes19 

Z � 
d fi(x) Ji(x; t)

S(t) = − ∑ Ji(x; t) −
dt Rn 

i Dii Dii p(x; t) 
∑j ̸=i Dij ∂

∂ 
xj 

p(x; t) 
− dx. (II.98)

Dii p(x; t) 

Taking the positive defnite part on the right hand side of (II.98), we defne Π as follows20 

Z Ji(x; t)2 
Π = ∑ ΠJi = ∑ dx, (II.99) 

i Rn 
i Dii p(x; t) 

where ΠJi is the contribution to the entropy production by the current fow Ji. Therefore, the remaining terms 
defne the entropy fow Φ as 

Z  
∑j ̸=i Dij Ji(x; t) ∂ p(x; t) 

  Ji(x; t) fi(x) ∂xjΦ= ∑ − dx, (II.100) 
Rn 

i Dii Dii p(x; t) 

In this work, we consider only the case when Dij = 0 if i ̸= j in (II.100)21 , which gives Z � �
Ji(x; t) fi(x)Φ = ∑ ΦJi = ∑ dx, (II.101) 

i Rn 
i Dii 

where, ΦJi is the contribution to the entropy production by the current fow Ji. Notice that when Dii = 0, 
(II.99)-(II.100) are undefned. In such a scenario, we can still fnd the values of Π and Φ by substituting 
Dij = 0 in (II.67) before computing the ER as follows Z � � 

Ṡ = − ∑ Ji(x; t) 
∂ 

ln (p(x; t)) dnx 
Rn 

i ∂xi Z � � 
Dij = 0 in (II.67) ∂ 

= − ∑ ( fi(x, t)p(x; t)) ln (p(x; t)) dnx 
Rn

i ∂xi R 
∂18 Since p(x; t) → 0 at ±∞ ∀xi ∈ x, we have 

Rn ∑i ∂xi 
(Ji(x; t)ln (p(x; t))) → 0. 

19 Clearly, according to (II.67), ! 
∂ 1 ∂ 1 ∂

ln (p(x; t)) = p(x; t) = fi(x, t)p(x; t) − Ji(x : t) − ∑ Dij p(x; t) .
∂xi p(x; t) ∂xi Dii p(x; t) ∂xij ̸=i 

20 The positive defnite part on the right hand side of (II.98) is Z Ji(x; t)2 

∑ dx 
Rn 

i Dii p(x; t) 

since p(x; t), Dii , and Ji(x; t)2 are, by defnition, non-negative terms. 
21 In other words, we consider only the case when there is no correlation between the particles’ temperature in the diffusion process. 
While this limits our study to a specifc set of systems, it permits us to fnd a closed-form solution of the stochastic thermodynamics 
that is used to understand the effects of an optimal control protocol as discussed in Chapter V. 
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Z 
∂ 

= − ∑ fi(x, t) p(x; t) dnx 
Rn

i ∂xi 

: 0Z Z
∂ ∂ 

��������������� 

= − ∑ ( fi(x, t)p(x; t)) dnx + ∑ p(x; t) fi(x, t) dnx. (II.102) 
Rn Rn

i ∂xi i ∂xi 

Hence, given that Dij = 0, Π = 0 as there is no positive defnite part in (II.102), and � �
∂ fi(x)Φ = ∑ ΦJi = ∑ = ∑ aii. (II.103)

∂xii i i 

The specifc value of entropy rate, entropy production, and entropy fow can be computed for linear and 
non-linear stochastic dynamics using the following results. 

Proposition II.8: Stochastic thermodynamics in linear systems [9] 

The value of entropy production Π and entropy fow Φ in a Gaussian process whose mean µ and 
covariance Σ are governed by equations (II.77)-(II.78) are given by � � � � 

Π = µ̇ ⊤D−1µ̇ +Tr A⊤D−1AΣ + Tr Σ−1D +2Tr(A), (II.104) � � 
Φ = µ̇ ⊤D−1µ̇ +Tr A⊤D−1AΣ + Tr(A). (II.105) 

Recall that A ∈ Rn×n and D ∈ Rn×n are matrices describing the internal dynamics and noise amplitude + 

of the linear stochastic system (II.68). 

Proof. We start by applying the defnition of entropy (II.99) production and entropy fow (II.101) to obtain the 
contribution of each current fow Ji as follows *� + � �D E �21 ∂Q(x) ∂ fi(x, t)

ΠJi = fi(x, t)2 +Dii +2 , (II.106)
Dii ∂xi ∂xi � � 
1 ∂ fi(x, t)

ΦJi = ⟨ fi(x, t)2⟩ + , (II.107)
Dii ∂xi 

⊤where Q(x; t) = − 12 (x − µ(t)) Σ−1(t) (x − µ(t)). Before continuing, it is useful to note that [55] " # 
∂Q 1 

= − δxiΣ−1 + ∑ δxjΣ−1 
∂xk 2 ∑ ki jk 

i j 

⊤Σ−1 = − ∑ δxiΣ−1 = −δx , (II.108)ki k 
i 

where δxi = xi − µi, δx := x − µ = [δx1, . . . , δxn]⊤ and Σ−1 is the k-th column of the inverse matrix Σ−1 of Σ.k 
Besides, 

fi(x)2 =x⊤Ai 
⊤Aix + u⊤Bi 

⊤Biu + 2u⊤Bi 
⊤Aix, (II.109) 

where we recall that Ai and Bi are the i-th arrows of the matrices A and B defned according to (II.68). 
Therefore [55] * +� �2 D E∂Q(x) ⊤Σ−1(Σ−1)⊤δxDii = Dii δx i i∂xi 




 �
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= Dii Tr(∆iΣ), (II.110) 

and 
fi(x)2 1 � � 

⊤ ⊤ = Tr(ΓiΣ) + µ Γiµ + u Ωiu + 2u⊤φiµ , (II.111)
Dii Dii 

where ∆i = Σ−1(Σ−1)⊤ , Γi = A⊤ 
i Ai, Ωi = B⊤ 

i Bi, and φi = B⊤ 
i Ai. Furthermore, we have thati i 

∂ fi(x) = aii.∂xi 

Then � �1 ⊤ ⊤ΠJi = Tr(ΓiΣ) + µ Γiµ + u Ωiu + 2u⊤φiµDii 

+Dii Tr(∆iΣ)+2aii, (II.112)� �1 ⊤ ⊤ΦJi = Tr(ΓiΣ) + µ Γiµ + u Ωiu + 2u⊤φiµ + aii.Dii 

Finally, since elements in (II.112) like ! 
n A⊤ A⊤µ⊤Γiµ 1 A1 An∑ = µ⊤ + · · · + n µ 
i Dii D11 Dnn 

= µ⊤A⊤D−1Aµ, (II.113)! ! 
n Σ−1(Σ−1)⊤ Σ−1(Σ−1)⊤Tr(∆iΣ) 1 1 n n∑ = Tr + · · · + Σ 
i Dii D11 Dnn � � 

= Tr Σ−1D−1(Σ−1)⊤Σ , (II.114) 

we can apply the same reasoning to all the terms on the right hand side of (II.112) to get � � � � 
Π = µ̇ ⊤D−1µ̇ +Tr A⊤D−1AΣ + Tr Σ−1D +2 Tr(A), (II.115) � � 
Φ = µ̇ ⊤D−1µ̇ +Tr A⊤D−1AΣ + Tr(A), (II.116) � � � � 
Ṡ = Tr Σ−1D +Tr(A) = 

1 
Tr Σ−1Σ̇ , (II.117)

2 
which corresponds to the result given in Relation II.8. 

Proposition II.9: Stochastic thermodynamics in non-linear systems under the Laplace 
assumption[11] 

Under the Laplace assumption (Proposition II.7), the value of entropy rate Ṡ, entropy production Π, 
and entropy fow Φ in a non-linear stochastic system described by (II.64) are given by � � � � 

Ṡ = Tr Σ−1D + Tr(J f ) = 
1

Tr Σ−1Σ̇ , (II.118)
2� � � � � � 

Π = Tr Σ−1D + Tr f (µ, t)⊤D−1 f (µ, t) + Tr J f D
−1J⊤ 

f Σ + 2Tr(J f ), (II.119) � � � � 
Φ = Tr f (µ, t)⊤D−1 f (µ, t) + Tr J f D

−1J⊤ 
f Σ + Tr(J f ), (II.120) 

where J f is the Jacobian of the function f (x, t) = [ f1(x, t), f2(x, t), . . . , fn(x, t)]⊤ . 




 �   
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Proof. Like in the proof of Proposition II.8, we start by applying the defnition of entropy production (II.99) 
and entropy fow (II.100) to obtain the contribution to them by each current fow Ji. This gives us +D E *� �2 � � 

1 ∂Q(x) ∂ fi(x, t)
ΠJi = fi(x, t)2 +Dii +2 , (II.121)

Dii ∂xi ∂xi � � 
1 ∂ fi(x, t)

ΦJi = ⟨ fi(x, t)2⟩ + , (II.122)
Dii ∂xi 

⊤where Q(x; t) = − 12 (x − µ(t)) Σ−1(t) (x − µ(t)). Again, before continuing, it is useful to note that [55] " # 
∂Q 1

∑ xiΣ−1 
ki + ∑ xjΣ− 

jk 
1 = −∑ ⊤xiΣ−1 = −x Σ−1, (II.123)ki k = −

∂xk 2 i j i 

where xi = xi − µi, x := x − µ = [x1, . . . , xn]⊤ and Σ−1 is the k-th column of the inverse matrix Σ−1 of Σ.k 
Therefore [55] * +� �2 D E∂Q(x) ⊤Dii = Dii x Σi 

−1(Σi 
−1)⊤x = DiiTr(∆iΣ). (II.124)

∂xi 

Now, following the ideas of the Laplace assumption given in Proposition II.7, if we substitute the frst two 
terms of the non-linear fow fi(x, t) Taylor expansion around the expected state µ (see Equation (II.86)) in the D E⟨ fi(x)2⟩ ∂ fi(x,t)terms and of the right hand side of (II.121)-(II.122), we have Dii ∂xi * ! !+ 

fi(x)2 n n∂ fi(µ, t) ∂ fi(µ, t)1 
fi(µ, t) + ∑ xj fi(µ, t) + ∑ xk= 

∂xj ∂xkDii Dii j=1 k=1! � �n ∂ fi(µ, t) ∂ fi(µ, t) 
= 

1 
Dii 

1
fi(µ, t)2 fi(µ, t)2 + ∇⊤ fi(µ, t)Σ∇ fi(µ, t)∑ Σjk (II.125)+ = ,

∂xj ∂xk Dii j,k=1 

and * !+ � � 
∂2 fi(µ, t)∂ fi(x, t) ∂ n ∂ fi(µ, t) n 

= 
∂ fi(µ, t) 

∂xi 
. 

1
∑ ∑fi(µ, t) + (II.126)xj + xjxk= 

∂xi ∂xi ∂xj ∂xj ∂xk2j=1 j,k=1 

Finally, after a lengthy process of substituting Equations (II.124) to (II.126) in (II.121)-(II.122) and summing 
all the current fow contributions according to the defnitions of the entropy rate (II.94), entropy production 
(II.99) and entropy fow (II.100), we have 

n � � � � � � 
∑ Πi = Tr Σ−1D + Tr D−1 f (µ, t) f (µ, t)⊤ + Tr J f D

−1J⊤ 
f Σ + 2Tr(J f ), (II.127)Π = 

i=1 
n � � � � 
∑ Φi = Tr D−1 f (µ, t) f (µ, t)⊤ + Tr J f D

−1J⊤ 
f Σ + Tr(J f ), (II.128)Φ = 

i=1� � 
Ṡ = Tr Σ−1D + Tr(J f ), (II.129) 

which corresponds to the result given in Proposition II.9. 
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Chapter concluding remarks 

In this chapter, we have reviewed the basic theoretical concepts and essential results that will be applied in the 
following chapters. The results include novel descriptions of the entropy rate using dynamical systems and 
control engineering nomenclature. The preliminaries show that the Fokker-Planck equation is a fundamental and 
simplifed method to describe the time-varying PDF of a non-linear stochastic system with additive noise. Yet, we 
have included a description of the most popular numerical methods used to solve SDE and an alternative procedure 
to compute such a time-varying PDF. Finally, we have introduced the concept of stochastic thermodynamics and 
entropy rate that will be useful to analyse the proposed control protocol for creating effcient and organised 
behaviours. 
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AII Appendix Chapter II. 

AII.1 Properties and Formulas 

Z Zt t 

0 0 

Z a+ϵ 
f (t)δ(t − a)dt 

a−ϵ 

δ(−x) 

|a − b| 
|a + b| 

Cξ (u) 

Wξ (x) 

⟨ξ(t1)ξ(t2) · · · ξ(t2n)⟩ � � 
iλx ˜∂iλ e p � � 

∂2 eiλx p̃iλ2 Z ∞1 
eiλx∂iλ⟨ p̃⟩dλ

2π −∞ 

Z ∞ 
iλx∂21 

e iλ2 ⟨ p̃⟩dλ
2π −∞ 

Z t 
2Dδ(τ − t) p̃(τ)dτ 

0Z ∞ 2 √−xe dx = π, 
−∞ 

2D f (t2)δ(t2 − t1) dt2 dt1 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

= 

f (a), ϵ > 0 

δ(x), 

max(a, b) − min(a, b), 

max(a, b) + min(a, b), 
∞ Mn1 + ∑ (iu)n , 

n! n=1Z ∞1 −iuxdu,Cξ (u)e2π −∞" 

(AII.130) 

(AII.131) 

(AII.132) 

(AII.133) 

(AII.134) 

(AII.135) # 
(2D)n ∑ δ(ti1 − ti2 )δ(ti3 − ti4 ) · · · δ(ti2n−1 − ti2n ) , (AII.136) 

Pd 

xeiλx p̃ + eiλx∂iλ p̃, (AII.137) � � 
x∂iλ eiλx p̃ + xeiλx∂iλ p̃ + eiλx∂2

iλ2 p̃, (AII.138) Z ∞ � � � �1 
∂iλ eiλx⟨ p̃⟩ − xeiλx⟨ p̃⟩ dλ

2π −∞ 

−xp(x, t), (AII.139)Z ∞ � � � � � �1 
∂i

2 
λ2 eiλx⟨ p̃⟩ − x∂iλ eiλx⟨ p̃⟩ − xeiλx∂iλ⟨ p̃⟩ dλ

2π −∞ 

x2 p(x, t), (AII.140) 

Dp̃(t), (AII.141) 

(AII.142) Z t 
2D f (t1) dt1. (AII.143)

0 





Information Length (IL) 
III 

Chapter summary 

In this chapter, we introduce the concept of “Information length”, a metric of the 
distance that a time-varying PDF takes over time. Since this metric is of core 

This chapter contains in-
importance to the results presented throughout the thesis, we have created its own 

formation that has been
chapter. The chapter includes results detailing how to compute information length 

published by the author
in linear and non-linear Langevin equations. It also considers a case study on the 

in [6], [8], and [7].
information length application to the Kramers equation. Finally, the chapter presents an 
equation relating entropy rate, entropy production and information length. 

keywords:Information geometry; information length 

III.1 Information geometry 

In the chapter summary, we have verbally mentioned that “information length” is a metric of the distance 
that a given time-varying PDF takes over time. Such a metric can be introduced from information geometry, a 
mathematical area that combines information theory with differential geometry to create geometrical notions 
in statistical manifolds, and therefore, a true metric. 

statistical manifold 
Figure III.1: Computing the dis-

probability distributions 

θ1 

θ2 p ′ 

p dℓ 

tance between two probability 
distributions in a statistical man-
ifold is a process that requires as-

metric sumptions similarly used in dif-
dℓ2 = gab dθadθb ferential geometry to compute 

distances in curved spaces. 
metric tensor 

Statistical manifolds are manifolds formed by a parametric family of probability distributions p labelled by 
parameters θ = [θ1, θ2, . . . , θn]. Figure III.1 shows a graphical description of an example where the statistical 
manifold contains probability distributions p with parameters θ = [θ1, θ2]. As each point on this space 
represents a unique probability distribution p, in principle, the distance dℓ between two neighbouring points 
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p and p ′ with parameters θ and θ + dθ, respectively, would be given by the Pythagoras’ theorem1 

dℓ2 = ∑ ∑ gabdθadθb, (III.1) 
a b 

where gab is a unique metric tensor [57]. 
Example III.1 (Multivariable Gaussian distributions). In a multivariable Gaussian distribution with mean values 
µa, a = 1, 2, . . . , n and variances Σa defned as 

1 − 1 (xa−µa)2 
2 ∑a Σap(x; µ, Σ) = e , (III.2)1/n(2π (∏a Σa)) 

create an (2n)-dimensional statistical manifold. Here, the coordinates would be θ = [µ1, . . . , µn, Σ1, . . . , Σn]; 
Without much rigour, we can derive such a metric between two nearby distributions p(x; θ) and p(x; θ + dθ) 

from distinguishability (as suggested in [56; 58; 59]). We highlight that this derivation is not a proof for the 
metric uniqueness but it permits us to easily interpret the result. 

A frst approach to obtain the “distinguishability” between two distributions is via the expected value of 
the relative difference 

p(x; θ + dθ) − p(x; θ) ∂ log p(x; θ)
∆ = = ∑ dθa, (III.3)

p(x; θ) ∂θaa 

given by !Z 
∂ log p(x; θ) ∂ 

Z 
⟨∆⟩ = dnxp(x; θ) ∑ dθa = ∑ dθa dnxp(x; θ) = 0. (III.4)

∂θa ∂θaa a 

Since this value vanishes, it is not a proper measure. On the other hand, if we compute the variance of ∆, i.e. ! !Z 
∂ log p(x; θ) ∂ log p(x; θ)

dℓ2 = ⟨∆2⟩ = dnxp(x; θ) ∑ dθa ∑ dθb (III.5) 
a ∂θa b ∂θb !Z 

∂ log p(x; θ) ∂ log p(x; θ) 
= dnxp(x; θ) ∑ ∑ dθa dθb , (III.6) 

a b ∂θa ∂θb 

the value that does not vanish. Furthermore, a small value of dℓ2 means that the relative difference ∆ is 
also small and the neighbouring points θ and θ + dθ are diffcult to distinguish. Additionally, dℓ2 = ⟨∆2⟩ 
is positive defnite and vanishes only when the dθa vanish. Hence, this is a more accurate measure for 
distinguishability [56]. In fact, we can now introduce the matrix gab as Z 

∂ log p(x; θ) ∂ log p(x; θ)
gab = dn p(x; θ) . (III.7)

∂θa ∂θb 

Equation (III.7) is known as the Fisher information matrix [60]. 

III.2 The defnition of information length 

Consider the case where the probability density function evolves over time subject to some dynamics as 
seen in Chapter II. In this scenario, each point on the statistical manifold will also evolve over time with 

1 As suggested by [56], in an n-dimensional smooth and possibly curved manifold M that is locally like Rn , the distance can be 
computed using the Euclidean metric if the probability distributions are close to each other. In addition, [56] emphasises that 
independently of the meaning of the probability distributions they are uniform over the space of parameters. 
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parameters labelled θ(t), i.e. each point will consists of a PDF p(x; θ(t)) where time is implicit. Then, the 
distinguishability measure between two probability distributions at two close time stamps t and t + ∆t will 
be given by * !2+ 

∂ log p(x; t) dθadℓ2 = ∑ , (III.8)
∂θa dta 

where we have omitted the parameters θ(t) and put only the time t for brevity. 
From equation (III.8), we have the fsher matrix metric !Z 

∂ log p(x; t) ∂ log p(x; t)
gab = dnxp(x; t) ∑ , (III.9)

∂θa ∂θba,b 

which can be used to compute the total length sZ t f dθa dθbℓ = ∑ gab dt. (III.10) 
t0 dt dtab 

As it will be discussed in the following chapters, Equation (III.10) turns out to be very useful specially 
when controlling, detecting abrupt events or measuring causality between variables in stochastic dynamics. 
Equation (III.10) is what we call the “Information Length”. Rewriting Equation (III.10) in terms of the 
time-varying PDF, from now on, we defne the Information Length (IL) as follows. 

Defnition III.1: IL from a joint distribution [6; 7] 

Given a time-dependent probability density function p(x; t) of a n-variante stochastic variable x, the 
Information Length L(t) of its evolution from an initial time t0 = 0 to a fnal time t f = t is defned by 

Z Zt dτ t 
L(t) = = Γ(τ) dτ, (III.11)

0 †(τ) 0 rZ 
Γ(τ) = p(x; τ) [∂τ log p(x; τ)]2 dnx. (III.12) 

Rn 

To unveil the physical meaning of equation (III.11), we note that †(t) is a dynamic time unit which gives 
the correlation time over which p(x; t) changes [61]. †(t) also serves as the time unit in the statistical space. 
In addition, its inverse †( 

1 
t) quantifes the (average) rate of change of information in time [62]. Hence, L is a 

dimensionless distance that quantifes the total information change in time through the information rate Γ(t) 
integration [63]. 

Note that L(t = 0) = 0 and L monotonically increases with time as Γ ≥ 0 and takes a constant value 
when Γ = ∂t p = 0. Hence, when p(x; t) relaxes in the long time limit t → ∞ into a stationary PDF, the 
following limits hold limt→∞ Γ(t) → 0 and limt→∞ L(t) → L∞ where L∞ is a constant that depends on the 
initial conditions and the SDE parameters. The value of L∞ has been used to understand attractor structure 
in a relaxation problem (for further details see [64; 65; 66; 67]) via examining how L∞ depends on the initial 
mean value µ(0). Γ and L were also shown to help quantifying hysteresis in forward-backward processes 
[68], correlation and self-regulation among different players [69; 70], and predicting the occurrence of sudden 
events [7] and phase transitions [70]. As a graphical example, Figure III.2 depicts the time evolution of a 
univariate PDF p(x, t) transitioning from p(x, t0) to p(x, t f ). Here, L gives the total number of statistically 
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p(x, t) 
Figure III.2: Schematic of the 
evolution of p(x; t) over time t. 
Computing L(t) gives the total 
amount of statistical changes on 

path 

p(x, t0) p(x; t) from t0 to t f [8]. 

x 
p(x, tF) 

qRR t ft L(t) = p(x; τ) [∂τ log p(x; τ)]2 dnx dτt0 Rn 

different states the random variable x passes through in time over the PDF’s transitioning path 2 . Throughout 
this work, we will call Γ(t) the information rate and Γ2(t) the information energy. 

III.3 IL in Gaussian Processes 

Even-though IL’s value is generally computed via numerical methods, in some scenarios, we can give 
analytical expressions which ease the computation while permitting us to explore the signifcance of the 
metric. For instance, consider the following example. 

Example III.2 (IL in the Ornstein–Uhlenbeck (O-U) process). Given the following stochastic model 

dx 
= −γx + ξ, (III.13)

dt 

where ξ is a white noise with short correlation time with the following properties ⟨ξ(t)⟩ = 0 and ⟨ξ(t)ξ(t ′ )⟩ = 
2Dδ(t − t ′ ). The following result holds. 

Proposition III.1: Information rate q
β0 β0(x−y(0))2

Given that the value of the PDF at time t = 0 is Gaussian and described as p(x, 0) = π e 
where β, β0 and y stand for the variance, variance at time t = 0 and the mean value of the random 
variable x, respectively. The information rate Γ of the O-U process (III.13) is 

1 2 2γ2
2Γ = β̇2 + 2βẏ = (r + qT), (III.14)

2β2 T2 

where q = β0γµ2, r = 2β0D − γ, and T = 2β0D(e2γt − 1) + γ. 

2 For an animated demonstration, see https://openprocessing.org/sketch/1594393 

https://openprocessing.org/sketch/1594393
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Proof. We start by recalling that, according to Proposition II.5, given that the value of the PDF at time t = 0 is 
Gaussian, the time-varying PDF of a linear stochastic system is also Gaussian at all t. Hence, the time-varying 
PDF of the O-U process (III.13) at all t can be written as r 

β(t) β(t)(x−y(t))2 
p(x, t) = e , (III.15)

π 

Here, β and y are the variance and mean of the random variable x. Using (III.15) in Defnition III.1, we now 
compute the information rate step by step as follows r � �− 1 

β 1 β̇ β 2 −β(x−y)2 β(x−y)2
∂t p(x, t) = e Q ′ (t) + e ,

π 2 π π 

β̇2 β̇2 β −2β(x−y)2 −2β(x−y)2 −2β(x−y)2 
[∂t p(x, t)] = e Q ′ (t)2 + e + Q ′ (t)e ,

π 4βπ π r2 β̇2 r r 
[∂t p(x, t)] β −β(x−y)2 π −β(x−y)2 β̇ π −β(x−y)2 

= e Q ′ (t)2 + e + e Q ′ (t), 
p(x, t) π 4πβ β π β| {z } | {z } | {z }

(a) (b) (c) 

where Q′ (t) = −β̇(x − y)2 − 2β(x − y)(−ẏ) and Q′ (t)2 = β̇2(x − y)4 + 4ββ˙ (x − y)3(−ẏ) + 4β2(x − y)2(−ẏ)2. 
Now, we integrate terms (a), (b) and (c) in the previous equation as follows Z Z r r r∞ ∞ β̇2 β̇2 β̇2π π π−β(x−y)2

dx (b) = dx e = = 
−∞ −∞ 4πβ β 4πβ β β 4β2 . 

To integrate (a) and (c) we know that rZ 
π (2n − 1)!! 2n −α(x+b)2 

x e dx = , (III.16) 
R α (2α)n 

where !! corresponds to the double factorial operator, such that for an odd n it is defned as 

n+1 
2 

n!! = ∏(2k − 1) = n(n − 2)(n − 4) · · · 3 · 1. (III.17) 
k=1 

Hence, rZ ∞ Z ∞ 
−β(x−y)2

dx (a) = dx 
β 

e Q ′ (t)2, 
−∞ −∞ π Z ∞ 

r h i 
−β(x−y)2 

= 
−∞ 

dx 
π

β 
e β̇2(x − y)4 + 4ββ˙ (x − y)3(−ẏ) + 4β2(x − y)2(−ẏ)2 , r �r r � 

β̇2 2β π (3)!! 2 π (1)!! 3 4βẏ 
= β̇2 + 4β2ẏ = ,

β2 +π β (2β)2 β 2β 4 2 Z Z r Z r∞ ∞ β̇ π −β(x−y)2 ∞ β̇ π −β(x−y)2 
h i 

dx (c) = dx e Q ′ (t) = dx e −β̇(x − y)2 − 2β(x − y)(−ẏ) 
−∞ −∞ π β −∞ π β r r

β̇2 π π (1)!! β̇2 
= − = −

π β β 2β 2β2 . 

Finally, 
β̇2 2 β̇2 β̇2 β̇23 4βẏ 2Γ = + − = , (III.18)

4 β2 + 
2 4β2 2β2 2β2 + 2βẏ 
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−2γt)1 1 + e−2γt 1 2D(1−ewhich gives expression (III.14) by considering y(t) = µe−γt , = and = and
β(t) β1(t) β0 β1(t) γ 

their time derivatives over time. 

Figure III.3: IL and information 
rate plots of O-U process (III.13). 
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(a) Information rate Γ over time. (b) Information length L over time. 

In Fig. III.3, we show the information length of the OU process (III.13) for various values of D3 . Note 

L = 
R 

y 

β 

p(x, 0) 

p(x, t) 
information length q

t 1 β̇2 + 2βẏ2dτ0 2β 

Figure III.4: Graphical represen-
tation of the statistical manifold 
for the O-U process (III.13). The 
information length measures the 
distance between the initial PDF 
at time t = 0 and the PDF at a 
given time t. 

that from (III.14), the metric tensor (see Figure III.4) in the O-U process is " #
1 0 

gab = 2β2 (III.19)
0 2β, 

and the parameters " # 
β̇ 

θ = (III.20)
ẏ 

To fnd a generalised closed-form expression of the information rate Γ obtained from Example III.2, let us 
consider the computation of the IL’s value for dynamics whose PDF remains Gaussian at all instants of time. 
Such a result is summarised in the following Theorem. 

