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EVALUATING THE IMPACT AND RECOVERY OF HURRICANE MATTHEW ON THE 

AGRICULTURAL SECTOR OF THE SUD AND GRAND’ANSE DEPARTMENTS, HAITI. 

ABSTRACT 

Hurricanes present a significant threat to food insecurity in geographically vulnerable nations, such 

as Haiti, that are heavily reliant on agriculture. Despite this, there is a lack of data collected within 

Haiti, specifically in the Sud and Grand’Anse department, to implement sound disaster risk 

management plans against hurricanes. This prevents building resilience against one of the largest 

threats to food insecurity. Consequently, this research presents a desk-based methodology 

employing the common satellite derived Vegetation Index, Normalised Difference Vegetation Index 

(NDVI) to evaluate the immediate impact and long-term recovery of agricultural vegetation following 

Hurricane Matthew. Analysis of NDVI before and after hurricane Matthew identified the communes 

and agricultural land covers that sustained the most damage in the immediate aftermath of the 

hurricane, alongside their long-term recovery. The findings conclude that Hurricane Matthew 

inflicted widescale damage, with agricultural land covers, Agroforestry and Dense Agriculture, and 

the communes of Torbeck and Camp-Perrin sustaining the most severe damage. Consequently, more 

severe damage is predominantly linked to species taller in height with a wider surface area and 

coastal or inland flooding of river valleys associated with a storm surge or heavy precipitation. In the 

long-term, findings suggest that agricultural vegetation made a full recovery by 6 months post-

hurricane. The findings of this research highlights areas of vulnerability to hurricanes in Haiti. This is 

useful to governments and locals to inform changes to agricultural practices and policy to build 

resilience and reduce food insecurity. If tested, this methodology can be utilised in any region of the 

world, investigating the impact of not only hurricanes but other climatic-related hazards such as 

flooding and droughts.  

 

Keywords: Hurricane Matthew; Haiti; Agricultural Vegetation; NDVI; Impact and Recovery; time-

series analysis; Land Covers 
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CHAPTER 1 

1. INTRODUCTION 

1.1. HURRICANES AND FOOD SECURITY 

One thing is known for certain; hurricanes can challenge food security within countries on both a 

local and regional scale. It is seen repetitively, across countries that are vulnerable to hurricanes, 

that the sheer force of wind, in conjunction with heavy rainfall and a potential storm surge, can 

cause immediate loss of agricultural vegetation. This was seen in 2017 when Hurricane Irma made 

landfall in Florida; the estimated total agricultural losses equated to $2.5 billion (Bond and Perez 

2018). Similarly, losses in rice production from 1970-2018 in the Philippines amounted to an average 

of $42 million per cyclone event (Yuen et al. 2022). It is clear that post-hurricane literature regarding 

agricultural damage (e.g. Bond and Perez 2018; Yuen et al. 2022) tends to focus on the commodity 

side of impacts; quantifying damage in relation to the yield lost and the associated costs.  Whilst 

useful information to know in terms of the immediate impact this has on food security, it is not 

helpful for countries that rely on agriculture predominantly for self-sufficiency (e.g., smallholder-

farming). Typically, these countries are most vulnerable to food insecurity. Furthermore, research 

does not consider the long-term implications of the shock and stress that a hurricane can inflict on 

the land. Therefore, alongside immediate commodity loss, the foundations for agricultural 

productivity can be impacted, and reduce the health of vegetation in the long-term. Thus, 

understanding the logistics behind vegetation health post-hurricane should be a priority in the long-

term process of battling food insecurity.  

 

Gaining information regarding the pattern and severity of damage to agricultural vegetation 

immediately post-hurricane, rather than obtaining just the area and loss of yield, can support 

preparedness, mitigation, and recovery efforts for future hurricanes. This is because identifying 

patterns of damage can determine areas of higher vulnerability, thus what regions need more 

support. This, in the long term, will contribute to building resilience. Additionally, literature does not 

monitor the long-term recovery of the land, thus there is no understanding of the patterns of 

recovery within the agricultural sector post-hurricane. This knowledge would, once again, aid 

mitigation and recovery efforts. For example, understanding if one region recovers quicker than 

another and why is insightful for amending future agricultural practices. Overall, gaining further 

knowledge regarding the immediate impact and long-term recovery of hurricanes on agricultural 
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vegetation, as opposed to quantifying the impact economically, can help build resilience against 

future hurricanes. It is with the hope that in the long-term this will decrease the impact on food 

insecurity within vulnerable regions.  

 

 

 

1.2. FOOD SECUIRTY IN THE CARIBBEAN  

For many nations such as Haiti, food security does not purely rely on commodity crop production 

and importing of goods. This is evident throughout the global south and in the Caribbean where 

smallholder farms are the main producers of food for domestic consumption and local market trade, 

thus, is the main source of food security.  

 

Smallholder farms, a common practice in Haiti, can be defined as farmers with less than 2ha (Csaki 

and De Haan 2003), producing food for their own consumption and local markets. Indeed, within the 

Sud and Grand’Anse departments (the ROI for this research), Haiti, agriculture is the main economic 

activity; 80% and 84% of households in Sud and Grand’Anse (respectively) have access to land for 

agriculture (RTAC 2021). Agroforestry is also a common practice within Haiti, typically this practice is 

found on the slopes of the country (CIESIN 2022). In lower elevations, dense agricultural systems can 

be found, with the main crops produced being maize, rice, legumes, roots and tubers, plantains, and 

fruits (RTAC 2021). In the 2009 agricultural census, approximately 85% of farms had a total area of 

less than 2.5ha (Rodrigues-Eklund et al. 2021). On average farms consist of 1.8 parcels; an 

agricultural parcel can be defined as a continuous area of land declared by one farmer that includes 

no more than one crop (Rodrigues-Eklund et al. 2021). Usually, these parcels are located several 

kilometres away from each other, with the average size of a parcel being 0.54ha. This structure of 

farming modelled in Haiti is common throughout the Caribbean and the global south.  

 

Years of history has shaped how Caribbean countries, including Haiti, now practise agricultural 

production to conquer their food and nutritional security challenges. Although the benefits of 

smallholder agriculture can be seen through data concluding that they have higher land productivity 

and yields, due to the informality of smallholder farms, there are several factors that prevent their 

sustainability. Challenges include limitations of low-level technology, and absence of barriers to 

prevent entry of pests and animals. The main challenge which this research focuses on is their 
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vulnerability to climate and annual shocks that are beyond their control and poorly prepared and 

mitigated against. This relationship between food insecurity/rural poverty and climate change 

vulnerability is cyclical and if not addressed and mitigated against could have a significant negative 

impact on sustainable food production and thus, food security (Ewing-chow 2020). This additionally 

limits their ability to compete in domestic markets that are flooded with imports. Consequently, the 

food produced by smallholder farms tend to not contribute to the global commodity chain, thus 

have a less significant impact on global food security. However, using around 24% of the worlds 

agricultural land, smallholder farms are estimated to produce around 29% of total crop production, 

measured in Kilocalories (Ritchie 2021; Shroff 2022). This, in conjunction with the local context, 

smallholder farming has a vital role to play in food security, health and fighting against hunger (Saint 

Ville, Hickey and Phillip 2015). Jamaica’s investment and export promotion agency states that with 

investment in climate resilient agriculture, production could double (Ewing-Chow 2020). Thus, 

monitoring the immediate impact and recovery of climate-induced hazards (e.g., hurricanes) on 

smallholder agriculture is equally as important as it would be for regions where larger scale 

commercial commodity farming is practiced, thus is vital to build resilience and increase food 

security. 

 

 

 

1.3. THE IMPACT OF HURRICANES ON FOOD SECURITY IN HAITI 

One country that is challenged with food insecurity and is also susceptible to hurricanes is Haiti. Haiti 

is currently the poorest country in the western hemisphere and has a heavy reliance on agriculture; 

with 29% of Haiti’s population working within this sector (The World Bank 2019). Despite this, 1.3 

million Haitians suffer from severe hunger; which is one of the highest levels of food insecurity in the 

world (IPC 2022; World Food Program 2022). Alongside Haiti’s political instability and other 

challenges limiting its development, Haiti is geographically vulnerable (IPCC 2014). Consequently, 

the country experiences many natural disasters, one of which is hurricanes. Since 1951, 6 hurricanes 

of more than category 3 have made landfall in Haiti (Thompson 2016), including Hurricane Matthew 

(2016). This repetitive subjection to damage from hurricanes is a hindrance to not only the country’s 

development but further challenges food security. One of the most recent hurricanes to cause wide-

scale destruction was Hurricane Matthew. Hurricane Matthew was a category 4 event that made 

landfall on the 4th October 2016 in the Sud department, travelling north through Grand’Anse. The 
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hurricane had a severe impact; an estimated 2.2 million people were affected, over 500 people lost 

their lives, up to 90% of homes were destroyed, and the damage to critical water and sanitation 

infrastructure contributed to an increase in the number of cholera cases (Marcelin, Cela and Shultz 

2016; British Red Cross 2017; Action Aid 2022). In regard to agriculture and food insecurity, over 90% 

of crops were destroyed, with damage to the agricultural sector estimated to be $580 million (FAO 

2016; The World Bank 2017; Action Aid 2022). This resulted in 806,000 people suffering an extreme 

level of food insecurity (Action Aid 2022). Research associated with Hurricane Matthew in Haiti (e.g. 

Shultz et al. 2016; Marcelin, Cela, and Shultz 2016; Khan et al.  2017; Pasetto et al. 2018; Kianersi et 

al. 2021) does not acknowledge the impacts of the hurricane on agricultural vegetation immediately 

post-hurricane or in the long-term, despite there being evidence of long-term impacts on the health 

of the land, affecting agricultural productivity. Furthermore, there is a lack of data collected within 

Haiti, specifically in the Sud and Grand’Anse department, to implement sound disaster risk 

management plans (Cohen and Sing 2014). Thus, research to investigate the immediate impact and 

long-term recovery of Hurricane Matthew on agricultural vegetation would be beneficial. It would 

quantify damage, identifying regions of higher vulnerability, thus understanding where mitigation 

and recovery efforts need to be focused in the future to reduce the impact on food insecurity. 

Therefore, this research holds importance to both locals, government bodies and policy makers. 

 

 

 

1.4. AIM & OBJECTIVES 

Considering the current literature (e.g., Shultz et al. 2016; Marcelin, Cela, and Shultz 2016; Khan et 

al.  2017; Pasetto et al. 2018; Ewing-Chow 2020; Ritchie 2021; Kianersi et al. 2021; Shroff 2022) and 

Haiti’s challenges, this desk-based study aims to assess the impact of Hurricane Matthew on the 

agricultural sector of the Sud and Grand’Anse departments, Haiti. This aim will be met by the 

following objectives: 

1. Develop and test a methodology that utilises remote sensing data to assess changes in 

vegetation following Hurricane Matthew.  

2. Critically assess the immediate impact of Hurricane Matthew.  

3. Monitor the long-term recovery between 2016 and 2021.  

4. Assess the vulnerability of land cover types across agricultural dependant communes.  
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To begin with, the literature review will establish the current situation in relation to food insecurity 

and hazards such as hurricanes, highlighting the links and the importance of the issue at hand. To 

follow, a detailed review of the different impacts of hurricanes on agricultural land will take place, 

accompanied by the methods used to monitor the impacts. The methodology will address the study 

site, data collection, and pilot studies as well as the final methods used to produce the results. The 

results will then be presented, outlining the immediate impacts, followed by the long-term recovery. 

The discussion will debate the findings of the research, as well as provide a detailed evaluation of 

the methods and results with particular focus on the challenges of data access within Haiti. Finally, 

the research will be summarised.  
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CHAPTER 2 

2. LITERATURE REVIEW 

2.1. THE CURRENT CLIMATE OF WORLD HUNGER 

World hunger is a complex issue. Hunger can be defined as periods when populations experience 

severe food insecurity. Consequently, families may experience entire days without eating due to a 

lack of money and resources or restricted access to food (World Health Organisation 2021). There 

are different categorisations of hunger worldwide, as well as a lack of resources to register birth 

rates, displacement rates and to record health data, leading to inaccurate figures regarding hunger. 

In politically vulnerable nations, figures released nationally and internationally can be shaped by an 

agenda which inevitably impacts the categorisation of a country’s situation.  

 

The Integrated Food Security Phase Classification (IPC), however, is a respected measurement of 

world hunger employed by governments, NGO’s, and UN agencies. The IPC is beneficial for countries 

such as Haiti as it is used to determine the severity and magnitude of acute and chronic food 

insecurity, and acute malnutrition situations to inform emergency responses as well as medium- and 

long-term policy and programme (IPC 2022). Figure 1 shows that based on the Acute Food Insecurity 

Scale, Catastrophe/Famine (Phase 5) describes the most serious situation concerning food insecurity 

(Oxfam 2021; IPC 2021). Although not impossible, it is rare for regions to surpass the emergency 

phase into the famine threshold (>20% of households with extreme food gaps, >30% of children 

acutely malnourished, and Crude Death Rate > 2/10,000/day) (IPC 2021). Today, it is estimated that 

0.46 million are in Phase 5 worldwide (IPC 2022) whereas between 10-45 million people are facing 

emergency conditions (Phase 4) according to research by agencies such as Oxfam (2021), The World 

Food Program (2021) and IPC (2022). Although these statistics are alarming, other types of hunger 

such as ‘stress’ and ‘crisis’ are more prevalent across a broad range of countries (IPC 2022; FEWS 

NET 2022). The Global Report on Food Crisis (GRFC) (2022) reports that the majority suffering from 

hunger are concentrated within 48 countries (Global Network Against Food Crisis 2022), all of which 

are in the ‘global south’ (GRFC 2022). One country demonstrating evidence of ‘crisis’ and 

‘emergency’ states of hunger is Haiti with one of the highest levels of food insecurity in the world 

(IPC 2022; World Food Program 2022). In February 2022, worldwide, 34.94 million were in a state of 

emergency (Phase 4), 1.3 million of which were Haitians. Furthermore, 3 million/128.03 million 

worldwide in a state of crisis (Phase 3) were Haitians (IPC 2022).  Although the 3 million Haitians 



17 
 

account for <2.5% of individuals suffering from crisis worldwide, 3 million accounts for more than a 

quarter of the country’s population (The World Bank 2021). Thus, food security is a major threat to 

Haiti. 

 

Haiti is a Caribbean country with a warm tropical climate and shares the island of Hispaniola with the 

Dominican Republic. It is the least developed nation in the Western Hemisphere (World Bank 2021); 

ranked the 15th lowest in the 2020 Human Development Report whereby countries are measured 

and ranked by development indicators such as education and life expectancy. Haiti’s complex history 

regarding political stability, conflict, and repetitive subjection to natural hazards create challenging 

circumstances for development (Council on Foreign Relations 2021). Haiti is additionally reliant on 

agriculture, particularly for smallholder farming, and in the Sud and Grand’Anse departments 

agriculture is the main economic activity (RTAC 2021). Despite this, inferred by the Acute Food 

Insecurity Scale, Haiti struggles with food insecurity, with a total of 4.5 million Haitians in need of 

urgent assistance (IPC 2022). Alongside this, food insecurity acts as a consequence of and hindrance 

to development in Haiti. Statistics presented by organisations (e.g., Global Hunger Index 2021; IPC 

2021; IPC 2022; World Food Program 2022; FEWS NET 2022) highlight the severity of food insecurity 

Figure 1. Acute Food Insecurity Scale (IPC 2021). 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in 
the Lanchester Library, Coventry University. 
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within countries such as Haiti, and although it’s a complex topic, research efforts and global unity 

can work together to prevent the issue from growing. 

 

In recent years, unifying efforts have been made to tackle world hunger. In 2015 the UN updated the 

Sustainable Development Goals (SDGs) with the 2nd goal, ‘Zero Hunger’, aiming to ‘end hunger, 

achieve food security, improve nutrition and promote sustainable agriculture’ by 2030 (United 

Nations 2020). Targets to achieve this goal include doubling the agricultural productivity of small-

scale producers (United Nations 2020). As well as implementing resilient agricultural practices that 

will increase productivity and production and strengthen the capacity for adaption to climate change 

and associated climatic-related hazards that degrade land and soil quality (United Nations 2020). 

Despite countries including Myanmar and Rwanda showing constructive movement toward these 

targets (IFPRI 2016), globally, statistics show that the world is far from the UN’s SDGs 2030 target. 

Indeed, from 2014 to 2019 the UN (2021) reported an increase of up to 60 million people suffering 

from hunger. For Haiti, indicators of hunger are showing little improvement (Sachs et al. 2022). 

Specifically, scores of under-nourishments, stunting in children, cereal yields and the nitrogen 

management index are decreasing, stagnant, or increasing at less than 50% of the required rate 

(Sachs et al. 2022), highlighting that the food insecurity crisis has made little progress since the 

SDG’s were updated. Despite strategic plans being proposed by organisations such as the World 

Food Program for 2019-2023 (World Food Program 2022), there is no data suggesting that efforts 

have been effective. Indeed, IPC (2017, 2019, 2022) (Figure 2) suggest that food insecurity has 

increased in Haiti since 2017. Thus, it is evident that more research needs to be completed to gain a 

better understanding of why, in a technologically advancing world, food insecurity is still escalating. 
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Figure 2. Acute Food Insecurity Phases, Haiti 2017, 2019 and 2022 (IPC 2017, 2019, and 2022). 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the Lanchester Library, Coventry University. 
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2.2. REASONS BEHIND HUNGER  

To understand the reasons for food insecurity globally and the lack of progress with the associated 

SDG’s including ‘Zero hunger’, the causes behind hunger need to be explored. The factors 

contributing to food insecurity are extensive. Politics, governance, conflict, rising food prices, 

income, race/ethnicity, trade policies, access to land/resources, climate, and natural disasters, 

individually and as a combination, all impact hunger (Pawlak and Kolodiziejczak 2020). Many 

countries, including Haiti, are challenged by several of these factors such as conflict leading to food 

insecurity/blockages on imports or aid, which makes establishing a solution more challenging. 

Generally, countries that experience a range of socioeconomic challenges such as conflict, poverty, 

lack of investment in agriculture and rural development, and poor governance, tend to suffer from 

increased food insecurity (Pawlak and Kolodiziejczak 2020; Global Hunger Index 2021); this is the 

case for Haiti. Haiti, in addition also experiences environmental challenges such as natural disasters 

and more severe impacts of climate change, exacerbated by their geographical vulnerability. Past 

marginal gains economically have been undone recently by Covid-19, climatic shocks like Tropical 

Strom Grace and the assassination of their President, Moise. Haiti now sees 52.3% of the country 

living below the poverty line of US$3.2 per day (World Bank 2022). In Haiti, as with nations with a 

similar geography and socio-economic make-up, all of these factors work hand-in-hand; climatic-

related and natural hazards can be a catalyst for socioeconomic challenges, restricting development 

and thus worsening food insecurity. Therefore, food insecurity within a region like Haiti is a complex 

topic to understand (Wang, Kraay and Andree 2020). 

 

Identifying the varying ways in which individual socioeconomic and environmental factors impact 

food security can assist in identifying mechanisms for managing it. Factors including regional policy 

decisions, inequality and unstable governance can negatively influence the distribution and access to 

food within and between countries (Smith 1998; Gregory, Ingram and Brklacich 2005; Concern 

2021). It has been noted that economic and political inequalities, along with political agendas can 

dramatically shape food distribution systems; this, in turn, has prevented food from being received 

in areas that need it most (Smith 1998; Gregory, Ingram, and Brklacich 2005).  In contrast, other 

factors such as land degradation affect the direct source of food, impacting the production and 

productivity of the land (Gregory, Ingram, and Brklacich 2005; Concern 2021). However, certain 

factors affect each stage of the food system, once again increasing the complexity of the situation. 

Conflict and climate change are examples of this as they can impact the access and distribution of 

food, yet also have a direct impact on the production and productivity of the land. In some cases, 
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these issues can have a long-term impact on the health of the land, thus impacting the productivity 

of agricultural practices. This can broadly be referred to as land degradation. Over the past 7 

decades over 35% of arable land worldwide has been degraded (Gupta 2019); this adversely impacts 

citizens’ livelihoods, with most people affected living in poverty in developing countries (Olsson et al. 

2019). This is because developing countries, such as Haiti, have a large reliance on agriculture, 

consequently making them more susceptible to the threat of food insecurity associated with land 

degradation. Considering the loss of arable land to land degradation it can be determined that food 

insecurity associated with land degradation is a major, wide-scale concern. Specifically, in regions 

more vulnerable to climate change as this exacerbates the rate and magnitude of several ongoing 

land degradation processes and introduces new degradation patterns (Olsson et al. 2019). 

Consequently, understanding the key foundations in maintaining a healthy agricultural system, the 

causes of land degradation, and how land degradation threatens agricultural land is vital.  

 

 

 

2.2.1.  LAND DEGRADATION  

Generally, it can be stated that good soil health, diversity, a predictable and favourable climate, and 

clean groundwater are all key foundations in upkeeping a healthy agricultural system, thus 

increasing agricultural productivity. Healthy soils, in particular, are essential to production; soil 

supplies essential nutrients, water, oxygen, and root support that vegetation needs to grow and 

flourish (FAO 2015). Healthy soil can be defined as soil that functions as a living system; working in 

conjunction with microscopic and larger organisms that can perform vital functions such as 

converting dead organic matter and minerals to plant nutrients (nutrient cycling), controlling pests 

and diseases, and improving soil structure; having a positive impact on soil water/nutrient holding 

capacity (FAO 2015). Finally, healthy soil will mitigate the effects of climate change by maintaining or 

increasing its carbon content.  

 

Despite being aware of the qualities and characteristics needed to sustain healthy agricultural 

practices, land degradation poses a severe threat, especially to soil health. Land degradation is the 

process in which the value of the biophysical environment is undesirably affected by a combination 

of human-induced processes acting upon the land; including human-induced climate change (IPCC 

2019; Olsson et al. 2019). The undesirable effects referred to include direct damage to plants, soil 
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degradation, deforestation, groundwater contamination, and biodiversity loss. In relation to soil 

health, the FAO (2015) estimates that soil erosion removes 25-40 billion tonnes of topsoil every year. 

These impacts have a direct or secondary impact on soil health, impacting agricultural productivity. 

This is detrimental to those who rely on agriculture, exacerbating hunger.  

 

As mentioned in Section 2.2, land degradation can be a product of conflict, urban development, and 

climate-related hazards induced by climate change; and although it is currently a prominent issue, it 

is likely to worsen. One of the largest concerns contributing to land degradation and exacerbating 

world hunger is climate change. Indeed, by 2050, land degradation interlinked with climate change is 

predicted to reduce crop yield by up to 10% globally and up to 50% in certain regions (Head 2019). 