3 Video demonstration of the change of the PDF over time using D = {10−3, 10−5, 10−7}, µ = 0.7 and γ = 1 can be seen in the 
following links https://youtu.be/2eUqyYLczhU, https://youtu.be/BO1-xTPLykw and https://youtu.be/44DycJqCtsU 

https://youtu.be/2eUqyYLczhU
https://youtu.be/BO1-xTPLykw
https://youtu.be/44DycJqCtsU
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Theorem III.1: Information length in Gaussian dynamics [6; 7] 

The information length of a n-variante Gaussian random variable x with mean µ ∈ Rn and covariance 
Σ ∈ Rn×n is given by the following integral Z t 

L(t)= Γ(τ) dτ, (III.21)
0 � �1 −1(τ) ˙Γ(τ)2 =µ̇ (τ)TΣ−1(τ)µ̇ (τ)+ Tr (Σ Σ(τ))2 . (III.22)

2 

Proof. To prove this theorem, we use the PDF (II.70) in (III.11). First, we defne 

w ≡ δx = x − ⟨x(t)⟩, Q = Σ−1 

to simplify the analysis. Then, we compute step by step the value of 

2 [∂τ p(x, τ)]2 

p(x; t) [∂τ log p(x; t)] = 
p(x, τ) 

as follows: 

h i∂ − 1 − 1 
2 w

T Qw ∂τ p(x, τ) = (det(2πΣ)) 2 e
∂τ � � 

= − 
2
1 

e− 2
1 wT Qw(det(2πΣ))− 2

3 
∂τ(det(2πΣ))−

2
1 
(det(2πΣ))− 2

1 
e− 2

1 wT Qw∂τ wT Qw , (III.23) 

� h i�22 1 2 1 −1 −wT Qw [∂τ p(x, τ)] = 
4 

e−wT Qw(det(2πΣ))−3 [∂τ det(2πΣ)] + 
4 
(det(2πΣ)) e ∂τ wTQw h i 
−wT Qw + 

1 
(det(2πΣ))−2 ∂τ [det(2πΣ)] ∂τ wTQw e , (III.24)

2 

2 � � ��2[∂τ p(x, τ)] 1 − 5 2 − 2
1 wT Qw 1 − 1 − 2

1 wT Qw 2 2 e= (det(2πΣ)) [∂τ det(2πΣ)] e + (det(2πΣ)) ∂τ wTQw 
p(x, τ) 4 4 � �1 − 3 − 1 

2 w
T Qw 2+ (det(2πΣ)) ∂τ (det(2πΣ)) ∂τ wTQw e . (III.25)

2 

2R ∞ 
� 

[∂τ p(x,τ)] 
� 

Now, using Equation (III.23) in Equation (III.25), we compute the integral Γ(τ)2 = −∞ d
nx as p(x,τ) 

follows Z � 2 � 
(det(2πΣ)) 2 (∂τ (wTQw)) ∂τ [det(2πΣ)]∂τ [wT Qw]Γ(τ)2 = p(x, τ) 

−2 
[∂τ (det(2πΣ))] + + dnx 

Rn 4 4 2 det(2πΣ) *� �2
+ *� �2 

+ * � �+ 
∂τ [det(2πΣ)] ∂τ [wT Qw] ∂τ [det(2πΣ)] ∂τ wTQw 

= + 2 + . (III.26)
2 det(2πΣ) 2 det(2πΣ) 

To calculate the three averages in (III.26), we use the following properties [37] Z q
− 12 w

T Qw dne w = det(2πΣ), 
Rn 




 �

� 
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∂τ 

∂2 
τ2 

h i 
− 1 

2 w
T Qw eh i 

− 1 
2 w

T Qw e

= 

= 

h i1 − 1 
2 w

TQw∂τ− e wTQw ,
2 h i1 − 1 

2 w
T Qw − ∂2 wTQw eτ22

+ 
�1 − 1 

2 w
T Qw e ∂τ4

h i�2 
wTQw . 

Then, 

Γ(τ)2 = 
� �2∂τ [det(2πΣ)] 

2 det(2πΣ) 

Z 
+ 

Rn 

� �2
∂τ [wT Qw]p(x, τ) dnx +2 

∂τ [det(2πΣ)] 
2 det(2πΣ) 

Z 
Rn 

p(x, τ)∂τ 

h i 
wTQw dnx 

= 

= 

� �2 Z h h i i1 ∂τ [det(2πΣ)] 1 − 1 − 1 
2 w

TQw 2 w
T Qw + 4∂2 + 2∂2 wTQw e dnx1 τ2 e τ24 det(2πΣ) Rn4 (det(2πΣ)) 2 Z h i∂τ [det(2πΣ)] − 1 

2 w
T Qw −2 dn∂τ e x3 

Rn2 (det(2πΣ)) 2 hp i� �2 ∂2 det(2πΣ) Z h i1 ∂τ [det(2πΣ)] τ2 1 − 1 
2 w

TQw dn+ p + p ∂2 wTQw e xτ24 det(2πΣ) det(2πΣ) 2 det(2πΣ) Rn q
∂τ [det(2πΣ)]− ∂τ det(2πΣ).3 (III.27) 

2(det(2πΣ)) 

Here,   h i n h �i  n 

∑  
iwj + i wj + q  . (III.28)4qijw 2qijwiwj +2qijw ijwiwj∂2 

τ2 wTQw ∂2 ′ ′ ′ ′ ′′ ′′ ∑ qijwiwj= = 

∑∑ 

i,j=1 
τ2 

i,j=1 | {z } | {z } 
independent of x wTQ′′ w 

i , q ′′ We recall that ωi 
′ , qij 
′ and ω′′ ij denote the frst and second derivative over time of the elements ωi and qij. 

By substituting (III.28) in (III.27) and making some arrangements, we obtain hp i * 0 * 0* + +� �2 

�������� 

��������* 
∂2 

τ2 det(2πΣ)∂τ [det(2πΣ)] n n1 1 1
Γ(τ)2 ′ ′ ′′ 4 2qijw+ p + q iwj +ijw i wj= 

4 det(2πΣ) 2 2det(2πΣ) i,j=1 i,j=1* + �D E �2n ∂τ [det(2πΣ)]1 1 1 
wTQ ′′ w − ′ ′ 2qijwiw∑ . (III.29)+ +j det(2πΣ)2 2 2i,j=1 

Now using 
TQ′′ w• w = Tr (Q′′ Σ) [71], 

• ∂τ det(Σ) = det(Σ) Tr(Q∂τ Σ) [72], p p p
• ∂2 1 2 1det(2πΣ) = det(2πΣ) (Tr(Q∂τ Σ)) + det(2πΣ)∂τ (Tr(Q∂τΣ)),

τ2 4 2 

in Equation (III.29), we have 

1 1 1 1 � 
Q ′′ 

�2 2Γ(τ)2 =− (Tr(Q∂τ Σ)) + ∂τ [Tr(Q∂τ Σ)] + (Tr(Q∂τ Σ)) + ⟨x ′ (τ)⟩TQ⟨x ′ (τ)⟩ + Tr Σ
4 2 4 2 

1 1 � 
Q ′′ 

� 
= ∂τ [Tr(Q∂τ Σ)] + ⟨x ′ (τ)⟩TQ⟨x ′ (τ)⟩ + Tr Σ . (III.30)

2 2 

Simplifying a bit more � h i � � � �� 
Γ(τ)2 = 

1 
∂τ Tr(Σ−1∂τΣ) + 2 ∂τ ⟨x(τ)⟩T Σ−1 (∂τ ⟨x(τ)⟩) + Tr (∂τ 

2
2 Σ
−1)Σ

2 
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� � � � h i �� 
= 

1
2 ∂τ ⟨x(τ)⟩T Σ−1 (∂τ ⟨x(τ)⟩) + Tr ∂τ Σ−1∂τ Σ + (∂2 

τ2 Σ
−1)Σ

2 � � � � �� 
= 

1
2 ∂τ ⟨x(τ)⟩T Σ−1 (∂τ ⟨x(τ)⟩) + Tr ∂τ Σ

−1∂τ Σ + Σ−1∂2 
τ2 Σ + (∂τ 

2
2 Σ
−1)Σ

2 � � � � �� 
−1∂2 = 

1
2 ∂τ ⟨x(τ)⟩T Σ−1 (∂τ ⟨x(τ)⟩) + Tr ∂τ Σ

−1∂τ Σ + Σ τ2 Σ − ∂τ(Σ
−1(∂τΣ)Σ−1)Σ

2 � � � � �� 
= 

1
2 ∂τ ⟨x(τ)⟩T Σ−1 (∂τ ⟨x(τ)⟩) + Tr (Σ−1∂τΣ)2 

2 � � 
µ(τ)TΣ−1 ˙ 

1 
(Σ−1Σ̇ )2 = ˙ µ(τ) + Tr . (III.31)

2 

A useful corollary from Theorem III.1 can be obtained when Σ is a diagonal matrix, i.e. all states in x are 
random variables independent of each other. 

Corollary III.1: Information rate in an independent Gaussian process [7] 

For a Gaussian process with n independent random variables x ∈ Rn = [x1, x2, . . . , xn]T , the value of 
the information rate Γ is 

n 
Γ = ∑ Γi, (III.32) 

i=1 

where 
µ̇i 

2 1 
� 

Σ̇ ii 
�2 

Γi = + . (III.33)
Σii 2 Σii 

The value of Γi in Corollary III.1 is also the corresponding value of the information rate from the marginal 
PDF p(xi, t) of the random variable xi defned as follows 

Defnition III.2: Marginal information rate 

The value of the information rate produced by a random variable xi in a multivariable Gaussian 
distribution noted as Γi is defned as follows rZ 

Γi := p(xi; t) [∂τ log p(xi, t)]
2 dxi. (III.34) 

R 

Corollary III.1 and Defnition III.2 will be very useful in the subsequent chapters. 
Remark III.3. From the value of the marginal information rate Γi, we can also compute the marginal information 
length Li. Such a value gives the contribution of the random variable xi to the total statistical changes in a multivariate 
Gaussian distribution (see Figure III.5). The marginal information length is straighforwardly defned as Z qt 

Li = Γi(τ) dτ. (III.35)
0 

III.4 Case study: the Kramers equation 

Theorem III.1 represents an easy way to compute the information rate Γ and information length L in high-
order stochastic systems with Gaussian behaviour. As an example showing such practicality, let us consider 
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Figure III.5: Graphical descrip-
tion of the meaning of marginal 
information rate and length. In a 
bivariate distribution p(x1, x2; t) 
changing over time, computing 
L1 or L2 allow us to describe the 
amount of statistical changes pro-
duced by x1 and x2, respectively. 

the following case study presented in [6] of the classical Kramers equation given by 

dx 
= v

dt 
dv 

= −γv − ω2x + ξ(t). (III.36)
dt 

Here, ω is a natural frequency and γ is the damping constant, both positive real numbers. ξ is a Gaussian 
white-noise acting on v with the zero mean value ⟨ξ(t)⟩ = 0, with the statistical property 

⟨ξ(t)ξ(t1)⟩ = 2Dδ(t − t1). (III.37) 

Comparing Equations (III.36) and (III.37) with Equations (II.68) and (II.69), we note that x1 = x, x2 = v, 
ξ1 = 0, ξ2 = ξ, D11 = 0, D12 = 0, and D22 �p�= D while the matrix A for (III.36) has the element A11 

= −ω2, A22 = −γ and the eigenvalues of A are λ1,2 = − 12 

= 0, A12 = 
γ2 − 4ω2γ ±1, A21 . 

To fnd the information length for the system (III.36), we use Proposition II.6 and Theorem III.1. First, 
Proposition II.6 requires the computation of the exponential matrix eAt which, according to [38], can be 
obtained via the inverse Laplace transform L −1 of (sI − A). After some algebra, the result is  λ1−λ2= 

− ω2 s (eλ1t−eλ2t)ω2 eλ1tλ1−eλ2tλ2 
(s−λ1)(s−λ2) (s−λ1)(s−λ2) − λ1−λ2 λ1−λ2 

 "" ## λ1t(γ+λ1)−eλ2t(γ+λ2) λ1t−eλ2tes+γ 1ih e 
(s−λ1)(s−λ2) (s−λ1)(s−λ2) λ1−λ2At =L −1 (sI − A)−1 =L −1 (III.38)e . 

Here, I ∈ Rn×n is the identity matrix. Similarly, we can show 

Z t 
A(t−t1)DeAT (t−t1) dt1e =   

D 
�   

� 
−1+e2λ1t −λ1−4e(λ1+λ2)tλ2+3λ2+e2λ2t(λ1+λ2) 2+ λ1t−eλ2t)λ1 λ2(λ1+λ2) D(e 

(λ1−λ2)2 �� (λ1−λ2)2 
(III.39)�� . 

4e(λ1+λ2)tλ2 4λ2 2λ1t−1+ +eD(eλ1t−eλ2t)
2 D (−1+e2λ2t)λ2+λ1 − λ1+λ2 λ1+λ2 

(λ1−λ2)2 (λ1−λ2)2 

2 
0 
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Using Equations (III.38) and (III.39) in Equations (II.71) and (II.72), we have the time-dependent (joint) 
PDF (II.70) at any time t for our system (III.36) and (III.37). To calculate Equation (III.21) with the help 
of Equations (III.38) and (III.39), we perform numerical simulations (integrations) for various parameters 
in Equations (III.36) and (III.37) as well as initial conditions. Note that while we have simulated many 
different cases, for illustration, we show some representative cases by varying D, ω, γ and ⟨x(0)⟩, ⟨v(0)⟩ in 
Section III.4.1–III.4.3 and Section III.5, respectively, for the same initial covariance matrix Σ(0) with elements 
Σ11(0) = Σ22(0) = 0.01 and Σ12(0) = Σ21(0) = 0. Note that the initial marginal distributions of p(x(0)) and 
p(v(0)) are Gaussian with the same variance 0.01. Results in the limit ω → 0 are presented in Section III.4.4. 

III.4.1 Varying D 

Figure III.6 shows the results when varying D as D ∈ (0.0005, 0.04) for the fxed parameters γ = 2 and ω = 1. 
The initial joint PDFs are Gaussian with the fxed mean values ⟨x(0)⟩ = −0.5, ⟨v(0)⟩ = 0.7; as noted above, 
the covariance matrix Σ(0) with elements Σ11(0) = Σ22(0) = 0.01 and Σ12(0) = Σ21(0) = 0. Consequently, at 
t = 0, the marginal distributions of p(x(0)) and p(v(0)) are Gaussian PDFs with the same variance 0.01 and 
the mean values ⟨x(0)⟩ = −0.5 and ⟨v(0)⟩ = 0.7, respectively. 

Figure III.6a,b show the snapshots4 of time-dependent joint PDF p(x, t) for the two different values of 
D = 0.0005 and D = 0.04, respectively. The black solid represents the phase portrait of the mean value of 
⟨x(t)⟩ and ⟨v(t)⟩ while the red arrows display the direction of time increase. Note that in Figure III.6b, as 
there is a great overlapping between the different PDFs when t → 0 that would not permit us to appreciate 
the time evolution of the PDFs in the plots, for clarity, here we have erased some of the initial snapshots of the 
PDFs by increasing the simulation time-step when t → 0. This procedure was implemented only for plotting 
purposes and did not affect the analytical or numerical analysis. Figure III.6c,d show the time-evolution of 
the information rate Γ(t) and information length L(t), respectively, for different values of D ∈ (0.0005, 0.04). 
It can be seen that the system approaches a stationary (equilibrium) state for t ≳ 20 for all values of D, L(t) 
approaching constant values (recall L(t) does not change in a stationary state). Therefore, we approximate 
the total information length as L∞ = L(t = 50), for instance. Finally, in Figure III.6e, we show a plot of L∞ 

vs D and try to determine the dependence of L∞ on D by ftting, as a candidate, an exponential function5 

L∞(D) = 7.84e−329.05D + 11.21e−11.86D (shown in red solid line). Given that the initial conditions of the 
covariance matrix are Σ11(0) = Σ22(0) = 0.01, Σ12(0) = Σ21(0) = 0 and that D represents the correlation 
strength of the noise term, note that a decay with D is expected because as D increases it generates a PDF 
whose snapshot is “similar” to the initial PDF (see Figures III.6a,b). 

III.4.2 Varying ω or γ 

We now explore how results depend on the two parameters ω and γ, associated with oscillation and damping, 
respectively. To this end, we use D = 0.0005 and the same initial conditions as in Figure III.6 but vary 
ω ∈ (0, 2) and γ ∈ (0, 6) in Figures III.76 and III.8, respectively. Specifcally, in different panels of these 
fgures, we show the snapshots of the joint PDF p(x, t), the time-evolutions of Γ(t) and L(t) for different 

4 We use the term snapshots when referring to contour plots of the PDF at different instants of time. In the snapshots, the isolines 
correspond to values of constant p(x, t). The isoline is blue when p is small and it goes to yellow colour when p has a large value. 
5 Throughout Section III.4, we do curve fttings using heuristically chosen functions. Specifcally, we have used the MATLAB® 

function “ft” which offers polynomial and exponential models (see https://uk.mathworks.com/help/curvefit/fit.html# 
bto2vuv-1-fitType). Since these functions have no theoretical justifcation, they could be replaced with better candidates. We left 
for future work a rigorous selection of these curve-ftting functions. 
6 In the fgures, the caption “Cont.” means that the complete fgure’s caption is at the last fgure with a similar fgure’s number. 

https://uk.mathworks.com/help/curvefit/fit.html#bto2vuv-1-fitType
https://uk.mathworks.com/help/curvefit/fit.html#bto2vuv-1-fitType
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t 

(a) Snapshots of p(x, t) for D = 0.0005. 

t 

(b) Snapshots of p(x, t) for D = 0.04. 

(c) Time-evolution of Γ(t). (d) Time-evolution of L(t). 
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(e) L∞ = L(t = 50) against D. A ftted curve is 
shown in the red solid line. 

Figure III.6: Results of Equations (III.36) and (III.37) for ⟨x(0)⟩ = −0.5, ⟨v(0)⟩ = 0.7, γ = 2, ω = 1, 
D ∈ (0.0005, 0.04) and the initial covariance matrix Σ(0) with elements Σ11(0) = Σ22(0) = 0.01, Σ12(0) = 
Σ21(0) = 0. 
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values of ω ∈ (0, 2) and γ ∈ (0, 6), and L∞ against either ω or γ. From Figures III.7e and III.8e, we can see 
that the system is in a stationary state for suffciently large t = 10 and t = 100, respectively. Thus, we use 
L∞ = L(t = 10) = L(10) in Figure III.7f,g and L∞ = L(t = 100) = L(10) in Figure III.8f,g. 

Notably, Figure III.7f,g (shown on linear-linear and log-linear scales on x − y axes, respectively) exhibit 
an interesting a non-monotonic dependence of L∞ on ω for the fxed γ = 2, with the presence of a distinct 
minimum in L∞ at certain ω. Similarly, Figure III.8f,g (shown in linear-linear and log-log scales on x − y axes, 
respectively) also shows a non-monotonic dependence of L∞ on γ for the fxed ω = 1. These non-monotonic 
dependences are more clearly seen in Figures III.7f and III.8f. A close inspection of these fgures then reveals 
that the minimum value of L∞ occurs close to the critical damping (CD)7 γ ∼ 2ω; specifcally, this happens 
at ω ∼ 1 for γ = 2 in Figure III.7f while at γ ∼ 2 for ω = 1 in Figure III.8f. We thus ft L∞ against ω or γ 

depending on whether ω or γ is smaller/larger than its critical value as follows: 

4.34ω 0.06ωL10(ω) = −0.03e + 19.63e ∀ ω ∈ (0, 1), (III.40) 
−0.12ω 2.48ωL10(ω) = 19.52e + 0.11e ∀ ω ∈ (1, 2), (III.41) 
−12.4γ −1.02γL100(γ) = 413.22e + 95.39e ∀ γ ∈ (0, 2), (III.42) 

L100(γ) = 3.23γ ∀ γ ∈ (2, 6). (III.43) 

The ftted curves in Equations (III.40)–(III.43) are superimposed in Figures III.7f and III.8f, respectively. 
It is important to notice from Equations (III.40)–(III.43) that L∞ tends to increase as either ω → ∞ for a fnite, 
fxed γ (< ∞) or γ → ∞ for a fnite, fxed ω (< ∞). 

Finally, we note that for the critical damping γ = 2ω, the eigenvalue becomes a real double root with the 
value λ1,2 → −ω. Thus, in this limit, we have that " # 

e−tω (x(0) + t(v(0) + (γ − ω)x(0))) ⟨x(t)⟩ = � � , (III.44)
e−tω −tx(0)ω2 − tv(0)ω + v(0) 

and Σ(t) is composed by the following elements 

e−2tω (2ω3(Σ11(γt−tω+1)2+t2((Σ12+Σ21)(γ−ω)+Σ22)+t(Σ12+Σ21))+D(−2tω(tω+1)+e2tω −1)) Σ11(t)= ,2ω3 

Σ12(t)=e−2tω (t(−ω2(Σ11γt+Σ11+Σ21t)+Σ11tω3−Σ22tω+Σ22+Dt)−Σ12(tω−1)(γt−tω+1)), 

Σ21(t)=e−2tω (t(−ω2(Σ11γt+Σ11+Σ12t)+Σ11tω3−Σ22tω+Σ22+Dt)−Σ21(tω−1)(γt−tω+1)), 

e−2tω (2tω2(tω2(Σ11ω+Σ12+Σ21)−ω(Σ12+Σ21)+Σ22(tω−2))+2Σ22ω+D(−2tω(tω−1)+e2tω −1)) Σ22(t)= . (III.45)2ω 

Equations (III.44) and (III.45) are used in Section III.4.1 (Figure III.6). 

III.4.3 Varying ⟨x(0)⟩ or ⟨v(0)⟩ 

To elucidate the information geometry associated with the Kramer equation (Equations (III.36) and (III.37)), 
we now investigate how L∞ behaves near the equilibrium point ⟨x(0)⟩ = ⟨v(0)⟩ = 0. To this end, we scan 
over ⟨x(0)⟩ for ⟨v(0)⟩ = 0 in Figure III.9a–e while scanning over ⟨v(0)⟩ for ⟨x0)⟩ = 0 in Figure III.9f–i. For our 
illustrations in Figure III.9, we use the same initial covariance matrix Σ(0) as in Figures III.6–III.8, D = 0.0005 
and ω = 1 and a few different values of γ (above/below/at the critical value γ = 2). We note that the 
information geometry near a non-equilibrium point is studied in Appendix III.5. 

7 Critical damping corresponds to that value of damping that separates oscillation from non-oscillation of the free response (for 
further details, see [73]). 



-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

56 adrián josué guel cortez 

t 

(a) Snapshots of p(x, t) for ω = 0. 
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(b) Snapshots of p(x, t) for ω = 1. 
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(c) Snapshots of p(x, t) for ω = 2. (d) Time-evolution of Γ(t). 

Figure III.7: Cont. 

Specifcally, snapshots of p(x, t) are shown in Figure III.9a–f for γ = 2.5 (above its critical value γ = 2 = 2ω) 
while those in Figure III.9c–g are for γ = 0.1 below the critical value 2. By approximating L∞ = L(t = 100), 
we then show how L∞ depends on ⟨x(0)⟩ and ⟨v(0)⟩ for different values of γ in Figure III.9d,e and Figure 
III.9h,i, respectively. 

Figure III.9d,e show the presence of a minimum in L∞ at the equilibrium ⟨x(0)⟩ = 0 (recall ⟨v(0)⟩ = 0); L∞ 

is a linear function of ⟨x(0)⟩ for ⟨x(0)⟩ ≫ 0.1, which can be described as L∞(x(0), γ) = h(γ)|⟨x(0)⟩| + f (γ)8 . 
Here, h(γ) and f (γ) are constant functions depending on γ for a fxed ω which represent the slope and the 
y-axis intercept, respectively. A non-zero value of L∞ at ⟨x(0)⟩ = 0 is caused by the adjustment (oscillation 
and damping) of the width of the PDFs in time due to the disparity between the width of the initial and 
equilibrium PDFs (see Figure III.9b). In other words, even though the mean values remain in equilibrium 
for all time [⟨x(0)⟩, ⟨v(0)⟩]T = limt→∞⟨x(t)⟩ = [0, 0]T , the information length L depends on the covariance 

8 We can also suggest to describe L∞ as an hyperbolic function of ⟨x(0)⟩ ∈ R. Take, for instance, 

L∞ (x(0), γ) = h(γ) sinh2 (⟨x(0)⟩) + f (γ) or L∞ (x(0), γ) = h(γ) cosh (⟨x(0)⟩) + f (γ). 

Again, h(γ) and f (γ) are constant functions depending on γ for a fxed ω which represent the slope and the y-axis intercept, 
respectively. 
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(e) Information Length L(t). (f) L∞ = L(t = 10) against ω; ftted curves are 
shown in the red dashed lines while a vertical 
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(g) The same as Figure III.7f but shown on log-
linear scales on x − y axes. 

Figure III.7: Results of Equations (III.36) and (III.37) for ⟨x(0)⟩ = −0.5, ⟨v(0)⟩ = 0.7, γ = 2, ω ∈ (0, 2), D = 
0.0005, and the initial covariance matrix Σ(0) with elements Σ11(0) = Σ22(0) = 0.01, Σ12(0) = Σ21(0) = 0. 

matrix Σ which changes from its initial value to the fnal equilibrium value as follows " # " #
D0.01 0

Σ(0) = to lim Σ(t) = γω2 0
.D0 0.01 t→∞ 0 γ 

On the other hand, L∞ against ⟨x(0)⟩ shows parabolic behaviour for small ⟨x(0)⟩ < 0.1 in Figure III.9e. p p
This is caused by the fnite width 0.1 = Σ11(0) = Σ22(0) of the initial p(x, 0); we see that ⟨x(0)⟩ < 0.1 is 
within the uncertainty of the initial p(x, 0). 

Similarly, Figure III.9h,i exhibit a minimum in L∞ at the equilibrium ⟨v(0)⟩ = 0 (recall ⟨x(0)⟩ = 0 in this 
case); L∞ is a linear function of ⟨v(0)⟩ for ⟨v(0)⟩ ≫ 0.1 described by L∞(v(0), γ) = H(γ)|⟨v(0)| + F(γ) (again 
parabolic for ⟨v(0)⟩ < 0.1, see Figure III.9i). Here again, H(γ) and F(γ) are constant functions depending on 
γ for a fxed ω which represent the slope and the y-axis intercept, respectively. 



58 adrián josué guel cortez 

(a) Snapshots of p(x, t) for γ = 0. 

t 

(b) Snapshots of p(x, t) for γ = 2. 

t 

(c) Snapshots of p(x, t) for γ = 6. (d) Time-evolution of Γ(t). 

Figure III.8: Cont. 

Finally, Figure III.9j shows in logarithmic scale that the minimum value of L∞ at ⟨x(0)⟩ = ⟨v(0)⟩ monoton-
ically increases with γ. 

III.4.4 The Limit Where ω → 0. 

When the natural frequency ω = 0 (i.e. damped-driven system like the O-U process [74]) in Equation (III.36), 
the two eigenvalues of the matrix A become λ1 → −γ and λ2 → 0. It then easily follows that " −γt # 

v(0)−e v(0) + x(0)⟨x(t)⟩ = γ , (III.46) 
e−γtv(0) 

and Σ(t) is composed by the elements 

e−2γt (−D+Σ22(0)γ+eγt(4D−γ(2Σ22(0)+(Σ12(0)+Σ21(0))γ))+e2γt (γ(Σ22(0)+γ(Σ12(0)+Σ21(0)+Σ11(0)γ))+D(2γt−3)))Σ11(t)= 
γ3 , � � 

2 e−2γt γt )D(−1+e −Σ22(0)γ+eγtγ(Σ22(0)+Σ12(0)γ)
Σ12(t)= 

γ2 , (III.47) � � 
2 e−2γt γt )D(−1+e −Σ22(0)γ+eγtγ(Σ22(0)+Σ21(0)γ)

Σ21(t)= 
γ2 , 
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(e) Time-evolution of L(t). (f) L∞ = L(t = 100) against γ; ftted curves are 
shown in the red solid and blue dashed lines 
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cal damping. 
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(g) The same as Figure III.8f but shown in log-log 
scales on x and y axes. 

Figure III.8: Results of Equations (III.36) and (III.37) for ⟨x(0)⟩ = −0.5, ⟨v(0)⟩ = 0.7, γ ∈ (0, 6), ω = 1, D = 
0.0005, and the initial covariance matrix Σ(0) with elements Σ11(0) = Σ22(0) = 0.01, Σ12(0) = Σ21(0) = 0. 

e−2γt (D(−1+e2γt )+Σ22(0)γ)Σ22(t)= γ . 

To investigate the case of ω → 0, we consider the scan over D ∈ (0.0005, 0.04) for the same parameter 
value γ = 2, and the initial conditions as in Figure III.6, apart from using ω = 0 instead of ω = 1. Figure 
III.10 presents the results – snapshots of p(x, t), time evolutions of Γ(t), L(t), and L∞ = L(t = 50) against 
D in Figure III.10a–e. In particular, in Figure III.10e, we identify the dependence of L∞ on D by ftting the 

8.99e−324.19D + 10.83e−12.24Dresults to the curve L= . 

III.5 Analysis for Non-Zero Fixed Initial Conditions 

In Section III.4.3 we analysed the behaviour of the information geometry associated with the Kramer equation 
(Equations (III.36) and (III.37)) for different γ ∈ (0, 2.5) near the equilibrium point ⟨x(0)⟩ = ⟨v(0)⟩ = 0. To 
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(a) Snapshots of p(x, t) for ⟨v(0)⟩ = 0, γ = 2.5 
and various ⟨x(0)⟩ ∈ (−5, 5). 

(b) Zoom-in of Figure III.9a showing p(x, t) for 
⟨v(0)⟩ = 0, γ = 2.5 and ⟨x(0)⟩ = 0. 

(c) Snapshots of p(x, t) for ⟨v(0)⟩ = 0, γ = 0.1 
and various ⟨x(0)⟩ ∈ (−5, 5). 
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(d) L∞ = L(t = 100) against ⟨x(0)⟩ ∈ (−5, 5) 
for ⟨v(0)⟩ = 0 and γ ∈ (0, 2.5). 

Figure III.9: Cont. 

this end, we plotted L∞ when varying ⟨x(0)⟩ and ⟨v(0)⟩ for a fxed ⟨v(0)⟩ = 0 and ⟨x(0)⟩ = 0, respectively. 
In this section, we want to show how such information geometry changes near a non-equilibrium point by 
scanning over ⟨x(0)⟩ and ⟨v(0)⟩ for a fxed non-zero ⟨v(0)⟩ = 0.7 and ⟨x(0)⟩ = −0.5, respectively. We show 
that the use of non-zero fxed initial conditions changes the location of the minimum L∞ depending on γ. 
Here, we use the same parameter values D = 0.0005, ω = 1, Σ12(0) = Σ21(0) = 0 and Σ11(0) = Σ22(0) = 0.01. 