Degraded land is less productive as it reduces the soils’ ability to absorb carbon (Head 2019). 

Therefore, degraded land is a catalyst for climate change, while climate change, in turn, exacerbates 

land degradation by increasing the intensity of extreme weather events and climate-related hazards, 

intensifying the rate and magnitude of degradation (Olsson et al. 2019). Consequently, land 

degradation, as both a catalyst and result of climatic-related hazards pose serious threats to the 

health and productivity of agricultural land, increasing food insecurity.  

 

 

 

2.2.2. CLIMATE CHANGE AND CLIMATIC-RELATED HAZARDS 

It has been established that climatic-related hazards can result in a large decline in agricultural 

production due to land degradation and also cause direct damage to crops. This results in a loss of 

subsistence agriculture (Gomez 2005; Olsson et al. 2019); in turn, decreases access to food, 

increasing food prices, contributing to food insecurity (FEWS NET 2015). In agricultural terms, 

climatic-related hazards can inflict both shock and stressors onto agricultural land (Farming First 

2014). Shocks are sudden events, such as hurricanes, flooding, droughts, and wildfires, that can have 

a direct impact on the crop, reducing yield. Whereas stress is a prolonged impact that can reduce a 

plant’s health. Stress can result from an unhealthy environment after a shock and can constrain a 

crop from reaching full health. This is supported by Lunt et al. (2016) who predicted that global crop 

yields of maize could decrease by 10% in the near future based on an analysis of historical 

agricultural production shocks. Unfortunately, shocks inflicted by climatic-related hazards associated 

with climate change, are something that society have less control over. Over the last few decades, 
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we have created irreversible damage to our climate that will be felt for years to come (van der Geest 

and van den Berg 2021). One consequence of irreversible damage is the increase in the frequency 

and intensity of climatic-related hazards, such as hurricanes. The annual occurrence of disasters is 

now more than three times that of the 1970s and 1980s (United Nations 2021). Additionally, human-

induced factors, ironically including the global food system, are raising temperatures by 0.2 °C per 

decade (IPCC 2018), amplifying the risk of increased intensity storms. This is due to the increased 

heat in the atmosphere in conjunction with warmer ocean temperatures, resulting in more intense 

winds during tropical storms (USGS N.D). This, combined with the rising sea levels consequent of 

global warming, expose more locations to flooding and more intense storm surges associated with 

hurricanes (USGS N.D).  

 

A recent analysis shows that by 2050 climate change (without the current climate crisis) could 

increase the number of chronically hungry people by 78 million (Global Hunger Index 2021). This 

reinforces that climate change is a serious threat to world hunger on a global and local scale. 

Additionally, events associated with climate change and geographic vulnerability detract focus from 

investing in sustainable food systems, further exacerbating environmental degradation, preventing 

high productivity. This can create further tension and conflict within communities and highlight poor 

governance within a country. Undeniably, climate change and its associated hazards have a major 

influence on food insecurity. In the short term, they have a direct impact on the harvest, yet in the 

long term can contribute to land degradation, thus impacting the health of agriculture. Indeed, in 

Ethiopia, it was found that land degradation in the form of soil erosion, deforestation, and reduction 

of pastureland was one of the main factors affecting crop productivity (Taddese 2018). Furthermore, 

12 million hectares of agricultural land across Europe suffer from severe erosion resulting in a 0.43% 

decrease in crop productivity annually; equating to €1.2 billion (Panagos et al. 2018). Consequently, 

the role of preparation, mitigation, and recovery is key to building resistance and resilience in 

vulnerable areas, with the long-term goal of reducing hunger (Uphaus 2008) and increasing food 

availability.  

 

Although climate change is a global phenomenon, some countries are more vulnerable than others. 

This is due to a country’s geographic vulnerability; the degree of exposure to which a community, 

structure, or service is likely to be damaged or disrupted by a climatic-related hazard. These can be 

areas that already have a challenging climate, or regions that are more susceptible to the effects of 

climate change; for example, small island nations (IPCC 2014; Mohan 2016). Indeed, Mohan (2016) 
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found that hurricanes have a negative impact on agriculture, with smaller islands appearing to be 

more severely impacted. For example, in the Caribbean, disaster impacts convert to a loss of 975 

calories per capita per day, accounting for 40% of recommended daily intake (United Nations 2021). 

In conjunction, these developing nations have a high dependence on natural resources such as 

crops, increasing their vulnerability and limiting their capacity to cope (Harrold et al. 2002), 

exacerbating the effect of climatic-related hazards. This is the case for Haiti; which in addition to the 

issues related to development, is a small island nation in the Atlantic hurricane path, exacerbating 

their vulnerability to climate change (IPCC 2014). Consequently, Haiti’s agricultural system is more 

vulnerable to the shock of hurricanes and long-term stressors like land degradation. Indeed, in Haiti, 

land degradation, exacerbated by hurricanes and their associated impacts such as wind and flooding, 

contributes to an annual soil loss of around 36 million tons (reliefweb 2004). Finally, sea level rise in 

conjunction with hurricanes can cause severe damage, particularly in low elevated coastal regions 

like Les Cayes and Torbeck in the Sud department. Regions such as these are more susceptible to 

coastal flooding associated with storm surges (Cohen and Singh 2014), further exacerbating soil 

erosion through the salinisation of soils (Cohen and Singh 2014).  

 

Overall, it is evident that hurricanes and their associated impacts pose a major threat to agriculture 

immediately post-hurricane and in the long-term. Subsequently, considering Haiti’s consistent 

struggle with food insecurity and its vulnerability to hurricanes, both the short and long-term 

impacts of hurricanes on agricultural vegetation need to be understood. Bridging the existing 

knowledge gap and understanding how the agricultural sector is affected by disasters, specifically 

hurricanes, is key to building resilience and reducing the impact on food insecurity (Cohen and Singh 

2014; FAO 2017). Agricultural resilience is based on equipping farmers with the capacity to absorb 

and recover from shocks and stresses to their agricultural production and livelihoods. Consequently, 

to do this, there needs to be an in-depth understanding of how hurricanes impact agricultural land. 

 

 

 

2.3. HURRICANES, ASSOCIATED IMPACTS & RECOVERY 

Hurricanes, also known as tropical cyclones and typhoons, are amongst the most destructive natural 

disasters to affect specific regions around the globe (Gomez 2005). A hurricane is a storm that forms 

over tropical waters, bringing strong winds, flooding, and a storm surge(s), causing large-scale and 
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long-lasting damage. Hurricanes have both short- and long-term impacts on agricultural land, 

reducing productivity, and increasing food insecurity. GFDL (2021) identified a positive statistical 

relationship between Atlantic Sea Surface Temperature and the power dissipation index that 

measures the intensity of a hurricane due to climate change. This means that storm intensity 

increases in conjunction with sea surface temperatures. Subsequently, within the next century, it is 

likely that hurricanes in the Atlantic will have higher amounts of rainfall and intense wind speed than 

the average present-day hurricane. If conditions persist, damage associated with hurricanes is likely 

to increase, therefore food insecurity as an impact of hurricanes will be an ongoing issue. Without 

monitoring the immediate impacts and long-term recovery, appropriate mitigation and 

preparedness strategies will not be implemented, and resilient agricultural systems will not be 

established.  

 

When a hurricane makes landfall, the impacts are extensive. The process of damage arises from the 

three main hazards: strong winds, flooding associated with heavy rain and a high storm tide linked to 

storm surges. The force and impact of a hurricane can result in wide-scale socio-economic damage, 

however, specific to this research the impacts of a hurricane can have both short- and long-term 

impacts on agricultural vegetation (Gomez 2005; Arya, Mandal and Muley 2006; Chen 2009; 

Williams 2009; Wang et al. 2010; Brun and Barros 2013; Kaiser et al. 2013; Mohan 2016; Mohan and 

Strobl 2017; Hu and Smith 2018; Feng et al. 2018). Therefore, hurricanes can be linked to and 

associated with the persisting issue of food insecurity.   

 

One of the main impacts affecting agricultural land associated with hurricanes is the intrusion of 

saline waters due to storm surges (Gomez 2005; Arya, Mandal and Muley 2006; Rodgers, Murrah 

and Cooke 2009; Brun and Barros 2013; Kaiser et al 2013; Phonphan et al. 2014; Goto et al. 2015; 

Scudiero et al. 2016; Gorji, Sertel and Tanik 2017; Dharanirajan et al. 2018; Rahman et al. 2018; 

Davis, Wang, Dow 2019; Gorji et al. 2019; Nguyen et al. 2020; Tripathi and Tiwari 2021). The 

intrusion of saline waters on land can result in an increase in Soil Salinity (SS), i.e. the content of salt 

within the soil. The process of increasing salt content, both via natural occurrence and human-

induced, is known as soil salinisation. In agriculture, soil is considered saline when there is a 

sufficient amount of salt dissolved within the root zone, with an Electrical Conductivity (EC) > 0.2 

considered unsuitable for agriculture (Goto et al. 2015).  Soil salinisation causes ion toxicity, osmotic 

stress, nutrient deficiency, and oxidative stress on plants, consequently limiting water uptake from 

the soil (Shrivastava and Kumar 2014). With this knowledge, it is recognised that soil salinisation has 
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a negative impact on plant health and soil quality, consequently resulting in soil degradation, a loss 

of arable land and low crop productivity (Phonphan et al. 2014; Goto et al. 2015; Das et al. 2016; 

Scudiero et al. 2016; Gorji, Sertel and Tanik 2017; Rahman et al. 2018; Davis, Wang, Dow 2019; Gorjo 

et al. 2019; Nguyen et al. 2020; Tripathi and Tiwari 2021). 

 

Soil salinisation is a hazard that is increasingly inescapable within a climate that experiences high 

evaporation and low precipitation (Gorji, Sertel and Tanik 2017), therefore, the hazard commonly 

strikes in arid/semi-arid environments. However, due to sea level rise and natural hazards such as 

hurricanes resulting in storm surges inundating land with seawater, similar soil impacts that are seen 

in arid/semi-arid regions are more commonly being identified across coastal regions (Goto et al. 

2015; Morshed, Isla and Jamil 2016; Rahman et al. 2018; Davis, Wand and Dow 2019). This is due to 

the higher salt concentration present within seawater, 35,000 ppm, 35 grams of salt per litre (USGS 

N.D). However, the degree of salinisation is dependent on the duration of exposure to sea water, 

climate, and soil type. For example, sandy soils have a high infiltration rate, resulting in 

contamination to a low depth, yet the capacity for this soil to retain the salt is limited as minimum 

freshwater can leach the salt out from the soil profile (FAO 2005). Conversely, clay soils are less 

sensitive, but in cases of prolonged exposure the damages can become increasingly severe. 

Additionally, freshwater is a determining factor of resilience; where there is no freshwater source 

(rain or irrigation), it will take the soils longer to recover as they cannot be flushed out.  

 

Due to these varying factors, the impact of coastal flooding on SS varies globally. For example, Goto 

et al. (2015) found a strong negative correlation between the Normalised Difference Vegetation 

Index (NDVI) and post-flooding EC values following Typhoon 9918 (Southern Japan) in 1999. This 

indicates that increased SS was accountable for decreased plant health. Furthermore, following 

Hurricane Katrina, NDVI in the Weeks Bay Reserve, Alabama, decreased by 64% along the coast 

(Rodgers, Murrah, and Cooke 2009). This decrease in NDVI was linked to increased salinity due to 

the storm surge and persisted for 8 months (Rodgers, Murrah, and Cooke 2009). This inland 

saltwater intrusion post-Hurricane Katrina caused rice crop productivity to decrease by 20% 

(Williams 2009), highlighting the severity of impact soil salinisation can have on crop productivity. 

Furthermore, Dharanirajan et al. (2018) found that an extreme seawater intrusion associated with 

the Indian Ocean tsunami (2004), affected crop productivity in India. The high saline conditions 

persisted due to drought conditions post-inundation making this a long-term issue affecting 

agricultural land. The attention to the climatic conditions post-hurricane highlights that salinisation 
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could only be a long-term issue if drought conditions follow an event. Similarly, research 

investigating the same event, but in Thailand found the same negative effect of saltwater intrusion, 

emphasising that large patches of grassland and agricultural plantations such as coconut trees and 

orchards were affected (Kaiser et al. 2013).  

 

The fragile nature of water sources’ impact on agricultural land was highlighted particularly well 

after the Boxing Day Tsunami (2004). In Southeastern India salinity levels were raised by 

approximately one-quarter of the salinity of seawater, with conditions persisting for more than 10 

months, despite the inundation and retreat lasting just 5 minutes (Violette, Boulicot and Gorelick 

2009). In contrast, in Sri Lanka, damage was less extreme than the humanitarian sectors had 

assumed; by the Yala Season (May), 65% of the affected area was ready for cultivation as far as 

salinity is concerned, and by the start of the Maha season (September), 90% was ready for 

cultivation (FAO 2005). This highlights how conditions and persistence of salinity vary; some research 

suggests that land can take up to 2 years, potentially longer, to recover (Williams 2009; Brun and 

Barros 2013; Gould et al. 2020), whilst others suggest that it could be as little as 2 weeks to a year 

(Violette, Boulicot and Gorelick 2009; Kaiser et al. 2013). As we know, this is dependent on climate 

conditions (Dharanirajan et al. 2018), duration of exposure, and soil type (FAO 2005). However, it is 

evident that soil salinisation can have a negative impact on crop productivity and have long-lasting 

impacts on the condition of the land.  Therefore, it would be an important factor to monitor.   

 

Other impacts associated with hurricanes are high wind speeds and flooding induced by intense 

rainfall. This too can result in the total loss and damage of vegetation (Walker 1991; Ramsey et al. 

2001; Gomez 2005; Staben and Evans 2008; Ito 2010; Zhang et al. 2013; Hoque et al. 2016; Marzen 

et al. 2017; Feng et al. 2018; Hu and Smith 2018; Bellanthudawa and Chang 2021; Estoque et al. 

2021). Furthermore, as well as the immediate impacts, in the long-term reduced vegetation cover 

induced by wind/flooding on understory communities (the underlying layer of vegetation growing 

below a canopy) and soil, are extensive (Breda 2008). Increased soil exposure from a reduced canopy 

cover can result in more severe land degradation, which also results in decreased productivity 

(Section 2.2.2). Therefore, both wind and flooding can have direct and indirect impacts on the health 

of the land. Flooding usually takes place due to intense rainfall but is exacerbated in areas that are 

not well drained or have less impermeable surfaces such as clayey soils (Gomez 2005). This can 

increase the volume and velocity of flooding, increasing the severity of the damage. The impacts of 

flooding on vegetation are three-fold. Firstly, depending on the velocity and volume of the flood, 
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crops can be damaged/washed away, immediately destroying the harvest. For example, a 28.35% 

increase in barren land was recorded post-Hurricane Maria in Puerto Rico in 2017 (Hosannah et al. 

2020), highlighting the immediate loss of crops associated with a hurricane. Secondly, flooding can 

result in soil erosion, decreasing the available nutrients. Water quality surveys conducted following 

Hurricane Katrina, at a station that drains agricultural land in Florida, showed an increased nutrient 

input consequent from increased runoff (Zhang et al. 2009). Concentrations of nitrate and soluble 

phosphate increased by 7- and 10-fold, respectively (Zhang et al. 2009). This highlights that large 

volumes of nutrients were removed due to the runoff/soil erosion following rainfall from Hurricane 

Katrina, leading to a decrease in productivity as the foundations of the land post-hurricane were not 

as healthy. Finally, persisting flood conditions can result in waterlogging, reducing the amount of 

oxygen available to the plant resulting in asphyxiation (Gomez 2005). This can ultimately lead to 

damage or death of vegetation, depending on the crop type and duration of flooding. This can also 

create suitable conditions for pests and diseases to develop (Gomez 2005). Overall, it can be 

concluded that the related impacts of flooding such as immediate damage/loss of harvest, soil 

erosion, waterlogging, and the development of pests can result in long-term stress on agriculture, 

reducing health and productivity.  

 

In regards to wind associated with hurricanes, typically, wind causes defoliation and snapping of 

trees, with the latter being the main cause of a reduced canopy cover (Walker 1991; Ito 2010). 

Dense and taller vegetation such as forests have been found to be more sensitive to damage (Walker 

1991; James 2010; Hu and Smith 2018; Charrua 2021). The severity of damage inflicted by wind has 

been found to positively correlate with the duration and force of wind; higher durations of critical 

wind speed increase the severity of damage (Ramsey et al. 2001). This finding was supported by Hu 

and Smith (2018), who found that vegetation damage in Puerto Rico caused by Hurricane Maria was 

highly correlated with distance from the storm centre. This conveys that land closest to the 

hurricane eye was exposed to a higher critical wind speed and, therefore, experienced higher levels 

of vegetation damage. Additionally, the wind associated with hurricanes has been found to cause 

damage by airborne sea salt transference. In particular, strong winds can carry sea salt up to 200-

300 m inland from the coast, preventing the growth of crops sensitive to salt (Gomez 2005). This 

being said, most research focuses on the impact of wind on trees/forests (e.g. Feng et al. 2018; Hue 

and Smith 2018) as it is known that they are more severely impacted. However, as mentioned, 

snapping and uprooting of trees can result in a long-term loss of canopy which increases bare soil 

exposure, leaving understory communities vulnerable. This optimises conditions for land 

degradation (Breda 2008). Considering this, there is little known about the short and long-term 
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impacts of wind on agricultural land associated with hurricanes and the potential long-term 

implication on understory communities. 

 

It is apparent that the hazards associated with hurricanes have a detrimental effect on all vegetation, 

including agriculture. However, dependant on factors such as climate and the severity of damage, 

impacts such as salinity and loss of nutrients due to soil erosion consequent from flooding and wind 

can persist long-term. These combined threats create a stressed agricultural system, challenging the 

agricultural sector by reducing productivity, contributing to food insecurity, and thus, hunger on a 

local scale. Preservation of agricultural health can be approached in the form of mitigation and 

preparedness. Reducing the initial impact, but also developing strategies to recover efficiently can 

be key to agricultural resilience. Therefore, it is imperative that the impacts of hurricanes in relation 

to agricultural land are explored to improve resilience.  

 

Research that works closely with farmers and locals within the community strive to understand the 

recovery of their agriculture to inform preparedness and prevention against the associated impacts 

of future hurricanes. Indeed, employing simple field techniques, Holt-Giménez (2001) conducted a 

study to measure farmers agroecological resistance to Hurricane Mitch in Central America. 

Agroecological refers to sustainable farming that employs a holistic and integrated approach, 

seeking to optimise interactions between plants, animals, humans and the environment (FAO 2023). 

Measurements of key agroecological indicators on 1,804 plots (paired under the same topographical 

condition) concluded that sustainable farming practices were more resilient against Hurricane Mitch. 

On average, ‘agroecological’ plots on sustainable farms sustained lower economic losses after the 

hurricane than on conventional farms and could lower vulnerability to such events. Agroecological 

plots tended to have 30-40% more topsoil, higher field moisture, and one-fifth more vegetative 

cover. Additionally, there were fewer incidents and smaller losses of arable land in relation to 

landslides, and less rill/gully erosion than conventional plots (Holt-Giménez 2001). These statistics 

highlight the benefits of agroecological farming, and the increase in resilience they have against 

extreme events such as hurricanes. Further research, post-Hurricane Maria supports the notion that 

agroecology is the backbone of agricultural recovery (Felix and Holt-Gimenez 2017).   

 

Agroecological farming practises include structural, agronomic and agroforestry techniques. 

Structural techniques encompass contour ploughing, ditches, and terraces to aid soil and water 

conservation management. Agronomic practices include relay cropping, intensive in-row tillage, 
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compost, vermiculture, animal manure, and integrated pest management. These benefit fertility, soil 

health, weed/pest control, water conservation and soil protection. Finally, agroforestry is centred 

around woodlots, multistorey/alley cropping, vegetive strips and live fences. Agroforestry 

techniques provide fuel, timber, and fruit, reduce run off mitigating erosion, enhance the nutrient 

cycle, and provide habitats for beneficial insects (Holt-Giménez 2001; Altieri et al. 2015).  

  

Furthermore, diversification has a large impact on resilience against various types and degrees of 

shock (Altieri et al. 2015). When agroecosystems are simplified, it affects their capacity to respond to 

change and generate ecosystem services. Consequently, a practise with increased biodiversity 

enhances ecosystem functions as different species and genotypes perform slightly different and 

have different niches. This diversity acts as a buffer against failure due to environmental 

fluctuations, resulting in a more predictable and aggregated community response, increasing 

resilience (Marrero et al. 2021). Indeed, Chen (2009) concluded that increased diversification and 

changes in cropping patterns can improve resilience to hurricanes and reduce sector-wide 

agricultural damage by up to $650 million. Additionally, in a literal sense, crop diversification can 

diffuse natural disaster risk by providing products that can be harvested in fewer months such as 

plantain or chilli peppers, or even weeks such as lettuce or cilantro (Marrero et al. 2021). 

Agroforestry, for example, is a practice built around diversification and was seen to sustain less 

damage in comparison to their conventional monoculture neighbours post-hurricane Mitch (Holt-

Giménez 2001). Therefore, agronomic practices that focus on diversification tends to increase 

resilience to shocks such as hurricanes.   

 

Research such as this highlights the importance of knowledge surrounding resilient agricultural 

practices that reduce stress and improves the condition of agricultural land, achieving a productive 

landscape. Unfortunately, across many underdeveloped countries, there is a lack of understanding 

and education regarding appropriate agricultural practices as well as the impacts and recovery of 

agricultural land related to natural hazards (FAO 2017), this is the case in Haiti (Cohen and Singh 

2014). Therefore, communities are not adapting agricultural practices to prepare for or reduce the 

impacts of challenges such as hurricanes.  As a result, this can make underdeveloped countries that 

rely heavily on agriculture even more vulnerable. Therefore, a key requirement is to bridge existing 

knowledge gaps and expand the current understanding of how the agricultural sector is affected by 

hurricanes (FAO 2017) and identify what regions are more vulnerable than others. Fortunately, of 

the factors driving land degradation and fuelling world hunger, climate change, and associated 

hazards is one we have the best chance of predicting through science (UN Food System Summit 
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2021). This provides the opportunity to build agricultural resilience against hurricanes. 

Consequently, using Haiti as the study site, this research aims to expand the current understanding 

of how agricultural land is affected by hurricanes by investigating the immediate impact and long-

term recovery of the Sud and Grand’Anse departments following Hurricane Matthew (2016).  