First, snapshots of p(x, t) are shown in Figure III.11a,f for γ = 2.5 (above its critical value γ = 2 = 2ω) 
while those in Figure III.11b,g are for γ = 0.1 below the critical value 2. It is important to notice that there 
is a non-symmetric behaviour of the trajectories of the system for γ ≫ 0. This is shown at Figure III.11a,f 
whose trajectories asymmetrically vary over the initial conditions in comparison with the results shown in 
Figure III.9a,f. By approximating L∞ = L(t = 100), we then show how L∞ depends on ⟨x(0)⟩ and ⟨v(0)⟩ for 
different values of γ in Figure III.11c,d and Figure III.11h,i, respectively. Of prominence in Figure III.11c,d 
is the presence of a distinct minimum in L∞ for a particular value of ⟨x(0)⟩ = xc, L∞ linearly increasing 
with |⟨x(0)⟩ − xc| for a suffciently large |⟨x(0)⟩ − xc|; similarly, Figure III.11h,i shows a distinct minimum 
in L∞ for a particular value of ⟨v(0)⟩ = vc, L∞ linearly increasing with |⟨v(0)⟩ − vc| for a suffciently large 
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(e) Zoom-in of Figure III.9d. (f) Snapshots of p(x, t) for ⟨x(0)⟩ = 0, γ = 2.5 
and various ⟨v(0)⟩ ∈ (−5, 5). 

(g) Snapshots of p(x, t) for ⟨x(0)⟩ = 0, γ = 0.1 
and various ⟨v(0)⟩ ∈ (−5, 5). 
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(h) L∞ = L(t = 100) against ⟨v(0)⟩ ∈ (−5, 5) 
for ⟨x(0)⟩ = 0 and γ ∈ (0, 2.5). 

Figure III.9: Cont. 

|⟨v(0)⟩ − vc|. 
Finally, we scan over ⟨x(0)⟩ and ⟨v(0)⟩ and identify the minimum value of L∞ for a given γ and plot 

this minimum value of L∞ (at xc and vc) against γ in Figure III.11e,j. In Figure III.11e,j, L∞ against γ takes 
its minimum near the critical damping γ = 2ω = 2 (shown in a vertical line), as observed previously in 
Sections III.4.1–III.4.2. This is clearly different from the behaviour of the minimum value of L∞ against γ 

(for the equilibrium point ⟨x(0)⟩ = 0 and ⟨v(0)⟩ = 0) in Figure III.9j where L∞ monotonically increases with 
γ. This is because for ⟨x(0)⟩ = 0 and ⟨v(0)⟩ = 0, mean values does not change over time, with less effect of 
oscillations (ω) and thus the critical damping γ = 2ω. 

III.6 IL in non-linear dynamics 

The system PDF may no longer be Gaussian when studying non-linear dynamics, yet, it is still possible to 
apply Theorem III.1 to obtain the IL’s value via the Laplace Assumption (recall Proposition II.7). For example, 
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(i) Zoom-in of Figure III.9h. (j) The minimum value of L∞ at ⟨x(0)⟩ = 
⟨v(0)⟩ = 0 against γ on log-log scales; ⟨x(0)⟩ = 
0. 

Figure III.9: Results of Equations (III.36) and (III.37) scanned over ⟨x(0)⟩ ∈ (−5, 5) for ⟨v(0)⟩ = 0 
[Figure III.9a–e] and ⟨v(0)⟩ ∈ (−5, 5) for ⟨x(0)⟩ = 0 [Figure III.9f–i]. The parameter values ω = 1, 
D = 0.0005, and γ ∈ (0, 2.5) while the initial covariance matrix Σ(0) has the elements Σ11(0) = Σ22(0) = 0.01, 
Σ12(0) = Σ21(0) = 0. 
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(a) Snapshots of p(x, t) for D = 0.0005. (b) Snapshots of p(x, t) for D = 0.04. 

Figure III.10: Cont. 

consider the following toy-model of a simple pendulum subject to a random force ξ 

θ̈ + bθ̇ + 
g 

sin θ = ξ(t), (III.48)
ℓ 

where b is the constant friction, g is the gravity constant, ℓ is the length of the pendulum and ξ is again a 
random force with ⟨ξ⟩ = 0 and ⟨ξ(t)ξ(t ′ )⟩ = 2Dδ(t − t ′ ). 

After transforming Equation (III.48) in a set of two frst order differential equations and applying Proposi-
tion II.7, the mean value vector µ = [µ1, µ2]

⊤ = [⟨θ̇⟩, ⟨θ⟩]⊤ and the covariance matrix Σ dynamics are given 
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(c) Time-evolution of Γ(t). (d) Time-evolution of L(t). 

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

6

8

10

12

14

16

18

20

fitted curve

(e) L∞ = L(t = 50) against D; a ftted curve is 
shown in the red solid line. 

Figure III.10: Results of Equations (III.36) and (III.37) for ⟨x(0)⟩ = −0.5, ⟨v(0)⟩ = 0.7, γ = 2, ω = 0, 
D ∈ (0.0005, 0.04) and the initial covariance matrix Σ(0) with elements Σ11(0) = Σ22(0) = 0.01, Σ12(0) = 
Σ21(0) = 0. 

by 

! 
µ2 

µ̇ = , (III.49)g(Σ11−2) sin(µ1) − bµ22L ! 
gΣ11 cos(µ1)2Σ12 −bΣ12 + Σ22 − LΣ̇ = . (III.50)

−bΣ12 + Σ22 − gΣ11 cos(µ1) 2gΣ12 cos(µ1) 
L 4d22 − 2bΣ22 − L 

After solving Equations (III.49) and (III.50) numerically, we can get the simulation shown in Figure III.12
9 . 

Then, we can obtain the value of IL L and information rate Γ after substituting such solution in Equations 
(III.22)-(III.11) (results are shown in Figure III.13). 

9 Code https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter2/pendulumIL.m 

https://github.com/AdrianGuel/PhDThesis/blob/main/Chapter2/pendulumIL.m
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(a) Snapshots of p(x, t) for ⟨v(0)⟩ = 0.7, 
γ = 2.5 and various ⟨x(0)⟩ ∈ (−5, 5). 

(b) Snapshots of p(x, t) for ⟨v(0)⟩ = 0.7, 
γ = 0.1 and various ⟨x(0)⟩ ∈ (−5, 5). 
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(c) L∞ = L(t = 100) against ⟨x(0)⟩ ∈ (−5, 5) for 
⟨v(0)⟩ = 0.7 and γ ∈ (0, 2.5). 
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(d) Zoom-in of Figure III.11c. 

Figure III.11: Cont. 

III.7 Relations between entropy rate and information rate 

To understand the value of IL and information rate Γ in any dynamical system, various articles have already 
proposed some relations between the Fisher information and physical observables (for instance, see [75]). 
Specifcally, in [62], E. Kim deduces that if the PDF of Equation (III.12) is described by an univariate Gaussian 
PDF (i.e. the Ornstein–Uhlenbeck (OU) process) the information rate Γ is related to the entropy rate Ṡ and the 
entropy production Π via 

Γ2 = 
D 

Π + Ṡ2. (III.51)
σ 

Equation (III.51) can easily be confrmed after some algebra with the following expressions 

µ̇2 a2Σ D µ̇2 Σ̇2 
Π = + + + 2a = + ,

D D Σ D 4ΣD� ̇ �21 Σ̇ µ̇2 1 Σ
Ṡ = , Γ2 = + , (III.52)

2 Σ Σ 2 Σ 

where µ, Σ, D and a are the scalar version of µ, Σ, D and A, respectively. Pursuing a general connection 
between information rate Γ and thermodynamics, here, we extend (III.51) to the case of a n-variate Gaussian 
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(e) The minimum value of L∞ over ⟨x(0)⟩ ∈ 
(−5, 5) against γ on log-log scales; ⟨v(0)⟩ = 0.7. 

(f) Snapshots of p(x, t) for ⟨x(0)⟩ = −0.5, 
γ = 2.5 and various ⟨v(0)⟩ ∈ (−5, 5). 

(g) Snapshots of p(x, t) for ⟨x(0)⟩ = −0.5, 
γ = 0.1 and various ⟨v(0)⟩ ∈ (−5, 5). 
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(h) L∞ = L(t = 100) against ⟨v(0)⟩ ∈ (−5, 5) 
for ⟨x(0)⟩ = −0.5 and γ ∈ (0, 2.5). 

Figure III.11: Cont. 

process. Such a result is given by the following relations. 

Relation III.1 

Given an n-variate Gaussian process whose mean and covariance are described by Equations (II.77)-
(II.78), a relationship between entropy production Π, entropy rate Ṡ, and information rate Γ is given 
by 

0 ≤ Γ2 ≤ Eu := Tr(Σ−1)Π Tr(D) + Ṡ2 − 2g(s), (III.53) 

where s = [ṠJ1 , ṠJ2 , . . . , ṠJn ]
⊤ , g(s) := ∑i

n 
<j ṠJi ṠJj and ṠJi is the contribution to entropy rate by the 

current fow Ji (see Equation (II.67)), i.e. Z 
ṠJi = − 

∂ 
Ji(x; t) ln (p(x; t)) dnx = Πi − Φi. (III.54) 

Rn ∂xi 

Proof. For any real matrix A in system (II.77)-(II.78), we can rewrite the second term in the right hand side of 
(III.22) as follows � � � 

−1Σ̇ )2 2A2 −1AΣATr (Σ = Tr + 2Σ (III.55) 
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(i) Zoom-in of Figure III.11h. (j) The minimum value of L∞ over ⟨v(0)⟩ ∈ 
(−5, 5) against γ on log-log scales; ⟨x(0)⟩ = 
−0.5. 

Figure III.11: Results of Equations (III.36) and (III.37) scanned over ⟨x(0)⟩ ∈ (−5, 5) for ⟨v(0)⟩ = 0.7 
[Figure III.11a–e] and ⟨v(0)⟩ ∈ (−5, 5) for ⟨x(0)⟩ = −0.5 [Figure III.11f–j]. The parameter values ω = 1, 
D = 0.0005, and γ ∈ (0, 2.5) while the initial covariance matrix Σ(0) has the elements Σ11(0) = Σ22(0) = 0.01, 
Σ12(0) = Σ21(0) = 0. 
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Figure III.12: Simulation under 
the Laplace assumption of the 
stochastic equation of a simple 
pendulum (III.48). The param-
eters are µ(0) = [5, 1]⊤ , Σ = 
1 × 10−2I, D = 1 × 10−2, g = 
9.81, L = 1, m = 1, and b = 1. 

Figure III.13: Computation of the 
IL L under the Laplace assump-
tion of the stochastic equation of 
a simple pendulum (III.48). 
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� 
+8Σ−1AD + 4Σ−1DΣ−1D 

= Tr(2A2 + 4Σ−1AD + 2Σ−1DΣ−1D) 

+ Tr(2Σ−1AΣA + 4Σ−1AD + 2Σ−1DΣ−1D)� � 
= 2 Tr (Σ−1D + A)2 

+2 Tr(Σ−1(AΣA⊤D−1+2A+DΣ−1)D). 

Equation (III.55) can be written in terms of Entropy production Π and entropy rate Ṡ using the following 
results. First, from the fact that Π ≥ 0 and Σ−1, D ⪰ 0 we get 

� � 
Tr(Σ−1)Π Tr(D) = Tr(Σ−1) Tr µ̇ µ̇ ⊤D−1 + AΣA⊤D−1 + 2A + DΣ−1 Tr(D) 

≥ Tr(Σ−1µ̇ µ̇ ⊤) + Tr(Σ−1(AΣA⊤D−1+2A+DΣ−1)D). (III.56) 

Now, taking λi as the eigenvalues of the matrix H := Σ−1D + A, we have 

n n n j−1 n 
Ṡ2 = Tr(H)2 = (∑ λi)

2 = ∑ λ2 
i + 2 ∑ ∑ λiλj = Tr(H2) + 2 ∑ λiλj = Tr(H2) + 2g(H). (III.57) 

i=1 i=1 j=1 i=1 i<j 

Finally, using (III.55)-(III.57) in (III.22) we get 

2g(H) ≤ Γ2 + 2g(H) ≤ Tr(Σ−1)Π Tr(D) + Tr(H2) + 2g(H), (III.58) 

2g(H) ≤ Γ2 + 2g(H) ≤ Tr(Σ−1)Π Tr(D) + Ṡ2, (III.59) 

0≤ Γ2 ≤ Tr(Σ−1)Π Tr(D) + Ṡ2 − 2g(H). (III.60) 

Now, since Ṡ = ∑n ṠJi where ṠJi is the contribution of the current fow Ji to the total entropy rate Ṡ, we know i 
that each eigenvalue λi = ṠJi . This ends our proof. 

Relation III.1 provides an inequality between information rate Γ (an information metric), entropy rate 
Ṡ and entropy production Π where the entropy rate Ṡi of each random variable xi is explicitly taken into 
account. From Relation III.1 we have 

Z qt 
L(t) ≤ Lu(t) := Eu(τ) dτ. (III.61)

0 

Since minimising Lu will minimise L, we can obtain both a minimum entropy production and a minimum 
statistical variability behaviour through Lu. 

For unstable systems, we can avoid the computation of the term g(s) involving the contribution to entropy 
rate by each current fow Ji via the following relation. 
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Relation III.2 

Given the same conditions as in Relation III.1, but considering that the eigenvalues φi ∈ C of the 
matrix A satisfy the following inequality 

ℜ{φi} > 0 ∀i = 1, 2, . . . , n. (III.62) 

Then, the following result holds 

0 ≤ Γ2 ≤ Iu := 
1 

Tr(Σ−1)ΠuTr(D) + Ṡ2, (III.63)
n 

where Πu ≥ Π (an upper bound of entropy production) defned by 

Πu := Tr(µ̇ µ̇ ⊤)Tr(D−1)+ 
1

Tr(Σ−1)Tr(Σ̇ )2Tr(D−1). (III.64)
4 

Proof. To derive the result shown in Relation III.2, we frst consider the following preliminary results 
[76; 77; 78] 

Tr(XY) ≤ Tr(X) Tr(Y) ∀ X, Y ⪰ 0, (III.65) 

Tr(Σ̇ ) = Tr(AΣ)+Tr(ΣA⊤) + Tr(2D) 

= 2 Tr(ΣA + D), (III.66) 

Tr(Σ̇ )2 = 4 Tr(ΣA + D) Tr(ΣA⊤ + D) 

≥ 4 Tr(ΣAΣA⊤ +2ΣAD+D2), (III.67) 

Tr(Σ−1)2 Tr(Σ̇ )2 = Tr(Σ−1) Tr(Σ̇ ) Tr(Σ−1) Tr(Σ̇ ) 
−1 ˙ −1Σ̇ )2)≥ Tr(Σ Σ)2 ≥ Tr((Σ (III.68) 

Then, by applying the previous results to the defnition of Γ2 in (III.22), we have � � 
⊤ 1

0 ≤ Γ2 = Tr(µ̇ Σ−1µ̇ ) + Tr (Σ−1Σ̇ )2 
2 

≤ Tr(µ̇ µ̇ ⊤) Tr(Σ−1) + 
1 

Tr(Σ−1Σ̇ )2 (III.69)
2 
1 

Σ)2 + Ṡ2≤ Tr(µ̇ µ̇ ⊤) Tr(Σ−1) + Tr(Σ−1)2 Tr( ˙ .
4 

Now, multiplying both sides of inequality (III.69) by Tr(D−1D) and factorising Tr(Σ−1) from its right hand 
side, we have 

0 ≤ nΓ2 ≤ Tr(Σ−1){Tr( ̇µ ̇µ⊤) Tr(D−1D) 
1 

+ Tr(Σ−1) Tr( Σ̇)2 Tr(D−1D)} + nṠ2 
4 

≤ Tr(Σ−1){Tr( ̇µ ̇µ⊤) Tr(D−1) 
1 

+ Tr(Σ−1) Tr( Σ̇)2 Tr(D−1)} Tr(D) + nṠ2 .
4 

(III.70) 

From the right hand side of (III.70), we defne the part inside the curly brackets as 

Πu := Tr( ̇µ ̇µ⊤) Tr(D−1) + 
1 
4 

Tr(Σ−1) Tr( Σ̇)2 Tr(D−1). (III.71) 
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Which gives us the expression in our result (III.53). The value of Πu can be proved to be an upper bound of 
Π from the following reasoning 

Πu ≥ Tr(µ̇ ⊤D−1µ̇ ) 

+ Tr(Σ−1) Tr(ΣAΣA⊤ +2ΣAD+D2) Tr(D−1)� � 
≥ µ̇ ⊤D−1µ̇ +tr Σ−1Σ(AΣA⊤D−1+2A+Σ−1D)DD−1 

= µ̇ ⊤D−1µ̇ + tr(AΣA⊤D−1 + 2A + Σ−1D). (III.72) 

Note that for Πu ≥ Π we need A ⪰ 0. A similar result can be found starting from the defnition of Πu in 
(III.71) as follows 

1
Tr(Σ−1)Πu Tr(D) ≥ Tr(Σ−1){Tr(µ̇ µ̇ ⊤) Tr(D−1D) + Tr(Σ−1) Tr(Σ̇ )2 Tr(D−1D)}. (III.73)

4 

From (III.72), the main result follows straightforwardly using (III.70) leading to our main result in Relation 
III.2. 

Now, we investigate the case when a relation between Γ, Ṡ and Π can be expressed in the form of equality. 
If and only if A in (II.77)-(II.78) is a diagonal matrix, i.e. we have a set of linearly independent stochastic 
differential equations (this can be after applying decoupling transformations [79]), the following result holds. 

Relation III.3 

Given a n-variate Gaussian process where all its random variables are independent, we have 

Dii Γ2 := ∑ Πi + ∑ Ṡ2 
i , (III.74) 

i Σii i 

where Πi and Ṡi are the entropy production and entropy rate from the marginal PDF p(xi, t) of xi, 
respectively. 

Proof. If A is an n × n diagonal matrix, then Σ and Σ̇ are also diagonal and the following expressions hold ! 
Def. III.2 µ̇i 

2 1 
� 

Σ̇ ii 
�2 

Γ2 = ∑ Γ2 = ∑ + , (III.75)i 
i i Σii 2 Σii � � 

Π = ∑ Πi = µ̇ ⊤D−1µ̇ + 
1 

Tr Σ−1Σ̇
2D−1 

4i ! 
µ̇2 Σ̇2 

= ∑ i + ii , (III.76) 
i Dii 4ΣiiDii 

1 Σ̇ ii Ṡ = ∑ Ṡi = ∑ . (III.77) 
i 2 i Σii 

By rearranging Equations (III.76) and (III.77) to form Γ2, we have 

Dii Γ2 = Πi + Ṡi 
2. (III.78)i Σii 

which leads to our result. 
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From Equation (III.74), we can see that Equation (III.78) is just a special case of Relation III.3 where 
the system has only one random variable. In addition, Equation (III.74) tells us that the geodesic (length-
minimising curve between the initial and fnal PDF) of L(t) can be computed utilising the entropy rate 
and entropy production values (for further details on the geodesic problem, see [64]). More importantly, 
since Relation III.3 permits us to equate the effects of IL geodesic dynamics on the system stochastic 
thermodynamics, Equation (III.74) can be used as part of a cost function employed to design controls that 
lead to system closed-loop responses with high energetic effciency and minimum information variability. 
This statement will be explored with more detail in Chapter V. 

Considering a fully decoupled nonlinear stochastic system and using the Laplace assumption (Proposition 
II.9), the value of the information rate Γ2 is related to the entropy production Π and the entropy fow Ṡ as 
follows 

n n nDii 1
Γ2 = ∑ Πi + ∑ Ṡ2 

i + ∑ Hfi 
(µ̇i + fi(µi, u)), (III.79) 

i=1 Σii i=1 2 i=1 

where Πi and Ṡi are the entropy production and entropy rate from the marginal PDF p(xi, t) of xi. Hf1 = 
∂2 

fi(µi, t). Clearly, if fi describes a harmonic potential (a linear system), then Hfi 
= 0 and (III.79) leads to 2∂xi 

Relation III.3. 

III.7.1 Case study: Harmonically bound particle 

To study all the previously given relations in a practical setup, let us consider the motion of a Brownian particle 
immersed in a fuid (the Kramer process) modelled by the following second order stochastic differential 
equation " # " # " # " # 

ẋ1(t) 0 1 x1(t) ξ1(t) = + , (III.80)
ẋ2(t) −ω2 −γ x2(t) ξ2(t) 

where the parameters ω and γ are related to the system’s natural frequency and damping, respectively. 
First, to explore Relation III.1, in Figure III.14 we plot the changes on entropy rate Ṡ computed by using 

equation (II.117) and compared them with the value of Π − Φ obtained from equations (II.104)-(II.105), 
confrming the expected relation Ṡ = Π − Φ. Second, to briefy verify that Eu ≥ Γ2, we also show the 
difference between Γ2 (using equation (III.22)) and Eu (from Relation III.1). Our simulations were done for 
fxed value of ω by varying the value of γ (Figure III.14(a)) and vice-versa (Figure III.14(b)). 

As can be concluded from Figure III.14(a), for an undamped harmonic oscillator with γ = 0, the value 
of Eu − Γ2 tends to decrease with time, meaning that they become equal over time. Here, Γ, Ṡ > 0 ∀t ≥ 0 
because the system is permanently oscillating. Once we increase γ, the system goes to the equilibrium giving 
Γ, Ṡ → 0 and Eu ≥ 0 due to Π = Φ. In general, for any A and u(t) = 0, entropy production Π and entropy 
fow Φ in the long-time limit take the following values � � 

lim Π(t) = Tr A⊤D−1AΣ(∞) + Σ−1(∞)D + 2A , 
t→∞ � � 
lim Φ(t) = Tr A⊤D−1AΣ(∞) + A , (III.81)
t→∞ 

A(t−τ)Dewhere Σ(∞) = 2 limt→∞{ 
R t A⊤ (t−τ) dτ}. The time-evolution and longtime limit behaviour of en-0 e 

tropy production and entropy fow are determined by the value of eAt , which in turn (obviously) depends 
on the eigenvalues of the matrix A. As it will be discussed in Chapter V, such eigenvalues can be modifed 
through a control algorithm (for example, using a full-state feedback control method [80]). In system (III.80), 
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(b) ω2 = {0, 1, 2, 3}, γ = 1. 

Figure III.14: Computational experiment of (III.80) using D11 = D22 = 0.01, x(0) = 1, y(0) = 1, Σ0
11 = 

Σ0 = 0.1 and Σ0 = Σ0 = 0. Figure III.14(a) contains simulations were ω is fxed and we vary γ. Figure 22 12 21 
III.14(b) contains simulations were γ is fxed and we vary ω. The plots show the comparison between changes 
on entropy rate Ṡ computed by using equation (II.117) and the value of Π − Φ obtained from equations 
(II.104)-(II.105). Additionally, they show the difference between Γ2 (using equation (III.22)) and Eu (from 
Relation III.1). 

the bigger the value of γ the quicker we arrive to equilibrium. On the other hand, increasing the value of ω 

with γ > 0 increments the oscillations on the transitory response (see Figures III.14(a) and III.14(b)) [7; 6]. 



72 adrián josué guel cortez 

III.7.2 Three-dimensional decoupled process 

We now consider fully decoupled linear stochastic systems (i.e. where A is a diagonal matrix). A practical 
example of a three-dimensional linear decoupled process corresponds to the simplifed version of the 
mathematical description of an optical trap shown in Figure III.15. The model consists of a set of three 
independent overdamped Langevin equations [81] given by equation (III.82). Here, x and y represent the 
position of the particle in the plane perpendicular to the beam propagation direction and z represents the 
position of the particle along the propagation direction. The stiffnesses of the trap in each of these directions 
are κx, κy and κz, respectively. γ is the particle friction coeffcient. ξ1, ξ2 and ξ3 are independent delta-
correlated noises, i.e. ⟨ξi(t)⟩ = 0, ⟨ξi(t)ξi(t ′ )⟩ = 2Diiδ(t − t ′ ) and ⟨ξi(t)ξ j(t ′ )⟩ = 0 ∀i ̸= j with i = 1, 2, 3. 

Figure III.15: Particle of mass 
m in a three dimensional optical 
trap. 

  ẋ(t) ẏ(t) 

  = 

  − κγ 
x 0 0 

  
  x(t) 

y(t) 

 + 

  ξ1(t) 
ξ2(t) 

  . (III.82)κy0 − 0γ 

ż(t) 0 0 − κz z(t) ξ3(t)γ 

Since (III.82) is a fully decoupled linear stochastic model, it permits us to show the applicability of Relation 
III.3. To this end, in the left plot of Figure III.16, we show Ṡ, Π − Φ, and Γ computed from equations (II.117), 
(II.104) minus (II.105), and (III.22), respectively. In Figure III.16 we can see that both entropy rate Ṡ → 0 and 
information rate Γ → 0 as the system goes to equilibrium. The right plot of Figure III.16, a plot depicting the 
value of the information rate upper bound Eu (Relation III.1) minus Γ2 showing Eu → 0 at equilibrium. The 
exact value of Eu(t) in equilibrium is 

lim Eu = Tr(Σ−1(∞))Π(∞) Tr(D) − 2g(H(∞)) = 0, (III.83)
t→∞ 

where 

Σ−1(∞) = −D−1A, Π(∞) = 0. H(∞) = 0. (III.84) 

Equation (III.84) applies only to systems with diagonal A. Since Π → 0, any decoupled linear system is 
reversible at equilibrium. 
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Figure III.16: Computational experiment of a three-dimensional optical trap using κx = 10, κy = 3, κz = 1, γ = 
1, D11 = D22 = D33 = 0.01, x(0) = 1, y(0) = 0.1, z(0) = 0.5, Σ0 = Σ0 = Σ0 = 0.1 and Σ0 = 0∀i ̸= j.11 22 33 ij 

III.7.3 Higher order systems and the upper bounds of information rate Γ 

Relations III.1 to III.3 become highly relevant when the order of the stochastic models increase, for instance, 
when using toy models in control engineering scenarios [82]. In this section, we take the case when A is a 
randomly chosen Hurwitz matrix whose size varies from 2 − 50, i.e. we choose linear stochastic systems that 
contain from 2 to 50 random variables. 

Figure III.17 shows the phase portrait of Γ(t f )
2 vs Ṡ(t f ), and the phase portrait of Eu(t f ) − Γ(t f )

2 vs 
Π(t f ). Figure III.17 is also separated in sub-fgures III.17(a) and III.17(b) showing the cases when matrix A is 
diagonal and non diagonal, respectively. Note, t f refers to the time close enough the system’s equilibrium; in 
our simulations t f = 300. The phase portraits contain numbers to indicate the value at t = t f ; the number 
also indicates the order of the stochastic system. 

Regarding the portraits of Γ(t f )
2 vs Ṡ(t f ), for every Hurwitz A (i.e. diagonal and non diagonal matrix 

with negative real part eigenvalues) limt→∞ E(t) = limt→∞ Ṡ(t) = 0 as expected. Meanwhile, for the same 
processes Π > 0 at equilibrium (see equation (III.81)). When looking at the phase portraits of Eu(t f ) − Γ(t f )

2 

vs Π(t f ), we see that Eu(t f ) > 0 when A is non diagonal due to Π(t f ) > 0 for some t (see Figure III.17(a)). 
On the other hand, as demonstrated in Equations (III.83) and (III.84) Eu(t f ) = Π(t f ) = 0. Again, meaning 
that every fully decoupled linear system is reversible at equilibrium. 
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Figure III.17: Entropy rate Ṡ(t f ) vs the square of information rate Γ(t f )
2 and the values of Eu(t f ) − Γ(t f )

2 

vs Π(t f ). The simulations use randomly chosen stable linear systems from order n = 2 to n = 50. The red 
numbers indicate the order of the system and its position the value at t f = 300. 
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Chapter concluding remarks 

Throughout this chapter, we have presented theoretical results for the computation of the information length in 
n-th order Gaussian stochastic processes, which can be applied to a variety of practical problems. Specifcally, 
the information length was found as a function of the mean and covariance dynamics. We showed a case study 
of a harmonically bound particle system with the natural oscillation frequency ω, subject to a damping γ and a 
Gaussian white-noise (Kramer equation). Such case study demonstrates the information length dependency on ω 
and γ, elucidating that the information length tends to take its minimum value near the critical damping γ = 2ω. 
The latter can be viewed as the simplifcation of dynamics and thus the decrease in information change due to the 
reduction of the two characteristic time scales associated with ω and γ to the one value. The information length in 
the long time limit L(t → ∞) was shown to preserve the linear geometry associated with the Gaussian statistics 
in a linear stochastic process, as in the case of the O-U process (III.13). Next, using the stochastic equation of a 
simple pendulum, we demonstrate that IL can be computed in non-linear Langevin equations through the Laplace 
assumption. 
In addition, we have derived relations between information rate and thermodynamic quantities for stochastic 
Gaussian processes. The proposed results permit us to create cost functions that lead to energetically effcient 
(minimum entropy production) and organised (with minimum information variability) behaviours. In this context, 
in Chapter V, we explore connections between the area of control theory for applications in linear and non linear 
Langevin equations. We utilise modern control techniques such as the model-predictive-control [83] to fnd the 
solution to proposed optimisation problems in terms of the information rate. Future work would explore benefts 
in the research areas of population dynamics [84] or inference control [85; 86]. 