 

 

 

2.4. HURRICANE MATTHEW (2016) 

Hurricane Matthew was a category 4 hurricane that made landfall in Haiti on the 4th October 2016. 

The hurricane hit the southern peninsular and travelled through the Sud and Grand’Anse 

departments.  The storm caused winds of up to 145 MPH for prolonged periods, heavy rain, and a 

storm surge, resulting in swollen rivers, flash flooding, landslides, and the destruction of agriculture 

and infrastructure (Stewart 2017; The World Bank 2017). Furthermore, although the height of the 

storm surge along the coastline of Haiti is unknown, Hurricane Matthew caused the most powerful 

storm surge to affect Haiti in recent history, submerging land entirely (Shultz et al. 2016). 

Consequently, the agricultural sector was deemed to be one of the most damaged sectors with up to 

90% of crops lost in some regions (Action Aid 2022). Along the southern coast of the Sud 

department, it is estimated that 90% of coconut trees were knocked down and entire coffee and 

cocoa plantations were destroyed (Stewart 2017). As both departments have a dependence on 

agriculture, this made them even more susceptible to food insecurity as a result of Hurricane 

Matthew (RTAC 2021). Rapid interventions such as the rehabilitation of irrigation systems, new 

seeds provided to 2,500 farmers, and cash transfers to cover damage to commercial crops helped 

minimise the loss of the winter harvest and prevent widespread famine (ReliefWeb 2017). However, 

these are only short-term solutions and do not take into account the potential long-term effects on 

the land that may impact the productivity of future growing seasons. Similarly, the majority of post-

hurricane assessments only considered the short-term impacts and quantified them by economic 

loss or area (Stewart 2017; The World Bank 2017; World Vision 2018; Wisly N.D; Action Aid 2022).  

 

Although short-term damage assessments were needed to quantify and understand the immediate 

impact of Hurricane Matthew on food security, the patterns and severity of damage to agriculture 

are important, as well as the long-term effects on the land. Despite this, there are no studies that 

monitor the short- and long-term impact on agricultural vegetation post-Hurricane Matthew even 
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though this could be detrimental to the long-term productivity of agriculture, contributing to food 

insecurity within Haiti. Indeed, research that is linked to Haiti post-Hurricane Matthew focuses on 

the cross between microfinance and food insecurity (Kianersi et al. 2021), governance and 

community response (Marcelin, Cela, and Shultz 2016), the cholera outbreak (Khan et al.  2017; 

Pasetto et al. 2018), and the psychosocial impact (Shultz et al. 2016). Consequently, Cohen and Singh 

(2014) state that in hurricane-vulnerable low-lying areas such as the Sud department, not enough 

data has been collected to create sound disaster risk management plans. Therefore, regarding the 

known impacts of hurricanes on vegetation and the potential long-term effects (e.g. Walker 1991; 

Gomez 2005; Violette, Boulicot and Gorelick 2009; Williams 2009; Ito 2010; Zhang et al. 2013; Hoque 

et al. 2016; Marzen et al. 2017; Mohan and Strobl 2017; Dharanirajan et al. 2018; Hu and Smith 

2018; Bellanthudawa and Chang 2021; Estoque et al. 2021), research needs to be conducted in the 

Sud and Grand’Anse Departments to explore the short- and long-term impacts and recovery of 

Hurricane Matthew on agricultural vegetation, enabling suitable adaptations to better agricultural 

practices and build resilience against hurricanes (World Bank 2022). To achieve this, there needs to 

be an understanding of how the impacts of hurricanes can be monitored.  

 

 

 

2.5. MONITORING THE IMPACTS OF HURRICANES 

Monitoring the impacts of hurricanes is an essential part of the disaster management cycle that 

builds resilience. An effective disaster management cycle (Figure 3) highlights four phases- response, 

recovery, prevention/reduction, and preparedness (Hoque, Phinn and Roelfsema 2017). The latter 

phases, prevention/reduction and preparedness include appropriate measures and planning that 

reduce the likelihood and impact of hurricanes becoming disasters. Consequently, by monitoring the 

impact and recovery of hurricanes, this research aims to contribute towards knowledge that can 

guide practice to be more prepared, prevent/reduce damage and inform policy change. In a review 

of tropical cyclone disaster management using remote sensing and spatial analysis (Hoque, Phinn 

and Roelfsema 2017) it was concluded that there significantly less research assessing the overall 

impact and recovery of the landscape caused by tropical cyclones using remote sensing. This is 

echoed by Singh and Choen (2014) who acknowledged that there is a lack of information on the 

impacts of hurricanes in Haiti, debilitating the ability to effectively work towards sound disaster 

management plans. Attaining this information can influence adaptations in agricultural practices and 
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enable mitigation efforts to be focused on regions of higher vulnerability, thus reducing the impacts 

of future hurricanes and minimise their effect on food security.   

 

It is more common for the impact and recovery of hurricanes on agricultural land to be assessed on a 

local community scale as opposed to a national scale. Typically, a social science approach is 

employed, working closely with farmers and the local community who manage the agricultural 

vegetation daily to understand the recovery of their agriculture to inform preparedness and 

prevention. This was the direction Holt-Giménez (2001) took; by networking with local farmers made 

possible by Movimiento Campesino a Campesino (a farmer movement for sustainable agriculture) 

and simple field techniques, a study was conducted to measure farmers agroecological resistance to 

Hurricane Mitch in Central America (Holt-Giménez 2001). The benefits of looking into the short-term 

impact and long-term recovery of hurricanes from a social science perspective is fourfold. It gives 

locals a voice, informs, educates, and spreads knowledge.  However, in many cases the work 

completed can only take place on a local scale because it is time consuming, intensive, cannot 

monitor near-real time impacts nationally, and does not identify the overall impact and recovery of 

landscapes contributing to regional scale knowledge. Furthermore, due to limitations and 

restrictions some research cannot afford to carry out primary, grassroot research. Thus, many 

studies adapt, taking a desk-based remote approach. Desk-based approaches can provide a method 

Figure 3. The Hurricane Disaster Management Cycle (Hoque, Phin and Roelfsema 
2017). 

This item has been removed due to 3rd Party Copyright. The unabridged 
version of the thesis can be found in the Lanchester Library, Coventry 
University. 
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that allows the rapid assessment of damage which is a key response in providing aid; this over a 

regional scale is critical.  

 

Over the past few decades, remote sensing and spatial analysis have become increasingly popular in 

supporting all 4 phases of the disaster management cycle to aid building resilience. Considering the 

scale of damage hurricanes can inflict, remote sensing and spatial analysis offers a suitable approach 

to monitor the regional impact of hurricanes on agricultural land (Hu and Smith 2018), as it is both 

cost-effective and time-efficient. Today, there are many freely available and accessible data sources 

alongside machine learning tools that are powerful for data gathering and analysis (United Nations 

2021). Remote sensing enables changes in the land to be identified by monitoring reflective 

characteristics of the earth’s surface; these changes can be highlighted with change detection tools 

(Hoque, Phinn and Roelfsema 2017; L3Harris 2022). Finally, with a range of open-source satellite 

imagery available, imagery with a good resolution can be employed, increasing the detail of outputs.  

 

Several studies (e.g., Wang et al. 2010; Hoque et al. 2017; Feng et al. 2018; Hu and Smith 2018; Tay 

et al. 2020; Charrua et al. 2021) have demonstrated the utility of remote sensing to monitor damage 

and recovery associated with hurricanes. Many of the studies employ Vegetation Indices (VIs) which 

combine values of surface reflectance at two or more wavelengths to highlight a particular property 

of vegetation (L3Harris 2022).  Hu and Smith (2018), for example, found that the health of 

vegetation returned to ‘near normal’ 1.5 months after Hurricane Maria in Dominica and Puerto Rico. 

The term ‘near normal’ refers to an NDVI value that is not representative of when the land cover is 

under stress or exposed to shock. In particular, comparisons of NDVI values showed that forests 

were the most affected land cover with damage highly correlated to the distance from the storm 

centre (Hu and Smith 2018). Similarly, Wang et al. (2010) assessed damage to forests following 

Hurricane Katrina using the Normalised Difference Infrared Index (NDII). In total, 86.2% of pixels 

classified as trees were damaged, with damage to taller vegetation being more severe. Finally, 

monitoring the change in Non-Photosynthetic Vegetation (NPV), Feng et al. (2018) estimated that 

Hurricane Maria caused mortality and severe damage to 23-31 million trees in Puerto Rico. Although 

there was a focus on assessing damage to forests, the methods employed provide an insight into 

how the impact and recovery of agricultural land following a hurricane can be monitored using 

remote sensing.  
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2.6. MONITORING CHANGES IN LAND COVER 

Land cover classifications help monitor how the land has changed. High wind speeds and flooding, 

both coastal and inland have immediate and long-term impacts on agricultural land. In the short 

term, this can result in agricultural loss, resulting in a loss of canopy, thus a change in land cover. 

Furthermore, soil salinisation and the loss of vegetation cover induced by wind and flooding have 

long-term impacts on understory communities, by inducing higher rates of soil erosion, reducing 

plant health and productivity (Breda 2008). If the health of the land is severely impacted by the 

hurricane and is not producing substantial yields, this could result in long-term changes in land 

cover. Land may be abandoned in some regions and agricultural expansion could take place in others 

(Singh and Cohan 2014).  Consequently, assessing immediate and long-term land cover change is 

important to understand what regions sustained crop losses and which crops are more resilient.  

 

The approach employed to monitor land cover change can be referred to as image classification; the 

two main approaches to classifying land are 1) Pixel-Based (PB) classification (Lam et al. 2011; Reif, 

Macon and Wozencraft 2011; Cherjarla et al. 2016; Grybas and Congalton 2015; Hu and Smith 2018; 

Charrua et al. 2020), and 2) Object-based Image Analsis (OBIA). (LaMantia-Bishop 2010; Badjana et 

al. 2015; Grybas and Congalton 2015; Phiri, Morgenroth and Xu 2019).  PB methods consist of 

individual pixels being classified by considering the spectral information they hold compared to the 

spectral signatures of the land cover/land use classes derived from training data (Tassi et al. 2021). 

Conversely, OBIA is based on image segmentation. The segmentation process takes into 

consideration both spectral and textural information given by the pixels to segment the image into 

homogenous objects (Tassi et al.  2021). The segments are then assigned to a class based on the 

training data. Over recent years, there has been a shift to OBIA for land cover classifications, as it has 

been proven successful in improving land cover classification accuracy in vegetated areas (Zhang et 

al. 2018; Tassi et al. 2021). Additionally, PB classifications encounter issues when dealing with high 

spatial resolution images (Gao and Mas 2008). Despite this, PB classification still performs well using 

moderate resolution imagery like Landsat.  

 

Across both classification methods, there are a range of classification algorithms such as Random 

Forest (RF), and k-Nearest Neighbour (kNN) that can be used to produce land cover maps. These two 



36 
 

non-parametric classifiers have been reported as performing with the highest accuracy (Noi and 

Kappas 2017). Indeed, due to its improved accuracy and reliable outputs, alongside good processing 

speeds (Le Louarn et al. 2017; Charrua et al. 2021), RF was chosen to classify the impact of Tropical 

Cyclone Idai on the vegetated landscapes of Mozambique (Charrua et al. 2021). RF is frequently 

employed to assess landscapes and plant species due to the tuning parameters such as “number of 

features” and the maximum number of trees (Li et al. 2019). Additionally, the algorithm is not 

sensitive to noise, therefore, complex and homogeneous plant groups are classified successfully (Ok, 

Akar, and Gungor 2012). Furthermore, Hu and Smith (2018) used kNN to monitor the land cover of 

Dominica and Puerto Rico as they state that the classifier is respectable for images that are 

composed of spectrally similar classes that are not well separated (Hu and Smith 2018). Due to 

canopy structure in agricultural practices being similar in Haiti, some agricultural covers may have 

similar spectral signatures, especially if they are in the same phonological status (Kumar 2013), 

therefore kNN would be beneficial to explore for this study. With regards to location, topography, 

and vegetation, Hu and Smiths’ (2018) study site shares similarities with Haiti, thus suggesting that 

kNN would produce similar high accuracy results when performing land cover classification. 

 

In regards to assessing the immediate change in land cover post-hurricane, research that focuses on 

the impacts of wind dismisses agricultural land and typically focuses on tree species. Defoliation is a 

common occurrence in tropical and subtropical regions, as hurricanes result in the shredding of 

leaves and branches (Ito 2010). Walker (1991) and Estoque et al. (2021) have demonstrated the 

possibility to assess changes in vegetation cover by monitoring the canopy cover of large tree 

species remotely. However, canopy cover is defined as the percentage of ground area covered by 

the vertical projection of tree crowns (Whiteside and Boggs 2009), therefore does not accommodate 

non-tree species, including many agricultural products. Despite the definition of canopy cover, some 

literature studying canopy cover uses a PB approach (Ma, Su and Guo 2017; Celine 2019; Estoque et 

al. 2021). It can be argued that the output of this method is not just the measure of canopy cover 

but all land covers (Whiteside and Boggs 2009). Indeed, Sahebjalal and Dashtekian (2013) employed 

pixel-based classification in Ardakan, Iran, finding that agricultural land decreased by 8.39% from 

1990-2006. Similarly, it was employed to classify tree cover and was effective in monitoring the loss 

of canopy (Ma, Su and Guo 2017). PB classification is considered a successful method to classify land 

cover (Sahebjalal and Dashtekian 2013; Ma, Su, and Guo 2017), thus it would enable comparisons 

from pre- to post-hurricane to be made, allowing changes to agricultural land to be identified. 

However, it must be remembered that the results will not objectively indicate how the loss of 

vegetation took place, i.e., wind. Despite evidence suggesting that PB classification is successful in 
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monitoring changes in vegetation, the spatial resolution of imagery being analysed contributes to 

the overall accuracy.  Ma, Su, and Guo’ (2017) employed WorldView-2 to obtain a very high spatial 

resolution satellite imagery of 2 and 0.5 m to compare canopy cover to LIDAR estimates; in contrast, 

Sahebjalal and Dashtekian’ (2013) employed Landsat, with a coarser resolution of 30 m to analyse 

land use-land cover changes in Iran. Subsequently, Ma, Su, and Guo (2017) achieved a very high 

overall accuracy of 93% in comparison to a lower accuracy of >81% achieved by Sahebjalal and 

Dashtekian (2013). It can be assumed that the higher spatial resolution reduced spectral mixing 

within a pixel, thus increasing the accuracy of the outputs. Consequently, although both studies 

prove PB classification to be successful, employing imagery with a higher resolution will increase 

accuracy, thus the reliability of the results.  

 

In contrast to PB classification, OBIA has frequently been employed to monitor the loss of canopy 

cover (Johansen et al. 2009; Whiteside and Boggs 2009; Chehata et al. 2014; Chong et al. 2017). It 

has been stated that to ensure high accuracy outputs, OBIA requires very high spatial resolution 

data. In particular, to accurately identify the row structure within banana plantations, Johansen et al. 

(2009) stated that the spatial resolution of imagery needed to be ≤2.5 m. Alternatively, OBIA could 

be used to identify areas of agricultural land rather than the individual species/objects alone. For 

example, OBIA was used to map land cover types for both pre- to post- Cyclone Sidr (2007) in 

Bangladesh using lower resolution Spot-5 imagery (10 m spatial resolution) (Hoque et al. 2016). 

Employing the outputs, a post-classification comparison change detection algorithm was employed 

to identify changes in the landscape from pre- to post-cyclone. Through a trial-and-error approach, 

and visual inspection the object-based method was considered successful in identifying the extent 

and type of change induced by Cyclone Sidr (Hoque et al. 2016). This highlights that OBIA can be 

employed to produce land cover maps identifying agricultural types at a field scale, that can be used 

for further analysis. This omits the requirement for very-high spatial resolution data as seen in 

Johansen et al. (2009), which is typically not open source.  

 

Overall, it can be concluded that both PB and OBIA can be used to monitor land cover change; in the 

short-term assessing the loss of vegetation, and in the long-term investigating land cover change 

associated with the long-term impacts of the hurricane on the land. Consequently, both methods of 

classification will be trialled within a pilot study. 
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2.7. MONITORING CHANGES IN VEGETATION  

Change in vegetation can be monitored to a high standard using VIs applied to remotely sensed 

multi-spectral imagery. In particular, NDVI has the ability to quickly delineate vegetation and 

vegetative stress (Huang et al. 2020). Through chlorophyll absorption taking place in the red band 

and reflection in the Near-Infra Red (NIR) band, NDVI determines the density of green on a patch of 

land (NASA 2000), ranging between -1 and 1. Due to this appeal, in conjunction with its simplicity 

and reliance on easily obtainable multi-spectral bands, NDVI quickly became one of the most 

popular VIs (Wang et al. 2010; Huang et al. 2020). Amongst studies that employ NDVI, its use and 

therefore the meaning of the values derived from it vary. Studies have demonstrated that NDVI is 

effective in estimating various vegetation properties such as Leaf Area Index, biomass, chlorophyll 

concentration in leaves, plant productivity and stress (Huang et al. 2020). However, these have all 

been assessed by correlating remotely sensed NDVI values with on-the-ground measured values of 

these variables. On a local scale and across the same class of vegetation it is commonly used as a 

direct indicator of vegetation health (Huang et al. 2020). Aligning with this study, NDVI has also been 

employed to investigate vegetation damage inflicted by hurricanes (Hu and Smith 2018; Charrua et 

al. 2021); when Hurricane Maria made landfall in Dominica and Puerto Rico, post-hurricane NDVI 

was compared to reference years to monitor damage and establish when the vegetation returned to 

‘near normal’ (Hu and Smith 2018). Charrua et al. (2021) applied a similar methodology when 

monitoring Cyclone Ida’s impact on Mozambique; the paper concluded that change in NDVI from 

pre- to post-cyclone varied from -0.07 to -0.46, with the most damaged land cover being dense 

vegetation.  Consequently, comparing a pre-hurricane NDVI with a post-hurricane NDVI (Hu and 

Smith 2018) would highlight if certain properties of agricultural vegetation had changed post-

Hurricane Matthew, allowing the severity of damage and change in vegetation to be quantified, 

identifying regions of vulnerability. Therefore, NDVI can be used to monitor damage and recovery of 

vegetation. 

 

Whilst the use of NDVI can be highly effective, it’s limitations and capabilities need to be understood 

to avoid misuse.  NDVI has been found to be sensitive to the atmosphere and background soil 

brightness (Xue and Su 2017), especially in areas where vegetation cover is low (<40%) and the 

surface soil is exposed. Darker soil background may produce larger NDVI index values (Bausch 1993); 

this is something to be considerate of post-hurricane, as due to damage and vegetation being 

washed away, soil exposure may increase, influencing NDVI. Furthermore, NDVI is sensitive to areas 
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of high biomass, resulting in saturated NDVI values. Despite this, many studies (e.g., Rodgers, 

Murrah and Cooke 2009; Wang 2012; Li et al. 2016; Hu and Smith 2018; Taillie et al. 2020) have 

employed NDVI to monitor the impacts of hurricanes on vegetation. In particular, VIs have been 

used to measure the severity of vegetation damage subsequent to events such as hurricanes and 

associated salinity damage (Goto et al. 2015; Hu and Smith 2018; Charrua 2021).  Indeed, utilising 

the pre- and post-hurricane NDVI, change in NDVI can be calculated (Hu and Smith 2018) (Equation 

2) and the relative change in vegetation activity can be quantified by the NDVI ratio (NDVI% - 

Equation 3); where a higher NDVI% represents more serious hurricane damage. This method was 

implemented to investigate vegetation damaged in response to hurricanes (Hu and Smith 2018; 

Charrua 2021), as well as monitor the long-term effects of salinity on vegetation post-flooding 

induced by a typhoon (Goto et al. 2015). Indeed, Hu and Smith (2018) found that the mean NDVI of 

vegetative land significantly decreased from a pre-hurricane value of 0.91 to 0.70 post-hurricane. 

Additionally, forest land cover sustained the most damage, in contrast, natural grassland was the 

least impacted. Methods that can identify what land covers/regions are more severely impacted are 

useful in building resilience as it highlights areas of vulnerability, focusing mitigation efforts on the 

correct regions. Therefore, within this study, NDVI values would be used to infer the damage 

inflicted by Hurricane Matthew and monitor how long it takes for agriculture to return to a ‘near 

normal’ state (NDVI value that is representative of when the land cover is not under stress or 

exposed to shock).  

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
                           Eq 1. NDVI 

 

 ∆𝑁𝐷𝑉𝐼 = 𝑁𝐷𝑉𝐼 𝑃𝑟𝑒 − 𝑁𝐷𝑉𝐼 𝑃𝑜𝑠𝑡               Eq 2. Change in NDVI 

 

 

𝑁𝐷𝑉𝐼% =  
∆𝑁𝐷𝑉𝐼

𝑁𝐷𝑉𝐼𝑃𝑟𝑒
𝑥100%       Eq 3. NDVI Ratio 

 

Furthermore, the outputs of NDVI can be analysed and presented in a range of different ways. One 

example includes thresholding NDVI. This is when the NDVI is split into ranges and given a class, for 

example, ‘Very Healthy Vegetation’= >0.66 (USGS 2018; Earth Observing System 2019). This method 

has been used as a tool to compare changes in vegetation (e.g., Gammal, Ali and Samra 2014; 

Walcker et al. 2019). This enables quantitative measures to be extracted about the area of land that 
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has changed from one class to another. Similarly, change detection can be utilised to monitor the 

change in NDVI from the initial to final state over the same geographic extent (L3Harris 2022). This 

method allows quantitative values to be given regarding the severity of damage within specific 

regions. 

 

The second VI, the Enhanced Vegetation Index (EVI) (Equation 4) is a modified version of NDVI that 

accounts for soil brightness to reduce inaccuracies. As can be seen in Equation 4, EVI includes a 

constant term that accounts for the soil background that NDVI is sensitive to; the soil adjustment 

factor ‘L’. Although this omits the issue of soil background, the soil adjustment factor ‘L’ makes it 

more sensitive to topographic correction, therefore, the topographic effect on the EVI must be 

accounted for (Matsushita et al. 2007). While EVI accounts for soil background, this index is not 

appropriate in Haiti because it has been shown to be more effective in regions with minimum 

topographic variability (Earth Observing System 2019); as we know, Haiti’s terrain is comprised of 

rugged mountains with small coastal plains and river valleys (Library of Congress 2010).  

 

 

𝐸𝑉𝐼 = 𝐺 𝑥 
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝐶1 𝑥 𝑅𝑒𝑑−𝐶2 𝑥 𝐵𝑙𝑢𝑒+𝐿)
                  Eq 4. EVI 

 

 

Whereby G = 2.5, C1 = 1, C2 = 7.5, L = 1, NIR = Near Infrared, Red = red band, Blue = Blue band, 

∆𝑁𝐷𝑉𝐼 = Change in NDVI. 

 

 

 

2.8. MONITORING CHANGES IN SOIL SALINITY 

As mentioned in Section 2.3, storm surges associated with hurricanes increase SS, thus having a 

long-term impact on agricultural productivity. Consequently, monitoring SS to assess the long-term 

impact on recovery would be beneficial. There are two approaches used to monitor SS remotely, 1) 

the most used, ‘direct approach’, focuses on surface SS by measuring the spectral reflectance of bare 
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soil (Ivushkin et al. 2017), and 2), the indirect approach whereby vegetation reflectance is used as an 

indicator of SS. Method two can be used when vegetation prevents seeing the soil. To meet the 

desired outcome, the latter approach would be more efficient as the canopy cover reflects the 

conditions of the root zone. Thus, if the canopy is not as healthy following a storm surge, it can be 

assumed that salinity is higher within the root zone for example. The root zone, in particular, 

determines vegetation health and is therefore better suited to assess agricultural lands, 

consequently it is suggested that attention should be directed towards the indirect method 

(Scudiero et al. 2016; Scudiero et al. 2017; Tripathi and Tiwari 2021). Despite this, conditions 

immediately post-hurricane make the indirect approach of estimating salinity through indices of 

canopy cover unachievable due to total loss of vegetation. Vice versa, when recovery begins to take 

place, canopy cover will prevent direct estimations using soil. Therefore, indices for both direct and 

indirect approaches need to be considered. 

 

There are varying methodologies that have proven to be effective when monitoring SS over large 

spatial extents with repetitive measurements (e.g., Das et al. 2016; Gorji, Sertel and Tanik 2017; 

Ivushkin et al. 2017; Davis, Wang and Dow 2019; Nguyen et al. 2020; Rajendran et al. 2021; Zhu et 

al. 2021). The most common approach demonstrates the advantages of combining satellite image 

analysis with field data to assess the accuracy of SS estimates (Das et al. 2016; Morshed, Islam and 

Jamil 2016; Gorji, Sertel and Tanik 2017; David, Wang and Dow 2019; Nguyen et al. 2020; Omori et 

al. 2021; Rajendran et al. 2021; Tripathi and Tiwari 2021; Zhu et al. 2021). However, this is 

counterproductive, as the advantage of remote sensing is that you do not have to be present at the 

study site to conduct research. Consequently, a range of salinity indices, VIs, and bands have been 

evaluated to identify the proxies that are most sensitive to and correlate with Electrical Conductivity 

(EC). However, research that explores SS in alternate climatic (other than arid/semi-arid) zones is 

limited (. In a review of remote sensing approaches for monitoring salinity (Gorji et al. 2019), only 4 

out of 100 studies took place in a similar tropical climatic region to Haiti (Gorji et al. 2019). The few 

studies that have been completed highlight that the indices do not perform as well for a region other 

than for which they were developed (Das et al. 2016; Morshed, Islam, and Jamil 2016), and those 

doing so have found much lower correlations and predictive power than reported for the initial 

application (Ivushkin et al. 2016). Indeed, Morshed, Islam, and Jamil (2016) investigated 13 indices in 

Bangladesh, a similar tropical climate to Haiti. Overall, the NIR band, Salinity Index 2 (SI2), NIR/R 

ratio, and the Soil Adjusted Vegetation Index (SAVI) had the best relationship with EC field samples, 

achieving a correlation of 0.64, 0.62, 0.73, and 0.68 respectively. However, these correlations are 

relatively low, meaning that there is a reasonable chance that salinity estimates will not be an 
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accurate representation of the true EC. Furthermore, the different indices and ratios used to 

monitor SS across the study sites (e.g. Gorji, Sertel and Tanik 2016; Morshed, Islam and Jamil 2016; 

Asfaw, Suryabhagavan and Argaw 2018) show no consistency in regard to how well the indices 

perform. For example, Salinity Index 1 (SI1) (Equation 5), utilising the green and red band, performed 

well in monitoring salinity in Turkey (Gorji, Sertel and Tanik 2016) and Ethiopia (Asfaw, 

Suryabhagavan and Argaw 2018). Yet when applied in Bangladesh, returned low correlations with 

field data (Morshed, Islam and Jamil 2016). Similar inconsistencies are observed with the Normalised 

Difference Salinity Index (NDSI) (Equation 6). NDSI allows the brightness values in white encrustation 

to be analysed (Das et al. 2016) by utilising the Red and NIR bands as they are most sensitive to soil 

ions causing salinity. Nguyen et al. (2020) found that NDSI had a very low correlation with EC in 

Vietnam, whereas Das et al. (2016) reported high accuracies. The exceptions of inconsistency are the 

NIR band and Red band (together and alone), and the Vegetation Soil Salinity Index (VSSI). The Red 

and NIR bands, in particular, are useful to assess SS (Morshed, Islam and Jamil 2016; Corwin and 

Scudiero 2019; Nguyen et al. 2020; Zhu et al. 2021). This means that plants stressed by saline soils 

are characterised by a lower NIR reflectance than other non-stressed plants. This is reinforced by the 

fact that many indices include the NIR band. Therefore, a simple ratio of bands, including the NIR 

and Red band has proven to estimate SS adequately. Although this approach has not been 

frequently applied, Morshed, Islam, and Jamil (2016) found that out of the 13 indices assessed, the 

NIR/R ratio achieved the highest correlation. Similarly, Nguyen et al. (2020) showed that the NIR 

band had a very high correlation with EC. Additionally, VSSI  (Equation 7) performed well across two 

studies in similar climatic regions to Haiti employing Landsat data (Nguyen et al. 2020; Hassan et al. 

2021). Despite these few exceptions, the inconsistencies regarding the performance of these 

indices/ratios make the outputs estimating SS unreliable, thus the outputs would have to be 

validated with on-the-ground data. 

 

𝑆𝐼1 = √𝐺𝑟𝑒𝑒𝑛 + 𝑅𝑒𝑑            Eq 5. SI1 Equation  

 

𝑁𝐷𝑆𝐼 =
(𝑅𝐸𝐷−𝑁𝐼𝑅)

(𝑅𝐸𝐷+𝑁𝐼𝑅)
    Eq 6. NDSI Equation 

 

𝑉𝑆𝑆𝐼 = 2 𝑥 𝐺𝑟𝑒𝑒𝑛 − 5 𝑥 (𝑅𝑒𝑑 + 𝑁𝐼𝑅)       Eq 7. VSSI Equation  
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Although it has been established that estimation of SS through remote sensing is possible, due to the 

inconsistency in the performance of indices and their poor correlations in non-arid environments, if 

the methods were to be applied to this research, on-the-ground data would be required to validate 

the findings. However, in Haiti there is a lack of environmental data collected to validate the 

findings. The reasons for a lack of data collection are broad and vary from country to country. 

However, in Haiti, the two main reasons contributing to a lack of data collection are conflict and the 

country’s history, resulting in a lack of trust in external bodies (Daut 2021; Ground Truth Solutions 

2022). Firstly, the ongoing conflict can make the data collection process unsafe. Secondly, Haiti’s 

history consists of subjection to centuries of debt, exploitation, and violence, leading to a lack of 

trust throughout the country towards external organisations that can aid research and data 

collection (Ground Truth Solutions 2022). Consequently, although assessing SS would have been 

beneficial to understanding the long-term effects on the land, and thus the productivity of 

agriculture, the method would require validation with on-the-ground data. This is something that 

this study does not have access to, therefore assessing salinity is not a valid approach as it cannot be 

measured with high confidence, consequently, it will be excluded from this research. 

 

 

 

 

2.9. SUMMARY 

Overall, from reviewing the literature it has been established that despite efforts and global unity, 

food insecurity within certain countries, including Haiti, is not improving. The factors contributing to 

food insecurity are vast and interlinked, making it a complex issue. However, hurricanes, a hazard 

due to an increase in frequency and intensity due to climate change, pose a large reoccurring threat 

to food insecurity. Haiti has experienced the repetitive threat of hurricanes first-hand, and 

understanding the impacts of this threat is vital to build resilience. Reviewing the impacts of 

hurricanes demonstrated that the hazard can inflict both immediate damage on agricultural land as 

well as have secondary effects in the long-term. Despite this, literature that monitors the impacts of 

hurricanes tends to only quantify the short-term damage by loss of yield and associated costs. 

Consequently, the impact on agricultural vegetation and its long-term recovery is disregarded. Based 

on these findings, this research seeks to assess the impact of Hurricane Matthew on the agricultural 

sector of the Sud and Grand’Anse departments, Haiti, by utilising remote sensing. Although this 



44 
 

research has a specified region of interest, it aims to develop a methodology that when tested, can 

be used universally to investigate and understand the short and long-term impacts of hurricanes and 

other climatic-related hazards worldwide.  The outputs of such research can provide insight into the 

patterns and severity of damage, informing policy change and better agricultural practices, with the 

end goal of building resilience against food insecurity. Consequently, this research aligns with the 

SDG Zero Hunger, specifically targeting 2.3 and 2.4, as well as 17.16; ‘enhancing global partnership 

for sustainable development that mobilise and share knowledge, expertise, and technology to 

support the development of SDGs in all countries, specifically developing countries’ (United Nations 

N.D).  
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CHAPTER 3 

3. METHODOLOGY 

3.1.  INTRODUCTION TO THE METHODS  

This methodology employed a desk-based quantitative research approach to fill the knowledge gap 

highlighted in the literature review on the short and long-term impacts of hurricanes on agricultural 

vegetation. Although the benefits of working within and amongst communities/alongside farmers is 

understood and would benefit this study, as mentioned, there are various factors that made primary 

data collection unattainable; the main circumstance being that conflict present within the ROI makes 

on-the-ground research high-risk. Additionally, for the aim of the research and scale of the ROI, in-

the-field research would not have been cost or time effective, nor achievable for the scope of this 

research. Thus, the methodology employs satellite imagery to assess the ROI.    

 

This chapter outlines the methodology for this research. There were many challenges when working 

towards the results, including the lack of, and access to data and limitations of the software. 

Consequently, this chapter will demonstrate how these challenges were overcome. The chapter will 

start by introducing the study site, data sources and data collection process, and explain the pilot 

studies that go on to create the foundations for the methods of this research. The final methods 

employed to monitor the impact and recovery of Hurricane Mattew will then be explained, followed 

by how the data was analysed and a conclusion of the methodology.   

 

 

 

3.2. DEFINING THE REGION OF INTEREST (ROI)  

Within this research 3 ROIs will be assessed; 1) regional scale, across agricultural land of the Sud and 

Grand’Anse departments, 2) land covers; Agroforestry, Dense Agriculture and Moderately Dense 

Agriculture, alongside Forest and Savanna with Others, and 3) locally defined agriculturally 

dependant communes.  
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Figure 4 shows the Sud and Grand’Anse Departments, Haiti, clipped to a 70km buffer from Hurricane 

Matthews track; this defines the regional scale ROI. Hurricane Matthew made landfall in the west of 

the Sud department, Haiti, travelling north through Grand’Anse (NOAA 2016), consequently these 

departments are the focus of this research as they sustained the most damage. To ensure all 

changes to agricultural land are associated with the impact of the hurricane, the departments have 

been clipped to a 70km buffer from Hurricane Matthews track. This buffer is based on findings 

associated with Hurricane Maria, a category 4 hurricane (comparable to Hurricane Matthew) 

whereby changes in mean NDVI were detected up to 70km away from the hurricanes track (Hu and 

Smith 2018).  

 

In order to meet objective 4 (assess the vulnerability of land cover types across agricultural 

dependant communes), agricultural land covers and agricultural dependant communes needed to be 

defined in the ROI. There is a lack of on-the-ground and secondary data defining land covers within 

Haiti, therefore it is hard to separate specific agricultural land covers from other wild flora species. A 

national data set, Haiti Data (2017), met these requirements which utilised SPOT satellite imagery to 

produce a Biota Land Cover map that identified areas of Dense Agriculture, Agroforestry, and 

Moderately Dense Agriculture, Forest and Savanna with Others, which are required for this research 

(Haiti Data 2017). This dataset is comparable to other sources such as the Agricultural Land Use map 

produced by the Haiti Ministry of Agriculture, Natural Resources and Rural Development (1998) as 

well as the land use/cover map produced by the FAO (2010) (see Appendix 8.1 and 8.2). 

Subsequently, the land cover data (Haiti Data 2017) was downloaded in shapefile format allowing 

land covers to be selected for individual land cover assessment. 

 

Furthermore, 7 communes in the ROI that are vulnerable to food insecurity, therefore requiring 

community agricultural support (RTAC 2021) were chosen to be assessed (Table 1). Commune 

boundaries were downloaded in shapefile format from HDX Data (2018). In-depth analysis of the 

communes enables areas of vulnerability to be highlighted, addressing objective 4. 
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Figure 4. Map of ROI. Sources to Create the Map Include Sud and Grand’Anse Department and Communes’ Shapefiles (HDX 2018), and Land Cover 
Shapefiles (Haiti Data 2017), Clipped to 70km from the Hurricane Track (NOAA 2016).    

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the Lanchester 
Library, Coventry University. 
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Table 1. Defined Communes Undergoing In-Depth Analysis and their IPC Phases (IPC 2022). 

 

 

 

3.3. ACQUISITION OF SATELLITE IMAGERY  

Due to the extent of the study area, satellite imagery was the primary source of data for this 

research. When employing satellite imagery, it is important to understand what is required of the 

imagery and the user's needs. Being aware of characteristics such as spatial resolution; the physical 

dimensions that represent a pixel, as well as temporal resolution; how often data is collected in the 

same area, is key. Within this study, a higher spatial resolution is prioritised as it can improve the 

accuracy of results (Bouaziz, Matschullat and Gloaguen 2011; Morshed, Islam and Jamil 2016). 

However, time-series analysis is the focus of this research, therefore the most important aspects of 

data collection are imagery that is atmospherically corrected, imagery that provides a cloud mask 

and data continuity. Atmospheric correction improves the comparison between multiple images 

over the same region by removing the scattering and absorption effects of the atmosphere, 

including clouds and aerosols (L3Harris 2015). Most satellites now provide Surface Reflectance (SR) 

products, whereby removal of atmospheric effects takes place by measuring the fraction of incoming 

solar radiation reflected from the earth’s surface to the sensor (USGS N.D). Therefore, SR products 

are desired as they are suitable for time-series analysis. In terms of data continuity, it is important 

that, where possible, the same imagery is being employed for consistency. This can be challenging 

for time-series analysis that takes place over several years. 

 

Various data sources were explored including Planet Labs, Sentinel, Landsat and MODIS. Planet Labs 

and Sentinel were explored first due to the desired higher resolution data (3.7m and 10m 

respectively) (Planet 2021). Although they provide the surface reflectance product, prior to 2018 

Planet did not provide their Usable Data Mask 2.0 (UDM2) to mask Cloud Cover (CC) and Sentinel 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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was not launched until 2015 which would cause issues in data continuity. Landsat and MODIS 

provided both data continuity and cloud masks, therefore were explored further. 

 

 

 

3.3.1. LANDSAT DATA  

Landsat 8 Collection 2 Level 2 (C2L2) provides surface reflectance imagery with a 30 m spatial 

resolution. Despite a lower resolution, Landsat is one of the longest-running, resolution-consistent 

satellites and therefore is frequently chosen to investigate environmental change over time. Since 

the launch of Landsat 4-5 in 1984 (EO 2021) the Landsat series has consistently provided 30m spatial 

resolution data with a revisit time of 16 days. Landsat collates data in swath paths of 185 x 180km 

(USGS N.D), subsequently, the Sud and Grand’Anse Departments cross over two paths (009 and 

010), and therefore are collected at different times. This difference in data collection results in 

different atmospheric conditions across the tiles, thus increasing the importance of the SR product. 

Additionally, the accompanying QA pixel band was critical to overcome issues associated with cloud 

covering large areas. Overall, Landsat 8 has a good spatial resolution and can be downloaded with 

surface reflectance alongside the accompanying QA pixel band for cloud masking, making it an 

effective data source for a time series analysis. 

Despite this, Landsat 8 launched in 2013, therefore years prior to its launch require imagery from 

either Landsat 7/4-5. Landsat 7 was not appropriate due to a scan line corrector failure resulting in 

incomplete images (USGS N.D). Although data can be downloaded with masks that infill the missing 

data, the masks are an estimation and therefore are not as accurate, thus Landsat 7 could not be 

used. Furthermore, it was established that there was no SR data collected from Landsat 4-5 for the 

growing seasons between the years 2010-2014.  

 

 

 

3.3.2. MODIS DATA 

Due to the lack of imagery in the pre-hurricane data collection period for Landsat, MODIS Surface 

Reflectance (MODIS/006/MOD09GA) was employed alongside Landsat to calculate the pre-hurricane 

reference mean NDVI from 2010-2015 (Section 3.5.1). MODIS data is collected daily, with 
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atmospheric correction and surface reflectance applied. However, MODIS has a coarse spatial 

resolution of 463m. Nevertheless, this was the most reliable and accessible product that could be 

employed alongside Landsat.  

 

 

 

3.3.3. DATA COLLECTION 

To meet objectives 2 and 3, data was collected immediately pre- and post-hurricane, to enable the 

assessment of the impact, as well as every 6 months post-hurricane from 2016 to 2021 to monitor 

long-term recovery. Additionally, data was collected from 2010-2015 to calculate a reference mean 

NDVI to aid the analysis of the impact and recovery. When investigating agricultural vegetation, due 

to plant phenology and its impact on VIs, it is imperative to consider the time of data collection. Due 

to Haiti’s climate and subsistence farming being the dominant practice, growing seasons are not 

clearly defined. However, as Haitian agriculture relies on rain for irrigation (Abraham 2015), the two 

main growing seasons coincide with the rainy periods. The first takes place in spring starting from 

April to July and the second lies from September to December (FEWS NET 2015). This coincides with 

The Famine Early Warning System (2015) typical annual growing calendar for Haiti (Figure 5), 

consequently defining the time frames in which data was collected. Employing this as a reference, 

imagery was acquired during the peak of the growing season, prior to harvest, to ensure consistency 

in vegetation phenology. This would ensure the truest reflection of recovery possible. 

 

  

 

Figure 5. Seasonal Calendar in a Typical Year (FEWS Net 2015). 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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3.4. PILOT STUDIES 

3.4.1. CLOUD COVER PILOT STUDY 

When exploring and collecting data sources, an issue identified across all imagery was Cloud Cover 

(CC). For some time now, CC has been a constraint associated with the collection of satellite imagery 

globally (Marshall, Dowdeswell, and Rees 1994; Hu and Smith 2018; Man et al. 2018; Rahman et 

al. 2018; Tran et al. 2018; Sun et al. 2019; Qui, Zhu and Woodcock 2020; Rahman and Di 2020). 

Figure 6 shows the average CC in Haiti throughout the year (Weather Sparks N.D), highlighting that 

the months with high CC fall in the data collection period. CC and cloud shadow present within 

satellite imagery can reduce data consistency between images, significantly reducing the area of the 

study site and making time-series analysis difficult (Robinson, Rosser, and Walters 2019; Qiu, Zhu, 

and Woodcock 2020). Furthermore, cloud shadows decrease the reflectance capability of target 

objects (Earth Observing Systems 2021). Therefore, finding the best approach to mask or reduce CC 

and associated shadows is essential.  

 

 

 

 

 

 

 

 

 

 

 

 

To reduce CC and subsequently increase the accuracy and consistency of the time-series analysis, 

various software and methods were explored to resolve the challenge of CC. As this is a global 

problem when working with satellite imagery, tools and algorithms have been developed to perform 

cloud masking at the pre-processing stage (Zhu, Wang, Woodcock 2015; Qui, Zhu and Woodcock 

2020; QGIS 2021). Cloud masking was the first method explored, which essentially prepares imagery 

for processing and improves product generation (Earth Observing System 2021). One of the most 

widely used methods for cloud masking was the Fmask Algorithm (Hu and Smith 2018; Davis, Wang 

Figure 6. Cloud Cover Categories in Haiti (Weather Sparks N.D); Harvest Months July and November. 
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and Dow 2019; Sun et al. 2019). This method can be completed in ENVI or QGIS using the Cloud 

Mask plugin.  

 

Both ENVI and QGIS were trialled to mask CC using data collected from the same date to assess 

accessibility and the quality of the output. Within ENVI, due to accessibility issues, the QA pixel band 

was processed manually to remove the CC, in contrast, the QGIS plugin completed this process 

automatically. Figure 7 compares the difference between the QGIS plugin and ENVI outputs; it shows 

that the cloud mask in ENVI covered a larger area, masking both cloud and cloud shadows. The red 

cross point sits on a region of cloud shadow that was identified in ENVI but not by QGIS, despite also 

selecting ‘cloud shadow’ to be masked. Consequently, because the QGIS plugin did not identify all 

the shadows within the imagery, this could result in skewed data values as the shadow is not a true 

value of the surface reflectance (Fisher 2014). Therefore, QGIS was unreliable for performing 

spectral analysis.  

 

Figure 8 shows the Sud and Grand’Anse Departments with the QGIS cloud mask applied across the 

pre-hurricane, post-hurricane (immediate), 6- and 12-months post-hurricane imagery. When 

selecting the data for this pilot study, metadata was used to select imagery with the least amount of 

on-land CC. Despite this, some images still had over 42% of land covered by clouds. The area being 

masked significantly reduced the area of the ROI that could be assessed. Additionally, when 

comparing the pre-hurricane to the post-hurricane imagery for analysis, the CC is dissimilar across 

Figure 7. Difference Between QGIS Cloud Mask Plugin and Fmask Tool in ENVI Outputs from 
Imagery of the Same Dates. 
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the imagery (regarding its location and area), further reducing the area that can be analysed. 

Consequently, cloud masked outputs alone were not suitable for analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To resolve this, the creation of a cloud-masked composite was explored to produce the most 

complete image possible. Recently, Best-Available-Pixel (BAP) compositing methods have been 

proposed to eliminate the effects of CC (Man et al. 2018; Hosannah et al. 2020). BAP methods 

replace cloud pixels with the best-quality pixels from a set of images within a defined period (Man et 

al. 2018).  A composite image can be produced by mosaicking imagery to produce a cloud-free time 

series (Man et al. 2018; Hosannah et al. 2020). Processes such as this can be performed in ENVI, 

however, downloading imagery from multiple dates and pre-processing would significantly increase 

processing time. To avoid this issue Google Earth Engine (GEE) was employed. GEE combines a multi-

petabyte catalog of satellite imagery with planetary-scale analysis capabilities (Google Earth Engine 

N.D), enabling instant access to and use of satellite data and a significant reduction in the   

computation time of batch processes. Therefore, this platform is particularly useful when handling 

large quantities of data (Carrasco et al. 2019; Tassi, and Vizzari 2020; Tassi et al.  2021). 