Abrupt events detection 
IV 

Chapter summary 

Detecting and measuring abrupt changes in a process is a capability that can pro-
vide us with important information for decision-making, especially, in systems 

management. In this chapter, we investigate the prediction capability of information 
theory by focusing on how sensitive information-geometric theory (information length 
diagnostics) and entropy-based information theoretical method (information fow) are to 
abrupt changes. To this end, we use a non-autonomous Kramer equation by including 
a sudden perturbation to the system to imitate the onset of a sudden event. This case 
study enables us to calculate time-dependent probability density functions (PDFs) and 
various statistical quantities with the help of numerical simulations. The results show 
that information length diagnostics predict the onset of a proposed ongoing perturbation 
that models a sudden event better than the information fow. In addition, the case study This chapter is based on 
explicitly shows that the information fow like any other entropy-based measure has the following author’s 
limitations in measuring perturbations which do not affect entropy. publications: [7; 6; 11] 
Then, as a method for detecting abrupt events, we propose the application of different 
correlation coeffcients such as mutual information, Pearson coeffcient and novel coeff-
cients based on the information rate and entropy production of the stochastic process. 
The analysis of the correlation coeffcients includes their application to different case 
studies which consider linear stochastic processes only. The results demonstrate that 
information rate and entropy production coeffcients can detect abrupt events in the 
frst and second moments of the stochastic dynamics. In a high-order scenario, we 
also include the application of the norm of the information/thermodynamic quantities, 
showing that such quantity permits us to approximately quantify the correlation between 
all the random variables in the system. 

keywords: information geometry; information length; information fow; prediction; entropy 

IV.1 Introduction 

Even if occurring very infrequently, rare or extreme events can mediate large transport with signifcant impact. 
Examples would include the sudden outbreak of devastating infectious diseases, solar fares, extreme weather 
conditions, food, forest fre, sudden stock market crash, fow sensor failure, bursty gene expression and 
protein productions. The resulting large transports can be either benefcial (e.g., promoting mixing and 
air circulations by atmospheric jets or removing toxins) or harmful. For instances, tornadoes cause a lot 
of damage; in magnetic fusion, plasma confnement is hampered by intermittent transport of particles and 
energy from hot plasma core to the colder plasma boundaries. 

Given the damage that these events can cause, fnding good statistical methods to predict their sudden 
onset, or abrupt changes in the system dynamics is a critical issue. For instance, there are different types of 
plasma disruptions in fusion plasmas [87] and the current guidance for the minimum required warning time 
for successful disruption mitigation on ITER is about 30 ms [88]. Increasing the warning time by the early 
detection of a sudden event will greatly help ensuring a suffcient time for a control strategy to minimise 
harmful effects. 
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Obviously, the whole mark of the onset of a sudden event is an abrupt dynamical change in the system or 
data over time—time-variability/large fuctuation, whose proper description requires non-stationary statistical 
measures such as time-dependent probability density functions (PDFs). By using time-dependent PDFs, we 
can quantify how the “information" unfolds in time through information geometry. As mentioned in the 
chapter’s summary, here we examine the capability of the information-geometric theory proposed in a series 
of recent works [69; 89; 64; 66; 90; 70] in predicting the onset of a sudden event and compare it with one of the 
entropy-based information theoretical measures [91; 92; 93]. Let us recall that the information length [69; 89] 
measures the evolution of a system in terms of a dimensionless distance which represents the total number of 
different statistical states that are accessed by the system (see Chapter III). The larger time-variability, the 
more abrupt change in the information length; in a statistically stationary state, the information length does 
not change in time. For instance, the work [94] has demonstrated the capability of the information length in 
the early prediction of transitions in fusion plasmas. 

Again, in this chapter, we mimic the onset of a sudden event by including a sudden perturbation to the 
system and calculate time-dependent PDFs and various statistical quantities including information length 
and one of the entropy-based information-theoretical measure (information fow) [95; 96]. The latter measures 
the directional information fow between two variables. This is more sensitive than mutual information which 
measures the correlation between the variables. The point we want to make is that this information fow 
like any other entropy-based measures depends solely on entropy, and thus it cannot pick up the onset of 
a sudden event which does not affect entropy, for instance, such as the mean value (recall, the entropy is 
independent of the local arrangement of the probability [97] as well as the mean value). 

We should note that there are many other information theoretical measures [91; 92; 93; 98; 99; 96; 100; 
101; 102; 103; 104; 105; 97; 45] that have been used to understand different aspects of complexity, emergent 
behaviours, etc in non-equilibrium systems. However, the main purpose of this chapter is not to provide 
an exhaustive exploration of these methods, but to point out the possible limitation of the entropy-based 
information measurements in predicting sudden events. Additionally, our intention is not on modelling 
the appearance of rare, extreme events (that are nonlinear, non-Gaussian) themselves, but on testing the 
predictability of information theoretical measures on the onset of such sudden events. 

To gain a key insight about this chapter’s discussion, consider an analytically solvable model such as —the 
non-autonomous Kramers equation (for the two variables, x1 and x2) [106]—which enables us to derive exact 
PDFs and analytical expressions for various statistical measures including entropy, information length and 
information fows. In this model the non-autonomy is introduced by an impulse which is included either in 
the strength of stochastic noise or by an external impulse input which models a sudden perturbation to the 
system. Examples of the abrupt event scenarios that we will explore in this Chapter are shown in Figure IV.1. 
The plots show blue dots representing a single trajectory X of the Kramers equation sampled from N (µ, Σ) 
with a solid black line representing the phase portrait of the average value over time µ(t) = ⟨x(t)⟩. Here. the 
values for µ and Σ at evert instant of time t are computed by solving Equations (II.77)-(II.78). Panel (a) shows 
the phase portrait of x1 and x2 without any impulse. Panel (b) shows the case where an impulse causes the 
perturbation in the covariance matrix Σ while panel (c) is the case where the sudden perturbations affect both 
covariance matrix Σ and the mean value µ. The proposed impulse-like function used in these simulations is 
introduced in Section IV.3. 

Now, we present the different case studies to abrupt event analysis including the corresponding applied 
tools. First, we consider the Non-autonomous Kramers equation. Then, the inclusion of correlation coeffcients 
in the analysis of the same process. Finally, the study of abrupt events in a controllable canonical form via the 
norm of the entropy production, entropy rate and entropy production. 



information geometry in the analysis and control of dynamical systems 79 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

-0.5

0

0.5

1
x 2

 

x1 

µ 
• x ∼ N (µ, Σ) 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

-0.5

0

0.5

1

x 2
 

x1 

µ 

• x ∼ N (µ, Σ) 

(a) Process without abrupt events. (b) Process with an abrupt change in Σ(t). 
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(c) Process with abrupt changes in µ and Σ(t). 

Figure IV.1: Stochastic simulation of a process with and without abrupt changes that are discussed in this 
work. The parameters of the simulation are γ = 1, ω = 1, D = 0.001, µ(0) = [−0.5, 0.7]⊤ and Σ = 0.01I2, 
where I is the identity matrix of order two. The blue dots represent a single trajectory X of the Kramers 
equation sampled from N (µ, Σ) while the solid black line is the phase portrait of the average value over time 
µ(t). The values for µ and Σ at evert instant of time t are computed by solving Equations (II.77)-(II.78). The 
impulse-like function used in these simulations to represent a perturbation (abrupt event) is introduced in 
Section IV.3. 

IV.2 Preliminaries to the case study: Non-autonomous Kramers Equation 

As our goal is to compare the information length L metric (already defned in Chapter III) against the 
so-called information fow, let us frst defne the information fow of a two-random variable process. 
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IV.2.1 Information Flow (IF) 

Information fow (IF), or also usually called information transfer, is one of the useful information-theory 
measure that has been studied for causality (causation), uncertainty propagation and predictability transfer 
[103; 102]. It also give us insight into the degree of interconnection among states of the system [95; 96]. [95] 
considered a system of two Brownian particles with coordinates x = (x1, x2) interacting with two independent 
thermal baths at temperatures T1 and T2, respectively, subject to a potential H(x), which are described by the 
Langevin equations 

0 = −∂xi H(x) − Γi ẋi(t) + ui(t) + ηi(t), 

⟨ηi(t)ηj(t1)⟩ = 2ΓiTiδijδ(t − t1), i, j = 1, 2, (IV.1) 

where Γi are the damping constants, which characterise the coupling of the particles to their baths/environments 
(with the temperature Ti), δij is the Kronecker symbol and ui(t) is a bounded input. In this scenario, [95] 
defnes the information fow as follows. 

Defnition IV.1: Information fow 

The information fows T from x2 → x1 and x1 → x2 are then given by (see [95]): Z1 P1(x1; t)
T2→1 = dxP(x; t) [∂x1 H(x) + T1∂x1 ln P(x; t)] ∂x1 ln , (IV.2)

Γ1 P(x; t)Z1 P2(x2; t)
T1→2 = dxP(x; t) [∂x2 H(x) + T2∂x2 ln P(x; t)] ∂x2 ln . (IV.3)

Γ2 P(x; t) 

To appreciate the physical meaning of IF, it is useful to recall that Equations (IV.2) and (IV.3)) can also be 
expressed in terms of entropy S or mutual information I (see Equations (17) and (23) in [95]), for instance, as 
follows: 

T2→1 = ∂tS[x1(t)] − ∂t1 S[x1(t + t1)|x2(t)] , (IV.4) 
t1→0 

where S[x1(t + t1)|x2(t)] denotes the entropy of x1(t + t1) at time t + t1 conditioned by x2(t) at the earlier 
time t. From (IV.4), we can see that IF represents the rate of change in the marginal entropy of x1 minus that 
of the conditional entropy of x1, x2 being frozen between the time (t, t + t1). In other words, T2→1 is that part 
of the entropy change of x1 (between t and t + t1), which exists due to fuctuations of x2 [95]. 

Several important remarks are in order. First, IF T2→1 and T1→2 can be both negative and positive; a 
negative T2→1 means that x2 acts to reduce the marginal entropy of x1 (S1). This is different from the case of 
transfer entropy which is non-negative [107]. Second, the causality is inferred only from the absolute value 
of IF [103]. Third, the advantage of Equation (IV.2) over Equation (IV.4) would be that Equation (IV.2) can 
be calculated using the equal-time joint/marginal PDFs without needing two-point time PDFs, which will 
be especially useful in the analysis of actual (experimental or observational) data. Finally, although it is 
not immediately clear from either Equations. (IV.3) or (IV.4), we will show in §IV.3 that IF depends only on 
the (equal-time) covariance matrix. This is similar to other causality measures such as the classical Granger 
causality [108] and transfer entropy [107] which quantify the improvement of the predictability of one variable 
by the knowledge of the value of another variable in the past and at present. This means these entropy-based 
measures do not pick up the onset of a sudden event which does not affect the covariance matrix (variance), 
for instance, such as the mean value. 
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IV.2.2 A tool to defne the correlation in terms of the information rate 

In this case study, we will also apply a simple measure of correlation given by (see §IV.4.3) 

Γ2(t) − Γ2 (t), (IV.5)m 

where Γ(t) is the known information rate value (see Chapter III) and Γm(t) is defned as follows 

Defnition IV.2: Γ2 from marginal PDFs m 

For a n-variate linear process (II.68) with n random variables x ∈ Rn = [x1, x2, . . . , xn]T , it is useful to 
introduce Γ2 (t) as follows m 

n n n(∂t⟨xi⟩)2 (∂tΣxixi )
2 

Γm(t) = ∑ Γ2 
i (t) = ∑ + ∑ , (IV.6)

2Σ2 
i=1 i=1 Σxixi i=1 xixi 

where, we recall that Γ2 
i is calculated from a marginal PDF p(xi; t) of xi. Note that Γ2 in Equation (III.22) 

is identical to Γ2 in Equation (IV.6) when the n random variables are independent (See Corollary III.1).m 

The interpretation of Equation (IV.5) is given in Section IV.4.3 through the numerical simulation of the 
Kramers equation. 

IV.3 Case study: Non-Autonomous Kramers Equation 

To demonstrate how IF and IL can be used in the prediction of abrupt changes in system dynamics, we focus 
on the non-autonomous Kramers equation, as noted in §IV.1. Recall that the original (autonomous) Kramers 
equation (see Equation (III.36)) describes the Brownian motion in a potential, for instance, as a model for 
reaction kinetics [30]. By including a time-dependent external input u(t), we generalise this to the following 
non-autonomous model for the two stochastic variables x = [x1, x2]

T " # " # " # 
0 1 0 0 

ẋ (t) = x(t) + u(t) + . (IV.7)
−ω2 −γ 1 ξ(t) 

Here, ξ is a short correlated Gaussian noise with a zero mean ⟨ξ⟩ = 0 and the strength D with the following 
property 

⟨ξ(t)ξ(t ′ )⟩ = 2D(t)δ(t − t ′ ). (IV.8) 

In this case study, we consider a time-dependent D(t) to incorporate a perturbation in D as follows 

� �2t−t1,0b − aD(t) = D0 + √ e . (IV.9)
|a| π 

Here, the second term on RHS is an impulse function which takes a high value for a short time interval 
a around t = t1,0 b = {0, 1} is used to cover the two cases without and with the impulse. Hence, (IV.9) 
represents an ongoing perturbation with a peak around t = t1,0

1 . 

1 Note that there are other good candidates to represent “perturbations” such as a double step function. Yet, we have chosen (IV.9) 
due to its practicality when computing analytical results (see Appendix AIV). In addition, (IV.9) is often used as an approximation of 
the delta Dirac function δ (for instance, see [109]) which is also another good candidate to represent a sudden event. 
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Furthermore, we are interested in the case where u(t) is as well an impulse like function given by 

� �2d − 
t−t

c 
2,0 

u(t) = √ e . (IV.10)
|c| π 

Here, the impulse is localised around t = t2,0 with the width c; again d = {0, 1} is used to cover the two cases 
without and with the impulse. To fnd IL and IF for system (IV.7), we use Proposition II.6 and calculate the 
expressions for " # 

Σ11 Σ12
Σ(t) = and µ(t) = [⟨x1(t)⟩, ⟨x2(t)⟩]T , (IV.11)

Σ21 Σ22 

using Equations (IV.9)–(IV.10), as shown in Appendix AIV.1. 
Equation (IV.11) then determines the form of the joint PDF p(x; t) in Equation (II.70) for the two variables 

i = 1, 2. On the other hand, the marginal PDFs of x1 and x2 for Equation (IV.7) are given by 

(x−⟨x⟩)2 (x2−⟨x2⟩)21 − 1 −P1(x1; t) = √ e 2Σ11 , P2(x2; t) = √ e 2Σ22 . (IV.12)
2πΣ11 2πΣ22 

From these PDFs, we can easily obtain the entropy based on the joint and marginal PDFs, respectively, as 
follows Z h i1

S(t) = − dxp(x; t) ln p(x; t) = 1 + ln ((2π)2|Σ|) , (IV.13)
2Z 1

S1(t) = − dx1 p(x1; t) ln p(x1; t) = [1 + ln (2πΣ11)] , (IV.14)
2Z 1

S2(t) = − dx2 p(x2; t) ln p(x2; t) = [1 + ln (2πΣ22)] . (IV.15)
2 

IV.3.1 Information Length for Equation (IV.7) 

We now use Proposition II.6 (Equation (II.70) for (IV.7)) and Theorem III.1. Since the covariance matrix Σ as 
well as the mean values µ(t) (see Appendix AIV.1) for the joint PDF involve many terms including special 
(error) functions, it requires a long algebra and numerical simulations (integrations) to calculate Equations 
(III.21) and (III.22), respectively. The following thus summarise the main steps only. First, we can show that 
Γ2(t) for the linear non-autonomous stochastic process (II.68) can be rewritten as � � 

Γ2(t)=µTATΣ−1Aµ+uBTΣ−1Bu+µTATΣ−1Bu+uBTΣ−1Aµ+ 
1 

Tr (Σ−1∂t1 Σ)
2 . (IV.16)

2 
We can then show that for Equation (IV.7), Equation (IV.16) becomes 

� � � � � ��� 
Γ2(t)= 

1 ⟨x2⟩2Σ22+ γ⟨x2⟩+ω2⟨x1⟩+u 2⟨x2⟩Σ12+Σ11 γ⟨x2⟩+ω2⟨x1⟩+u |Σ|� � � 
+ 

1
2Σ2

12 (∂tΣ22)(∂tΣ11)+(∂tΣ12)
2 +2Σ11(∂tΣ12) (Σ22(∂tΣ12)|Σ|2 � 

−2Σ12(∂tΣ22))+Σ2 +4Σ22Σ12(∂tΣ12)(∂tΣ11)+Σ2 . (IV.17)11(∂tΣ22)
2 

22(∂tΣ11)
2 

By using ⟨x1⟩, ⟨x2⟩, Σ11, Σ12 and Σ22 given in Appendix AIV.1, we calculate (IV.17). Finally, to calculate IL 
in Equation (III.22), we perform the numerical integration of Γ over time for the chosen parameters and initial 
conditions. Results are presented in § IV.4. 
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IV.3.2 Information Flow for Equation (IV.7) 

To fnd the information fow for Equation (IV.7), we compare it with Equation (IV.1) 

∂x1 H(x) ∂x2 H(x) T2 = −x2(t), =γx2(t) + ω2x1(t) − u(t), T1 = 0, = D(t). (IV.18)
Γ1 Γ2 Γ2 

After some algebra using Equation (IV.18) in Equations (IV.2) and (IV.3), we can show (see Appendix AIV.2 

for derivation) 

−ω2 Σ12 Σ12
2 

T1→2 = − D , (IV.19)
Σ22 |Σ|Σ22 

1 d
T2→1 = ln Σ11. (IV.20)

2 dt 

It is important to note that unlike (IV.17), Equations (IV.19) and (IV.20) depend only on the covariance matrix 
Σ, being independent of the mean values, as noted in §IV.1. 

IV.4 Simulations of the case study 

In this section, we present simulation results that show how IF and IL capture abrupt changes in the system 
dynamics of the Kramers equation. To this end, we designed four simulation experimental scenarios, which 
are summarised in Table IV.1. The different scenarios were chosen depending on whether D(t) and u(t) 
(defned in Equations (IV.9) and/or (IV.10), respectively) include(s) an impulse function (that is, whether b = 0 
or 1 and d = 0 or 1), which caused the abrupt changes in the values of Σ(t) and µ, respectively. Specifcally, 
Case 1 was without any impulse (b = d = 0); Cases 2 and 3 were when the impulse was included in D and 
u(t) (b = 1, d = 0 and b = 0, d = 1), respectively; Case 4 was with both impulses (b = d = 1). As noted at the 
end of §IV.4, IL and IF in Equation (IV.17) and Equations (IV.19)-(IV.20) clearly reveal that IF was not affected 
by the change in the mean values. This means, IF took the same value in both Cases 1 and 3; it also took the 
same value in both Cases 2 and 4. This is highlighted in Table IV.1 by the purple colour. 

For Cases 1–4 in Table IV.1, we fxed the value of ω to be ω = 1 and varied γ to explore different scenarios 
of no damping γ = 0, underdamping γ < 2ω, critically damping γ = 2ω and over damping γ > 2ω. 
Furthermore, we fxed the values of the initial covariance matrix as follows " # 

0.01 0 
Σ(0) = . (IV.21)

0 0.01 

The initial mean values were fxed as µ(0) = [−0.5, 0.7]T for all Cases. 
In addition, we performed the stochastic simulations for Cases 1–4 according to the Gaussian statistics 

x ∼ N (µ, Σ), specifed by the values of Σ and ⟨xi⟩ (i = 1, 2) given in Appendix AIV.1. Simulated random 
trajectories are shown in blue dots in the phase portrait of x1 and x2 in Figures IV.2-IV.7 of the following 
subsections. 

IV.4.1 Information Flow Simulation Results 

As noted in Section IV.2.1, we recall that IF is used to measure a directional information fow in terms of its 
entropy and that IF is either positive or negative unlike transfer entropy. In our experimental simulations, we 
were interested in how sensitive IF was to abrupt changes. The time-evolutions of IF T1→2, T2→1, joint S(t) 
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Table IV.1: A summary of the simulated scenarios of abrupt changes in Σ(t) and µ(t) in the Kramers equation. 
Case 1 is without any impulse; Cases 2 and 3 are when the impulse is used for D(t) and u(t), respectively; 
Case 4 is with both impulses. We emphasise that IF is affected only by changes in D(t) while IL is affected 
both by D(t) and u(t). For each case, we fx the value of ω as ω = 1 and vary γ to explore different scenarios 
of no damping γ = 0, underdamping γ < 2ω, critically damping γ = 2ω and over damping γ > 2ω. 

Cases 

D(t) 
u(t) 

D(t) = 0.001 
u(t) = 0 

D(t) = 0.001 + 1 
π|0.1| exp − (t−4)2 

(0.1)2 

! 
u(t) = 0 

D(t) = 0.001 

u(t) = 1 
π|0.1| exp − (t−4)2 

(0.1)2 

! D(t) = 0.001 + 1 
π|0.1| exp − (t−4)2 

(0.1)2 

! 

u(t) = 1 
π|0.1| exp − (t−4)2 

(0.1)2 

! 

1 2 3 4 

Underdamped Undamped Critically damped Overdamped 

γ = 0 γ < 2ω γ = 2ω γ > 2ω 

Parameters 

Changing 
γ while fxing 
ω 

IF IL 

and marginal S1(t), S2(t) entropies in Equations (IV.13)-(IV.15), and the phase portrait of x1 vs x2 are shown 
in Figures IV.2 and IV.3. We used the same initial condition Σ(0) given by Equation (IV.21) and ω = 1 while 
varying the value of γ. As noted above, random trajectories from stochastic simulations were overplotted in 
blue dots in the phase portraits. Specifcally, Figures IV.2 and IV.3 are for Case 1 and Case 2, respectively 
(with b = 0 and b = 1 in (IV.9), respectively). The exact value of D(t) is shown in Table IV.1 and as a blue 
dotted line in all panels of Figures IV.2 and IV.3 (using the y-axis on the right of each panel). 

Case 1—Constant D(t) and u(t) = 0 

We started with Case 1 which had no perturbation (constant D(t) = D0 = 0.001 and u(t) = 0) and 
examined the effects of the system parameters γ on IF. First, with no damping γ = 0 (Figure IV.2a), S1, S2 and 
S all increased monotonically in time from a negative value (a less disordered state) to a positive value (more 
disordered state) due to the stochastic noise. On the other hand, T1→2 and T2→1 showed similar behaviours 
but with opposite sign, making T2→1 + T1→2 ≈ 0. The opposite sign of T1→2 and T2→1 suggests that x2 acted 
to increase the marginal entropy of x1 (by transferring the stochasticity fed into x2 by ξ) while x1 decreased 
the marginal entropy of x2 (by providing a restoring/inertial force causing the harmonic oscillations). The 
fact that T2→1 + T1→2 ≈ 0 can be corroborated by the similarity between the marginal entropies S1 and S2. 

Second, in the underdamped case with 0 < γ < 2ω shown in Figure IV.2b, the phase portrait exhibited the 
behaviour of an underdamped harmonic oscillator. The role of the damping γ ̸= 0 was to bring the system to 
an equilibrium in the long time limit where PDFs were stationary and S1, S2 and S took constant values � � � � � � 

1 2Dπ 1 2Dπ 2Dπ
lim S1(t) = ln , lim S2(t) = ln , lim S(t) = ln , 
t→∞ 2 γω2 t→∞ 2 γ t→∞ γω 

as can be shown by using (AIV.40) in (IV.13)-(IV.15). Specifcally, in Equation (II.72), the frst term in RHS 
(which depended on Σ(0)) vanisheed as t → ∞ while the second term in RHS (which depended on D(t)) 
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determined the value of limt→∞ Σ(t) which for γ = 1 was as follows (see Equation AIV.40) " # 
0.001 0 

Σ(t → ∞) = . (IV.22)
0 0.001 

The reason why S1, S2 and S overall decreased in time is because the equilibrium had a narrower PDF 
(Σ12(t → ∞) = 0.001, Σ22(t → ∞) = 0.001) (see Equation (IV.22)) than the initial PDF (Σ11(0) = Σ22(0) = 
0.01). Consequently, 

lim T1→2(t) = lim T2→1(t) = 0. 
t→∞ t→∞ 

Third, in the critical/overdamped case γ ≥ 2ω in Figures IV.2c-IV.2d, we observed a much faster decrease 
in S2 than S1 as γ damps x2 quickly (recall that dx1 = x2 and see (IV.7)). Consequently, there was a fasterdt 
and higher transient in T1→2 compared with T2→1 for larger γ, fuctuations in x1 having a greater effect 
on the rate of change in the marginal entropy S2. It is worth emphasising that our results for γ ̸= 0 above 
(e.g., the decrease in entropies) involved the narrowing of a PDF over time. In particular, T1→2 and T2→1 

for a constant D(t) = 0.001 were caused by the change in Σ(t) from its initial value Σ(0) to the equilibrium 
value in Equation (IV.22) due to D(t) = 0.001. For a much larger D(t), Equation (IV.22) took a larger value 
than Σ11(0) = Σ22(0), and PDFs became broaden over time, entropies increasing in time, for instance. As a 
result, T2→1 ≤ 0 while T1→2 > 0. Appendix IV.4.4 explores how different values of the constant D(t) affect IF. 
Finally, we note that in the phase portrait plots, the stochastic trajectories shown in blue dots generated by 
x ∼ N (µ, Σ) remained near the trajectories of the mean values. 

Case 2—Perturbation in D(t) and u(t) = 0 

To study how sensitive IF was to a sudden perturbation in D(t) (therefore in Σ(t)), we included an impulse 
function localised around t = 4 (see Table IV.1) in D(t), which is shown in blue dotted line using the right y 
axis on Figure IV.3. As before, Figure IV.3 shows results for the undamped, underdamped, critically damped 
and over damped cases, respectively. 

First, in Figure IV.3a for γ = 0, we observed that in a sharp contrast to Figure IV.2a, the impulse rendered 
large fuctuations in the simulated trajectory x ∼ N (µ, Σ), with signifcant deviation from the mean trajectory 
µ. On the other hand, such an abrupt change in Σ(t) led to a rapid increase in S1, S2, S, T1→2 and T2→1 

followed by oscillations. The amplitude of these oscillations slowly decreased in time, the oscillation frequency 
set by ω (as expected for no-damping). 

Second, in the underdamped case 0 < γ < 2ω shown in IV.3b, T1→2 and T2→1 exhibited some oscillations 
before reaching the equilibrium, as can also be seen from the phase portrait behaviour. Since the damping 
was still small, there was rather a long transient. It is interesting to notice that T1→2 and T2→1 fipped their 
signs (e.g., T2→1 < 0 to T2→1 > 0 around t = 4 as t increased) due to a sudden increase in D (Σ). This can 
be understood since the perturbation applied to x2 increased marginal entropy S1 while x1 decreased the 
marginal entropy S2. As a result, around the time t = 4 where D was maximum, the sign of IF became 
opposite to that without the perturbation shown in Figure IV.2b. Third, for the case γ ≥ 2ω shown in Figures 
IV.3c and IV.3d, the sign of T1→2 and T2→1 behaved similarly to the underdamped case IV.3b). Overall, Figure 
IV.3 shows that |T1→2| and |T2→1| exhibited their peaks around t = 4. However, a close examination of the 
cases with γ ̸= 0 revealed that the peak of |T1→2| and |T2→1| appeared after the peak of the impulse (in blue 
dotted line). That is, the peaks of |T1→2| and |T2→1| trailed (not preceded) the actual impulse peak. This will 
be compared with the case of IL in the next section where the peak of the information length diagnostics 
Γ2 tended to precede the impulse peak, predicting the abrupt changes earlier than IF. Furthermore, IF was 
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independent of external perturbations in µ. 
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Figure IV.2: Cont. 

IV.4.2 Information Length Diagnostics Simulation Results 

In this subsection, we investigated how sensitive information length diagnostics (L, Γ2) were to the abrupt 
changes in the system dynamics. In contrast to IF, IL was capable of detecting changes in both mean values 
(u(t)) and Σ (D(t)), as can be inferred from Equation (III.22). We considered the four Cases 1–4 in Table IV.1 

in Figures IV.4 to IV.7, respectively. In each case, we present the results of L, Γ2, Γ1
2, Γ2

2, Γ2 − Γ2 and the m 
phase portrait of x1 vs x2 (where the stochastic simulations are shown in blue dots). As before, we used the 
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(c) Critically damped. 
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Figure IV.2: Graphs for T1→2(t), T2→1(t), S1(t), S2(t) and S(t) using ω = 1, µ(0) = [−0.5, 0.7]T , Σ11(0) = 
Σ22(0) = 0.01, and Σ12(0) = Σ21(0) = 0. (a) undamped case (γ = 0), (b) underdamped case (γ = 1), (c) 
critically damped case (γ = 2), and (d) overdamped case (γ = 3). Each panel also includes the phase portrait 
of x1 vs x2. In these plots there is no perturbations in the Kramers equation (IV.7), i.e., D(t) = 0.001 and 
u(t) = 0. 

same initial conditions Σ(0) in Equation (IV.21) and the same parameter values (ω = 1) while varying γ for 
undamped, underdamped, critically damped and overdamped cases. The initial mean values are fxed as 
µ(0) = [−0.5, 0.7]T for all Cases. 