Consequently, a pilot study in GEE to explore creating a cloud-masked composite, increasing the 

area of land that can be consistently analysed was the next appropriate course of action. 

 

To create the cloud masked composite, a method was developed by adapting scripts and processes 

applied in previous research; key influences were methods outlined by Tassi and Vizzari (2020) and 

Figure 8. QGIS Cloud Masking Plugin Applied to Pre and Post Hurricane Landsat Imagery (USGS 2016, USGS 2017, HDX 2018, 
QGIS and ENVI). 
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Tassi et al. (2021). Figure 9 shows the process employed to produce the reduced cloud composite 

image. Firstly, the data source was specified (Landsat 8 L2C2) and dates of collection were filtered 

(Table 2). Topographic correction was required to remove the influence of topography on the 

surface reflectance (Tassi et al. 2021). It must be acknowledged that although Landsat data includes 

terrain correction, this is dissimilar to topographic correction. Terrain correction ensures each pixel 

is displayed as viewed from directly above regardless of topography or view angle, therefore does 

not account for the variations in reflectance values that topography can inflict upon the land (Young 

et al. 2017). Regarding masking CC, similar to the processes in ENVI and QGIS, GEE utilises the 

QA_PIXEL band (CFMask) to mask cloud pixels. Finally, imagery that was collected within the defined 

time frame was then coded to be cloud masked and stacked together to create a composite image 

whilst applying the 'lastNonNull' reducer. The 'lastNonNull' function ensures that the last date in the 

time series that is not null of data is prioritised (Google Earth Engine N.D). This is essential as the 

latest possible date before the harvest begins is desired to produce the NDVI, as this is the most 

accurate representation of vegetation at peak phenology. Figure 10 presents the cloud masked 

composite in comparison to the individual imagery used to make the composite. This demonstrates 

the effectiveness of this method to produce a cloud-reduced image, increasing the area of land that 

can be assessed. Therefore, GEE will be employed to produce cloud masked composites to assess 

the impact and recovery of agricultural land post-Hurricane Matthew. 

 

 

 

 

 

 

 

 

 

 

 

  

Table 2. Data Sources and Filtered Dates of Collection for Composite Images.  
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Figure 10. Data Flow Diagram to Create the Reduced Cloud Cover Composite Image. The 
Filtered Dates Referred to in the DFD are Highlighted in Table 2. 
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Figure 11. Cloud Cover Masked Composite vs Individual Images (Landsat 2016, GEE and ENVI); Composite % of On-Land CC= <0.5, 2016/11/04 % of on-land CC= 26.8, 2016/12/06 
% of on-land CC= 7.77 , 2016/12/22 % of on-land CC= 2.9. 
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3.4.2. ASSESSING THE IMPACTS PILOT STUDY  

The literature review identified that there were three parameters that could be explored to study 

the impacts of hurricanes on agricultural land: 1) the impact of a storm surge on soil salinisation and 

subsequently plant productivity, 2) change in land cover, where short-term change is associated with 

defoliation and the immediate destruction of crops, and long-term change results in permanent 

damage, thus potential land abandonment, and finally 3) change in vegetation from wind and 

flooding. It was established in the literature review (Section 2.8) that due to the lack of on-the-

ground data to validate findings, soil salinisation cannot be measured with high confidence, 

therefore will not be included in this study. However, methods to assess changes in land cover and 

changes in vegetation were explored. The findings of the pilot study finalised the method that was 

employed to meet the aim and objectives of this research.  

 

The first method explored was image classification. Image classification allows changes in land cover 

to be assessed, identifying patterns of land cover/land-use change after Hurricane Matthew. Short-

term, this would identify immediate changes to the canopy, whereas long-term change could be 

associated with permanent damage to agricultural lands, such as land degradation. Additionally, 

image classification can be used to distinguish between crop types. This would allow an analysis of 

what species are more resilient or recover quicker, thus informing adaptions in agricultural practices.  

From reviewing image classification methods in the literature review, both Pixel-Based (PB) and 

Object Based Image Analysis (OBIA) methods were explored to establish which is more effective for 

meeting the study’s objectives. 

 

GEE was employed to trial both methods; the recent machine learning algorithms available in GEE 

such as Random Forest and Support Vector Machine have demonstrated higher performance and 

accuracy compared to the traditional maximum likelihood algorithm (Ghimire et al. 2012; Nery et al. 

2016; Tassi and Vizzari 2020), and do not rely on the data having a normal distribution (Tassi and 

Vizzari 2020). The process used to perform the image classifications closely followed methods from 

Tassie et al. (2021), a method proven to produce high accuracy land cover classifications, Figure 11. 

The classification trialled drew upon a collation of spectral information, this can be referred to as a 

‘data cube’. Producing the data cube included employing multispectral bands, the calculation of 

spectral indices such as NDVI and textural indices e.g., the Gray Level Co-occurrence Matrix (GLCM), 

a matrix function of the angular relationship and distance between two neighbouring pixels (L3Harris 

2022). Including such layers in classifications, as well as utilising the panchromatic band to complete 
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RGB pan-sharpening, has been shown to increase accuracy (Mohanaiah et al. 2013; Godinho, 

Guiomar and Gil 2018; Mananze, Pocas, Cunha 2020; Tassi et al. 2021). Due to the collection of 

primary data not being possible, and the lack of detailed on-the-ground data regarding land cover, 

the training data used to classify the images was validated by employing very high-resolution 

imagery, Planet Labs and Google Earth Pro. After evaluating both image classification methods and 

including the data cube the findings concluded that OBIA performed better, achieving a higher kappa 

value (Figure 12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 12. Data Flow Diagram of Tassie et al. (2021) Methodology (Pixel-Based, PB; 
Pixel Based including the image textural information, PBT; Object-Based, OB; Object-
Based using the L8 15m Panchromatic band, OBP). 

This item has been removed due to 3rd Party Copyright. The unabridged version of the 
thesis can be found in the Lanchester Library, Coventry University. 
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The second method explored NDVI.  NDVI can be employed to assess change in vegetation from pre- 

to post-hurricane and monitor the long-term recovery consequent of Hurricane Matthew. The aim of 

this in the short-term was to assess the impact of the hurricane on the change in vegetation to 

gauge the severity of damage. In the long-term, assessing change in vegetation can inform how long 

it takes for the vegetation to recover; from this it can be inferred if the hurricane inflicted long-term 

damage (land degradation) onto the land, thus impacting vegetation productivity. 

  

As mentioned in Section 3.3.1, collection of pre-hurricane data was challenging as in some years 

(2010-2014) Landsat imagery was not available, thus MODIS was employed to assess NDVI. To make 

sure MODIS produced similar outputs to Landsat despite the difference in spatial resolution, a 

comparison of NDVI from the same timeframe was carried out between both sources. Extraction of 

the NDVI mean, minimum, maximum, and standard deviation were assessed for a subset of the 

study area to assess the variability in NDVI. Overall, the two sources share a similar mean, with 

MODIS reporting higher NDVI values by 0.02 (Figure 13). This higher mean NDVI reflects the higher 

minimum NDVI in contrast to Landsat (Table 3). It can be assumed that the differences in the NDVI 

between Landsat and MODIS is due to the spatial resolution; larger pixels (MODIS) suppress the 

detail of smaller regions, that would be identified in a 30x30 m pixel, that is of a lower NDVI in 

comparison to surrounding land. Despite MODIS mean NDVI being slightly higher than Landsat, the 

difference is not enough to skew reference mean NDVI calculations, thus producing reliable NDVI 

outputs. 

Figure 13. OBIA (Left), Kappa Value: 0.76, vs PB Classification (Right), Kappa Value: 0.60.  
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Table 4. NDVI Statistics MODIS vs Landsat for Agricultural Land September-November 2015. 

 

Although both image classification methods were successful, the outputs produced were compared 

to the subset of the study region for NDVI. It was concluded that the image classification outputs 

were similar to NDVI. This was due to the lack of on-the-ground data, meaning specific vegetation 

types were not able to be determined. Consequently, the training classes for the classification were 

vague, for example, ‘dense vegetation’ and ‘sparse vegetation’. Classes such as this can be 

determined using NDVI, a reliable index based on quantitative information, whereas image 

classification outputs rely on the knowledge of the user. Therefore, employing NDVI and applying 

thresholding (i.e., defining NDVI ranges) decreases the chance of human error and bias. 

Furthermore, consequent of the issue regarding the lack of on-the-ground/secondary data, when 

classifying the image, specific land covers (e.g., crop types) could not be defined. This takes away the 

main purpose of the land cover classification, as findings cannot conclude which crops sustained less 

damage, therefore are more resilient, and which agriculture recovered quicker. Nor could they 

identify land abandonment, as there was no way to distinguish between wild flora and agricultural 

 
MODIS Landsat 

Mean 0.65 0.63 

Min -0.04 -0.56 

Max 0.91 1.00 

StdDev 0.11 0.16 

Figure 14. Comparison of MODIS and Landsat mean NDVI. Error Bars Highlight the Standard 
Deviation Around the Mean, Showing Little Difference. 
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vegetation, especially with the resolution of satellite imagery available. Consequently, although the 

image classification could determine the change in land cover, the outputs could not deduce the 

detail that was initially desired without on-the-ground/secondary data. Although NDVI cannot 

specify crop type, it is more reliable than an image classification that solely relies on the knowledge 

of the user to train the data. Therefore, NDVI will be employed to assess changes in agricultural 

vegetation from pre- to post-hurricane and monitor the long-term recovery of agricultural land post-

Hurricane Matthew.  

 

 

 

3.4.3. CONCLUDING THE METHODS PILOT STUDIES 

The pilot studies set out to effectively reduce and mask CC and evaluate methods to assess the 

impact and recovery of Hurricane Matthew. To conclude, the cloud mask alone produced 

unsatisfactory outputs; the area of land that could be assessed was significantly decreased and 

remnants of cloud shadow still occupied the imagery. Subsequently, GEE was employed to create a 

mosaic of cloud-free imagery.  

Regarding methods to assess impact and recovery, due to the lack of and accessibility to on-the-

ground/secondary data regarding land cover in Haiti, the image classifications did not produce the 

desired outputs. The lack of secondary data had a large influence on the methods and thus the 

findings of this study therefore will be discussed further in Sections 5.4-5.5. Consequently, this pilot 

study determined that employing image classification to assess land cover change did not meet the 

aim and objectives of this study. Consequently, change in vegetation was taken forwards into the 

final methodology.  
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3.5. ASSESSING THE IMPACT & RECOVERY OF HURRICANE MATTHEW 

IN HAITI   

The pilot studies completed prior to finalising the methods built the foundations for this research 

and thus the results. Recapping from the CC Pilot Study (Section 3.4.1), data was collected, pre-

processed, and cloud-masked in GEE. The Image Classification Pilot Study concluded that image 

classification was not a suitable method and that assessing change in vegetation using NDVI was the 

most effective way to meet the aim and objectives. The subsequent sections in this chapter will 

explain how NDVI was produced utilising GEE and describe the methods employed to analyse the 

short-term impacts of Hurricane Matthew, followed by an explanation of the methods used to 

assess the long-term recovery. Figure 14 presents a Data Flow Diagram (DFD) summarising the 

methods employed. 

 



63 
 

Figure 15. Data Flow Diagram of Methods Used to Produce Results. The filtered Dates are Highlighted in Table 2. 
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3.5.1. NDVI  
As already established NDVI was the chosen VI employed to assess the impact and recovery of 

agricultural land subsequent to Hurricane Matthew. As seen in the literature review, Equation 1 

shows how NDVI is calculated by employing the Red and NIR band.  

 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅−𝑅𝑒𝑑)

(𝑁𝐼𝑅+𝑅𝑒𝑑)
            EQ.1. NDVI  

Regarding data processing, NDVI was produced in GEE. Utilising the script produced to create the 

cloud masked composite, NDVI (EQ1) was coded and applied to the composite images. NDVI data 

was produced for immediately pre- and post-hurricane, as well as every 6 months post-hurricane 

(within both growing seasons) to monitor the long-term recovery. The 'lastNonNull' reducer was 

utilised for the immediately pre-hurricane composite and the 'firstNonNull' for the immediately 

post-hurricane composite. This means that the values from the last image prior to Hurricane 

Matthew and the first image post-hurricane were used to produce the NDVI unless null, ensuring the 

most immediate cloud free image was used. In contrast, when collecting data to monitor the long-

term recovery (every 6 months post-hurricane) the latest image prior to harvest was used employing 

the ‘lastnonNull’ reducer; this ensured that NDVI reflected peak agricultural productivity to monitor 

recovery against the reference mean NDVI. Additionally, NDVI data was produced for 6 years (2010-

2015) pre-hurricane (for each growing season) to aid calculation of a reference mean NDVI. Collating 

6 years of data omits and accounts for any abnormalities within the data that may have been 

influenced by annual variations or meteorological conditions (Hu and Smith 2018; Tassi et al. 2021). 

The reference mean NDVI allows for post-hurricane NDVI to be compared to an NDVI that is 

reflective of a ‘near normal’ status. Within this study, ‘near normal’ refers to a status of vegetation 

that is not under stress or shock. NDVI values not returning to a near normal state may suggest that 

the hurricane inflicted long-term damage on the land (i.e., land degradation). For example, if a post-

hurricane mean NDVI exceeds the reference mean NDVI, it highlights that vegetation has 

recovered/has exceeded what is deemed as a ‘near normal’ vegetative status for that region. The 

NDVI data was then exported from GEE so that further analysis could be conducted.  

 

Once the data was processed, the mean NDVI across each individual ROI (regional, land cover and 

commune scale) was extracted. This was completed for both the pre- and post-hurricane data. The 

mean NDVI shows the average NDVI within each commune and land cover across each timeframe. 

Equation 8 shows how the reference mean NDVI was calculated from the pre-hurricane NDVI data. 
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These mean NDVI values were taken forwards to analyse the change in NDVI to assess the 

immediate impact and long-term recovery.  

 

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑀𝑒𝑎𝑛 𝑁𝐷𝑉𝐼 =
2010 𝑀𝑁+2011 𝑀𝑁+2012 𝑀𝑁+2013 𝑀𝑁+2014 𝑀𝑁+2015 𝑀𝑁

6
                   Equation 8. 

Reference Mean NDVI Calculation Applied to Each Growing season, Whereby MN Stands for Mean NDVI.  

 

 

 

3.5.2. ANALYSING THE CHANGE IN NDVI  

The methods employed to analyse the NDVI data include 1) change detection, 2) threshold maps 

showing change in NDVI, and 3) comparison of NDVI mean, minimum and maximum values from 

immediately pre- to post-hurricane (to infer severity of damage) and long-term, against the 

reference mean NDVI to monitor how long it takes vegetation returned to a ‘near normal’ state.  

 

The first method used to both visually and descriptively analyse the data was the classification of 

NDVI values into classes to produce change detection maps. Thresholding into classes of health has 

been applied in several studies to quantify damage and aid interpretation (Sahebjalal and 

Dashtekian 2013; Gammal, Ali and Samra 2014; Walcker et al. 2019). For different climatic regions, 

the NDVI ranges determining the health of a class differ (Gammal, Ali and Samra 2014; Aquino et al. 

2018; USGS 2018; Earth Observing System 2019; Walcker et al. 2019). Table 4 shows the NDVI 

ranges associated with vegetation health that have been adapted from various studies and applied 

to reclassify the NDVI for this research and calculate the total area for each class (Gammal, Ali and 

Samra 2014; Aquino et al. 2018; USGS 2018; Earth Observing System 2019; Walcker et al. 2019). This 

enabled changes in NDVI to be quantified in terms of both area and mode of change (i.e., an area 

changing from ‘very healthy’ to ‘moderately healthy’). 
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Table 5. NDVI Ranges Associated with Vegetation Health (Earth Observing Systems 2019). 

 Class Range  

H
ea

lt
h

 

Dead/Inanimate Vegetation  -1 – 0 

Unhealthy  0 – 0.33 

Moderately Healthy  0.33 – 0.66 

Very Healthy  >0.66 

 

 

𝐴𝑟𝑒𝑎 (𝐾𝑚2) =
(𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 ×900)

1,000,000
                                  Equation 9. Area (Km2) 

 

Where 900 is the area of a Landsat pixel (m2) and 1,000,000 is the conversion of m2 to km2.  

 

The second approach employed ‘Image Change Workflow’ tools in ENVI to produce threshold maps 

showing change in NDVI from pre- to post-hurricane. This tool assesses the difference between the 

pre-hurricane and post-hurricane image to present the change that has occurred, classifying the 

change in NDVI experienced in each pixel into thresholds (for example, an increase in NDVI of 0.05-

0.1). The thresholds were customised, employing the most effective interval ranges to present this 

set of data; classes for change detection increased by 0.05 until the class ‘>0.3’. This fixed increase 

accounts for both the smaller and larger changes in NDVI, enabling the area and severity of damage 

to be determined, ultimately allowing patterns of impact to be identified. Furthermore, the number 

of pixels within each threshold range can be extracted enabling calculations to be made that 

highlight the area (km2) of land that has experienced a specific change in NDVI from pre- to post- 

hurricane.  This data can be analysed in conjunction with the land cover attribute, enabling the land 

cover that sustained the most severe damage to be determined.  

 

The final approach employed to analyse change in vegetation consisted of extracting the NDVI mean, 

minimum and maximum values across each of the ROIs, similar to Hu and Smith (2018). These values 

were extracted for immediately pre- and post-hurricane, and every 6 months post-hurricane from 

2016 to 2021 within the peak growing seasons (April-July and September-November). Additionally, 

the mean NDVI from both growing seasons (2010-2015) were extracted to calculate the reference 

mean NDVI, as mentioned previously. Analysing both the minimum and maximum alongside the 
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mean gives more detail of the range of change experienced from pre- to post-hurricane. Data was 

extracted in ENVI employing the ‘Quick Stats’ tool and was investigated further in Excel. Comparing 

post-hurricane NDVI to the reference mean NDVI enabled conclusions to be drawn regarding 

whether agricultural vegetation had returned to a ‘near normal’ status, inferring if Hurricane 

Matthew had a long-term impact on agricultural productivity. For example, the productivity of the 

newly planted crops in a new growing season would be dependent on the health of the land. 

Therefore, if the NDVI of agriculture declined post-hurricane, it could indicate long-term land 

degradation associated with Hurricane Matthew, in the form of soil erosion, or soil salinisation, for 

example. Thus, allowing conclusions to be drawn about the land covers/communes that were more 

severely impacted, meeting the 4th objective. 

 

A key element of analysis is determining changes that are a result of the hurricane and not related to 

variability in the data. For example, analysis of pre-hurricane September-November mean NDVI 

(Table 5) show a difference of 0.052, thus any change in NDVI recorded post-hurricane <0.05 cannot 

be linked to the impact of the hurricane with certainty, as it could be considered natural variation. 

Therefore, to avoid addressing changes in NDVI that could be classed as seasonal fluctuations when 

assessing the impact post-hurricane, a rounded significance level of 0.05 was established. Thus, any 

change in mean NDVI recorded post-hurricane <0.05 cannot be linked to the impact of the hurricane 

with certainty, as it could be considered natural variation. 

Table 6. September-November Growing Season Pre-Hurricane Mean NDVIs 

 September-November Mean NDVIs 
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Mean 0.757 0.763 0.745 0.781 0.730 0.762 

 

 

 

3.6. CONCLUSION OF METHODS  

To successfully meet the aim and objectives of this research, pilot studies were carried out to ensure 

that the most effective methods were employed. The first pilot study sought to find the best 
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approach to mask and reduce CC; this was a major issue when collecting data, as it significantly 

reduced the area of the study site that could be assessed. The pilot study concluded that cloud-

masked composite images were the most effective method to create cloud-reduced imagery. The 

second pilot study evaluated methods to assess impact and recovery, and concluded that due to a 

lack of/access to on-the-ground data, images could not be classified to the detail that was desired. 

Consequently, the final methodology was based on the analysis of NDVI to monitor changes in 

vegetation. The methods employed meet the aim and objectives, assessing the immediate impacts 

and monitoring the long-term recovery whilst assessing the vulnerability of land cover types across 

agriculturally dependant communes.  
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CHAPTER 4 

4. RESULTS 

The findings of this research will be addressed in the order of the objectives. Firstly, the pre-

hurricane reference mean NDVI for each growing season will be presented, followed by the results 

of the immediate impacts, finishing with the long-term recovery. The results will go in-depth, 

comparing the communes and land covers (Figure 15) to aid understanding of the impacts and 

recovery of Hurricane Matthew across the Sud and Grand’Anse departments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Map of ROI; Communes and Land Covers within 70km of Hurricane Matthews Track (As Found in Section 3.2). 
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4.1. PRE-HURRICANE VEGETATION  

Pre-hurricane Reference Mean NDVIs were employed to assess when agricultural vegetation had 

returned to near normal, i.e., a mean NDVI above the reference mean NDVI. The reference mean 

NDVI data shows that consistently, across all agricultural land, communes, and land covers, the 

reference mean NDVI was higher in the September-November growing season than in April-July 

growing season (Table 6). Chambellan had the highest average NDVI within both growing seasons 

with Dame Marie reporting values 0.005 below Chambellan. In contrast, Les Cayes had the lowest 

reference mean NDVI, with the September-November reference mean NDVI being 0.659. Regarding 

agricultural land covers, Agroforestry had the highest reference mean NDVI, however, including non-

agricultural land covers both Forest and Savanna with Others was higher than Agroforestry, showing 

that on average ‘natural’ land cover has higher NDVI values.  

Table 7. Reference Mean NDVI for Each Growing Season, Including Land Covers and Communes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Sep - Nov 

Growing Season 

Reference Mean 

NDVI 

April - July Growing 

Season Reference 

Mean NDVI 

Agricultural Land 0.756 0.675 

Non-Agricultural Land 0.784 0.711 

Commune Agricultural Land 

Arniquet 0.701 0.591 

Camp-Perrin 0.749 0.668 

Chambellan 0.842 0.790 

Dame Marie 0.835 0.785 

Les Anglais 0.734 0.620 

Les Cayes 0.659 0.568 

Torbeck 0.707 0.629 

Land Covers 

Agroforestry 0.792 0.724 

Dense Agriculture 0.715 0.630 

Moderately Dense Agriculture 0.737 0.642 

Forest 0.808 0.748 

Savanna with Others 0.800 0.727 
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4.2. IMMEDIATE SHORT-TERM IMPACT 

4.2.1. COMPARISON OF PRE- AND POST-HURRICANE NDVI  

To assess the immediate impact, the NDVI from pre- to post-hurricane was assessed and compared 

(Figure 16). Pre-Hurricane agricultural land, specifically in the north Grand’Anse Department, a 

region dominated by Agroforestry, had a high NDVI with the majority of NDVI values >0.75.  

Whereas pre-hurricane NDVI in the Sud Department was less consistent and, in some regions, NDVI 

values range from 0.2-0.3. However, on close inspection of agricultural land in the Torbeck 

commune, for example, many regions of Dense Agriculture report NDVI values >0.70. In the post-

hurricane agricultural land NDVI, although subtle on a regional scale, generally, there is a decrease in 

NDVI; this is more prominent in the Sud department. In the northwest region of Grand’Anse 

(labelled ‘A’), there is a decrease in NDVI seen within the valleys of the mountains. In certain regions, 

NDVI post-hurricane is <0.2, in contrast to pre-hurricane values in the same location >0.7. Within the 

southeast region, specifically, the communes of Les Cayes and Torbeck (labelled ‘B’) a decrease in 

NDVI is experienced throughout the region, with NDVI in many areas <0.5, particularly around river 

channels. Despite this overall decrease, there are some isolated clusters of Dense Agriculture near 

the coastline where NDVI values remain similar to pre-hurricane and in some cases increase (>0.75). 

Finally, the peninsular in the south (C), pre-hurricane has dense patches of negative NDVI reaching 

values <0.2 which have a higher NDVI post-hurricane.  
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Figure 17. Pre-Hurricane NDVI (Left), Post-Hurricane NDVI (Right). 
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4.2.2. CHANGE DETECTION  

Figure 17 highlights that overall, the NDVI of vegetation decreased, specifically in the Sud 

department, with large regions shifting from ‘very healthy vegetation’ to ‘moderately healthy 

vegetation’. This decrease is related to isolated areas of vegetation post-hurricane being classed as 

‘unhealthy’ parallel to river courses within the Sud department. As seen in Figure 18, ‘very healthy’ 

vegetation decreased by 381.7 km2, and ‘moderately healthy’ and ‘unhealthy vegetation’ increased 

by 406.9 km2 and 37.5 km2 respectively, from pre- to post-hurricane. Therefore, it can be confirmed 

that the area classed as ‘very healthy vegetation’ decreased post-Hurricane Matthew. Changes in 

NDVI from pre- to post-hurricane are largest within river valleys in the Grand’Anse department, and 

along the coastline of the Torbeck. For example, within valleys of the Grand’Anse department, 

decreases of 0.55 were seen (0.84 pre-hurricane to 0.29 post-hurricane). However, the average 

decrease in NDVI was 0.053 from pre- to post-hurricane, therefore, as seen in Figure 17, much of the 

land remains in the same class.  
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Figure 18. Pre-Hurricane (Left) vs Post-Hurricane (Right) NDVI Change Detection. 

Figure 19. Pre vs Post-Hurricane NDVI Health Change Detection Area (km2). 
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4.2.3. NDVI MEAN, MINIMUM, AND MAXIMUM & THRESHOLD 

MAPS SHOWING CHANGE IN NDVI  

Figure 19 highlights areas of damage across the ROI. Negative values of change, which this study is 

more concerned with are represented in tones of red. Whereas areas that have experienced a 

positive change are highlighted in green. Within the thresholds of change maps, all areas that are 

classed as ‘Unclassified’ (areas of white within the imagery with no border around) are regions of 

cloud that were masked, but not filled in the creation of the composite; therefore, they contain no 

value. Figure 19 emphasises the isolated incidents of damage running parallel/surrounding river 

channels, as well as the more widespread damage seen in the Sud department. The most significant 

damage (decrease in NDVI >0.3) was experienced within the communes of Camp-Perrin and 

Torbeck, along the coastline and within river valleys. For example, parallel to Torbeck's coastline, 

NDVI in regions of Dense Agricultural land decreased from values >0.83 to <0.43. Conversely, there 

are some regions that have increased in NDVI; one region where the NDVI increased from pre- to 

post-hurricane is along the south coast in the commune of Tiburon. There is a vertical band of 

Moderately Dense Agriculture, whereby regions of NDVI pre-hurricane were <0.47, however post-

hurricane were >0.81.  

In conjunction with change detection, the mean, minimum, and maximum NDVI statistics of both 

agricultural and non-agricultural land covers and agriculturally dependent communes were 

extracted and compared to further understand the overall impact. Assessing the change in NDVI 

from pre- to post-hurricane and the difference between post-hurricane NDVI and the reference 

mean NDVI across land cover types and communes highlights what regions sustained more damage 

(Table 7), enabling further understanding of the overall impact. 
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Figure 20. Threshold Map Highlighting the Change in NDVI from Pre to Post-Hurricane Matthew. 
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Table 8. A) Land Covers, Change in NDVI Pre to Post-Hurricane Ranked; B) Land Covers, Difference Between Post-Hurricane 
NDVI and Reference Mean NDVI Ranked; C) Communes, Change in NDVI Pre to Post-Hurricane Ranked; D) Communes, 
Difference Between Post-Hurricane 

A  B 

Land Cover Change in NDVI 
from Pre- to Post-
Hurricane 

Rank  

 

Land Cover Difference 
Between Post-
Hurricane NDVI 
and Reference 
mean NDVI 

Rank  

Forest  -0.086 1  Forest  -0.099 1 

Dense Agriculture -0.064 2  Dense Agriculture -0.090 2 

Agroforestry  -0.063 3  Agroforestry  -0.078 3 

Moderately Dense 
Agriculture  -0.034 4  

Moderately Dense 
Agriculture  -0.077 4 

Savanna with Others -0.012 5  Savanna with Others -0.052 5  
     

C  D 

Communes  Change in NDVI 
from Pre- to Post-
Hurricane 

Rank  
 

Communes  Difference 
Between Post-
Hurricane NDVI 
and Reference 
mean NDVI 

Rank  

Chambellan  -0.125 1  Torbeck  -0.140 1 

Torbeck -0.110 2  Camp-Perrin  -0.124 2 

Camp-Perrin -0.106 3  Arniquet -0.121 3 

Les Cayes  -0.088 4  Les Cayes  -0.112 4 

Arniquet -0.062 5  Chambellan  -0.083 5 

Dame Marie -0.062 5  Les Anglais -0.074 6 

Les Anglais -0.040 6  Dame Marie  -0.072 7 

 

 

Table 8 and Figure 19 show that overall, there was a larger negative impact across agricultural land, 

with the mean NDVI decreasing by 0.055 from pre- to post-hurricane, in comparison to only 0.025 

(pre- to post-hurricane) in non-agricultural land. This is also reinforced by the minimum value where 

the minimum NDVI decreased by 0.075 from pre- to post-hurricane in comparison to non-

agricultural land only decreasing by 0.013.  
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Table 9. Pre- vs Post-Hurricane NDVI Statistics Across Agricultural Land vs Non-Agricultural Land. 

  Agricultural Land Non-Agricultural Land 
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Mean 0.731 0.676 -0.055 0.741 0.716 -0.025 

Min -0.915 -0.991 -0.075 -0.973 -0.985 -0.013 

Max 1.000 1.000 0.000 1.000 1.000 0.000 

 

The commune of Arniquet is ranked the 5th most damaged commune based on the difference in 

mean NDVI from pre- to post-hurricane. However, based on the difference between minimum NDVI 

values pre- to post-hurricane, Arniquet is ranked 1st, with the minimum NDVI decreasing by 0.918 

(Table 9). It can be inferred that some regions within this commune have sustained severe damage, 

however, the area experiencing the damage is only a small region, therefore did not have a large 

influence on mean NDVI. Coupled with the threshold map (Figure 20), it is apparent that significant 

damage has occurred within the east and west of the commune, in particular, running parallel to 

River Carpentier. In comparison, the central region sustained little damage, with some areas of 

agricultural land experiencing increases in NDVI. Thus, reducing the influence of severe damage on 

mean NDVI. 

Table 10. Arniquet Pre- vs Post-Hurricane NDVI Statistics. 
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Mean 0.642 0.580 -0.063 -0.121 

Min 0.229 -0.689 -0.918   

Max 0.889 0.903 0.014 
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By assessing the change in mean and minimum NDVI values pre- to post-hurricane alongside the 

difference between mean NDVI post-hurricane and the reference mean NDVI, the two most 

impacted communes are Torbeck and Camp-Perrin. Torbeck’s mean NDVI (Table 10) is the lowest 

below the reference mean NDVI and experiences the largest change in mean NDVI from pre- to post-

hurricane (decreasing by 0.112). Additionally, the commune showed a considerable decrease in 

minimum NDVI (0.361) from pre- to post-hurricane. Figure 22 shows that damage took place on a 

wide scale within the commune, with dense areas of negative change in NDVI >0.3 lying close to the 

coastline. The area of damage experiencing a decrease in NDVI >0.3 appears to reduce moving 

inland with the decrease in NDVI typically being <0.2.  

 

 

Figure 21. Threshold Map of Arniquet Agricultural Land. 
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Table 11. Torbeck Pre vs Post-Hurricane NDVI Statistics. 

Communes Torbeck 

St
at

s 

P
re

-H
u

rr
ic

an
e

  

P
o

st
-

H
u

rr
ic

an
e

  

D
if

fe
re

n
ce

 

B
e

tw
e

e
n

 P
re

 

an
d

 P
o

st
 

D
if

fe
re

n
ce

 

B
e

tw
e

e
n

 P
o

st
-

H
u

rr
ic

an
e

 &
 

R
e

fe
re

n
ce

 

M
e

an
 N

D
V

I 

Mean 0.679 0.568 -0.112 -0.139 
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Max 0.993 0.956 -0.038   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Threshold Map, Torbeck Agricultural Land. 
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Similarly, Camp-Perrin was the second most impacted commune based on the mean and minimum 

change in NDVI from pre- to post-hurricane and the difference between mean NDVI post-hurricane 

and reference mean NDVI (Table 11). Consequently, the mean NDVI is 0.125 below the September-

November growing season reference mean NDVI and the minimum NDVI value decreased by 0.597 

post-hurricane. Figure 23 highlights that the most severe damage is concentrated within the centre 

of this commune running from east to west with certain regions experiencing a decrease in NDVI 

>0.38 from pre- to post-hurricane. In contrast, regions to the north and south experience an increase 

in NDVI >0.2.  

Table 12. Camp-Perrin Pre- vs Post-Hurricane NDVI Statistics. 
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Figure 22. Threshold Map, Camp-Perrin Agricultural Land. 
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Les Cayes was the commune that experienced the smallest difference in the minimum NDVI from 

pre- to post-hurricane, decreasing by 0.053 (Table 12). Despite this, the mean NDVI decreased by 

0.088 post-hurricane, 0.112 below the reference mean NDVI for the September to November 

growing season. Figure 24 shows that dense areas of damage (decrease in NDVI >0.3) are 

concentrated around/to the north of the main urban area circled in the figure. Additionally, the large 

negative changes in NDVI within this commune follow the patterns of valleys and channels.  

Table 13. Les Cayes Pre vs Post-Hurricane NDVI Statistics. 
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Figure 23. Threshold Map, Les Cayes Agricultural Land. 
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Finally, Dame Marie and Chambellan emphasise the severe damage that can be seen running parallel 

to the coast and around river channels. Dame Marie experienced a 0.400 decrease in the minimum 

NDVI from pre- post-hurricane (Table 13), highlighting that some regions sustained significant 

damage. Figure 25 shows that change in NDVI >-0.3 was common, along the coastline and to the 

northeast/southeast of the town of Dame Marie, circled in the figure. In contrast, the more severe 

damage in Chambellan surrounded valleys (Figure 26). Although areas of damage within this 

commune are large, with some areas of damage decreasing from >0.87 pre-hurricane to <0.36, the 

mean NDVI was only 0.083 below the reference mean NDVI (Table 14). This could be because there 

are increases in NDVI post-hurricane in the north of the region.  

Table 14. Dame Marie Pre vs Post-Hurricane NDVI Statistics. 
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Table 15. Chambellan Pre vs Post-Hurricane NDVI Statistics. 

Communes Chambellan 
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Figure 24. Threshold Map, Dame Marie Agricultural Land. 

Figure 25. Threshold Map, Chambellan Agricultural Land. 
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In regard to land cover, the results of the difference between the mean NDVI post-hurricane 

compared to the reference mean NDVI showed that Dense Agriculture was the most severely 

damaged agricultural land cover (Table 15). Dense Agriculture’s mean NDVI was 0.089 below the 

reference mean NDVI with most damage being in the Torbeck commune (Figure 27). In contrast, 

Agroforestry’s mean NDVI post-hurricane was 0.078 below the average (Table 16). Despite this, 

Agroforestry had a larger decrease in minimum NDVI (decreasing by 0.369) which is considerably 

more than what is seen across the other two agricultural land covers. This large decrease was 

concentrated in certain regions circled in Figure 28; A) Dame Marie/Chambellan, B) Camp-Perrin and 

C) Saint Jean De Sud. Within all these regions, decreases in NDVI >0.3 are experienced, for example, 

regions along the coastline of Saint Jean De Sud decreases in NDVI from 0.90 to 0.45. Similar values 

are recorded in the valleys of ‘A’ and within the region labelled ‘B’. 

Table 16. Dense Agriculture Pre vs Post-Hurricane NDVI Statistics. 
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Table 17. Agroforestry Pre vs Post-Hurricane NDVI Statistics. 
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The NDVI statistics for non-agricultural land cover, Forest, and Savanna with Others, allowed for 

further comparison of the severity of damage. Out of all land covers, Forest was the most damaged 

with the minimum NDVI decreasing by 0.733 from pre- to post-hurricane, consequently, the mean 

NDVI decreased by 0.086 (Table 17). Forest lies predominantly within the centre of the ROI, with 

dense regions of damage within the east (Figure 29).  

Figure 26. Threshold Map, Dense Agriculture. 

Figure 27. Threshold Map, Agroforestry. 
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Table 18. Forest Pre vs Post-Hurricane NDVI Statistics. 
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Across the ROIs assessed, Les Anglais (0.040), Moderately Dense Agriculture (0.034) and Savanna 

with the Presence of Others (0.012) experienced a change in mean NDVI from pre- to post-hurricane 

<0.05. Therefore, based on the significance level established in section 3.5.2., the changes 

experienced (Figures 30-32 and Tables 18-20) are not likely to be the result of the hurricane. 

 

 

Figure 28. Threshold Map, Forest. 
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Table 19. Les Anglais Pre vs Post-Hurricane NDVI Statistics. 
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Figure 29. Threshold Map, Les Anglais Agricultural Land. 
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Table 20. Moderately Dense Agriculture Pre vs Post-Hurricane NDVI Statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Land Covers Moderately Dense Agriculture 
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Figure 30. Threshold Map, Moderately Dense Agriculture. 
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Table 21. Savanna with Presence of Others Pre vs Post-Hurricane NDVI Statistics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4. THRESHOLD MAP DATA EXTRACTION 

The area (km2) of each change in NDVI threshold for agricultural land (presented in Figure 19) is 

presented in Table 22. The results show that overall, the area of agricultural land that sustained a 

Land Covers Savanna with Others  

St
at

s 

P
re

-H
u

rr
ic

an
e

  

P
o

st
-H

u
rr

ic
an

e
  

D
if

fe
re

n
ce

 

B
e

tw
e

e
n

 P
re

 

an
d

 P
o

st
 

D
if

fe
re

n
ce

 

B
e

tw
e

e
n

 P
o

st
-

H
u

rr
ic

an
e

 &
 

R
e

fe
re

n
ce

 

M
e

an
 N

D
V

I 

Mean 0.759 0.747 -0.012 -0.052 

Min -0.650 -0.880 -0.231   

Max 1.000 1.000 0.000   

Figure 31. Threshold Map, Savanna with Presence of Others. 
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negative impact on NDVI was larger than the areas that increased in NDVI post-hurricane. 

Considering the significance level established in section 3.5.1., a total area of 1,252.6 km2 

experienced a decrease in NDVI that can be associated with the impact of the hurricane. The area of 

land that experienced an increase in NDVI was 911.2 km2. The trend in Table 20 shows that as the 

change in NDVI increased (positive or negative), the area of land experiencing the change decreased, 

with the exception of the last two class ranges, (+ and -) 0.25-0.3 and >0.3. Therefore, the area of 

agricultural land experiencing a significant impact is smaller than the area experiencing more subtle 

damage. Employing the data associated with Table 21 and the land cover class files, the agricultural 

land cover that has the largest area of severe negative change (>0.3 change in NDVI) was identified. 

Consequently, Figure 33 presents that Agroforestry was the agricultural land cover that sustained a 

more severe change in vegetation with 43 km2 decreasing in NDVI by >-0.3. Dense Agriculture 

followed, with Moderately Dense Agriculture sustaining the smallest area of land experiencing a 

change in NDVI >-0.3. 

Table 22. Area of Agricultural Land Change in NDVI Classes. 

Agricultural Land Thresholds of Change 
in NDVI 

Threshold Area (km2) 

Change >0.3 12 

Change 0.25-0.3 11.2 

Change 0.2-0.25 24.8 

Change 0.15-0.2 55.2 

Change 0.1-0.15 116.7 

Change 0.05-0.1 239.9 

Change 0.0-0.05 451.4 

No Data 0 

Change (0.0) -(-0.05) 537.3 

Change (-0.05) -(-0.1) 436.6 

Change (-0.1) -(-0.15) 305.9 

Change (-0.15) -(-0.2) 201.4 

Change (-0.2) -(-0.25) 129.9 

Change (-0.25) -(-0.3) 80.2 

Change > (-0.3) 98.6 
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4.3. LONG-TERM IMPACT RESULTS 

Table 22 accompanied by Figure 34 show that by 6 months post-hurricane (April to July 2017 

growing season), the mean NDVI was 0.032 more than what was recorded immediately post-

hurricane and was 0.033 and higher than the reference mean NDVI for the April to July growing 

season. Additionally, Figure 34 shows that the mean NDVI 12 months post-hurricane exceeded the 

Sep-Nov reference mean NDVI highlighting that there were no long-term impacts on the foundations 

of the land affecting the agricultural vegetation from reaching ‘near normal’ status.  

 

Figure 32. Area Experiencing >-0.3 Change in NDVI Across Agricultural Land Covers. 
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Table 23. Long-Term Recovery NDVI Mean, Minimum, Maximum, and Growing Season NDVI Averages. 
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Figure 33. April-July (Left) and September-November (Right) Growing Season Long-Term Recovery Compared with the Growing Season Reference Mean NDVI. 
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Threshold maps comparing immediately post-hurricane NDVI with 6 months post-hurricane NDVI 

shows that NDVI did not increased in all regions by 6 months post-hurricane. Table 23 shows that 

1646 km2 of land increased in NDVI and 1002.9 km2 decreased in NDVI from immediately post-

hurricane to 6 months post-hurricane. Although the ‘decreased in NDVI’ area is considered large, 

Figure 35 demonstrates that the areas that have experienced a decrease in NDVI are <0.1. In 

contrast, Figure 36 highlights that the decrease in NDVI from immediately post-hurricane to 12 

months post-hurricane is significantly lower, with a total area of only 409 km2 decreasing in NDVI 

(Table 24), in contrast to 1002.9 km2 6 months post-hurricane. 

Table 24. Area of Agricultural Land Increase/Decreasing in NDVI from Immediately Post-Hurricane to 6 Months Post-
Hurricane. 

Class Area (km2) 

Increased NDVI  1646.0 

Decreased NDVI 1002.9 
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Figure 34. Threshold Map, Agricultural Land Immediately Post-Hurricane to 6 Months Post-Hurricane. 
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Figure 35. Threshold Map, Agricultural Land Immediately Post-Hurricane to 12 Months Post-Hurricane. 



98 
 

 

Table 25. Area of Agricultural Land Increase/Decreasing in NDVI from Immediately Post-Hurricane to 12 Months Post-
Hurricane. 

Class Area (km2) 

Increased NDVI 2323.8 

Decreased NDVI 409.6 

 

Tables 25 and 26 present the change in the mean, minimum, and maximum NDVI for each commune 

and land cover from post-hurricane to 6 months post-hurricane, as well as the difference between 

the 6 months post-hurricane (April-July 2017) mean NDVI value and the reference mean NDVI April-

July growing season values found in Table 6. Table 25 shows that for all commune’s 6-month post-

hurricane mean NDVI values are >0.024 higher than the April-July growing season average, once 

again suggesting that a full recovery was made. Additionally, apart from Les Anglais, all communes 

had 6-months post-hurricane mean NDVI values >0.054 higher than what was recorded immediately 

post-hurricane. Similarly, in regard to land cover (Table 26), the mean NDVI was >0.029 higher 6 

months post-hurricane (April-July 2017) than the April to July growing season NDVI average for 

agricultural land.  
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Table 26. Communes Immediately Post-Hurricane vs 6 Months Post-Hurricane NDVI Statistics. 
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Table 27. Land Covers Immediately Post-Hurricane vs 6 Months Post-Hurricane NDVI Statistics. 
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Mean 0.709 0.755 0.045 0.006 0.747 0.757 0.010 0.030       
 

Min -0.619 0.003 0.622   -0.880 -0.469 0.412           

Max 1.000 0.986 -0.014   1.000 1.000 0.000           
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Finally, although it has been established that a full recovery was made by 6 months post-Hurricane 

Matthew, the long-term NDVI outputs drew attention to other significant events that impacted 

agricultural vegetation. Firstly, as mentioned in Section 4.1, across the agricultural land cover, the 

mean NDVI is consistently lower in the April-July growing season in comparison to the September to 

November growing season. This is clear, visually, in the April-July (6, 18-, 30-, 42-, and 54-months 

post-hurricane) NDVI maps (Figure 37). Additionally, the NDVI 18 months post-hurricane (April-July 

2018) is considerably lower than what is seen across other growing seasons. The mean NDVI was 

0.603, which is 0.072 below the reference mean NDVI (Table 22 and Figure 37). Additionally, the 

mean NDVI value of 0.603 was lower than what was recorded immediately, post-Hurricane 

Matthew. In the April-July growing season NDVI values in the Torbeck region for example typically 

are >0.7, however, 18 months post-hurricane values generally are <0.6, this decreases further in 

communes such as Les Anglais with NDVI values <0.4 in some regions. Thus, these results drew 

attention to other significant events that may be impacting food security.  
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Figure 36. Long-Term Agricultural Land NDVI. 
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4.4. SUMMARY OF THE RESULTS 

Firstly, the reference mean NDVI results highlighted the seasonal fluctuations in NDVI between the 

April-July and the September-November growing season. NDVI within the September-November 

growing season was consistently higher than the April-July growing season.  