It is worth noting that (the unperturbed) Case 1 in Table IV.1 corresponded to the usual Kramers equation, 
previously studied in [6]. We nevertheless show results for Case 1 below to be able to compare with Cases 
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Figure IV.3: Cont. 

2–4 as well as show new results such as Γ2
1, Γ2

2, and Γ2 − Γ2 that might be useful for understanding the m 
correlation between variables. Note that in the following, Γ2 − Γ2 plots are not discussed in each Case, but m 
instead discussed separately in Section IV.4.3. 

Case 1—Constant D(t) and u(t) = 0 

In this unperturbed case, our main focus here was on the effects of γ on L, Γ2 and the marginal information 
velocities Γ2

1 and Γ2
2. 
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Figure IV.3: Graphs for T1→2(t), T2→1(t), S1(t), S2(t) using ω = 1, µ(0) = [−0.5, 0.7]T , Σ11(0) = Σ22(0) = 0.01, 
and Σ12(0) = Σ21(0) = 0. (a) undamped case (γ = 0), (b) underdamped case (γ = 1), (c) critically damped case 
(γ = 2), and (d) overdamped case (γ = 3). Each panel also includes the phase portrait of x1 vs x2. In these plots, 

1we have a perturbation over Σ in the Kramers equation (IV.7), i.e., D(t) = 0.001 + √ exp(−(t − 4)2/(0.1)2)
π|0.1|

and u(t) = 0. 

First, for the undamped case γ = 0 shown in Figure IV.4a, harmonic oscillations (e.g., seen in the phase 
portrait) appeared in Γ2

1 and Γ2
2, their oscillation frequency determined by ω. We recall that Γ2

1 and Γ2
2 are 

calculated from the marginal PDF of x1 and x2, respectively. Because of the absence of damping, Γ2(t) 
decreased but never reached 0. The fnite value of Γ2(t) is due to ∂tΣ(t) ̸= 0 and ∂tµ ̸= 0 as the PDF p(x; t) 
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evolved according to (II.70). 
When 0 < γ < 2ω in Figure IV.4b, a non-zero damping led to limt→∞ Γ2(t) = 0, as the PDF reached its 

equilibrium value while L converged to a fnite value. It is worth highlighting that non-zero Γ, Γ1 and Γ2 
2 

signifed transient behaviour far from equilibrium. Finally, in Figures IV.4c and IV.4d for γ ≥ 2ω, we observed 
that a higher value of γ led to the shorter duration of transients and larger fuctuations in Γ2. 

Case 2—Perturbation in D(t) and u(t) = 0 

Figure IV.5 shows the effect of an impulse like function in D(t) (see (IV.9)), which then led to an abrupt 
change in the covariance of the system PDF p(x; t) given by (II.70). Since IL depended on the value of� � 
1 
2 Tr (Σ−1∂t1 Σ)

2 (see Equation (III.22)), this abrupt change in Σ had a considerable impact on Γ2(t). 

For the case γ = 0 shown in Figure IV.5a, the amplitude of Γ2 and L was seen to be increased around the 
time of the impulse peak. The phase portrait clearly shows the increase in the uncertainty (more scattered 
data). The values of Γ2

1 and Γ2
2 were also seen to increase due to the perturbation. 

For 0 < γ < 2ω, the oscillations in Γ2
1 and Γ2

2 were much less pronounced due to damping (see Figure 
IV.5b). This behaviour prevailed also for γ ≥ 2ω shown in Figures IV.5c and IV.5d. Interestingly, a close 
examination revealed that the maxima in Γ2 and Γ2

2 followed the peaks of the impulse (in blue dotted line), as 
alluded at the end of Section IV.4.1. This was seen more clearly for larger γ in Figures IV.5c to IV.5d where 
the maxima in Γ2, Γ2

1 and Γ2
2 all preceded the impulse peaks. These results demonstrate that the information 

diagnostics predicted the onset of an ongoing perturbation earlier than the information fow. 

Case 3—Constant D(t) and Perturbation in u(t) 

Figure IV.6 shows results for a constant D(t) and an impulse-like external input u(t) (see (IV.10)) which 
caused an abrupt change in µ. u(t) is shown in a red dotted line using the right y axis. 

When γ = 0, Figure IV.6a shows how the perturbation changed the dynamics of µ while Σ(t) remained 
unchanged in the phase portrait plot. When a non-zero damping was included in Figures IV.6b to IV.6d, Γ2, 
Γ2

1 and Γ2
2 approached zero as t → ∞. The phase portrait in Figures IV.6b to IV.6d shows how the perturbation 

changed the trajectory temporarily. 
Overall, we observed a very large increase in Γ2, Γ1

2 and Γ2
2 (larger increase in Γ2

2 than in Γ2
1), their peaks 

forming a little before or around the impulse peak (shown in red dotted line). Besides, the value of L was 
higher when we had a perturbation on u(t) and a constant D(t) than when D(t) was perturbed and u(t) = 0 
for γ > 0 (see it by comparing Figure IV.5 to Figure IV.6). Furthermore, Γ2

2 was the most affected by the 
changes in u(t) since x2 directly depends on u(t). 

Finally, it is important to highlight that our result of a high sensitivity of IL to abrupt changes in u(t) was 
not shared with IF which was insensitive to u(t). 

Case 4—Perturbations in Both D(t) and u(t) 

Case 4 in Table IV.1 is when we added impulse like functions to both D(t) and u(t) (b = 1 and d = 1 in 
Equations (IV.9) and (IV.10), respectively.). Again, note that u(t) is shown in a red dotted line using the right 
y axis. Overall, the phase portraits in Fig. IV.7 for the undamped, underdamped, critically damped and 
overdamped scenarios show that the perturbations momentarily broadened the width of PDF (II.70) while 
causing a large deviation of the trajectory of µ. 

Figure IV.7a for the undamped case γ = 0 shows that the perturbations increased the value of L in 
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comparison to Case 3 with γ = 0 (See Figure IV.6a). This is due to the increase in Σ in Case 4 by the impulse 
in D(t), which increased the uncertainty against which the information was measured. 

For non-zero damping in Figures IV.7b to IV.7d, we saw a substantial increment in the amplitude of Γ2 
2 

(similar to Case 2 but smaller than in Case 3). In fact, in all cases of the underdamped, critically damped and 
overdamped scenarios, the overall behaviour was close to that observed in Case 2 (see Figure IV.5) than that 
in Case 4. It is because the increase in mean values due to the impulse u(t) was somewhat compensated by 
the uncertainty increase due to the impulse in D(t). This is a consequence of both impulses having the same 
form, e.g., taking their maximum values at the same time t = 4 (see Table IV.1). For instance, if Case 4 were 
considered with the two impulses that were timed differently, much larger values of Γ, Γ1, Γ2 were expected 
for Case 4 compared with Case 2. There were obviously differences between Case 2 and Case 4, for instance, 
in the long time limit t → ∞, L in Case 4 was always bigger than that in Case 3. Finally, similar comments as 
before could be made in regards to the prediction capabilities of the information length diagnostics Γ2. 

IV.4.3 Interpretation of the Γ2 − Γ2 Plotsm 

We now discuss the plot of Γ2 − Γ2 for all Cases 1-4 collectively to point out its usefulness. m 
First, according to (III.22), it is clear that Γ2 considered the contribution from the non-independent random 

variables ⟨x1⟩, ⟨x2⟩, and its covariance matrix Σ(t) to the information changes in time, while Γm was based on 
the sum of Γi from a marginal PDF of xi (see Defnition III.1). Thus plotting Γ2 − Γ2 

m gave an approximation 
of the contribution from the cross-correlation Σij∀i ̸= j to Γ2. 

As an example, Figure IV.8 shows the simulation of a non-perturbed scenario (u(t) = 0 and D(t) = 0.001) 
using µ(0) = [−0.5, 0.7]T , Σ11(0) = Σ22(0) = 0.01, Σ12(0) = Σ21(0) = 0, γ = 1 and ω = 2 (underdamped). 
This example permitted us to compare the evolution/deformation of the width of p(x; t) (given by Equation 
(II.70)) in the x1-x2 plane with the value of Γ2 − Γ2 

m over time shown in the right panel of Figure IV.8. 
Figure IV.8 when Γ2 − Γ2 = 0 (at t = 0, for instance), shows that the shape of p(x; t) was a perfect circle m 

(this because Σ12(t → 0) = 0). For Γ2 − Γ2 ̸= 0, the shape of p(x; t) was deformed according to the value of m 
Γ2 − Γ2 

m. The simulations suggest that the bigger the value of |Γ2 − Γ2 | the higher the correlation between them 
random variables x1 and x2 (p(x; t) was highly deformed). 

In summary, in regard to Cases 1–4, we can remark two characteristics on the behaviour of Γ2 − Γ2 inm 
Figures IV.4 to IV.7. First, the value presented more variations when we had a perturbation on D(t), for 
instance when γ = 0 there were high oscillations not presented when there was a perturbation on u(t) but 
not on D(t). Second, the higher the value of γ the less the deformations through time of p(x; t)’s width since 
Γ2 − Γ2 showed less changes through time. m 

IV.4.4 Effects of Different Constant D(t) on IF 

As noted in Section IV.4.1, the sign of T1→2 and T2→1 is determined by whether a PDF becomes narrower 
or broader in time since in Equation (II.72), the frst term in RHS (which depends on Σ(0) in Equation 
(IV.21)) vanishes as t → ∞ while the second term in RHS (which depends on D(t)) determines the value 

D0 D0of limt→∞ Σ(t). Specifcally, Σ11(0) = Σ22(0) = 0.01 and Σ12(t → ∞) = 
γω2 , Σ22(t → ∞) = γ . In this 

subsection, we look at this in detail by focusing on Case 1 (see Table IV.1). 
We start by recalling that in Section IV.4.1, we have discussed the effects of certain fxed value D0 for D(t) 

on IF including the case of no perturbation (Case 1), showing the effects of the parameters γ. In the following, 
we present the effect of different values of constant D(t) = D0 ∈ [0, 0.5] on T2→1 and T1→2 in Figure IV.9. 
Note that results for D0 ≫ 0.5 have quite similar behaviours to the case of D0 = 0.5. As before, the different 
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(a) Undamped. 

(b) Underdamped. 

Figure IV.4: Cont. 

values of γ are considered to examine undamped, underdamped, critically damped or overdamped scenarios. 
All other parameter values and initial conditions are the same as those used in Figure IV.2. 

Figure IV.9a shows the evolution of T2→1 and T1→2 for different D0 without damping γ = 0. As D0 

decreases, T1→2 and T2→1 also decrease their amplitude. There is a higher peak in the transient in both 
T1→2 and T2→1 for D0 = 0.5. An interesting behaviour is observed when D0 = 0 (the deterministic case 
without noise ξ = 0), where T1→2 ≈ T2→1 ≈ 0; the zooming of Figure IV.9a shows very small-amplitude 
(O(10−7)) oscillations with the angular frequency ω. In the underdamped case 0 < γ < 2ω shown in Fig. 
IV.9b, the value of D0 determines the sign of T1→2 and T2→1, changing their sign around D0 = Dc where 
0.001 < Dc < 0.1. Specifcally, this change in the sign of T1→2 and T2→1 tells us that when x2 minimises S1 
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(c) Critically damped. 

(d) Overdamped. 

Figure IV.4: Graph for Γ2(t) and L(t) using ω = 1, µ(0) = [−0.5, 0.7]T , Σ11(0) = Σ22(0) = 0.01 and 
Σ12(0) = Σ21(0) = 0 for various values of γ. (a) undamped case (γ = 0), (b) underdamped case (γ = 1), (c) 
critically damped case (γ = 2), and (d) overdamped case (γ = 3). Each panel also includes the phase portrait 
of x1 vs x2. In these plots, we have no perturbations over the Kramers equation (IV.7), i.e., D(t) = 0.001 and 
u(t) = 0. 

when D0 < Dc while maximising it when D0 > Dc. The opposite holds for the effect of x1 on S2. Note that 
D0 = 0, IF oscillates forever due to the absence of damping while it asymptotically converges for a non-zero 
D0. Even when γ ≥ 2ω (see Figures IV.9c and IV.9d), we observe similar behaviours of T1→2 and T2→1. In 
particular, x2 minimises S1 when D < Dc while maximising it when D0 > Dc, with the opposite effect of x1 

on S2. 
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(a) Undamped. 

(b) Underdamped. 

Figure IV.5: Cont. 

IV.5 Abrupt event analysis via correlation coeffcients 

In this section, we defne different correlations coeffcients in terms of entropy production and information 
rate as a possible tool for abrupt event detection and causality analysis. The information and entropy-based 
coeffcients are compared through case studies against the mutual information and Pearson correlation coeff-
cients. 
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(c) Critically damped. 

(d) Overdamped. 

Figure IV.5: Graph for Γ2(t) and L(t) using ω = 1, µ(0) = [−0.5, 0.7]T , Σ11(0) = Σ22(0) = 0.01 and 
Σ12(0) = Σ21(0) = 0 for various values of γ. (a) undamped case (γ = 0), (b) underdamped case (γ = 1), (c) 
critically damped case (γ = 2), and (d) overdamped case (γ = 3). Each panel also includes the phase portrait 
of x1 vs x2. In these plots, we have a perturbation over the covariance matrix Σ of the Kramers equation (IV.7), 

1i.e., D(t) = 0.001 + √ exp(−(t − 4)2/(0.1)2) and u(t) = 0.
π|0.1| 
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(a) Undamped. 

(b) Underdamped. 

Figure IV.6: Cont. 

IV.5.1 Mutual information 

The mutual information between two continuous random variables xi and xj with a joint Gaussian PDF p(x; t) 
at time t is defned as 

!Z p(x; t)
Iij(t) := p(x; t) ln dx = Si(t) + Sj(t) − S(t). (IV.23) 

R2 p(xi, t)p(xj, t) 
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(c) Critically damped. 

(d) Overdamped. 

Figure IV.6: Graph for Γ2(t) and L(t) using ω = 1, µ(0) = [−0.5, 0.7]T , Σ11(0) = Σ22(0) = 0.01 and 
Σ12(0) = Σ21(0) = 0 for various values of γ. (a) undamped case (γ = 0), (b) underdamped case (γ = 1), 
(c) critically damped case (γ = 2), and (d) overdamped case (γ = 3). Each panel also includes the phase 
portrait of x1 vs x2. Here, we have a perturbation over the mean value µ of the Kramers equation (IV.7), i.e., 

1D(t) = 0.001 and u(t) = √ exp(−(t − 4)2/(0.1)2).
π|0.1| 

Here, p(xi, t) and p(xj, t) are the marginal PDFs of the random variables xi and xj, respectively. Recall, the 
sub-index i in the entropy S refers to the entropy from the marginal PDF of xi and its value is simply 

1 
�q � 

Si(t) = + ln 2πΣii(t) . (IV.24)
2 
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(a) Undamped. 

(b) Underdamped. 

Figure IV.7: Cont. 

Mutual information represents the amount of information of a random variable that can be obtained by 
observing another random variable. Hence, it is a measure of the mutual dependence between the two 
variables [110]. To measure correlations between two random variables in a process, we can utilise common 
normalised variants of the mutual information, for instance, the total correlation formula [111; 112] 

Iij(t)
ρI(t) := 2 , (IV.25)

Si(t) + Sj(t) 
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(c) Critically damped. 

(d) Overdamped. 

Figure IV.7: Graph for Γ2(t) and L(t) using ω = 1, µ(0) = [−0.5, 0.7]T , Σ11(0) = Σ22(0) = 0.01 and 
Σ12(0) = Σ21(0) = 0 for various values of γ. (a) undamped case (γ = 0), (b) underdamped case (γ = 1), (c) 
critically damped case (γ = 2), and (d) overdamped case (γ = 3). Each panel also includes the phase portrait 
of x1 vs x2. Here, we add a perturbation over the mean µ and covariance Σ of the Kramers equation (IV.7), 

1 1i.e., D(t) = 0.001 + √ exp(−(t − 4)2/(0.1)2) and u(t) = √ exp(−(t − 4)2/(0.1)2).
π|0.1| π|0.1| 

where xi and xj are treated symmetrically. Equation (IV.25) is the inverse of the mean of the inverted 
uncertainty coeffcients Cij(t) and Cji(t), defned as 

Cij(t) := 
Iij(t) ,
Si(t) 

Cji(t) := 
Iij(t) ,
Sj(t) 

(IV.26) 
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Γ 2 1 (
t)

 +
 Γ

 2 2 (
t)
) 

Γ2(t) − Γ2 
m(t) 

Figure IV.8: The value of Γ2 − Γ2 give us information about the deformation of p(x; t), affected by them 
cross-correlation Σ12. The values used here are ω = 2, µ(0) = [−0.5, 0.7]T , Σ11(0) = Σ22(0) = 0.01, 
Σ12(0) = Σ21(0) = 0, D(t) = 0.001 and u(t) = 0. 

weighted by the entropy of each variable separately [113]. The uncertainty coeffcient (IV.26) gives a value 
between 0 and 1, indicating no association or complete predictability of xi from xj (given xj, what fraction of 
xi we can predict), respectively. Thus, (IV.25) gives an average of the predictability between xi and xj. The 
total correlation formula (IV.25) is as an alternative to the well-known Pearson correlation coeffcient 

Σij 
ρ := p , (IV.27)

ΣiiΣjj 

when dealing with non-linear relationships between the random variables [114; 115; 116]. 

IV.5.2 Information rate and entropy production correlation coeffcients 

In analogy to (IV.25) and (IV.27), we defne new normalised correlation coeffcients between two variables xi 

and xj in terms of information rate and entropy production as follows 

Γi(t) + Γj(t) − Γ(t)
ρΓ(t) := , (IV.28)

Γ(t) 
Πi(t) + Πj − Π(t)

ρΠ(t) := . (IV.29)
Π(t) 

Here, Πi and Πj are the contributions from the variable xi and xj to the entropy production Π (see Equation 
(III.76)). The values of Γi and Γj are the information rates from the marginal PDFs of xi and xj, respectively. 
For instance, given the marginal PDF p(xi, t) of the random variable xi the value of Γi is defned as in 
Defnition III.2. Equations (IV.28)-(IV.29) are not defned exactly as the Pearson correlation coeffcient (IV.27) 
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(a) Undamped. (b) Underdamped. 
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Figure IV.9: Graphs for T1→2(t) and T2→1(t) using ω = 1, µ(0) = [−0.5, 0.7]T , Σ11(0) = Σ22(0) = 0.01 
and Σ12(0) = Σ21(0) = 0 for various values of γ. Specifcally, (a) undamped case (γ = 0 varying D = 
{0, 0.0001, 0.001, 0.01, 0.1, 0.5}), (b) underdamped case (γ = 1 varying D = {0, 0.0001, 0.001, 0.01, 0.1, 0.5}), (c) 
critically damped case (γ = 2 varying D = {0, 0.0001, 0.001, 0.01, 0.1, 0.5}), and (d) overdamped case (γ = 3 
varying D = {0, 0.0001, 0.001, 0.01, 0.1, 0.5}). Since the entropic measures T1→2(t) and T2→1(t) fully depend 
on the value of Σ, the value of u(t) does not affect the results. 

or the normalised correlation coeffcient of the mutual information (IV.25). Instead, they are expressed 
analogously to the information quality ratio, a quantity of the amount of information of a variable based 
on another variable against total uncertainty [117]. Hence, ρΓ/ρΠ is said to quantify the predictability of 
information rate/entropy production of a variable based on another variable. A graphical description of 
Equation (IV.28) in the form of Venn diagram is shown in Figure IV.10. 

When the temperature changes abruptly in a system like (III.80), the value of D (noise amplitude) is 
affected. In the case of Brownian motion, such abrupt event will contribute to the uncertainty in the control of 
the position of the Brownian particle. To bring light to the analysis and study of abrupt events, we use our 
toy models and simulate an abrupt change in the system’s temperature by using the following impulse like 
function for the ii-element of the noise amplitude matrix D and on the input function u(t) 

� �2t−tp1 − aDii(t) = D0 + √ e , (IV.30)
|a| π � �2t−tp1 − au(t) = √ e . (IV.31)
|a| π 
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Figure IV.10: Venn diagram de-
scribing the meaning of (IV.28). 
A similar diagram can be made 
for (IV.29). 

Here, the second term on RHS of (IV.30) and (IV.31) takes a high value for a short time interval around tp and 
a changes the amplitude of the impulses. 

IV.5.3 Case study: Harmonically bound particle 

We start analysing the proposed correlation coeffcients by considering its application to abrupt event analysis 
of system (III.80). Figures IV.11 and IV.12 show the computer simulation results and time evolution of abrupt 
events in D and u, respectively. The noise amplitude is perturbed via the element D22 of the matrix D and 
the input force u only affects the state x2. Figures IV.11 and IV.12 are divided in three panels, IV.11a/IV.12a 
which includes the phase portrait of x1 vs x2 and the time evolution of the correlation coeffcients ρ and ρI ; 
IV.11b/IV.12b shows the time evolution of ρΓ, Γ, Γ1 and Γ2; IV.11c/IV.12c the time evolution of ρΠ, Π, Π1 and 
Π2. 

From Figure IV.11, the coeffcient ρI is the most sensitive to noise amplitude perturbations, as it shows an 
asymptote around the peak of the perturbation at t = 4 (see Figure IV.11a). On the other hand, the value of 
Γ predicts2 the ongoing perturbation (corroborating the previous results shown in [7]) since it precedes the 
aforementioned perturbation (see Figure IV.11b). Regarding the perturbation in u(t) shown in Figure IV.12, 
the coeffcients ρ and ρI are no longer useful because they are not sensitive to changes in the mean value of 
the PDF (see Figure IV.12a). In contrast, an abrupt event in the mean value is well captured by ρΓ and ρΠ. 

Figures IV.12b and IV.12c show that the values of ρΓ and ρΠ change abruptly at the time t = 4 when 
perturbation occurs. Figure IV.12b presents negative ρΓ at t ≈ 4 due to the large difference between Γ2 and Γ1. 
For the similar reasons, ρΠ also presents a high decrement at t ≈ 4. Here, the coeffcients are able to detect 
the perturbation over the mean value but they are no longer able to predict it. 

Remark IV.1. In Figures IV.11 and IV.12, the perturbation is exerted close to the system equilibrium point as Γ is small 
by t = 4 when the impulse occurs. Hence, we expect similar results when the perturbation is applied at the equilibrium 
state ∂t p(x, t) = 0. Yet, future work will expand in this direction to give more conclusive and rigorous results. 

IV.5.4 Case study: Controllable canonical form 

To analyse abrupt events in high order systems, we propose, as an offine method, the application of the 
Euclidean norm to each marginal or joint information rate/entropy production of the random variables in the 
system. Recall that the Euclidean norm of any time dependant function ϑ(t) is defned as follows �Z � 1 

∥ϑ(t)∥ := 
t f 

ϑ(τ)2dτ 
2 

. (IV.32)
0 

2 More precisely, it seems to forecast the perturbation with an small forecasting horizon. 
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Figure IV.11: Cont. 

As a demonstration of this technique, here we study the effects of abrupt events in the noise amplitude matrix 
D(t) and the force input u(t) of the popular controllable canonical form of the state-space realization of a 
linear system given by 

ẋ (t) = 

  

  x(t) + 

  
0 1 0 · · · 0 
0 0 1 · · · 0 

  u(t) + ξ(t). (IV.33) 

0 
. . . 

. . . ... . . . ... . . . 
0 0 0 · · · 1 1 
−dn −dn−1 −dn−2 · · · −d1 

Here, x := [x1, x2, . . . , xn]⊤ ∈ Rn , u ∈ R (see Equation (IV.31)) and ξ := [ξ1, ξ2, . . . , ξn]⊤ ∈ Rn is a vector of 
random variables with ⟨ξi(t)⟩ = 0, ⟨ξi(t)ξ j(t ′ )⟩ = 2Dijδ(t − t ′ ), and Dij defned as in (IV.30). Model (IV.33) 
provides us with a structure where the input enters a chain of integrators making it to move every state in the 
Langevin equation (i.e. they are fully controllable). We consider the case when (IV.33) is of 4th order. The 
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Figure IV.11: Numerical experiment of an abrupt event analysis in the model (III.80) via correlation coeffcients. 
(a) plots of the total correlation ρI , Pearson correlation ρ and a phase portrait of x1 vs x2. In the phase portrait, 
the pink dots and the solid line represent a single trajectory X and the mean value µ of (III.80), respectively. 
(b) plots of the information rate correlation coeffcient ρΓ, information rate Γ, and the contributions from x1 

and x2 to the information rate given by Γ1 and Γ2, respectively. (c) plots of the entropy production correlation 
coeffcient ρΠ, entropy production Π, and the contributions from x1 and x2 to the entropy production given by 
Π1 and Π2, respectively. Here, the perturbation acts over the covariance Σ of (III.80), i.e., u(t) = D11(t) = 0 

2
1 −( t−4 

and D22(t) = 0.001 + √ 0.1 ) .|0.1| π 
e 

values of the parameters are d4 = [d1, . . . , dn]⊤ = [−1.5165, −5.2614, −6.7985, −4.2206]⊤ . In Figures IV.13 to 
IV.15, we use the notation xi ∀i = 1, 2, 3, 4 and x to refer to the values of Π, Ṡ and Γ computed from marginal 
PDF p(xi, t) and from the joint PDF p(x; t), respectively. 

Figure IV.13a depicts the time evolution of Γi, Πi and Ṡi ∀i = 1, 2, 3, 4. It also includes the time evolution of 
the three dimensional space (Γ, Π, Ṡ). Figure IV.13b shows the norms of Γi, Πi, Ṡi ∀i = 1, 2, 3, 4 and Γ, Π, Ṡ in 
the form of a spider plot. For instance, the value of the norm of the information rate Γ computed from the 
joint PDF p(x; t) and from the marginal PDF p(x2, t) is ||Γ|| ≈ 10000 and ||Γ2|| ≈ 31.6, respectively. As we 
can see, the effects on Γi, Πi and Ṡi ∀i = 1, 2, 3, 4 by the random variables is hierarchical with regards to their 
amplitude (for example |Ṡ4| > |Ṡ3| > |Ṡ2| > |Ṡ1| at almost all the time) and the equilibrium of (Γ, Π, Ṡ) is 
(0, 0, 0). 

When we add a perturbation in u which affects directly x4 (see Equation (IV.33)), we obtain the results 
shown in Figure IV.14. Such an abrupt event causes a notable increment in the norms of the states (See Figure 
IV.14b) which still maintains the same hierarchical order in the states (x4 is the most affected in comparison 
with x1) due to the system’s structure as expected. The direct effect of the abrupt event on each variable’s 
time evolution is shown in Figure IV.14a. Recall that u is applied directly to x4. Again, Ṡ is unperturbed since 
the event affects only the mean value of the PDF. On the other hand, if we separately include a perturbation 
in each element Dii of the noise matrix D, similar results occur. Figure IV.15 illustrates the norms of Γ, Π, Ṡ 

in the form of bar plots (after applying perturbations to each Dii). The plots indicate a domino effect in the 
marginal PDFs as follow. When only D11 is perturbed no clear effects can be seen in the rest of the variables 
but when D33 is perturbed x3, x2 and x1 increase their values. Same happens after perturbing D44, again 
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Figure IV.12: Numerical experiment of an abrupt event analysis in the model (III.80) via correlation coeffcients. 
(a) plots of the total correlation ρI , Pearson correlation ρ and a phase portrait of x1 vs x2. In the phase portrait, 
the pink dots and the solid line represent a single trajectory X and the mean value µ of (III.80), respectively. 
(b) plots of the information rate correlation coeffcient ρΓ, information rate Γ, and the contributions from x1 

and x2 to the information rate given by Γ1 and Γ2, respectively. (c) plots of the entropy production correlation 
coeffcient ρΠ, entropy production Π, and the contributions from x1 and x2 to the entropy production given by 
Π1 and Π2, respectively. Here, the perturbation acts over the mean value µ of (III.80), i.e., D22(t) = D11(t) = 0 

2
1 −( t−4 

and u(t) = √ 
π 

e 0.1 ) .|0.1| 
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this is due to the structure interaction of the system we are studying. This implies that norms provide an 
approximate value of the dependence between the variables of the random process. 