To conclude, Hurricane Matthew had an immediate impact on agricultural vegetation, specifically in 

the Sud department. Patterns of severe damage were concentrated along the coastline and running 

parallel to valleys. The two most impacted communes were Torbeck and Camp-Perrin, conversely, 

Les Anglais was the least impacted. In regard to agricultural land cover, Dense Agriculture and 

Agroforestry sustained a larger area experiencing a decrease in NDVI >0.3 than Moderately Dense 

Agriculture. Overall, across agricultural land, the area that decreased in NDVI from pre- to 

immediately post-hurricane amounted to 1789.9 km2, compared to 911.2 km2 that increased in 

NDVI. Therefore, Hurricane Matthew had a negative immediate impact on the agricultural land cover 

of the Sud and Grand’Anse Departments of Haiti.   

In the long-term, agricultural vegetation returned to near normal by 6 months post-hurricane, with 

the mean NDVI values being above the reference mean NDVI by 6 months post-hurricane. This 

finding was consistent across all communes and land covers. Despite the threshold maps highlighting 

that some regions decreased in NDVI from immediately post-hurricane to 6 months post-hurricane, 

these decreases were small and can be associated with the seasonal fluctuations between the April-

July and September to November growing seasons. Finally, the long-term NDVI highlighted a 

significant decrease in NDVI 18 months post-hurricane (April-July 2018), suggesting that there are 

other climatic events taking place that are significantly impacting the status of agricultural 

vegetation.  
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CHAPTER 5  

5. DISCUSSION 

This chapter will first interpret and describe the short-term impacts, acknowledging the potential 

reasons for the changes in NDVI. This will be followed by the long-term recovery and discussion of 

what the short/long-term impact results mean for building resilience in Haiti’s agricultural sector. 

Within both sections, the land covers and communes will be discussed. Finally, there will be a 

thorough evaluation of this research, identifying the successes of the study as well as limitations, 

with suggestions for future research. 

 

Evidence has shown that the severity of hurricane damage on agriculture can contribute to food 

insecurity. Within Haiti, this has been exacerbated by a lack of research on the country’s 

geographical vulnerability (Cohen and Singh 2014).  That being said, little has been acknowledged 

regarding the socio-economic and geo-political factors (including access to/availability of secondary 

data) that have influenced this further. Throughout the discussion, consideration will therefore be 

made to Haiti’s complex history and associated socio-economic and political issues (Edmonds 2013; 

Daut 2021; The World Bank 2022). 

 

 

 

5.1. HAITI’S SOCIO-ECONOMIC & POLITICAL HISTORY, AND CURRENT 

STATUS 

Haiti’s socio-economic position continues to be hindered by uncertainty, environmental fragility, 

political instability, and associated violence (The World Bank 2022). Haiti is the poorest nation in the 

western hemisphere, with a GDP per capita of US$1,815 in 2021 (World Bank 2021), with 

approximately 1.2 million suffering from severe hunger (World Food Program 2022).  Whilst Haiti’s 

food insecurity has largely been associated with the reoccurring environmental shocks that it has 

been subjected to, including Hurricane Matthew (FEWS NET 2015 The World Bank 2017; Olsson et 

al. 2019; Council on Foreign Relations 2021); barriers to social and economic development have 

been heavily shaped by years of political instability.  
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Haiti’s path to development can be traced back to 1804 when Haiti gained independence from 

France. Haiti was the first country to be founded by formerly enslaved people and in order to stem 

their growth further and prevent potential threats to the current state of norm regarding colonialism 

and slavery, a sizeable debt was enforced on the country amounting to what would be $21 billion 

dollars today (Edmonds 2013; Daut 2021). Haiti, in effect, were being made to pay for their freedom 

twice, first through conflict and loss of life, and then financially, only paying for the debt in 1947. 

 

A period of structural adjustment occurred during this period, with infrastructure starved, 

preventing necessary investment in education, health and transportation, key to a country’s socio-

economic development. Moreover, Haiti’s history laid the foundation for a lack of trust amongst the 

government and locals towards other countries and is predominantly responsible for the 

underfunding of the country's education and healthcare in the 20th century (Daut 2021). The 

repercussions of Haiti’s trouble history have been reflected most in their approach to governance. 

Haiti is currently fighting one of its worst outbreaks of violence since 1986 when the Anti-Duvalier 

protest movement took place (Human Rights Watch 2020). Gender inequality and gender-based 

violence have also arguably been exacerbated by created gender hierarchies adopted from 

colonialism (Mannell 2022). Indeed, Gage (2005) found that out of a sample of 2000 women, 29% 

experiences some form of intimate partner violence in the past 12 months. It is therefore important 

to acknowledge the wider historical context of a place when truly understanding the complexity of 

the impacts of sever hurricane damage. 

 

Haiti’s past, which has paved its current status, is capping future generations’ potential and 

preventing adequate preparedness and resilience-building mechanism against threats such as 

hurricanes from being put in place (World Bank 2022). It is no surprise, therefore, that Haiti does not 

have the capacity to prioritise future threats over current ones that are unfolding today. Without 

access to education, funding, and resources, the preparation and mitigation to build resilience 

against threats such as hurricanes, which aid food insecurity will be challenging to achieve. This, in 

retrospect, elevates the importance of this research as Haiti itself does not have the funding or 

resources to conduct similar research. Indeed, Cohen and Singh (2014) state that due to these 

reasons, there has been a lack of research assessing the vulnerability of regions to hurricanes and 

their impacts on Haiti. Consequently, the findings of this research will be valuable, informing 

stakeholders about specific vulnerabilities, which will be discussed further in this chapter. 

Consequently, considering the significance of the socioeconomic/political history and current status 

of Haiti, this should not be overlooked when interpreting and discussing the findings of this research.  
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5.2. IMMEDIATE IMPACT  

Chapter 4 provides evidence that Hurricane Matthew had a severe negative immediate impact on 

the agricultural vegetation of the Sud and Grand’Anse Department, Haiti. The discussion of the 

immediate impacts is separated into sub-categories to highlight and compare the change in NDVI 

values across the communes and land covers.    

 

 

5.2.1. IMMEDIATE IMPACT- LAND COVER SUBSETS  

The immediate impact of Hurricane Matthew demonstrated that, overall, agricultural land cover 

sustained more substantial damage than non-agricultural land covers (including Forest and Savanna 

with Others). Despite this, out of all land covers, Forest was the most severely impacted, 

experiencing the largest change in the mean and minimum NDVI from pre- to post-hurricane (Table 

17). Although the most severely impacted, the area of Forest within the study site was very small 

(70.8 km2). In comparison, the second non-agricultural land cover, Savanna with the Presence of 

Others was the least impacted land cover and covered a larger area of 793.5 km2. Consequently, this 

lower area of impacted land cover would have neutralised the large changes in NDVI present in 

Forest, subsequently decreasing the change in mean NDVI when assessing non-agricultural land as a 

whole. This is why agricultural land cover appeared more damaged as a whole despite Forest being 

the most impacted land cover overall.  

 

In the order of the most impacted land covers, it appears there is a relationship between the 

intensity of damage and the surface area/height of vegetation (n.b. this assumption does not 

consider other influential variables such as distance from the hurricane). This relationship was 

acknowledged in Section 2.5, stating that taller trees sustained more damage subsequent to 

Hurricane Katrina (Wang et al. 2010). It is known that a larger surface area captures more energy 

from the wind, consequently, trees of a smaller height/smaller surface area require higher wind 

speeds to cause damage/breakage (Walker 1991; James 2010). Similarly, taller trees are more likely 

than smaller species to experience defoliation (Walker 1991).  The results presented in Section 4.1 
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supports this. Figure 33 highlights that Agroforestry (assumed to have the largest surface area out of 

the agricultural land covers) sustained the largest area that experienced a decrease in NDVI >0.3; 

meaning that Agroforestry was the most severely impacted land cover. Additionally, considering 

non-agricultural land covers, as mentioned above, Forest suffered the most damage (Table 17) and 

can be assumed to have an even larger surface area than Agroforestry. This is assumed due to the 

species present in Haiti’s forests, such as Cordia alliodora and Catalpa longissimi with dense crown 

canopies and heights of up to 40 and 29 meters, respectively (Timyan 1996). Conversely, Savanna 

with the Presence of Others would be assumed to have species with the smallest surface area. 

Savanna is defined as a mixed woodland-grassland ecosystem with an open canopy, primarily 

including scrub, herbaceous grasses, and the occasional tree (The American Heritage Science 

Dictionary 2011). Thus, savanna is predominantly covered by species of a small surface area/height, 

consequently experiencing the smallest mean change in NDVI from pre- to post-hurricane, as seen in 

Table 20. Findings such as these could justify why Forest was the most impacted landcover followed 

by Agroforestry and Dense Agriculture, as they have taller and more dense species capturing more 

energy from the wind, thus experiencing more intense damage.   

 

Upon closer inspection of the mean and minimum NDVI, Agroforestry only experienced a decrease 

in the minimum NDVI of 0.369, compared to 0.733 in Forest, as well as a smaller change in mean 

NDVI. This could be due to the combination of trees/shrubs planted amongst crops in the 

Agroforestry practice. As mentioned in section 2.3, the diversity agroforestry provides can increase 

resilience against extreme storm events such as hurricanes (Chen 2009; Lin 2011; Felix and Holt-

Gimenez 2017; Sridhar and Chaturvedi 2017) and has been said to reduce damage in comparison to 

conventional practices (Holt-Giménez 2001; Altieri, Funes-Monzote, and Petersen 2012). Therefore, 

it is thought that the larger species protected the smaller ground level species, thus the minimum 

NDVI post-hurricane had a smaller decrease due to the protected, less damaged ground species. 

Subsequently, Agroforestry experienced a reduced change in minimum NDVI from pre- to post-

hurricane compared to Forests. This supports that Agroforestry practises are more resilient and 

protect understory crops from more severe damage (Holt-Giménez 2001; Lin 2011; Altieri et al. 

2015; Altieri, Funes-Monzote, and Petersen 2012; Sridhar and Chaturvedi 2017). Therefore, although 

regarding the change in mean NDVI Agroforestry sustained a negative impact and decrease by -0.063 

from pre- to post-hurricane, it is more than likely that this practice prevented further damage to 

understory communities and therefore is a more sustainable agricultural practice. However, it must 

be acknowledged that if the trees within the agroforestry system are cash crops trees, fruit loss will 
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be one of the main impacts of a hurricane (Daley et al. 2020) but will still protect understory 

communities.  

  

Being able to identify which land covers are more severely affected by hurricanes is beneficial for 

building resilience through preparedness, mitigation, and implementation of more sustainable 

agricultural practices, as it highlights what land covers are more vulnerable to the impacts of 

hurricanes (USDA 2022). This can also be useful on a regional scale for developing frameworks and 

informing policy changes. Amongst research studying the effects of hurricanes, Forests are the 

predominant land cover assessed as the large negative effects on forests are known and recorded 

(Philpott et al. 2008). Although forests provide many ecosystem services and are beneficial to 

communities in many ways (Chazdon 2008), agricultural production plays a large direct role in food 

security. Yet, with the exception of Philpott et al. (2008), little research is completed on the impact 

of hurricanes on different agriculture types/land uses. Knowledge of the effect of hurricanes on 

different agricultural species would be transformative to building resilience against hurricanes. For 

example, knowing what species are flood tolerant or more flexible and thus can withstand strong 

winds without breakage could reduce the severity of damage to the agricultural sector post-

hurricane, thus alleviating the impact on food insecurity.  Although the land cover classes assessed 

within this research are broad and do not identify specific crop types due to the lack of on-the-

ground data (elaborated on in Section 5.6), the findings presented in this study begin to give an 

insight into the effects of a hurricane on different agricultural land covers. The results highlighted 

that Agroforestry and Dense Agriculture sustained more damage, thus are more vulnerable requiring 

mitigation to reduce the impacts in the future. However, more research needs to be conducted 

regarding Agroforestry. Although it was recorded that from pre- to post-hurricane there was a 

decrease in NDVI in the agroforestry land cover, compared to other land covers assessed, it 

experienced a smaller decrease in the minimum NDVI, suggesting that the diversity of the practise 

provided protection, reducing damage. To gain clarity it needs to be understood if most damage 

takes place to the upper canopy of the larger species, thus protecting the understory community of 

crops, reducing a loss of harvest.  

 

  

5.2.2. IMMEDIATE IMPACT- COMMUNE SUBSETS  

In addition to the individual land covers assessed, an in-depth analysis of specific communes took 

place. Changes in mean NDVI from pre- to post-hurricane, in particular, reflect that certain 

communes’ such as Torbeck, and Camp-Perrin, suffered the largest negative impact on agricultural 
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vegetation. Conversely, Les Anglais sustained the smallest change in NDVI. Torbeck, which lies in the 

east of the Sud department and is predominantly classified as Dense Agriculture, experienced the 

largest change in NDVI from pre- to post-hurricane. What is more, regarding the difference between 

the mean NDVI post-Hurricane and the reference mean NDVI, Dense Agriculture was the most 

impacted agricultural land cover. This land cover represented 122.7 km2 of 156.9 km2 of the 

agricultural land within the Torbeck commune. Consequently, the predominant land cover of Dense 

Agriculture could be contributing to the significant damage experienced within Torbeck. 

Furthermore, when observing the change in NDVI in Torbeck (Figure 22), to the eye, the damage 

looks more intense closer to the coastline. Dense regions of decreases in NDVI >0.3 lie close to the 

coast, moving inland these decreases typically reducing to <0.2. This could be due to the low 

elevation within this region in conjunction with a storm surge, causing severe flooding (Mersereau 

2015; Oppenheimer et al. N.D; World Vision 2018). Elevation was proven to be a crucial variable in 

forecasting the impact of hurricanes after the coastal damage that was inflicted by Hurricane Sandy 

in 2012 (USGS N.D). Furthermore, generally, a storm surge will be higher on a concaved coastline 

(curved inwards) (NOAA N.D), similar to the coast of the Torbeck and Les Cayes, thus causing more 

intense damage parallel to the coast. To understand how coastal flooding may have impacted the 

change in NDVI, further analysis considered the elevation and shape of the coastline, for the region 

of Torbeck. This analysis looked into the distance from the coast in 2 km intervals and extracted the 

mean elevation and mean change in NDVI for every interval. It was concluded that moving away 

from the coastline up to 14 km inland the damage decreased. Interestingly, from 14 km inland, the 

mean change in NDVI increased with the damage becoming more severe. This is despite the mean 

elevation continuing to rise up to 24 km inland. It can be assumed that the pattern seen within the 

first 14 km inland is associated with the storm surge (World Vision 2018) and that the rise in 

elevation prevented the surge from moving further inland. Consequently, coastal flooding 

contributed to the severity of damage within the Torbeck commune.  

 

Considering that coastal flooding is a major threat associated with hurricanes (Rodgers, Murrah, and 

Cooke 2009; Goto et al. 2015), as seen in Torbeck, it would be expected that the coastal commune 

of Dame Marie would sustain similar damage along the coast, however, this was not the case. In this 

case, Hurricane Matthew's approach ran parallel to the coastline (Figure 15), which decreased the 

severity of the hazard (NOAA N.D). Thus, this region did not experience as intense damage in 

comparison to regions such as Torbeck that sit perpendicular to the track. Understanding the 

approach of hurricanes, in conjunction with the shape of the coastline and the elevation can be 

useful for preparedness and mitigation. This can enable mitigation efforts to be focused in the 
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correct places. For example, mitigation directly targeting soil salinisation can include gypsum 

application, switching to a more salt-tolerant rotation, or using grass leys to improve soil structure 

and salt-flushing potential (Gould et al. 2020). Additionally, hard and green engineering techniques 

can be employed to mitigate the direct threat of the storm surge. Hard engineering structures such 

as levees and storm surge barriers are the most common, however soft engineering approaches are 

becoming more common such as wetland creation and mangrove restoration (Horn 2015). Indeed, 

organisations such as Just One Tree have partnered with the Eden Reforestation Project to plant 

mangroves to build a natural defence against storm surges (Just One Tree 2022). During storms, as 

waves enter the mangrove forest the root branches reduce the wave’s energy, this, in turn, reduced 

the distance a wave can travel inland (Just One Tree 2022). Preventing the storm surge from 

reaching further inland will not only reduce the long-term threat of salinisation but also mitigate 

against the immediate destruction of crops associated with coastal flooding.  

 

 

Despite a widescale decrease in NDVI, there were anomalies of small, isolated patches of land near 

the coastline that increased in NDVI in Torbeck (Figure 38). This suggests that vegetation within 

these regions coped well with flooding conditions, thus experiencing an increase in NDVI post-

hurricane. One staple crop that Haiti has cultivated for many years is rice (RTAC 2021). This crop is 

well known to be able to flourish in flooded soils whereas other crops would die (Eckardt 2017). This 

appears to be the case post-Hurricane Matthew, where the health of rice paddies within the Les 

Cayes and Torbeck region improved coinciding with flooding. Figure 38 demonstrates the 

coincidence of rice paddies with the areas that increased in NDVI. Therefore, rice is a resilient crop 

to the short-term hurricane impacts. Thus, for future mitigation against hurricanes, particularly in 

regions susceptible to flooding, rice would be a good alternative to plant. This would decrease the 

immediate impact of a hurricane on the loss of harvest, potentially increasing food security on a 

local scale. This is an example of the benefit of identifying crops that are more resilient to the 

impacts of hurricanes (as mentioned in Section 5.2.1), helping build toward more resilient 

agricultural practices.  
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Camp-Perrin was also severely impacted following Hurricane Matthew. However, due to the 

commune’s location inland the damage was not related to the storm surge. Further investigation 

suggests that the severity of damage is associated with land cover types and rainfall patterns. The 

middle of the commune is dominated by Agroforestry, with the north and south mainly Moderately 

Dense Agriculture.  The changes in NDVI in comparison to the land cover map (Figure 39) 

demonstrate that there is a relationship between land cover and the severity of the damage. Most 

severe damage can be seen in the region dominated by Agroforestry, and the less severe damage in 

Figure 37. Top: Les Cayes/Torbeck Threshold Map, Bottom: Land Use Map (SERTIT 2018). 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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the regions of Moderately Dense Agriculture. Figure 33 further supports this statement, highlighting 

that Agroforestry sustained the largest area of damage decreasing in NDVI by >0.3, whereas 

Moderately Dense Agriculture sustained the smallest area of damage. As we know from Section 

5.2.1, the more severe damage in Agroforestry can be associated with the larger surface area/taller 

species present within this land cover, meaning they capture more energy from the wind and thus 

experience more severe damage (Walker 1991; James 2010). Subsequently, Camp-Perrin is a prime 

example of the land cover type determining the severity of the damage experienced within a 

commune and further supports the results highlighting that Agroforestry is a more severely 

impacted commune.  Finally, in Hurricane Matthews's case, the majority of the rainfall fell to the 

east of Hurricanes Matthews's track, due to the storm's counterclockwise circulation engaging with 

the island topography (NASA 2016). Camp-Perrins positioning to the east of the track could have 

contributed to the increased severity of damage linked to flooding within this commune, a factor 

that could have also contributed to the damage in Torbeck.  
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Figure 38. Camp-Perrin Threshold Map Compared to a Map Highlighting the Agricultural Land Covers. 
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Evidence showed that Les Anglais, on the other hand, experienced a change in mean NDVI below the 

significance level of 0.05, therefore it cannot be said with certainty that the change was subsequent 

of the impact of Hurricane Matthew, as it falls within the range of seasonal variation. Despite this, 

individual regions of a negative change in NDVI >0.2 within Les Anglais reflect that the threat 

associated with Hurricane Matthew that inflicted the greatest change in NDVI was flooding. Previous 

events of flooding associated with hurricanes have been recorded to cause destruction to agriculture 

(Gomez 2005; Hoque et al. 2016; Marzen et al. 2017; World Vision 2018), and this was one of the 

consequences of the heavy precipitation associated with Hurricane Matthew (The Guardian 2016; 

The World Bank 2017; World Vision 2018). Figure 40 highlights that the most severe damage runs 

parallel to the Les Anglais River and along the coast. It should also be noted that along the coast 

there is an area of Agroforestry that aligns with the largest changes in NDVI, thus the land cover may 

be contributing to the severity of the damage. Regardless of land cover type, the pattern of 

decreases in NDVI >0.2 in Les Anglais reinforces the patterns that severe damage is common along 

the coast and runs parallel to river channels. This indicates that most of the damage within this 

region is associated with flooding, be that coastal or from heavy precipitation.  

 

Analogous patterns can also be seen across other communes. Dame Marie, for example, 

experienced some of the most severe damage around the main town, aligning with the mouth of the 

Dame Marie River. Furthermore, in Chambellan, the highest negative change in NDVI (>0.25) follows 

the River Bras Gauche that progresses to the River Grand’Anse. Figure 40 highlights isolated areas of 

severe damage caused by the flooding of river channels, consequently flooding and damaging 

agricultural vegetation in the surrounding area. It can be assumed that the heavy precipitation 

associated with Hurricane Matthew caused rivers to swell, consequently flooding surrounding 

agricultural land (The Guardian 2016; The World Bank 2017; World Vision 2018). This is a prominent 

threat to the health of vegetation, confirmed by the fact there were large decreases in the NDVI 

from pre- to post-hurricane within these regions. This supports literature such as Gomez (2005), 

Hoque et al. (2016), Marzen et al. (2017), and Li et al. 2021 that highlights the severity of damage 

flooding can inflict. In particular, Li et al. (2021), states that agricultural land is the most affected by 

flooding associated with Typhoons in Taiwan. Consequently, croplands were selected as adaptation 

targets undergoing multiple engineering and non-engineering strategies to reduce the potential 

impacts (Table 27). Results found that even when considering the costs, all adaptation options 

yielded higher benefits than the ‘do nothing’ option. Thus, regions vulnerable to flooding in Haiti 

need Disaster Risk Management (DRM) frameworks to be implemented to mitigate against the 

threat or adapt practices to ensure resilient recovery (OECD 2021). The research method developed 
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in this study and subsequent results can identify areas that are vulnerable to flooding, enabling 

mitigation efforts to be focused in the correct regions. Considering Haiti’s socioeconomic status and 

environment, some mitigation options presented in Table 27 would not be feasible. For example, 

‘Adjustment of Agricultural Production Periods’ may be hard to implement as many Haitians rely on 

natural irrigation for agricultural production (Abraham 2015), thus explaining why the growing 

seasons coincide with the rainy seasons. However, the outputs of Li et al. (2021) research in 

conjunction with the result of this study highlights the importance of mitigating against flooding as it 

can reduce yield loss, consequently reducing the impacts of hurricanes on food insecurity. These 

results provide key information that can be used to inform where mitigation needs to be 

implemented; this method can also be employed within other regions to identify areas of 

vulnerability. 
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Figure 39. Chambellan, Dame Marie and Les Anglais Communes with a River Shapefile Overlaid Showing the Correlation Between River Courses and Damage Post-Hurricane. 
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Table 28. Adaptation Methods for Reducing Flooding Impacts on Agricultural Farmland (Li et al. 2021). 