Ṡ i
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Figure IV.13: Numerical experiment of an abrupt event analysis in system (IV.33). (a) time evolution of the 
contribution by the i-th random variable xi∀i = 1, 2, 3, 4 on the information rate Γi (y-axis in log scale), the 
entropy production Πi (y-axis in log scale) and entropy rate Ṡi. The plot also contains the time evolution of 
the three dimensional space (Γ, Π, Ṡ). (b) Euclidean norms of Γi, Πi, Ṡi∀i = 1, 2, 3, 4 and Γ, Π, Ṡ in the form of 
a spider plot. In the simulations, the system has no perturbation, i.e., Dii(t) = u(t) = 0. 
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Figure IV.14: Numerical experiment of an abrupt event analysis in system (IV.33). (a) time evolution of the 
contribution by the i-th random variable xi∀i = 1, 2, 3, 4 on the information rate Γi (y-axis in log scale), the 
entropy production Πi (y-axis in log scale) and entropy rate Ṡi. The plot also contains the time evolution of 
the three dimensional space (Γ, Π, Ṡ). (b) Euclidean norms of Γi, Πi, Ṡi∀i = 1, 2, 3, 4 and Γ, Π, Ṡ in the form 
of a spider plot. In the simulations, the system has a perturbation in the mean value of the system µ, i.e., 
Dii(t) = 0, u(t) ̸= 0 at tp = 4. 
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Figure IV.15: Abrupt event analysis in system (IV.33) using the norms of Π, Ṡ, Γ at the marginal PDF p(xi, t) 
and the joint PDF p(x; t). Each plot depicts a perturbation on a given Dii at tp = 6 in system (IV.33). 
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Chapter concluding remarks 

We have investigated the prediction capability of information theory by focusing on how sensitive information-
geometric theory (information length diagnostics) [69; 89; 64; 66; 90; 70] and one of the entropy-based information 
theoretical methods (information fow) [95; 96] are to abrupt changes. Specifcally, we proposed a non-autonomous 
Kramers equation by including sudden perturbations to the system as impulses to mimic the onset of a sudden 
event and calculate time-dependent probability density functions (PDFs) and various statistical quantities with the 
help of numerical simulations. It was explicitly shown that the information fow like any other entropy-based 
measures is insensitive to to perturbations which do not affect entropy (such as the mean values). Specifcally, the 
information length diagnostics are very sensitive to both perturbations in the covariance Σ(t) and mean µ of the 
process while the information fow only detects perturbations in its covariance. Furthermore, we demonstrated 
that information length diagnostics predict the onset of an ongoing perturbation earlier than the information fow; 
the peaks of T1→2 (or T2→1) tend to proceed the impulse peak while the peak of information length diagnostics Γ2 

tends to precede the impulse peak. 
In addition, we demonstrate that the information rate and entropy production correlation coeffcients ρΓ and 
ρΠ, respectively, detect the proposed perturbation function (IV.9) modelling of an abrupt event in the frst 
and second moments of the stochastic dynamics, respectively. For higher-order systems, the norm of the 
information/thermodynamic quantities represents a fair approximation of the correlation between all the system 
random variables. 
We expect that some of the results presented in this work would be useful in different engineering applications 
[3; 118] since linear approximations are often useful [119] for control engineering applications. For instance, 
one can develop an information-geometric cost function for control design to achieve a guided self-organisation 
[120; 121], instead of using entropy as a cost function [122]. Given high variabilities involved in complexity and 
emergent behaviour [91; 92; 93], it will be interesting to further extend this work to investigate interconnection of 
the components in a complex system, or causality and also to non-linear, non-Gaussian models or real data. 
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AIV Appendix Chapter IV 

AIV.1 Derivations of µ and Σ(t) 

After a long algebra, we can show that ⟨x1(t)⟩ and ⟨x2(t)⟩ in " # 
⟨x1(t)⟩ µ = (AIV.34)
⟨x2(t)⟩ 

is given by the following: � � � 
1 4

1 
λ1 p1(t) 4

1 
λ2 p2(t)⟨x1(t)⟩= dsgn(c) e (erf (q1(t)) − erf (r1(t))) + e (erf (r2(t)) − erf (q2(t))) 2(λ1−λ2) � 

+2eλ1t(x1(0)(γ + λ1) + x2(0)) − 2eλ2t(x1(0)(γ + λ2) + x2(0)) , (AIV.35) � � � 
1 4

1 
λ1 p1(t) 4

1 
λ2 p2(t)⟨x2(t)⟩= dsgn(c) λ1e (erf (q1(t)) − erf (r1(t))) + λ2e (erf (r2(t)) − erf (q2(t))) 2(λ1−λ2) � � � �� 

λ1t λ2t+2e λ1x2(0) − ω2x1(0) + e 2ω2x1(0) − 2λ2x2(0) , (AIV.36) 

c c2λ1+2t−2t2,0 
2λ2+2t−2t2,0where p1(t) = c2λ1 + 4t − 4t2,0, p2(t) = c2λ2 + 4t − 4t2,0, q1(t) = , q2(t) = , r1(t) = 2c 2c 

cλ1 t2,0 cλ2 t2,0− and r2(t) = − .2 c 2 c 

On the other hand, the covariance matrix Σ can be shown to have the following elements: � � � � � � �� 
1 −abe−2t1,0(λ1+λ2) 1 t1,0 1Σ11(t)= −2erf 2 a(λ1+λ2)− exp 4 (λ1+λ2) a2(λ1+λ2)+4(t+t1,0)(λ1−λ2)2 |a| a � � � � �

2λ2 2λ2t1,0 a 1+2λ1t+2λ2t1,0 +erf t1,0 a 2+2λ1t1,0+2λ2t+erf aλ1− e aλ2− ea a � � � � � �� 
abe−2(λ1+λ2)(t+t1,0) a2(λ1+λ2)+2t−2t1,0 1+ −2erf exp 4 (λ1+λ2) a2(λ1+λ2)+4(3t+t1,0)|a| 2a � � � � � 

a2λ1+t−t1,0 a2λ2
1+4λ1t+2λ2(t+t1,0) a2λ2+t−t1,0 a2λ2

2+2λ1(t+t1,0)+4λ2t+erf e +erf ea a � � 
t(λ1+λ2) 2λ1t 2λ2t D0(λ1−λ2)

2 
−4e + e + e+D0 −λ1+λ2 λ1 λ2 λ1λ2(λ1+λ2)� � � � �� 

λ2t λ1t−Σ0 λ2t λ2t+ (γ+λ1)eλ1t −(γ+λ2)e Σ0
11(γ+λ1)e 11(γ+λ2)e +Σ0

12 eλ1t −e � � � � ��� 
+ eλ1t −eλ2t Σ0 λ1t−Σ0 λ2t +Σ0 eλ1t−eλ2t , (AIV.37)12(γ+λ1)e 12(γ+λ2)e 22 � � � � � � 

1 −abe−2(λ1+λ2)(t+2t1,0) 1 t1,0 1Σ22(t)= −2λ1λ2erf 2 a(λ1+λ2)− exp 4 (λ1+λ2) a2(λ1+λ2)(λ1−λ2)2 |a| a � � � � �� 
a2(λ1+λ2)+2t−2t1,0 1+12(t+t1,0)))+2λ1λ2erf 2a exp 4 (λ1+λ2) a2(λ1+λ2)+12(t+t1,0) � � � � 

t1,0 a2λ1
2+4λ1t+2λ1t1,0+2λ2t+4λ2t1,0 −λ2 a2λ1+t−t1,0 a2λ1

2+4λ1t+2λ1t1,0+2λ2t+4λ2t1,0+λ2
1erf aλ1− e 1erf ea a � � � � � 

+λ2
2erf aλ2− t1,0 ea2λ2

2+2λ1t+4λ1t1,0+4λ2t+2λ2t1,0 −λ2
2erf a2λ2+t−t1,0 ea2λ2

2+2λ1t+4λ1t1,0+4λ2t+2λ2t1,0 
a a 

D0(λ2
1(e2λ1t−1)+λ1λ2(−4et(λ1+λ2)+e2λ1t+e2λ2t+2)+λ2

2(e2λ2t−1)) 
+ λ1+λ2 �� � � � � � �� � �2

λ1t−eλ2t Σ0 λ1t−eλ2t λ1t λ2t+ω2 e 11ω2 e +Σ12
0 2λ2eλ2t −2λ1e +Σ22

0 λ1eλ1t−λ2e , (AIV.38) 
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� � � � � � 
1 −abe−2t1,0(λ1+λ2) 1 t1,0 1Σ12(t)= −(λ1+λ2)erf 2 a(λ1+λ2)− exp 4 (λ1+λ2) a2(λ1+λ2)(λ1−λ2)2 |a| a � � � � �

2λ2 2λ2t1,0 a t1,0 a+4(t+t1,0)))+λ1erf aλ1− e 1+2λ1t+2λ2t1,0 +λ2erf aλ2− e 2+2λ1t1,0+2λ2t 
a a � � � � � �� 

abe−2(λ1+λ2)(t+t1,0) a2(λ1+λ2)+2t−2t1,0 1+ −(λ1+λ2)erf 2a exp 4 (λ1+λ2) a2(λ1+λ2)+4(3t+t1,0)|a|� � � � � 
a2λ1+t−t1,0 a2λ2

1+4λ1t+2λ2(t+t1,0) a2λ2+t−t1,0 a2λ2
2+2λ1(t+t1,0)+4λ2t+λ1erf e +λ2erf ea a � �2 � � � � �� 

λ1t−eλ2t λ1t−eλ2t Σ0 λ1t −Σ0 λ2t λ1t−eλ2te −ω2 e +Σ0 e+D0 11(γ+λ1)e 11(γ+λ2)e 12 � � � � ��� 
+ λ1eλ1t −λ2eλ2t Σ12

0 (γ+λ1)eλ1t−Σ12
0 (γ+λ2)eλ2t +Σ0

22 eλ1t−eλ2t . (AIV.39) � p � 
Here, the superscript 0 denotes the initial time t = 0 and λ1,2 = − 1 γ ± γ2 − 4ω2 . Besides, it can be2 
proved that 

D D
lim Σ11(t) = lim Σ22(t) = , lim Σ12(t) = lim Σ21(t) = 0. (AIV.40)
t→∞ γω2 , 

t→∞ γ t→∞ t→∞ 

AIV.2 Derivation of the Information Flow from the Kramers equation 

We provide the main steps used in the derivation of T2→1 and T1→2 after substituting Equations (IV.18) in 
Equations (IV.2)–(IV.3). For T2→1 we have Z 

T2→1 = − dxP(x; t)x2∂x1 [ln Px1 (x1; t) − ln P(x; t)] Z Z 
= − dxP(x; t)∂x1 [x2 ln Px1 (x1; t)] + dxP(x; t)∂x1 [x2 ln P(x; t)] Z Z 
= − dxP(x; t)∂x1 [x2 ln Px1 (x1; t)] + dx∂x1 [x2P(x; t)] Z 
= − dxP(x2|x; t)∂x1 [x2Px1 (x1; t)] + 0 � � 

x2(x1 − ⟨x1⟩) 1 
= = (⟨x1⟩⟨x2⟩ + Σ12 − ⟨x1⟩⟨x2⟩)Σ11 Σ11 

Σ12 1 d 
= = ln Σ11. (AIV.41)

Σ11 2 dt 

On the other hand, for T1→2 we have Z h i Z � �
Px2 (x2; t) Px2 (x2; t)

T1→2 = dxP(x; t) γx2 + ω2x1 − u ∂x2 ln + D dxP(x; t)∂x2 (ln P(x; t)) ∂x2 ln
P(x; t) P(x; t)Z h i � �

∂x2 Px2 (x2; t) ∂x2 P(x; t) 
= dxP(x; t) γx2 + ω2x1 − u −

Px2 (x2; t) P(x; t)Z � �
∂x2 P(x; t) ∂x2 Px2 (x2; t) ∂x2 P(x; t)

+D dxP(x; t) −
P(x; t) Px2 (x2; t) P(x; t)Z h i n h i o 

− (x2−⟨x2⟩)2 
= dxP(x; t) γx2 + ω2x1 − u ∂x2 2Σ22 

− ∂x2 [Q(x)] Z n h i o 
− (x2−⟨x2⟩)2 2+D dxP(x; t) ∂x2 ∂x2 [Q(x)] − (∂x2 [Q(x)]) 2Σ22D� � h iE D� � E 

− (x2−⟨x2⟩)= γx2 + ω2x1 − u Σ22 
− γx2 + ω2x1 − u ∂x2 [Q(x)] D h i E D E 

− (x2−⟨x2⟩) 2+ D ∂x2 [Q(x)] − D (∂x2 [Q(x)]) Σ22 
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D� � h iE 
− (x2−⟨x2⟩)= γx2 + ω2x1 − u Σ22 D� � E 

+ 
1 

γx2 + ω2x1 − u (−⟨x2⟩Σ11 + ⟨x1⟩Σ12 − Σ12x1 + Σ11x2)|Σ| Dh i ED (x2−⟨x2⟩)+ (−⟨x2⟩Σ11 + ⟨x1⟩Σ12 − Σ12x1 + Σ11x2)|Σ| Σ22 D ED − (−⟨x2⟩Σ11 + ⟨x1⟩Σ12 − Σ12x1 + Σ11x2)
2 

|Σ|2 

−γ − ω2 Σ12 D DΣ11 = −ω2 Σ12 Σ12
2 

= + γ + − − D . (AIV.42)
Σ22 Σ22 |Σ| Σ22 |Σ|Σ22 

2Here, we have used the properties ⟨x1⟩ = Σ11 + ⟨x1⟩2, ⟨x1x2⟩ = Σ12 + ⟨x1⟩⟨x2⟩, Σ12 = Σ21, and Q(x) = 
− 12 (x − µ)TΣ−1(x − µ). 
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Chapter summary 

Controlling the time evolution of a probability distribution that describes the dynamics 
of a given complex system is a challenging problem. If successful, this will beneft a 

wide range of practical scenarios, e.g., controlling mesoscopic systems. In such a context, 
this chapter proposes a method of control based on the so-called model-predictive-control 
technique and the information geometric theory for controlling the time evolution of 
probability distributions of linear and non-linear Langevin systems. Specifcally, the 
method combines an online optimisation algorithm and the concept of information This chapter is based on 
length to minimise the deviations from the information length’s geodesic of the system’s the following author’s 
probability distribution through time. Additionally, we simulate the effects on the closed- publications [10; 11; 9]: 
loop system’s entropy production and entropy rate. The control algorithm is tested 
numerically in the Ornstein–Uhlenbeck process, the Kramers equation and a simple 
cubic system illustrating its feasibility. Furthermore, we explore the application of a non-
dynamic control algorithm called the full-state feedback control to solve different cost 
functions in terms of the system’s information rate and entropy production demonstrating 
the effects of IL’s geodesic in the stochastic thermodynamics. 

keywords: Model-predictive-control; Stochastic control; Optimisation 

V.1 Introduction 

From Chapter II, we know that time-varying probability density functions (PDFs) are a preferred approach 
when describing the dynamics governing different complex systems through statistical methods. In addition, 
we noted that PDFs also appear commonly in felds including inference control or stochastic thermodynamics 
where their value is obtained through data analysis or by solving the Fokker-Planck (FP) equation of an Itô or 
Stratonovich stochastic differential equation, respectively. 

Inspired by control theory [82], if the dynamics of the system of our interest are proved to be governed by 
an FP equation, we can consider the regulation (set to a constant value) or tracking (follow a time-varying 
reference) control problems of the time-varying PDFs [64]. In other words, we can design control strategies to 
guide the PDFs time evolution through the information that the FP equation provides. Although controlling 
PDFs seems unfeasible through control engineering methods, it has become viable in applications like 
colloidal systems thanks to technology such as optical tweezers [81; 123; 124]. In this regard, the seminal 
work [125; 126] presents a methodology to control the system PDF governed by a Fokker-Planck equation [30]. 
Further developments of this work include [127] which discusses a bilinear optimal control problem where 
the control function depends on time and space. In [128], authors prove the existence of optimal controls 
while considering frst-order necessary conditions in the optimisation problem. 

Since, FP equations are often mathematical descriptions of mesoscopic systems (for further details, see 
[30]), i.e. systems of nano/micro scale such as molecular motors, the system’s PDF evolution through time 
may also need to satisfy multiple of the so-called “thermodynamic constraints” to be called “effcient”. For 
instance, the system may need to minimise entropy production [122; 129], information variability [130], or 



114 adrián josué guel cortez 

self-organisation [51]. The addition of these “thermodynamic constraints” in the optimisation process implies 
an extension of the current literature FP control results. 

From what we learned at Chapter III, we can perceive that a theory which may provide us with insights 
to solve the previously mentioned optimisation problems comes from information geometry. Recall that 
information geometry results out of the combination of information theory and differential geometry [42]. 
Additionally, as an emerging feld, information geometry proposes new solutions to tasks such as maximum 
likelihood estimation [131], state prediction [132; 7], quantifcation of causality [16; 108; 103] or maximum 
work extraction [64; 96]. In stochastic thermodynamics [23; 95], information geometry is used to obtain 
time-varying descriptions of the aforementioned constraints. For instance, based on the well known Cauchy-
Schwartz inequality [133], [134] presents an inequality between the Fisher divergence [135] and the information 
length (IL) [6; 7] to quantify the amount of the disorder in an irreversible decay processes. In [64], the geodesic 
of IL is used to describe the path with the least amount of statistical variations connecting the initial and fnal 
probability distributions of the system dynamics (for further details, see [130]). Hence, information geometry 
can be used in a control protocol to impose geodesic dynamics on the system’s PDF time evolution such that 
the system behaves with the minimum “geometric information variability” [51]. The design and application 
of a technique that allows us to achieve such minimum geometric information variability constitutes the main 
problem to be solved in this Chapter. 

Before we create an optimal protocol for the PDF’s time evolution, it is important to briefy review 
some of the existing control algorithms. In this vein, the literature presents signifcant amount of control 
procedures from the classical PID control [136] to more sophisticated algorithms like data-driven, model-free 
or fractional-order controls (for instance, see [118; 137; 138]). Nonetheless, for our scenario, we require an 
algorithm to handle complicated optimisation problems while being a feasible option to be implemented in 
an experimental setup for future work. 

To solve our problem, we can consider one of the most popular optimisation-based control techniques 
called the model-predictive-control (MPC) scheme [139]. Generally, MPC is an online optimisation algorithm 
for constrained control problems whose benefts have been noticed in applications to robotics [140], solar 
energy [141] or bioengineering [142]. Furthermore, MPC can be easily implemented thanks to packages such 
as CasADi [143] or the Hybrid Toolbox [144]. 

Based on the presented discussion, the chapter presents the solution of an optimisation problem which 
consist of a cost function combining the concepts of information length and the quadratic-regulator (QR) 
[145] to guide the system’s PDF time evolution through the path with the minimum geometric information 
variability (the geodesic of the information length) via MPC. In our applications, the system’s PDF will remain 
Gaussian at all instants of time given that the system’s initial conditions follow a Gaussian distribution or that 
we use the Laplace assumption. The restriction to Gaussian dynamics enables us to use a set of deterministic 
differential equations to describe the dynamics of the mean and covariance of the Gaussian distribution (See 
Proposition II.7) as part of the prediction algorithm in the MPC method. 

As mentioned in the Chapter’s summary, the algorithm is applied to the Ornstein–Uhlenbeck process 
[67], the Kramers equation [7] and a cubic stochastic differential equation [11]. As noted in Chapter II, 
such systems are used to describe a particle over a heat reservoir (mesoscopic stochastic dynamics) and, in 
practice, the dynamics of both the noise amplitude and mean value in such systems can be manipulated 
via changes in temperature and optical tweezers, respectively [23; 146; 124]. Through the application of 
previous results from [62], the effects of the MPC method in the Ornstein–Uhlenbeck and cubic processes’ 
stochastic thermodynamics are analysed by simulating the values of entropy production and entropy rate in 
the closed-loop system. In the chapter, we also present a brief description of the BIBO stability conditions 
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which are considered to constrain the control actions proposed by the MPC. Furthermore, we explore the 
application of a non-dynamic control algorithm called the full-state feedback control to solve different cost 
functions in terms of the system’s information rate and entropy production demonstrating the effects of IL’s 
geodesic in the stochastic thermodynamics. Finally, we give a set of concluding remarks and a discussion of 
the future work. 

V.2 Minimum information variability problem 

Before we proceed, let us explain in more detail how IL can be used to minimise deviations from the 
geodesic of the system’s PDF time evolution. In [134], the authors use the inequality J (t f ) ≥ L(t f )

2 where hR t f R t f R 1 ∂p(x;t) 
i2 

J (t f ) = τ Γ2(t) dt = dt dx (Fisher divergence) with τ = t f − t0 and L given by t0 t0 p(x;t) ∂t R R R 
(III.21). Such inequality follows from the Cauchy-Schwartz inequality Γ2 dt u2 dt ≥ ( Γu dt)2 with u = 1. 
But, most importantly, the equality holds for the minimum path where Γ is constant (see, e.g. [147; 134]), and 
the deviation from this equality is said to quantify the amount of the disorder in an irreversible process [134]. 

From [130], such statement can be clarifed by the following procedure. Let us defne the time-average for R t f a function f (t) as E[ f (t)] = 1 f (t) dt. Then, we can defne the time-averaged variance τ t0 

J −L2 
σ2 = = E[Γ2] − E[Γ]2 ≥ 0. (V.1)

τ2 

Equation (V.1) describes an accumulative deviation from the geodesic connecting the initial and fnal distribu-
tions of the system dynamics. Thus, we can conclude that by setting Γ as a constant, we obtain a geodesic 
that defnes a path where the process has the minimum geometric information variability. 

V.3 Minimum variability control in Gaussian dynamics 

In a stochastic Gaussian process, to drive the system’s PDF time evolution through the geodesic of IL while 
also having a desired set-point at time t = t f , we propose the following cost function 

Z � � 
J= 

t f 
IL(Γ2(τ)−Γ2(0))2+(Y(τ)−Yd(τ))

⊤ Q (Y(τ)−Yd(τ)) + c⊤(τ)Rc(τ) dτ, (V.2)
0 

2)×(n+n2)where IL ∈ R, Q ∈ R(n+n , Y := [µ, vec(Σ)]⊤ ∈ Rn+n2 
is the vector of states µ and vec(Σ)1 that defne 

the time evolution of p(x; t) as described by Proposition II.6 and II.7 when considering linear and non-linear 
SDE, respectively. Yd = [µd, vec(Σd)]

⊤ is the desired position of the n + n2 states defned by µd and Σd 

at time t, and c ∈ Rm (such that m ≤ 1 + n2) is the vector of controls defned by c = [c1, c2, . . . , cm]⊤ := 
[u(t), w := {(Dij|Dij ̸= 0 ∈ D∀i, j = 1, 2, . . . , n}]⊤ , therefore R ∈ Rm×m . In this work, we call Equation (V.2) 
The Information Length Quadratic Regulator (IL-QR). As it will be discussed in §V.3.2, the solution of (V.2) will 
be obtained via a numerical scheme which allows us to avoid analytic complications while being useful for 
practical scenarios. To fnd the geodesic dynamics analytically, we can use the solution of the Euler-Lagrange 
equations of IL. The steps of such approach are discussed and successfully applied in [64] for a frst order 

1 vec(A) of a matrix A ∈ Rm×n stands for the vectorisation of the matrix A, i.e., a linear transformation which converts the matrix A 
into a column vector. Specifcally, 

vec(A) = [a11, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n]
⊤ . 
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stochastic differential equation. In § (V.7), we give the details of the procedure when considering a more 
generalised scenario. 

From (V.2), we see that the frst term in the right-hand side imposes a constant Γ2 (needed to minimise the 
deviations from the geodesic [64]). The term involving Q imposes the system to reach a given PDF defned 
by Yd. The third term in the right-hand side of (V.2) regularises the control action c to avoid abrupt changes 
in the inputs. Finally, Q and R are matrices that penalise the error ϵ = Y − Yd and the control input u, 
respectively. 

In our method, the control of the dynamics for µ is given by u(t), while the dynamics of Σ(t) is modifed 
by controlling the noise-width via a time-dependant vector w(t) whose elements substitute the nonzero 
constant values of the matrix D (numerically, we can also apply control to all elements in such a matrix 
regardless of having a mathematical model where they are imposed to be zero). As it is discussed through the 
numerical examples, the noise width can be modifed by changing a macroscopic observable like temperature 
(for further details, see the Brownian motion models presented in [30]). 

V.3.1 BIBO Stability in linear stochastic process 

Since we are dealing with a control problem, it is important to describe the stability conditions for the dynamics 
we try to control. Specifcally, for the linear SDE (II.68), the system’s bounded-input bounded-output (BIBO) 
stability is described by the following Theorem. 

Theorem V.1: BIBO stability in linear SDE 

The mean (II.77) and covariance (II.78) dynamics of (II.68) are BIBO stable if and only if the eigenvalues 
λi of the matrix A satisfy the following inequality 

ℜ[λi] < 0, (V.3) 

where ℜ[s] stands for the real part of the complex value s ∈ C. 

Proof. For a detailed proof of this result, please refer to [38] and [148]. 

Remark V.1. Theorem V.1 is considered to be satisfed throughout our examples. i.e. the control method is applied to 
stable systems only. Furthermore, the control actions are constrained to fnite values. For non-linear SDE, the explicit 
BIBO stability conditions are left for future work. 

V.3.2 A solution via model-predictive-control 

As discussed in §V.1, the solution of our optimisation problem will be computed through the MPC method. 
Hence, the following discrete optimal control problem encoding the MPC formulation is required �N � �2 

c = arg min JN = ∑ IL Γb2[k] − Γ2[0] 
c̃ k=0 �! 

+(Yb[k] − Yd)
⊤Q(Yb[k] − Yd) + c̃⊤[k]Rc̃[k] 

s.t. Γb2[k] = f (Yb[k], c̃[k]) 
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Yb[k] = [µ[c̃, k], vec(Σ[c̃, k])]⊤ 

µ[c̃, k] = Adµ[k − 1] + Bdu[c̃, k − 1] 

Σ[c̃, k] = AdΣ[k − 1] + Σ[k − 1]A⊤ + 2D[c̃, k − 1]d 

µ[0] = m, Σ[0] = S ∀m ∈ Rn , S ∈ Rn×n 

c̃[k] = [u[k], w[k]]⊤ 

cl,i ≤ ci ≤ cu,i cl,i, cu,i ∈ R∀i = 1, 2, . . . , m. (V.4) 

In Equation (V.4), theb-symbol over Y and Γ refer to their predicted values over the infuence of the control c̃ 
throughout the optimisation process in the fnite horizon of length N. Note that the value of Yb is constrained 
by the discretised version of the set of equations (II.77)-(II.78) given by 

µ[k] = Adµ[k − 1] + Bdu[k − 1], (V.5) 

Σ[k] = AdΣ[k − 1] + Σ[k − 1]A⊤ + 2D[k − 1], (V.6)d 

where Ad = I + TsA, Bd = TsB if a frst-order approximation of the time derivative considering the sample-
period Ts is applied (we apply a 4th order Runge Kutta instead of a frst-order approximation to compute Yb 
in our simulations). Note that we have added the argument c̃ in Equation (V.4) when describing Equations 
(V.5)-(V.6) to emphasise the application of the control during the optimisation procedure. The initial conditions 
µ[0], Σ[0] of (V.5)-(V.6) change every time an optimal control c solution has been computed and they are 
subject to the measurements m, S of the real/simulated process. Every element ci of the control vector c̃ 
is constrained by a lower and an upper limit denoted cl,i and cu,i, respectively. Finally, f is the function 
describing the predicted value bΓ2 defned as follows 

⊤f (Yb[k], c̃[k]) = (Aµ[k] + Bu[c̃, k]) Σ[k]−1 (Aµ[k] + Bu[c̃, k]) � � � � 
+ 

1 
Tr (Σ[k]−1 AΣ[k − 1] + Σ[k − 1]A⊤ + 2D[c̃, k − 1] )2 . (V.7)

2 

To have a better understanding of the MPC method when applied to solve the IL-QR problem in a real 
scenario, Figure V.1 shows the MPC method control diagram and the functioning of the MPC’s optimiser 
when considering a second order stochastic system in the sub-fgures V.1a and V.1b, respectively. Figure 
(V.1a) shows that in real-time (i.e. while the process is evolving), the MPC algorithm takes a given setpoint 
Γ2[0], Yd, the prediction value Ỹ of µ and Σ from a prediction model, a set of constrains, the cost function JN 

and the current system dynamics Y to solve the optimisation problem given in (V.4). Afterwards, the optimal 
control c solution of Equation (V.4) is applied to the system. The MPC method fnds the optimal control c by 
considering the differential equations of µ̇ and Σ as a prediction model in a fnite horizon of length N. 

Figure V.1b briefy details the working principle of the MPC’s optimiser block when considering a stochastic 
process described by a bivariate time-varying PDF p with random variables x1 and x2. Here, the MPC’s 
optimiser method considers the measured systems PDF output (given in black colour) to initialise the 
optimisation process. The optimisation is perform by extrapolating the values of the PDF p in a fnite horizon 
of length N comparing it with the reference trajectory described by the PDF pd. The optimisation problem 
is solved via the interior point method using CasADi [143]. In this work, thanks to the type of Langevin 
equations being considered, the control, prediction and simulation of the PDF has been eased through the use 
of deterministic descriptions of the frst two statistical moments through time (for further, details see Chapter 
II). When considering pure data or more complicated stochastic differential equations, the time-varying PDFs 
need to be estimated through inference methods [149] or stochastic simulations [150]. 
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Model-predictive-control 

setpoint 

Simulation model 

Output 

Γ2[0], Yd Y[k]c[k] 

Ỹ[k] 
Prediction model 

Optimizer 

JN constraints 

Predicted output 
c̃[k] 

Future input 

(a) 

x1 

x2 

x ∼ N(⟨x⟩, Σ) Reference Trajectory 

kT 

k 

(k + 1) 

(k + 1) 

(k + 2) 

(k + 2) 

(k + N) 

x ∼ N(⟨x⟩, Σ) Predicted Output 

x ∼ N(⟨x⟩, Σ) Measured Output 

Prediction Horizon of length N 

pd(x; k) 

p(x; k) 

(b) 
Figure V.1: a) Control diagram describing the main parts of the implemented MPC methodology. b) Diagram 
of a discrete MPC scheme applied to a second order stochastic process. 

V.4 Case study: The O-U process 

To present the numeric implementation of the MPC for the solution of the IL-QR cost function, we frst 
consider its application to the Ornstein–Uhlenbeck (O-U) process (see Figure V.2) defned by the following 
Langevin equation 

ζ̇ = −γ(ζ(t) − u(t)) + ξ(t), (V.8) 

where ζ(t) is a random variable, u(t) is a deterministic force, ξ(t) is a short correlated random forcing such 
that ⟨ξ(t)ξ(t1)⟩ = 2Dδ(t − t1) with D ≥ 0 and ⟨ξ(t)⟩ = 0. 

The results of the MPC implementation are shown in Figures V.3 to V.6. Figure V.3 depicts the case when 
the desired state Yd of the O-U process is Yd = [1/30, 1/(2 × 0.3)]⊤ . Figure V.3 also shows the time evolution 
of the states Y(t) = [µ, β(t)] and controls c(t) = [u(t), D(t)]⊤ (the rest of the parameter simulation details are 



information geometry in the analysis and control of dynamical systems 119 

Figure V.2: The O-U process 
equation is commonly used to 
describe a prototype of a noisy 
relaxation process. For instance, 
the movement of a particle con-
fned to a harmonic potential 

1V(ζ) = 2 γ(ζ − u(t))2 and ther-
mal fuctuations with tempera-
ture T (D = kBTγ and kB is the 
Boltzmann constant) such that 
ζ(t) fuctuates stochastically. 

V(ζ) 

ζ 

D

u(t) 

given in Figure V.3 caption). From the results, we see that the method fnds a geodesic motion (solution to the 
IL-QR) from the initial to the fnal state in less than 0.4 seconds. The geodesic motion is corroborated by the 
constant value of Γ2(t) ≈ Γ2(0) = 2.4 and the plot of the information length L whose shape is a line with 
slope of 1.5526. Γ2(0) is computed by considering that u(t = 0) = D(t = 0) = 0. Here, we highlight that the 
value of Σ is found to temporally vary very slightly compared with the hyperbolic analytical solution in [64] 
given for a non-constant Σ (see Appendix V.7). 

Figure V.3: IL-QR for the O-U process using Y(0) = [5/6, 1/(2 × 0.3)]⊤ and Yd(t) = [1/30, 1/(2 × 0.3)]⊤ . 
The control is applied in u(t) and D(t). Besides, γ = 1, Ts = 1 × 10−3, N = 50, IL = 1 × 103, R = 1 × 10−2I2, 
Q12 = Q21 = 0, Q11 = 1 × 102 and Q22 = 5 × 102. 

When analysing the stochastic thermodynamics of the closed-loop system. Figure V.4 shows the plot of the 
entropy rate Ṡ in comparison with the entropy production Π, and a plot of the value of Γ2 with the value 
of expression (III.51). Recall that the analytical expressions for Ṡ and Π with their derivation are given in 
Chapter II. In the closed-loop system, we can see that the MPC method slightly changes the value of both 
the entropy production Π and the entropy rate Ṡ in the process. Since the value of Σ and µ in the desired 
state Yd are close and far from its initial condition at state Y(0), respectively, the balance between Ṡ, Π and Γ2 
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given by (III.51) is kept by maintining an almost constant D(t) and a u(t) with almost constant velocity. 
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Figure V.4: Stochastic thermody-
namics of IL-QR for the O-U pro-
cess using parameters described 
in Figure V.3. 

Under conditions almost similar to the case of Figure V.3, Figure V.5 shows the behaviour of the closed-loop 
system PDF, the states µ, Σ, the controls D and u as well as the behaviour of Γ2 for Yd(t) = [1/30, 1/(2 × 3)]⊤ . 
Here, Γ2(0) is computed by considering that u(t = 0) = 0 and D(t = 0) = 1/(2 × 0.3). The fnal state Yd is 
reached at a time around t = 2.8. Again, the geodesic behaviour is corroborated by the constant value of 
Γ2(t) ≈ Γ2(0) = 0.41 and the graph of the information length L showing a line with slope of 0.64759. 

Figure V.5: IL-QR for the O-U process using Y(0) = [5/6, 1/(2 × 0.3)]⊤ and Yd(t) = [1/30, 1/(2 × 3)]⊤ . The 
control is applied in u(t) and D(t). Besides, γ = 1, Ts = 1 × 10−3, N = 50, IL = 1 × 104, R = 1 × 10−2I2, 
Q12 = Q21 = 0, Q11 = 1 × 102 and Q22 = 5 × 102. 

In comparison to the stochastic thermodynamics shown in Figure V.4, Figure V.6 shows small changes in 
the entropy production Π and considerable variations in the entropy rate Ṡ of the closed-loop system as the 
value of Σ and µ in the desired state Yd are both different from its initial condition Y(0). This difference also 
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causes slight variations in both D(t) and u(t). Figure V.6 also shows that the balance equation (III.51) holds. 

0 0.5 1 1.5 2 2.5 3 3.5

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.4

0.42

0.44

0.46

0.48

0.5

0 0.5 1 1.5 2 2.5 3 3.5

0.435

0.44

0.445

0.45

Figure V.6: Stochastic thermody-
namics of IL-QR for the O-U pro-
cess using parameters described 
in Figure V.5. 

V.5 Case study: The Kramers equation 

To study the solution of the IL-QR problem in a higher order system via the MPC method, let us now consider 
the non-autonomous version of the Kramers equation (IV.7). Recall that the Kramers equation is an equation 
of motion in position and velocity space describing the Brownian motion of particles in an external feld [30] 
and, in practice, as shown in Figure III.15, the Kramers equation (IV.7) is also a good frst approximation to 
describe the dynamics in one-dimension of a particle in an optical trap [81]. The Kramers equation control c 
and state Y vectors are defned by 

c = [u, D]⊤ , (V.9) 

Y = [µ1, µ2, Σ11, Σ12, Σ22]
⊤ . (V.10) 

Here, µ1 and µ1 are the mean values of the random variables ζ1 and ζ2, respectively. Σ11, Σ12, Σ22 are the 
values describing the covariance matrix Σ. 

Figures V.7 and V.8 show the simulation results of the Kramers equation closed-loop when considering 
the desired states Yd(t) = [0, 0, 1/(2 × 3), 0, 1/(2 × 3)]⊤ and Yd(t) = [−5/6, 0, 1/(2 × 3), 0, 1/(2 × 3)]⊤ , 
respectively. Figures V.7 and V.8 include the time evolution plots of the mean values µ1, µ2 and the covariance 
matrix values Σ11, Σ12, Σ22 of the Kramers equation random variables ζ1 and ζ2. In addition, they include the 
time evolution of the bivariate PDF p(x; t) with the spatial vector x = [x1, x2]

⊤ with x1 and x2 representing 
the position and velocity of the system dynamics, respectively. The rest of the parameters used throughout 
the simulations are mentioned in the Figure captions. 

For the frst numerical experiment, Figure V.7 demonstrates that the MPC method is capable of maintaining 
Γ2 constant through time while reaching the desired state Yd. Here, the value of Γ(0) in (V.4) is obtained as 
follows �� ��2⊤ 1

Γ2(0) = (Aµ(0) + Bu(0)) Σ−1(0) (Aµ(0) + Bu(0)) + Tr Σ−1(0)(AΣ(0) + Σ(0)A⊤ + 2D(0)) 
2 
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Figure V.7: IL-QR for the Kramers equation using Y(0) = [5/6, 5/6, 1/(2 × 0.3), 0, 1/(2 × 0.3)]⊤ and Yd(t) = 
[0, 0, 1/(2 × 3), 0, 1/(2 × 3)]⊤ . The control is applied in u(t) and D(t). Besides, ω = 1, γ = 2, Ts = 1 × 10−1, 
N = 50, IL = 5 × 103, R = 1 × 10−5I3, Q = 1 × 102I5. 

= 6.16667, (V.11) 

where u(0) = 0 and vec(D(0)) = [0, 0, 0, 1/(2 × 0.3)]⊤ while A, µ(0) and Σ(0) are taken from the correspond-
ing Y(0) and the mathematical model (IV.7), respectively. The geodesic dynamics gives a behaviour with slow 
oscillations in the state Y. The controls u and D present high oscillations as the system reaches the desired 
state Yd. The system gets to Yd at t ≈ 7 with an error of 1 × 10−3. The geodesic behaviour is corroborated by 
the linear behaviour of the information length L compared to the ftted equation y = 24.8332t. 

Figure V.7 shows a second numerical experiment where Yd is even farther from the system’s equilibrium. 
Yet, the MPC method can maintain Γ2 constant trough time while reaching Yd. Like the example of Figure V.7, 
in this case Γ2(0) = 6.16667. Small oscillations remain in the time evolution of µ1, µ2, Σ11, Σ12 and Σ22. The 
system reaches the desired state Yd at t ≈ 8.5. Hence, the farther the desired state Yd is from the initial state 
Y the longer the time it takes to reach it while following the geodesic path. The geodesic behaviour is shown 
by the plot of the information length L whose behaviour is compared to the ftted equation y = 24.8336t. As 
in the example of Figure V.7, the controls present high oscillatory behaviour as the system gets to Yd. 

V.6 Case study: Cubic system 

We now present an example of the application of the MPC method to obtain the minimum variability 
behaviour of a non-linear stochastic system. Figure V.10 shows the IL-QR applied to the cubic stochastic 
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Figure V.8: IL-QR for the Kramers equation using Y(0) = [5/6, 5/6, 1/(2 × 0.3), 0, 1/(2 × 0.3)]⊤ and Yd(t) = 
[−5/6, 0, 1/(2 × 3), 0, 1/(2 × 3)]⊤ . The control is applied in u(t) and D(t). Besides, ω = 1, γ = 2, Ts = 
1 × 10−1, N = 50, IL = 5 × 103, R = 1 × 10−5I3, Q = 1 × 102I5. 

process given by 
ẋ(t) = −γx(t)3 + u(t) + ξ(t). (V.12) 

where ⟨ξ⟩ = 0, ⟨ξ(t)ξ(t ′ )⟩ = 2Dδ(t − t ′ ) and γ ∈ R+ . Via the Laplace assumption (see Proposition II.7), we can 
defne the control vector and the state vector as c = [u, D]⊤ and Y = [µ, Σ]⊤ , respectively. In the simulation 
the initial state Y(0) = [2 + 5/6, 1/(2 × 30)]⊤ while the desired state is Yd(t) = [2 + 1/30, 1/(2 × 3)]⊤ . 
Additionally, we consider the parameters γ = 0.1, Ts = 1 × 10−3, N = 5, IL = 1 × 103, R = 1 × 10−5I2, 
Q12 = Q21 = 0, Q12 = 1 × 102 and Q22 = 8 × 102. Here, Ts is the integration time step and N is the number of 
future time steps considered in the prediction model. The value of Γ(0) is imposed via the initial conditions 
and equation (III.22). 

V.6.1 Limits of the Laplace Assumption 

Since the Laplace assumption imposes Gaussian dynamics, it is important to check on its limitations. For such 
a purpose, consider a comparison between the PDF that is based on the Laplace Assumption (Proposition 
II.7) q(x, t) defned as 

1 1 (x−µ)2 

q(x, t) = √ e 2 Σ ,
2πΣ 

(V.13) 

where µ and Σ are determined by the solution of 

µ̇ = −γµ3 + u − 3γµΣ, (V.14) 
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2Σ̇ = −6γΣµ + 2D, (V.15) 

and the “real” system PDF p̃(x, t) of system (V.12) obtained via stochastic simulations and kernel density 
estimators (for further details see [151]). Now, to highlight the limits of the Gaussian approximation q(x, t), 
we apply the Kullback-divergence (KL) DKL or relative entropy between the estimated p̃ and the Gaussian 
approximation q of the time-varying system (V.12) PDFs defned as Z � � 

p(x; t)
DKL( p̃||q) = p(x; t) log dx. (V.16) 

R q(x; t) 

Figure V.9 shows the KL divergence trough time between p̃ and q when changing the parameters γ and D in 
equation (V.12) 2 . The result shows that a valid LA requires a small damping (slow behaviour) and a wider 
noise amplitude in comparison with the initial value of Σ. 
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Figure V.9: KL divergence be-
tween the value p̃(x; t) and the 
value q(x, y) varying the val-
ues γ and D of Equation (V.12). 
When γ changes D = 0.01, when 
D changes γ = 0.01. The ini-
tial condition is a Gaussian distri-
bution defned by µ(0) = 5 and 
Σ(0) = 0.01. 

V.6.2 Simulation results 

1In Figure V.10(a), we show the time evolution of the mean µ, the inverse temperature β = 2Σ , the input force 
u, the noise amplitude D, the information rate Γ2 and the information length L. We also show the PDF time 
evolution of the simulation model computed via the Laplace approximation (q) or via stochastic simulations 
(p̃) and the corresponding KL-divergence (V.16) between them. In the subplot of µ and β, the legend LA 
and SS stand for Laplace assumption and stochastic simulations, respectively. Interestingly, we can see from 
this that the Laplace approximation works fne when used as a prediction model in the MPC method. The 
controls have a chattering effect (oscillations having a fnite frequency and amplitude), similar to the one 
encountered when implementing other control methods like the sliding mode control [152], when trying to 
keep the system in the desired state Yd. 

Figure V.10(b) demonstrates the effects of controls (V.28) on the closed-loop system stochastic thermo-
dynamics. The results show that at the desired state Yd the value of Ṡ oscillates around zero with a small 
amplitude. This means, Φ = −Π holds at some instants of time when Y reaches Yd. In other words, all the 
energy is exchanged with the system’s environment when the control keeps Y on the non-equilibrium state 
Yd. 
2 Code https://github.com/AdrianGuel/StochasticProcesses/blob/main/CubicvsLA.ipynb 

https://github.com/AdrianGuel/StochasticProcesses/blob/main/CubicvsLA.ipynb
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1(a) PDF, D, u, µ, β = 2Σ , Γ and L time evolution. 
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(b) Stochastic thermodynamics time evolution. 
Figure V.10: IL-QR under LA applied to system (V.12) with Y(0) = [2 + 5/6, 1/(2 × 30)]⊤ and Yd(t) = 
[2 + 1/30, 1/(2 × 3)]⊤ . The control is applied in u(t) and D(t). Besides, γ = 0.1, Ts = 1 × 10−3, N = 5, 
IL = 1 × 103, R = 1 × 10−5I2, Q12 = Q21 = 0, Q12 = 1 × 102 and Q22 = 8 × 102. 

V.7 A solution by the Euler-Lagrange equation 

In the work [64], E. Kim et al. present an analytical solution describing the geodesic motion connecting 
a given initial p(x; 0) and a fnal p(x; tF) probability distribution by solving the Euler-Lagrange equations 
in terms of the covariance Σ and mean µ value of a frst order stochastic process. Here, we take the O-U 
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process to compare such analytical solution of the geodesic dynamics with the solution obtained by the MPC 
method. Additionally, we give the set of differential equations describing the geodesic motion for an n-variate 
Gaussian process utilising [64]’s approach. 

The Euler Lagrange equations for the Lagrangian Γ2 in terms of the vector µ (mean value) and the matrix 
Σ (covariance) are 

d 
�

∂Γ2(t) 
� 

∂Γ2(t) 
= , (V.17)

dt ∂µ̇ ∂µ 

d 
�

∂Γ2(t) 
� 

∂Γ2(t) 
= . (V.18)

dt ∂Σ̇ ∂Σ 

Using (III.22) in (V.17) and (V.18), we obtain (see Appendix AV.1) 

µ̈ + ˙ µ 0, (V.19)ΣΣ−1 ˙ = 

¨ ⊤ − ˙Σ + µ̇ µ̇ ΣΣ−1Σ̇ = 0. (V.20) 

As mentioned above, [64] presents a closed-form analytical solution to the boundary value problem of 
equations (V.19) and (V.20) when the dimension of both µ and Σ are one. Specifcally, equations (V.19)-(V.20) 
have a trivial solution where Σ is constant. For non-constant Σ, the following hyperbolic solutions are found 
in [64]: � � 

1√ 
β(t) = β∗ cosh α(t − A) , (V.21)

2 � � 
1 1√ 

µ(t) = − p tanh α(t − A) + µM. (V.22)
β∗ 2 

1Here, β = 2Σ and µ(t = A) = (µ(0) + µ(tF))/2 = µM. The values of β∗, α and A are computed using a given 
set of boundary conditions (for the complete discussion, see [64]). For instance, the parameter 

1 Q
A = p , (V.23)

γ β(0)µ(0) cosh(Q) 

ϕwhere Q = sinh−1( 2 ) using ϕ = 
p

β(0)(µ(0) − µ(tF)). Clearly, through equations (V.21)-(V.22) and the 
dynamical model of the O-U process (V.8), we can construct the optimal control f (t) of the input u(t) and the 
optimal noise amplitude DI (t) of D(t). From [64], given that u(0) = 0 such optimal controls are given by 

β(0)µ(0)
f (t) = µ(t) − , (V.24)

β(t)� √ � 
1 α 1√ 

DI (t) = γ − tanh( α(t − A)) . (V.25)
2β(t) 2 2 

To compare the analytical and the MPC solution of the geodesic of the IL, Figure V.11 shows the behaviour 
of the O-U process when controlled through the analytical solution (V.24)-(V.25) or the IL-MPC method. The 
Figure contains different subplots that show the time evolution of µ, β1/2, Γ2, L and the optimal controls DI 

and f . In the simulation, the desired state and the damping are Yd(t) = [1/30, 1/(2 × 0.3)]⊤ and γ = 1, 
respectively. Additionally, we set a fxed fnal time tF = 2A = 0.9304 (one cycle of the hyperbolic geodesic 
motion (V.21)-(V.22)) by considering the initial state Y(0) = [5/6, 1/(2 × 0.3)]⊤ . Figure V.11 uses dashed 
and non-dashed lines for the MPC and the analytical response, respectively. From the comparison, a major 
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Figure V.11: Comparison between the analytical solution of Eqs (V.19)-(V.20) vs the IL-QR solution for the 
O-U process (V.8). The IL-QR parameters are Y(0) = [5/6, 1/(2 × 0.3)]⊤ , Yd(t) = [1/30, 1/(2 × 0.3)]⊤ , γ = 1, 
Ts = 1 × 10−3, N = 50, IL = 1 × 103, R = 1 × 10−4I2, Q = 1 × 102I2. 

conclusion is that the time evolution of β is no longer hyperbolic when using the MPC method. This means 
that the MPC method fnds an almost constant Σ solution but not the hyperbolic solution shown in [64]. The 
MPC allow us to reach the fnal state Yd at tF with an error of 6.6 × 10−4. 

As a second example, Figure V.12 shows the dynamics of the controlled O-U process when the initial state 
is Y(0) = [5/6, 1/(2 × 3)]⊤ (fxing tF = 2A = 0.7367), the desired state Yd(t) = [1/30, 1/(2 × 3)]⊤ and the 
damping γ = 1. Again, the MPC method recovers a geodesic solution where β time evolution is constant. In 
this scenario, the MPC method reaches to the desired state Yd with an error of 9.8 × 10−4 in a time t > tF 

demonstrating that the numerical optimisation scheme may not recover an optimal time. 
As a fnal remark, note that if the n-variate case is considered, Equations (V.19)-(V.20) form a set of 

non-linear differential equations whose solution may be obtained by a numerical procedure. But, even for the 
case of a second-order stochastic process, this becomes a challenging problem (we have a boundary value 
problem of 12 non-linear differential equations). Hence, the MPC method provides an alternative solution 
to this problem while being an experimentally feasible approach as demonstrated by the application to the 
Kramers equation in Section V.5. 
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Figure V.12: Comparison between the analytical solution of Eqs (V.19)-(V.20) vs the IL-QR solution for the 
O-U process (V.8). The IL-QR parameters are Y(0) = [5/6, 1/(2 × 3)]⊤ , Yd(t) = [1/30, 1/(2 × 3)]⊤ , γ = 1, 
Ts = 1 × 10−3, N = 10, IL = 1 × 103, R = 1 × 10−4I2, Q = 1 × 102I2. 

V.8 Full-state feedback control 

So far, we have successfully employed a control algorithm that allows minimum information variability. Yet, 
it would be interesting to explore other classical control techniques subject to thermodynamic constraints for 
the generation of effcient processes. 

As a fnal application, here we explore the use of IL for control design in a given linear stochastic process 
but through what control engineers call the full-state feedback controller given by 

u(t) = −kx(t), (V.26) 

where k ∈ R1×n . Through this control, we obtain the following closed-loop system 

ẋ (t) = Aclx(t) + ξ(t), (V.27) 

where Acl = A − Bk. The full-state feedback control permits us to manipulate the system’s mean value via 
changing the eigenvalues of A. As discussed previously, such eigenvalues also modify the time evolution of 
Σ. In systems like (III.80), the value of Σ can as well be manipulated by the temperature of the fuid whose 
value is related to the elements D11 and D22 of the noise amplitude matrix D. 
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Taking the aforementioned details into consideration, the following optimisation problems for the design 
of minimum variability control can be solved Z t f 

min J1 = Γ(τ) dτ,
k,D 0 

s.t. µ̇ = Aclµ 

Σ̇ = AclΣ + ΣA⊤ 
cl + 2D (V.28) 

µ(0) = m, Σ(0) = S 

kl,i ≤ ki ≤ ku,i, 0 ≤ Dii ≤ Dmax 

∀i = 1, 2, . . . , n, 

and 
min J2 = ||Γ(t)2 − Γ(0)2||,
k,D 

s.t. µ̇ = Aclµ 

Σ̇ = AclΣ + ΣA⊤ 
cl + 2D (V.29) 

µ(0) = m, Σ(0) = S 

kl,i ≤ ki ≤ ku,i, 0 < Dii ≤ Dmax 

∀i = 1, 2, . . . , n. 

In Equation (V.28), J1 is a cost function that considers the minimisation of IL from t = 0 to t = t f to obtain the 
“minimum” statistical changes in the given period of time. On the other hand, Equation (V.29) considers a cost 
function J2 equal to the norm of Γ(t)2 − Γ(0)2. The objective of J2 is to keep Γ2 constant through time (with 
the least amount of fuctuations) to approximately follow the “geodesic”, a problem well described in [64]. 
Both optimisation problems are subject to the dynamics of the mean and covariance of the PDF given certain 
initial conditions for them. The problems also consider upper and lower limits to ki and Dii ∀i = 1, 2, . . . , n 
given by kl,i, ku,i and 0, Dmax, respectively. Note Dii ≥ 0 because the temperature cannot be negative. The 
values of kl,i and ku,i are determined such that the following stability condition is satisfed 

|sI − Acl | ̸= 0 ∀s ∈ C s.t. ℜs > 0. (V.30) 

Using ω = 1, γ = 2, µ1(0) = 0.5, µ2(0) = 0.7, Σ11 = Σ22 = 0.01, Σ12 = Σ21 = 0, Dmax = ∞, kl,1 = −1, kl,2 =" # 
−2, ku,1 = ku,2 = ∞ and u(t) = −[k1 k2] 

x1 in system (III.80), we have explored the solution of Equations 
x2 

(V.28) and (V.29) via the MATLAB Toolbox FMINCON [153]. The solutions give us the set values of k and D 
that give at least a local minimum. Note that our goal here is to see the implications of a solution to such 
problems instead of rigorously fnding the global optimal solution. 

Figure V.13 depicts the time evolution of Γ, L, Π, x1, x2 and the spaces (p(x, t), x1, x2) and (x1, x2) after 
applying the values of k and D that give a solution to the optimisation problem (V.28). As a result, the value 
of k contains k1 = 2.1229 and k2 = 4.4453 and D, contains D11 = 0.2684 and D22 = 2.1181. This values 
produce an abrupt change in Γ, a quasi-logarithmic change in L with a maximum value slightly over 5 and 
a slow almost critically damped change in the system dynamics towards the equilibrium. In addition, the 
control quickly drives Π and Ṡ to zero. Even though the control action imposes a slow evolution of the 
mean value, the information rate quickly decreases. Such behaviour is desirable for systems where minimum 
information variability is more important than the speed under which we reach the equilibrium. 
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The solution of the optimisation problem (V.29) depicted in Figure V.14 shows that a geodesic solution is 
obtained when entropy production Π and entropy rate Ṡ are zero. This is imposed by the resultant control 
parameters k1 = −0.8431, k2 = −2, D11 = 0 and D22 = 0 which generate a harmonic oscillatory behaviour 
of the mean value µ = [µ1, µ2]

⊤ and small changes in the time evolution of the covariance matrix elements 
Σ11, Σ12 and Σ22 to keep Γ constant at all t. 

Figure V.13: Full-state feedback control and temperature setting minimising J1. A local minima is at 
k = [2.1229, 4.4453]⊤ and D = [0.2684, 0; 0, 2.1181]. 
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Figure V.14: Full-state feedback control and temperature setting minimising J2. A local minima is at 
k = [−0.8431, −2]⊤ and D = [0, 0; 0, 0]. 

Chapter concluding remarks 

In this chapter, we demonstrated the application of the MPC method to obtain the minimum information variability 
in systems governed by linear and non-linear stochastic differential equations. The system’s linearity produces 
time-varying Gaussian PDFs with statistical moments governed by a set of deterministic differential equations via 
the Laplace assumption. The simulations demonstrate that the MPC method is a practical approach to solving the 
geodesic of the information length between the initial and the desired probabilistic state via the solution of the 
proposed IL-QR loss function. From the Thermodynamics perspective, the simulations of the MPC in the O-U 
process show that the MPC directly affects the amount of entropy production generated by the system to fulfl all 
the optimisation requirements. 
In addition, we identifed the limitations of the Laplace assumption and proved it to reduce the computational 
cost of calculating the time-varying PDFs and to develop a prediction model in the MPC algorithm. Furthermore, 
we show that it is possible to obtain the geodesic of the information length via a simple full-state feedback control 
algorithm. 
Future work will include the maximisation of the free-energy [51] by minimising the value of the entropy 
production, the application to non-linear stochastic dynamics (for instance, toy models [154], systems with 
uncertain physical parameters [155], Brownian motion [156] or diffusion [157; 158]) and the analysis of the 
closed-loop stochastic thermodynamics for higher-order systems. 
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AV Appendix Chapter V 

AV.1 Geodesic dynamics derivation 

Based on matrix calculus identities from [55], we can derive the the Euler-Lagrange equations for Γ2(t). First, 
for µ we have 

d 
�

∂Γ2(t) 
� 
= 0, (AV.31)

dt ∂µ̇ 

where ∂Γ 
∂ 

2 

µ̇ 
(t) = 2Σ−1µ̇ . Therefore 

� �d 
Σ−1 µ + Σ−1 ¨ ΣΣ−1µ̇ + Σ−1µ̈ = 0, (AV.32)˙ µ = −Σ−1 ˙ 

dt 

which leads to equation (V.19). For Σ we have 

∂Γ2(t) 1 � � 
−1(∂ ˙ −1 ˙ −1 ˙ −1(∂ ˙= Tr Σ Σ)Σ Σ + Σ ΣΣ Σ)

∂Σ̇ 2 � �1 −1 ˙ −1)⊤ = 2(Σ ΣΣ , (AV.33)
2 � �d 

�
∂Γ2(t) 

� 
d 

Σ−1 ˙= ΣΣ−1 
dt ∂Σ̇ dt 

= ΣΣ−1 ˙ ΣΣ−1−Σ−1 ˙ ΣΣ−1 + Σ−1 ¨ 

−Σ−1Σ̇Σ−1ΣΣ˙ −1, (AV.34) � �∂Γ2(t) ⊤Σ−1 1 ∂ 
µ ̇  Σ−1 ˙= −Σ−1 ˙ µ + Tr ΣΣ−1Σ̇ 

∂Σ 2 ∂Σ� 
⊤ 1 −Σ−1 ˙ Σ−1 (∂Σ−1) ˙= µµ̇ + Tr ΣΣ−1Σ̇ 

2� 
+Σ−1Σ̇ (∂Σ−1) Σ̇ � � 

⊤ = −Σ−1 ˙ µ Σ−1 + 
1 −2(Σ−1 ˙ ΣΣ−1)⊤ . (AV.35)µ ̇  ΣΣ−1 ˙ 
2 



VI 
Information geometry application to engineering. An 
electrical power system case study 

Chapter summary 

In this chapter, we explore the application of the information length to data-driven 
systems, specially, systems where data are given in the form of time-series. For such 

a purpose, we frst describe a simple algorithm to compute the value of the information 
rate Γ and information length L from the given time-series. In addition, we apply a 
basic recursive neural network (RNN) structure in combination with the previously 
mentioned algorithm to forecast the IL. Then, we apply these algorithms to a case 
study consisting on the analysis of Kinetic Energy (KE) of the Nordic Power System 
during three consecutive years as a way to provide useful insights into the power system 

This chapter is based on 
the following author’s 
publications: [8; 7] 

KE variability and to demonstrate its utility as a starting point in decision making for 
power systems management. Our results reveal that the proposed method provides an 
effective description of the seasonal statistical variability enabling the identifcation of 
the particular month and day that have the least and the most KE variability. 

keywords: Model-predictive-control; Stochastic control; Optimisation 

VI.1 A data-driven world 

As society progresses, science and engineering deal with increasingly 
complex problems characterised by larger sets of variables and informa-
tion usually presented as data. From such data, the engineer/scientist 
is supposed to provide hypotheses and correct conclusions. In this 

Figure VI.1: Modern engineer-scenario, model-based approaches do not become obsolete but rather 
ing applications may require a limited tool to fully describe aspects of dynamical systems such as 
a paradigm shift from model-anomalies, rare events or observations in real-time that signifcantly 
based to data-driven thinking.deviate from an expected behaviour. This, for instance, in applications 
Model-based techniques com-to fnance, cyber security, and health care [159]. 
monly impose a solid mathe-In the previous chapters, we have shown how Information Length 
matical description of the world can be used to analyse and control complex systems described via linear 
while a data-driven approach and non-linear Langevin equations. Specifcally, we demonstrated the 
would directly infer from direct capabilities of information geometry to detect and predict abrupt events, 
measurements, for instance, via its connection to stochastic thermodynamics, unveiling a possible metric 
statistical methods. IL provides to create energetically effcient processes, and its application in a control 
a data-driven tool as it only re-algorithm that generates minimum variability or optimal PDF time 
quires the system’s time-varying evolution. 
PDF to extract features that canEven though our discussion has focused on information geometry 
be used for control or anomalyapplied to SDEs, we highlight that IL is a model-free tool that can 
detection.impact a wider range of problems as it only requires the system’s 
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time-varying PDF (see Figure VI.1). From the latter, in this chapter, 
we aim to extend our work by exploiting IL’s model-free properties. 
Specifcally, we introduce IL as a tool to analyse data presented as time 
series. Recall that time series are ubiquitously used to describe raw 
measurements of complex systems’ time-evolving quantities [160]. 

VI.2 IL from Time-series 

As shown in Figure VI.2, a time series is a set of data points indexed in time order. Here, we will defne x[kTs] 
as a data point in a time series X such that k is the time index and Ts is the sampling period, i.e. [161; 162] 

X = (x[Ts], x[2Ts], x[3Ts], . . . ). (VI.1) 

x(t) 

t 
Ts 

x[kTs] 

kTs 

Figure VI.2: Time series plot. A 
time series is a series of data 
points indexed in time order. The 
data in the time series commonly 
come from information sampled 
with a sampled period Ts from 
an evolving measurement x(t) 
such that x[kTs] represents the 
data in the time series sampled 
at time kTs where k ∈ Z+ . 

As data sets in the form of X exist everywhere in practical applications, for example in fnancial systems, 
electrical and mechanical signals, to exploit information geometry capabilities on X, it is important to defne a 
methodology to estimate the value of IL from discrete time measurements. 

VI.2.1 The discrete information length 

Specifcally, to compute the value of IL for a time series of a random variable x, a discrete version of Equation 
(III.11) is applied. Such expression can be defned as follows [163] 

n 1
∑L[n]=Ts , (VI.2)T [kTs]k=0 � �21 P[j; (k + 1)Ts]P[j; kTs] ln . 

s 
T [kTs]2 =Γ2[kTs]= 

where k denotes discrete time with sampling period Ts and j denotes a spatial point in the discretization of 
the space variable x. The probability mass function1 (PMF) is denoted by P[j, kTs]; and the sampling time and 
spatial step are denoted as Ts = (t f /n) (t f is the total time) and s respectively. Since, logarithm is used in 

1 The discrete version of the time-dependent PDF p(x; t). 

∑h2 P[j; kTs]j 
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(VI.2), when P[j; kTs] takes the smallest value 0, the ln(0) gives an undefned value. To overcome this issue, 
we apply the following change of variable 

q2 = p, (VI.3) 

we have h i2� �2 dp � �2d dt dq 
p ln(p) = = 4 . (VI.4)

dt p dt 

Therefore, we can rewrite the information rate Γ of the random variable x in terms of the variable q (defned 
in (VI.3)) by substituting (VI.4) in (III.11) as follows 

Z � �2 
Γ(t)2 = 4 

d
q(x, t) dx. (VI.5) 

R dt 

Now retrieving p in (VI.5) and discretising the time-derivative of q using the limit 

p p
d P[j; (k + 1)Ts] − P[j; kTs]q(x, t) = lim , (VI.6)
dt Ts→0 Ts 

we have the following version of the discrete time information rate 

�q q �2s
Γ2[kTs]= ∑ 4 P[j; (k + 1)Ts] − P[j; kTs] ,

T2 
s j 

n 
L[n]=Ts ∑ Γ[kTs]. (VI.7) 

k=0 

Equation (VI.7) defnes the IL in discrete time. 

VI.2.2 IL computation from a time series 

In this work, we use equation (VI.7) to compute IL time series. In the procedure, we estimate each p[j; kTs] 
via an sliding-window algorithm [164], i.e. we select a set of data points over the time series and move it over 
time. As we will discuss, the sliding window can move over the set of real data (see Algorithm 2) or the set of 
estimated values (see Algorithm 3). The corresponding PMF of the k-th time is found by using the kernel 
smoothing function method2 , described in [165] (named ksdensity in MATLAB®), over the sliding-window. 

The pseudo-code description for computing IL from time series is shown in Algorithm 2. The algorithm 
considers an initial data set Di of size N, i.e. at least N measurements are necessary to estimate the frst value 
of Γ. The result of the algorithm corresponds to the value of L in (VI.7). Inside the procedure, the function 
InformationLength in Algorithm 2 corresponds to the programming of the discrete functions in Eq. (VI.7). 

2 This method returns a probability density estimate based on a normal kernel function (for further details, see https://uk. 
mathworks.com/help/stats/ksdensity.html). 

https://uk.mathworks.com/help/stats/ksdensity.html
https://uk.mathworks.com/help/stats/ksdensity.html
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Algorithm 2: Algorithm for the estimation of the Information Length from a time series. 

Data: Consider the initial data set: Di := {D[kTs]|D[kTs] ∈ R ∀k = i − N, i − N + 1, . . . , i} such that N is 
the number of samples (window size) in the data set (KE data in our case) sampled with sampling 
period Ts and i ∈ N is the current time. Besides, n ∈ N is the fnal discrete time of the experiment. 

1 
Result: The value of L[n] and Γ2[nTs] (see Eq. (VI.7)). 

2 P0 = ksdensity(D0) // Estimate the initial PMF using the function ksdensity from MATLAB® on 

the initial data D0. 

i = 1 
3 while i ≤ n do 
4 Pi = ksdensity(Di)// Estimate next PMF. 

/* Compute IL using Eq. (VI.7). */ 

5 [L[i], Γ2[iTs]]=InformationLength(Pi, Pi−1) 
6 i = i + 1 
7 end 
8 return L[n], Γ2[nTs] 

VI.3 IL forecasting through deep learning 

Now, since IL has been proved to detect ongoing perturbations that 
simulate abrupt events in the statistical space [7], predicting its future 
value on real-time can be of great importance in any decision-making 
process such as power-systems management. To this end, as a proof of 
concept, we introduce a forecasting algorithm that implements a basic 
recursive neural network over a sliding window to estimate the value 
of the PMF P[j, kTs] at the discrete time kTs. 

N 

N + 1 

p(x, t) 

x 

t 

Ts 

P0 

x̂ 

P1 

P2 

P3 

Remark VI.1. Here, our goal is to provide 
the basics for applying IL with a forecasting 
algorithm. We do not intend to provide a full 
study of the forecasting algorithm method-
ologies that could be implemented. Instead, 
we explore a popular method and combine 
it with the IL metric to analyse the possible 
implications. 

Figure VI.3: Schematic describ-
ing the data-driven methodology 
to compute IL through a fore-
casting algorithm. The method 
uses the predicted value x̂ from 
the time series x (the present 
and predicted values presented 
in green and red colour, respec-
tively) with sampling period Ts 

and includes it in the sliding win-
dow of size N to estimate the 
next value of the PMF (thus, the 
next value of Γ2). 

First, we recall that NNs are a series of architectures and algorithms based on brain behaviour 3 . The goal 

3 For a complete discussion about NN and its applications see https://machine-learning-for-physicists.org/ 

https://machine-learning-for-physicists.org/
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behind these models is to learn from examples and, in a similar way as human cerebral cells do and to change 
the interactions between basic units known as neurons [166]. Here, the NN is used as a regressor which 
incorporates non-linearity and the potential to learn from data. Specifcally, the methodology uses a long 
short-term memory (LSTM) model. 

A LSTM is an Recurrent Neural Network (RNN)-based architecture, where the ability to retain part of 
the information that belongs to the hidden layer can be used for forecasting at particular times [167]. The 
advantage of LSTM, in relation to common RNN models, is the improvement of the performance over the 
gradient vanishing problem, which represents a diffculty in the traditional back-propagation algorithm 
employed for training. However, the comparison of other neural models or the usage of different forecasting 
methods is out of the scope of this paper. 

For our analysis, we have used the implemented LSTM network in MATLAB®4 , a deep leaning method 
using 200 hidden units [168]. In Algorithm 3, we provide the pseudocode that computes IL using (VI.7) and 
the time series forecasted value x̂. Figure VI.3 illustrates the proposed methodology. In brief, as suggested by 
Fig. VI.3, in the frst prediction Algorithm 3 uses N data (data set D0) with sampling period Ts to train the 
RNN via the function TrainingFunc and estimate the initial PMF P0 using the function ksdensity. Next, it 
forecasts the next value in the time series x̂ using the PredictandUpdate function, and adds it to the next 
sliding window N + 1 (data set D1) via the function UpdateDataSet to estimate the next PMF P1. Finally, 
the value of IL is computed from the initial PMF P0 and the forecasted P1. Note that, after the value x̂ 
is predicted by the RNN, we update the network with the real value of the previous prediction using the 
function PredictandUpdate in the next prediction. This process is repeated till we reach the fnal discrete 
time n and return the values of L[n], Γ2[nTs]. 

Algorithm 3: Information length forecasting algorithm. 

Data: Consider the normalised initial data set: Di := {D[kTs]|D[kTs] ∈ R ∀k = i − N, i − N + 1, . . . , i} such 
that N is the number of samples (window size) in the data set sampled with sampling period Ts and 

1 
i ∈ N is the current time. Besides, n ∈ N is the fnal discrete time. 

Result: The value of L[n] and Γ2[nTs] (see Eq. (VI.7)). 

/* Train the LSTM arquitecture N . */ 

2 N = TrainingFunc(D0) 
3 P0 = ksdensity(D0) // Estimate the initial PMF using the function ksdensity from 

MATLAB® on the initial data D0. 

4 i = 1 
5 while i ≤ n do 

/* Insert a new measurement, predict the new value x̂ and update the network N . */ 

6 [N , x̂] =PredictandUpdateNet(N , D[iTs]) 
7 Di=UpdateDataSet(Di−1, x̂)// Move the sliding window adding prediction x̂. 

8 Pi = ksdensity(Di)// Estimate next PMF. 

/* Compute IL using Eq. (VI.7). */ 

9 [L[i], Γ2[iTs]]=InformationLength(Pi, Pi−1) 
10 i = i + 1 
11 end 
12 return L[n], Γ2[nTs] 

4 For further details, see https://uk.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html 

https://uk.mathworks.com/help/deeplearning/ug/long-short-term-memory-networks.html


138 adrián josué guel cortez 

VI.4 Case study: An electrical power systems 

In this section, we now explore the application of the previously given algorithms as a way to provide useful 
insights into a power system KE variability and to demonstrate its utility as a starting point in decision 
making for power systems management. Specifcally, the proposed IL metric is applied to monthly collected 
data from the Nordic Power System (NPS) during three consecutive years in order to investigate its KE 
evolution. 

Figure VI.4: Map of countries 
that belong to the Nordic Power 
System (NPS). 

The NPS is the interconnected and single market area of the Nordic countries that belongs to the region 
in Northern Europe and the North Atlantic, specifcally Sweden, Norway, Finland, and eastern Denmark 
(See Figure VI.4). For the past ten years, the reduction of rotational inertia5 has been a concern for the 
NPS Transmission System Operators (TSOs)6 as its value indicates the capacity of a generator to cope with 
active power imbalances (for further details, see [171]). One of the short-term measures to ensure the system 
frequency stability has consisted in installing a measurement and monitoring system to capture the rotational 
inertia available in the NPS. This monitoring system produces situational awareness alarms to indicate 
when the levels of the inertia fall below a predefned limit. Using this approach, the TSOs attempt to avoid 
operational scenarios where the reduced inertia and an N − 1 contingency criterion7 can negatively affect the 
frequency stability. 

The NPS used the so-called ‘unit commitment method’ to calculate the total system rotational inertia, and 
it is based on adding the rotational inertia of each synchronous machine connected to the system. The TSOs 
of the NPS have calculated the KE of the NPS in real-time since 2015. This chapter takes advantage of the 
recorded data of the KE to develop a metric to quantify its variability and unveil hidden information. 

We utilise the historical data of the KE in the NPS (in GWs) recorded during the entire years of 2018, 2019, 
and 2020. The time series of the KE consists of 44640 samples; it comprises the total data of these years with a 
resolution of one sample per minute. Figure VI.5a shows a plot of the KE data where seasonal variation of 

5 Here, we refer to the rotational inertial of the synchronous generators in the system. In a few words, in power systems, the term 
inertia refers to the energy stored in large rotating generators and some industrial motors, which gives them the tendency to remain 
rotating [169]. 
6 TSOs are the agents responsible for the reliable transmission of power from generation plants to regional or local electricity 
distribution operators by way of a high voltage electrical grid [170]. 
7 (N-1)-Criterion means the rule according to which elements remaining in operation after a fault of one element within TSO’s control 
area must be capable of accommodating the new operational situation without exceeding operational security limits [172]. 
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Figure VI.5: KE time series of 2018, 2019, and 2020. 

the KE is evident. For 2018, low values are located during the summer months where the dominant-heating 
and lighting load is reduced (min: 127 GWs) and as a consequence, the number of generators to cope with 
the load is minor. As expected, the maximum KE is located during the winter months (max 272 GW.s). 
Figure VI.5 refects the raise of concern about the reduction of KE by comparing the annual averages of KE. 
Average KE during 2018 had a value of 200 GWs, whereas during 2019, and 2020 is 195 and 190 respectively, 
representing 5% reduction. 

A further descriptive using classical statistics of the KE raw data in the form of a monthly box plot is 
performed in Figure VI.6 (including distribution of the data as a histogram, the left side of the boxplot). 
Figure VI.6 allows identifying the mean and variance per month of the KE during the years studied. From 
Figure VI.6a, November 2018 shows the highest variance of the KE with extreme values outside the upper 
and lower quartiles that almost reach the minimal global inertia reached during summer months. On the 
other hand, May 2018 exhibits minimum changes in the KE, and it coincides with mild temperature and 
moderate load in the Nordic countries. For years 2019 and 2020, the histograms show the highest variance 
during January and November, respectively. In addition, the lowest variance occurs during June, and July 
respectively. Although these statistical measurements can provide us with information from the KE of the 
entire month, a day-by-day or hour-per-hour description of the statistical fuctuations is still missing. Here, 
the IL metric can provide us with such information since, as we have discussed previously, it tracks time 
series evolution through time-variant PMFs [61; 7]. 
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(a) 2018 (b) 2019 

(c) 2020 

Figure VI.6: Classic statistical Analysis of the KE Analysed per Month. The charts show a combination of 
histograms and boxplots per month in the years 2018, 2019 and 2020. 

VI.4.1 Information Length Metric Results 

In the following, to visualise and analyse the given data, we have assigned the measurements to seasonal 
groups per year. Typically, in the Nordic countries, spring runs from March/April to May, summer from 
June to August, fall from September to October/November and winter from November/December to 
March/February. However, the seasons might have longer winter and summer periods, and the seasons in 
between, spring and fall, can be shorter. Thus, the demand and power reserves vary accordingly. 

From Figure VI.5, the dramatic effect of seasonality on the KE is perceived, the summer and winter trends 
are well defned whereas the spring and fall periods can be considered as the decreasing/increasing ramps 
as the consumption during the months on those seasons decrease/ increase respectively. Additionally, less 
consumption typically occurs during summer nights. Note that, the load and generation conditions of the KE 
data are unknown and out of the scope of this work. 

Information Length L(t) per Month during 2018 

Figure VI.7 shows the value of IL L(t) per month in the years 2018, 2019 and 2020. Here, we start the 
analysis of the IL metric in the KE from the year 2018. Although, the months with higher load demand (in the 
Nordic countries are during the winter season due to the lighting and heating households necessity) could 
be intuitively assigned as the ones with the higher amount of fuctuations. By analysing the value of the IL 
metric per month during 2018, the highest and the lowest L(t) are during August, and December, respectively. 
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(a) PMF Evolution per day. July (p1(x, t)) vs February 
(p2(x, t)) 2019. 
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Figure VI.9: IL Metric Comparison between the month with the minimum and maximum L in 2019 and 2020 

Thus, indicating that during those months the KE vary the most or remain stiff, respectively. In this regard, 
from Figure VI.6a, we can also distinguish an anticorrelation between the variance and IL per month, which 
persists in the analysis of the two consecutive years. In other words, in comparison to IL, when IL tends to be 
high the covariance is small. In addition, although in summer the power consumption is reduced (the heating 
is not needed), the typical load fuctuations during the day show a high L(t) value. This is because compared 
to the less variability in winter, where fewer variations in the consumption indicate less variation in the PMF, 
in summer load fuctuations are more repetitive. This analysis implies that the capacity and reserves need to 
be adjusted while the day-ahead planning should be carefully optimised. This optimisation process is not 
analysed in this paper. 

To perform a more detailed analysis of the L(t) metric, we have selected the months with the highest and 
lowest IL in the year to create Figure VI.8, where the evolution over the month of L and Γ are depicted. When 
talking about 2018, these are August and December, as we have mentioned before. Figure VI.8a presents 
a collection of time-dependent PMFs that describe the KE evolution through the month. Note that, even 
though all the computations are per hour, the PMFs in Figure VI.8a are sampled per day to permit a better 
visualisation of their fuctuations. Besides, Figure VI.8b shows the value of the Information Rate Γ which 
describes the gradients of the variation of both months PMFs through time. High values and more concurrent 
peaks during August can be seen, which means that August presents faster and rapid PMF variations. These 
are depicted by high peaks in Γ on the KE. Lower values of Γ represent slower changes. Let us recall that all 
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Figure VI.9: IL Metric Comparison between the month with the minimum and maximum L in 2019 and 2020 

quantities are dimensionless. 
Furthermore, in Figure VI.8b, the Information Rate allows to identify the specifc days or hours with 

extreme transitions (abrupt events), as it is seen on the day 11 and, 12 during August, and three subsequent 
peaks on days 18, 19, and 20. The highest peak in December happens on the third day, and subsequent peaks 
on the days 12, and 13. Both months tend to have fewer fuctuations at the end of the month. 

Figure VI.8c shows the information length L(t) associated with the results presented in Figure VI.8b. We 
see that L(t) during August increases faster overtime rate than in December, specifcally in the days 12 and 
20 whose rates are considerably ramping up, whereas in December there are fewer fuctuations around the 
smaller slope. This corroborates how L(t) can be interpreted as a measure of information changes in PMFs. 
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Information Length L(t) per Month during 2019 and 2020 

To expand the analysis of the IL metric, we explore the KE time series of the next consecutive years 2019 
and 2020. Based on Figure VI.7, for 2019, the months with the highest and lowest variability are July and 
February, respectively. Besides, for 2020, the months with the highest and lowest variability are August and 
January, respectively. These months present similar characteristics in comparison to the winter and summer 
seasons of 2018 mentioned in the previous subsection. Note that February has fewer days than July, for such 
a reason, we have included a dashed line in Figures VI.9b and VI.9c setting the end of February. 

For July of 2019, in Figure VI.9b, the days with the highest variability peaks are the 1st and 14th, which 
interestingly are at the beginning and middle of the month followed by the increasing consumption. The 
summer in the Nordic countries is characterised by population movement to summer households which are 
continuously being modernised, for instance, by including new electricity services. The abrupt and joint 
activation of these households produce signifcant changes (strong variations) in power consumption. Two 
main variability peaks are observed on February 1st and 10th of 2019, while the remainder of the month 
remains with few strong variations. 

Along August of 2020, several KE fuctuations are more visible as seen in Figure VI.9e. The highest peak 
is seen on the 11th. However, this month presents a heavily strong variability with high intermittency and 
irregularity. During January of 2020, several more peaks are seen, especially at the end of the month during 
the transition to February. 

Figures VI.9c and VI.9f show a clear difference between the information length L(t) of the respective 
months. A month with higher fuctuations will have a higher value at the end of the L(t) monthly calculation. 
Thus, the difference between August and January of 2020, since both months are highly fuctuating. The same 
difference is observed in the fnal values between July and February of 2019. Similarly, this indicator shows a 
higher variability for summer and winter of 2020 compared to 2019. 

Forecasting Results 

Now, as a proof of concept, We utilise the probabilistic properties of the KE observables to make predictions 
in the values of L and Γ. As we have discussed in Algorithm 3, the proposed short-term, hour-ahead 
probabilistic forecast based on LSTM incorporating uses a normalised PMF. Besides, the prediction has an 
hour-rolling horizon that is being updated with every new estimated value x̂ of the KE time series. Here, we 
test Algorithm 3 using the data of January 2018. 

The a posteriori multimodal PMFs evolution for the LSTM process are shown in Figure VI.10a. Note that 
Figure VI.10 shows only the second half of the month since the other half of the data have been used for the 
LSTM training. As a result, we forecast the value of Γ only for the second half of the month. In this regard, 
Figure VI.10b shows the forecasted Γ2(t) and L(t) metrics. Here, we note that the variability is maintained 
with various gradients during the month. The highest predicted variability (abrupt event) value is observed 
during the day 26, however, the general variability values are similar, meaning the same KE trend, a high 
effort of the system to maintain the heavy consumption since January is in the winter period. 

Finally, to quantify the forecasting error, the Root Mean Square Error (RMSE) between the prediction 
and the observed data is used as a forecasting index. The results of the index are shown in Figure VI.10c. 
Although the model gives the highest error of 15%, the forecast data perform signifcantly well having an 
RMSE of 4.33%. 
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Figure VI.10: Analysis of the Prediction of Information Length using Algorithm 3 where the frst half of 
January 2018 has been used to train the NN and the second half of the month is predicted. 

VI.4.2 Case study discussion 

The potential growth of non-synchronous generation in power systems worldwide is potentially leading to a 
KE reduction in the system requiring a deep understanding of the trends and fuctuations within months, 
hours or seasons. The development and application of new metrics can help to design or adjust the generators 
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or controllers with the ability to respond to a peak seasonal demand. To this end, we utilise the IL metric 
to the behaviour of the KE during the year. Specifcally, we measure the time series fuctuations showing 
the potential8 of IL to detect extreme and abrupt events in the system. A clear advantage of the proposed 
technique is that the availability of specifc demand or generation profles is not required. However, patterns 
or aggregated annual energy consumption data of the system will potentially help to clarify further detailed 
aspects when using the proposed metric. This aspect is constrained to availability since such data might 
require security clearance from TSOs point of view. As the implementation of KE by TSOs is a recently 
developed monitoring system, the collection of further data will be needed to perform a more exhaustive 
analysis. 

Although, operating at full capacity for long periods of time is unusual for a TSO, anticipatory behaviour 
and innovative tools that contribute to gain insights on the system are needed to incorporate more fexibility 
to support grid planning for future irregular or rare events. Moreover, KE analysis, as a relatively new power 
systems topic, requires further understanding to provide operator planning tools that quantify, and extract 
relevant data. 

It is important to underline that traditional statistical analysis should not be understood as erroneous but 
as complementary to the probabilistic metrics presented in this paper. Both can provide relevant information 
metrics of the KE periodic variations. 

Nonetheless, as we have shown, the IL metric can track the variability through the time series evolution via 
time-dependent PMFs. This gives the IL metric an advantage over traditional statistical analysis. For the KE 
annual cases, we consider it more valuable to understand the day-by-day variability since a TSO could use 
this for its day-ahead operations. Even though we have analysed the highest and lowest variability months of 
the KE data per year, the proposed metric can be used within other ranges of time. 

Chapter concluding remarks 

Through this chapter, we have introduced algorithms to compute and forecast the IL from time series. The 
algorithms have been applied to a case study in electric power systems. The application uses IL to study the 
annual Kinetic Energy time series in the NPS during 2018, 2019, and 2020. In the study, we identify the variability 
along the seasons and evaluate the months where the KE fuctuations have abrupt events and the minimum 
variability. Besides, The IL metric enables us to detect daily gradient variations that are otherwise diffcult to 
measure for a TSO. Additionally, the proposed forecasting algorithm uses the metric to predict the future KE 
fuctuations in an hour-ahead horizon, enabling TSOs to adjust the generator’s settings accordingly. 
Future work will investigate other possible probabilistic and dynamic metrics to measure power system-related 
signals with highly intermittent big data. For instance, we plan to use information length to measure the 
information fow between the elements in the system by considering its causality properties [16]. Finally, regarding 
this application, future work will also focus on studying the practicality of the forecasting algorithm presented 
here by comparing its performance with other well-assessed forecasting techniques. 

8 As the information rate is the maximum speed that every observable in the system can take (for further details, see [75]), its value 
would massively increase in the event of a real sudden (and possibly catastrophic) change in the system. Clearly, the prediction of its 
value would be subject to the error of the implemented forecasting method. 
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VII 

VII.1 Concluding remarks 

The present work has explored the connection between three major areas of research, namely, information 
geometry, stochastic thermodynamics and control engineering. From information geometry and via the 
Laplace assumption, we defned the concept of IL as a measure of the distance traversed by the PDF resulting 
from a general multivariate stochastic dynamical system. In the same fashion, IL was related to stochastic 
thermodynamic relations via the value of entropy rate Ṡ, creating a physical relation between the length of a 
path in a statistical manifold (labelled by the elements of the mean vector µ and covariance matrix Σ) and the 
entropy production. 

While IL defnes the length of the path that the PDF takes over time, it comes from the integration of the 
information rate Γ value. Such quantity was also presented as a way to quantify abrupt changes in stochastic 
dynamics. Considering a case study of a non-autonomous second-order SDE, simulations showed that Γ was 
able to predict abrupt changes in the covariance matrix which were artifcially induced via an impulse-like 
function over the noise amplitude. Furthermore, information rate was able to measure perturbations which 
do not affect entropy in comparison to entropy-based measures such as information fow. In the same context, 
the thesis also presented different information-based correlation measures that can be applied to quantify the 
effects of perturbations over the multiple variables of an SDE while describing the interconnection structure 
within the system’s variables. The proposed correlation coeffcients were compared against the classical 
Pearson and mutual information coeffcients, again, proving its advantage when detecting perturbations 
which do not affect the entropy of the system because information geometric measures also depend on the 
mean value vector µ dynamics. 

Inspired by possible applications to optimal mass transport and energy effciency design, the work 
additionally presented the computation of IL’s geodesic to obtain the minimum information variability 
evolution of the stochastic dynamics. The geodesic is obtained via the MPC algorithm consisting of an 
on-line optimisation procedure. Hence, the algorithm would permit us to obtain a minimum information 
variability path in real-time. In the results, we showed the effects that MPC has on the closed-loop stochastic 
thermodynamics indicating that the algorithm produces entropy to maintain the system out of equilibrium in 
a desired state while reducing the entropy rate. Comparing the MPC results with the previous study of IL 
geodesic in the O-U process [64], we concluded that the MPC method does not give us a hyperbolic behaviour 
in the variance of the O-U process as the analytical solution presented in [64]. 

Finally, we explored the application of IL diagnostics to problems where the data are given in the form 
of time series. Specifcally, we considered a case study of the kinetic energy variability of the Nordic power 
system. The results showed that IL and information rate can help us to identify the variability along the 
seasons and evaluate the months where the kinetic energy fuctuations have abrupt events. In the same study, 
we proposed a forecasting algorithm that uses the IL metric to predict future kinetic energy fuctuations in an 
hour-ahead horizon, enabling the power system manager to adjust energy generation settings accordingly. 

In this manner, we consider that the presented research was able to propose starting points in the pursuit of 
creating integrated automatic systems whose fnal purpose is to produce dynamics with minimum statistical 
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variability while giving a diagnosis of entropic measurements and perturbation effects. 

VII.2 Future work 

As part of future work, we plan integrating our results with current machine learning methods (ML) to 
enhance the performance of any autonomous system. For example, let us consider the illustration shown 
in Figure VII.1, where a mechanism (in this case an android) has the task of balancing a bar by placing 
it at an angle of 90° with the vertical while obtaining feedback information through a camera. Present 
literature proposes techniques such as reinforcement learning [173] or active inference [174] to process 
feedback information which we may combine with IL to infer the actions that will allow us to achieve our 
goal. 

Figure VII.1: Information-based 
autonomous system. An android 
receives information via a sensor 
(in this case a camera) to infer 
which actions to take in order to 
balance a bar by placing it at an 
angle of 0° or 180° with the ver-
tical, depending on how you ori-
ent the axis. 

Another example of future work where our results can be combined with ML methods lies on detecting 
perturbations in data-driven systems. Specifcally, we can improve the forecasting and computation of IL from 
time series presented in VI since computing information geometry from time series improves the performance 
of decision making systems, autonomous robots (as in the previous example), or mathematical modelling. 

Finally, our results can be extended to any stochastic process by applying histograms instead of kernel 
density estimators in our algorithms. For instance, we can modify the MPC method to create histograms 
from the SDE solution in a parallelised computational process. Then, from the histograms, we compute a 
prediction of the IL to solve the optimisation and control problem. 
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