Method Concept Benefits 

Engineering Methods 

Improving Drainage systems Improve drainage and sewer 

systems. 

Increase the infiltration volume of 

the paving and build a reservoir to 

reduce the chance of damage to 

agricultural products. 

Heightening Farmland Add 10-60 cm more to the height 

of the farmland ridge. 

Reduce the flood risk area. 

Adding Food Control and 

Strengthening Structural 

Capacity 

Add pumping stations in urban 

parks or wasteland.  

Reduce flooding in key areas.  

Non-Engineering Methods 

Adjustment of Agricultural 

Production Periods or 

Changing Crops  

Avoid flood seasons or change 

cropping patterns in flood-prone 

areas. 

Reduce the probability of losing 

agricultural output due to 

flooding. 

Fallowing Encourage fallowing in areas 

prone to flooding and provide 

subsidies.  

Avoid losing agricultural output 

due to flooding.  

Create Protected Areas Land acquisition program to 

delimit protected lands. 

Restore flood-prone area to its 

ecological condition, therefore 

reducing agricultural losses due to 

flooding. 

 

Despite the risk that flooding associated with hurricanes has on agricultural land, there are many 

benefits to utilising floodplains for agricultural production, therefore many communities utilise the 

land surrounding river channels. For example, close proximity is beneficial for irrigation purposes, 

especially in regions with sparse or seasonal rainfall (National Geographic Society 2022), like Haiti. 

Additionally, the land tends to be rich in nutrients, increasing fertility, making it a good foundation 

for agricultural production (Gangashe 2020; National Geographic Society 2022). Both factors are 

particularly important to improving agricultural productivity; something that is needed in Haiti due 

to the food insecurity epidemic. Thus, many locals accept the risk of flooding to gain the advantages 

of growing agriculture on floodplains. However, with climate change increasing the intensity of such 

events (GFDL 2021) the benefits and challenges of agricultural production near water courses should 

be weighed up to assess whether the advantages outweigh the risks associated with flooding.    
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Typically, the wettest month in Haiti is May, averaging around 190mm of rain in the Grand’Anse 

Department (World Weather Online 2022), therefore, with the average climate, flooding tends not 

to be a major concern. Unless, associated with events such as storms and hurricanes, which due to 

climate change are increasing in intensity (GFDL 2021). In Hurricane Matthews's case, over 800mm 

of rain was recorded across regions in Haiti (NASA Earth Observatory 2016). Heavy rainfall events 

such as this increases surface run-off as the ground is saturated, therefore the water reaches the 

river faster, resulting in flooding. Additional variables such as steep topography, impermeable 

geology, and anthropogenic factors such as poor drainage or deforestation can further increase the 

threat of flooding. This research has already identified that Haiti is a mountainous region, therefore 

has steep topography (Library of Congress 2010). Yet it is also known that large areas of the Sud and 

Grand’Anse Department’s geology are Oceanic Basalt (Valls and Geo 2019; DesRoches et al. 2011), 

which can be impermeable depending on the cooling rate (Waite Roebuck et al. 1999). Impermeable 

geology such as this increases surface runoff, exacerbating flooding. Finally, poor drainage 

infrastructure contributed to the severity of flooding within the region (Balaraman 2016). Therefore 

Haiti’s environmental characteristics along with poor infrastructure contributed to the flooding 

associated with Hurricane Matthew. In most cases, vegetation cannot withstand the overflow 

associated with the flooding and in extreme events it can cause vegetation to become broken and 

uprooted, decreasing the health of vegetation as inferred by the NDVI (Gangashe 2020). In 

particular, cultivated areas are particularly vulnerable (Gangashe 2020). This is why the results show 

more intense damage running parallel to river channels and in surrounding areas.  

 

Knowing that this is where significant damage is concentrated allows flooding mitigation and 

preparedness strategies to be implemented, such as adapting crop types to reduce future impacts, 

thus building back stronger.  It has been stated that reforestation and planting stabilising vegetation 

that reduces erosion is key to reducing flooding in Haiti (Benge N.D). Reforestation removes water 

from the catchment by increasing the amount of precipitation that gets intercepted. Additionally, 

roots increase ground-through flow, reducing the amount of precipitation reaching the river, 

consequently reducing the risk of flooding. Previous governmental efforts mitigating against flooding 

include planting close to 9 million trees and working with farmers to plant more resistant crops that 

prevent erosion (UNDP 2014). Additionally, organisations such as Eden Reforestation Projects have 

been established with the goal of working towards reforesting the country (Eden Reforestation 

Project 2022). Nevertheless, flooding associated with Hurricane Matthew highlighted how large of 
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an issue this is for agricultural through the decreasing NDVI values, thus it must be mitigated to build 

resilience.  

 

Overall, from the results it can be concluded that there are three significant factors that can 

determine the severity of damage that a commune sustains immediately post-hurricane. The first is 

land cover; generally, Dense Agriculture and Agroforestry sustain more damage than Moderately 

Dense Agriculture. Camp Perrin demonstrates this well, as there is a clear distinction between the 

severity of damage recorded in Agroforestry compared to Moderately Dense Agriculture. Secondly, 

water courses within a commune/if the commune is coastal.  Potential flooding associated with high 

rainfall or a storm surge can significantly damage surrounding agricultural land. Dame Marie, 

Chambellan, and Les Anglais are all examples of damage to agriculture associated with flooding of 

rivers, whereas Torbeck demonstrates the damage of a storm surge. Finally, the approach of the 

hurricane, to the coast can determine the impact of storm surges and rainfall patterns (considering 

topography), thus having an influence on the severity of damage in a commune.  

  

 

 

5.2.3. IMMEDIATE IMPACT- CONCLUSION  

Overall, the assessment of immediate short-term changes following Hurricane Matthew can be 

considered successful. The results allowed conclusions to be drawn about what communes and land 

cover types were impacted more severely, identifying regions of vulnerability and addressing 

objective 4. To conclude it can be said that the immediate impacts associated with Hurricane 

Matthew on the agricultural land of the Sud and Grand’Anse departments caused significant 

damage, with communes such as Torbeck and Camp Perrin being more severely impacted than Les 

Anglais. The large decreases in NDVI >0.3 concentrated around river channels and the coastline 

identified that flooding associated with heavy precipitation, or storm surges can cause severe 

damage to agricultural vegetation. Additionally, regions with the predominant land cover of 

Agroforestry or Dense Agriculture are likely to be more significantly impacted due to the species 

being taller/having a larger surface area. Consequently, this research has drawn attention to areas of 

vulnerability and highlighted immediate impacts associated with hurricanes that require mitigation.  
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5.3. LONG-TERM IMPACT   

Objective three of this research set out to monitor the long-term recovery of agricultural land. The 

mean NDVI results showed that compared to the reference mean NDVI, agricultural land had fully 

recovered and had a higher mean NDVI by 6 months post-hurricane at a regional scale. As 

highlighted in Figure 35, not all agricultural land returned to near normal 6 months post-hurricane. 

Although the ‘decreased in NDVI’ area is considered large, Figure 35 demonstrates that the areas 

that have experienced a decrease in NDVI are <0.1. Section 4.1 results established that there are 

seasonal fluctuations between the two growing seasons; the agricultural land September-November 

growing season has a higher NDVI average of 0.756 than the April to July growing season of 0.675. 

This pattern is consistent across both pre and post-hurricane data, across all communes and land 

covers. Therefore, the areas of land decreasing in NDVI from immediately post-hurricane to 6 

months post-hurricane is assumed to be due to the natural seasonal fluctuations. Figure 36 supports 

this, highlighting that the decrease in NDVI from immediately post-hurricane to 12 months post-

hurricane is significantly lower, with a total area of only 409 km2 decreasing in NDVI (Table 24), in 

contrast to 1002.9 km2 6 months post-hurricane. However, upon closer inspection of certain regions 

it is unknown if this is due to the seasonal fluctuations highlighted by this research, or due to the 

long-term impacts of soil-salinisation (Rodgers, Murrah, and Cooke 2009; Violette, Boulicot and 

Gorelick 2009; Gould et al. 2020). For example, small, isolated regions of Dense Agriculture along the 

coastline of Torbeck prior to Hurricane Matthew had an NDVI >0.79. Post-hurricane, NDVI decreased 

to values <0.2, and by 6 months post-hurricane, although there was an increase in NDVI, it was still 

considerably lower than pre-hurricane values (<0.4). By 12 months post-hurricane, the NDVI had 

returned to the pre-hurricane value. This data was extracted from a region that sustained coastal 

flooding, therefore it is possible that the low NDVI observed 6 months post-hurricane could be 

associated with the effects of soil salinisation or water logging on the health of the vegetation 

(Gomez 2005; Arya, Mandal, and Muley 2006; Rodgers, Murrah and Cooke 2009; Brun and Barros 

2013; Kaiser et al 2013; Phonphan et al. 2014; Goto et al. 2015; Scudiero et al. 2016; Gorji, Sertel 

and Tanik 2017; Dharanirajan et al. 2018; Rahman et al. 2018; Davis, Wang, Dow 2019; Gorji et al. 

2019; Nguyen et al. 2020; Tripathi and Tiwari 2021). However, without on-the-ground data, 

validation cannot take place confirming that the decrease in NDVI was associated with soil 

salinisation and not a result of the seasonal fluctuations. Despite minor fluctuations such as this, the 

results confirm that agricultural land made a full recovery by 6 months post-hurricane. The small 

regions such as the one referred to above that sustained negative impacts in the first growing season 

post-Hurricane Matthew returned near normal by 12 months post-hurricane. 
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Although the findings of objective three (to monitor the long-term recovery of agricultural land from 

2016-2021) are minor and indicate no widescale long-term damage, these findings should still be 

reported. This is because impacts associated with hurricanes have been found to have long-term 

effects on agricultural land, consequently affecting the health and productivity of agricultural 

vegetation (Reliefweb 2004; Breda 2008; Violette, Boulicot and Gorelick 2009; Gould et al. 2020), 

with potential impacts on food insecurity. In this instance it can be concluded that in the short-term 

Hurricane Matthew caused wide-scale destruction across agricultural land, however, in the long-

term on a regional scale agricultural vegetation NDVI was above average, therefore returned to a 

near normal status within 6 months post-hurricane. From this, we can infer that the long-term 

impacts on agricultural land such as soil erosion and salinisation, did not have a significant impact on 

the health of agriculture and by 12 months post-hurricane, small regions of decline in NDVI, 

potentially linked to salinisation had recovered. In Haiti's case, NDVI returned to normal status in the 

majority of the study site by the following growing season. However, this may not be the case for all 

regions vulnerable to hurricanes. As we know from Chapter 2, annual soil loss, exacerbated by 

hurricanes amounts to 36 million tonnes (Reliefweb 2004). This can wash away vital nutrients 

vegetation requires to remain healthy (Zhang et al. 2009), leading to a long-term decrease in 

productivity. Furthermore, soil salinisation subsequent to coastal flooding can have long-term 

impacts on vegetation health, persisting for years after the event (Violette, Boulicot, and Gorelick 

2009; Gould et al. 2020). In particular, the longevity of salinisation has been suggested to be linked 

to climatic conditions after the intrusion of saline waters (Dharanirajan et al. 2018). Indeed, drought 

conditions can enable salinisation to persist for longer, as there is no precipitation to ‘flush’ out the 

soil. Therefore, although in the case of Hurricane Matthew it can be inferred that Haiti did not 

sustain any detrimental long-term damage to agricultural land, this may not be the case for every 

region susceptible to hurricanes. Therefore, long-term recovery should still be assessed in addition 

to the immediate impacts. Furthermore, the long-term effects of hurricanes broadly referred to as 

‘land degradation’, are a threat that will build up to be more severe over time causing more 

significant issues in the future than they do now. Thus, long-term threats should still be considered 

and monitored post-hurricane.  

 

 

 

5.3.1. LONG-TERM IMPACT- LAND COVER AND COMMUNES 

Across the communes (Table 25) and land covers (Table 26), although each returned to near normal, 

there were variations in recovery. Across all land covers, the mean NDVI was higher 6 months post-
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hurricane (April-July 2017) than the April to July growing season NDVI average. Additionally, the 

mean NDVI was higher than what was recorded immediately post-hurricane. The long-term NDVI 

mean, min, and max, show that canopies that would be assumed to obtain a higher NDVI such as 

Forest and Agroforestry (due to more dense green chlorophyll) (Zaitunah et al. 2018), make larger 

increases in NDVI from immediately post-hurricane to 6 months post-hurricane. This may be 

because there is a higher chance of defoliation due to the species present within these land covers 

as they are taller/denser (Walker 1991; Ito 2010; James 2010; Wang et al. 2010). Therefore, the 

increase in NDVI when new leaf and branch production has taken place is more noticeable. Walker 

(1991) confirms that new leaf production can begin as soon as 2 weeks post-hurricane. Additionally, 

Forest and Dense Agriculture had the largest increase in minimum NDVI from immediately post-

hurricane to 6 months post-hurricane, showing that the regions of severely low NDVI have 

increased. For example, areas of Dense Agriculture in the Torbeck had an NDVI of 0.79 pre-

hurricane, suggesting very healthy agricultural vegetation. Immediately post-hurricane, the same 

region had an NDVI value of 0.45, which 6 months later had an NDVI >0.7. Highlighting that regions 

of Dense Agriculture that had a low NDVI post-hurricane have improved by 6 months post-hurricane.  

Finally, Moderately Dense Agriculture NDVI was higher above the reference mean NDVI than any 

other land cover, suggesting that areas of Moderately Dense Agriculture were significantly healthier 

in the April-July 2017 growing season than usual. Overall, employing the mean, minimum, and 

maximum NDVI, each land cover was seen to make a full recovery by the following growing season 

(6 months) post-hurricane, April-July 2017.  Therefore, although land covers sustained different 

severities of immediate damage, they all recovered in the long-term, with the NDVI performing 

above the reference mean NDVI.  

  

In regard to the long-term recovery of the communes, results show that the NDVI of agricultural 

vegetation was better than the reference mean NDVI 6 months post-hurricane. Additionally, all 

communes, bar Les Anglais had higher mean NDVI 6 months post-hurricane was 

recorded immediately post-hurricane. Les Anglais was one of the least impacted communes 

immediately post-hurricane, therefore had a higher NDVI than most communes. Considering the 

trend of the April-July growing season consistently having a lower NDVI than the September to 

November growing season, the fact that an increase in NDVI was not recorded 6 months post-

hurricane from immediately post-Hurricane is not a concern, as the decrease in NDVI from 

immediately post-hurricane to 6 months post-hurricane is most likely linked to the seasonal 

fluctuations. The communes sustaining the most severe damage such as Torbeck and Camp Perrin, 

accompanied by Les Cayes and Arniquet have the largest change in NDVI from immediately post-
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hurricane to 6 months post-hurricane. It can be assumed that this is due to the planting of new crops 

and regrowth of vegetation sustaining defoliation as this can take place within the months following 

a hurricane (Walker 1991; Howard and Schokman 1995; Ostertag, Scatena and Silver 2003), thus 

significantly increasing the NDVI across communes that are dominated by dense vegetation such as 

Agroforestry. Once again, as seen across the individual land cover subsets, the communes all make a 

full recovery by 6 months post-hurricane.   

 

 

5.3.2. LONG-TERM IMPACTS IN THE WIDER CONTEXT 

The finding that agricultural land can recover by 6 months post-hurricane could be considered a 

reassuring finding to communities and government. Firstly, it highlights that long-term threats such 

as increased SS (Rodgers, Murrah, and Cooke 2009; Han et al. 2018) are not impacting agricultural 

land in the long-term. This is supported by figure 36 as 12 months post-hurricane no long-term 

damage was identified around the coast. Furthermore, with the recovery of agricultural vegetation 

taking place naturally within 6 months, it means that efforts can be focused directly on mitigating 

the short-term immediate impacts of hurricanes. Mitigation techniques have been briefly mentioned 

in Section 5.2.2. Mitigation can include engineering or non-engineering techniques (Li et al. 2021), as 

seen in Table 27 for mitigation techniques against flooding. However, due to the weak fiscal 

situation Haiti’s government is in, there is a lack of funding in the agricultural sector for disaster 

management and preparedness (The World Bank 2013; Cohen and Singh 2014; Jean, Mary and Lei 

Win 2022). Subsequently, support for DRM, mitigation, and preparedness is from international 

NGO’s such as ActionAid (Jean, Mary and Lei Win 2022). Indeed, ActionAid is trying to reduce 

inequality and increase agricultural production by working with Haitian women, teaching them how 

to grow and sell food, purchase land and mitigate the effects of climate change. In particular, they 

train farmers to diversify their crops with the hope of building resilience (ActionAid 2022), as it was 

stated that farmers continue to use the same crop varieties instead of adapting to the changing 

climate (Cohen and Singh 2014). Besides from NGO’s, government plans have been proposed, but 

rarely materialise; this could be due to the lack of data collected regarding hurricane vulnerable 

areas (Cohen and Singh 2014). Therefore, it is with the hope that new information provided by this 

research can aid in planning for DRM, mitigation, and preparedness. This will ensure communities 

are more resilient in the long-term, ensuring less severe immediate impacts and a shorter recovery 

period.  
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To a community so dependent on agriculture, although the results show there are no long-term 

impacts on agriculture, the 6-month recovery period would be crucial. Xiao (2011) and Mohan and 

Strobl (2017) and (2021) have shown that hurricanes can directly impact individuals' livelihood; 

many people would be out of work, and rising food prices increase food insecurity and related 

health issues, all of which could have a long-term impact. Indeed, Mohan and Strobl (2021) found 

that the negative impact on unemployment rates post-hurricane can persist for up to 4 years in the 

Caribbean. Therefore, although there is little to no long-term impact directly on agricultural 

vegetation, the short-term impacts on agricultural vegetation and consequent repercussions alone 

are enough to further damage the socioeconomic structure of the region (discussed in Section 5.1). 

This can cause rising tensions within communities due to a lack of resources, increased 

unemployment, and highlight weaknesses such as unstable governance, inequality, and the lack of 

resources and support.  This reinforces the importance of this research and the method developed 

because helping identify severely impacted regions enables focus and support to be directed to 

vulnerable communities, encouraging them to build back stronger and increase resilience for the 

future threats that they face. In the long-term this will prevent and reduce the socioeconomic 

pressures linked to agricultural land post-hurricane. This is becoming increasingly important in the 

face of climate change as the intensity of climate-related hazards such as hurricanes are increasing 

(GFDL 2021). Indeed, from 2000-2019, Haiti ranked 3rd amongst the countries most affected by 

extreme weather events (World Food Program 2022). Being a country that is repeatedly impacted by 

such hazards makes it challenging for regions to recover in all environmental/socioeconomic aspects 

before being subjected to another hazard (United Nations 2021). Therefore, although individual 

hurricane events do not have a long-term impact on agricultural land, the indirect long-term 

socioeconomic effects and reoccurrences of such events deepen vulnerabilities and can have a long-

term impact on livelihoods. Therefore, reducing the short-term consequences, may reduce the 

socio-economic implications and relieve longer-term impacts.  

 

Despite the quick recovery of agricultural land following Hurricane Matthew, both the Sud and 

Grand’Anse Departments continue to suffer from food insecurity. As of June 2022, 4.5 million 

Haitians suffer from food insecurity, with the Sud department being classified in a state of 

emergency (IPC 2022). This number has increased since 2016 (World Food Program 2016), 

despite support scattered throughout the communes. With the knowledge that the agricultural land 

can return to the reference mean NDVI value quickly post-hurricane, there are more influential 

factors contributing to the consistent threat of food insecurity within Haiti. As discussed in Section 

5.1, Haiti is an underdeveloped nation that has many socioeconomic and political challenges. The 
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social structure of the country may have the largest influence on how the communities respond to 

such events. Thus, although the hurricane causes the direct loss of food, how the country responds 

is aiding the persisting issue of food insecurity. The 2010 Haiti earthquake is a prime example 

(Savard, Sael, and Clormeus 2020) of how Haitian public institutions and an unstable government did 

not anticipate such risks, thus planning and recovery efforts were weak. Consequently, over ten 

years later the country is still trying to recover (Savard, Sael, and Clormeus 2020). This reinforces 

that if citizens do not have the tools or resources to improve preparedness for disaster (Samhsa 

2017), or build back stronger and utilise the land to its full potential, then regardless of whether 

agriculture can recover, the communes will be in a constant state of food insecurity. Therefore, 

evaluating the different variables that are creating a persisting environment for food insecurity is 

required, as further knowledge is needed on how to help this situation.   

 

Within Section 5.3, the term ‘recovery’ has been referred to. Recovery can be defined as a return to 

a normal state, replicating the environment prior to the shock. Within this research, the normal 

state of health has been defined by the reference mean NDVI of each growing season, therefore 

results of communes or land covers where the mean NDVI matches or exceeds the reference mean 

NDVI can be declared as ‘recovered’. Considering the status of food insecurity in Haiti prior to and 

post-Hurricane Matthew (World Food Program 2022), it can be argued that recovery is not enough 

in these circumstances to reduce food insecurity. Indeed, agricultural practices pre-Hurricane 

Matthew were not sufficient in sustaining food security, therefore recovery suggests maintaining 

these issues. This research monitors the long-term impacts and recovery to draw attention to areas 

of vulnerability. Identifying such patterns and susceptibility lays the foundations for building 

resilience, therefore the long-term goal is to improve agricultural practices to alleviate food 

insecurity. Understanding and reaching recovery is key to doing this.  

 

Overall, it can be concluded that Hurricane Matthew did not have a long-term impact on agricultural 

land in the Sud and Grand’Anse Department and a full recovery was made 6 months post-hurricane. 

Although this is a positive finding, the short-term impacts in conjunction with Haiti's susceptibility to 

hazards, both climatic-related and non-climatic related (as evidenced by the 2010 earthquake and 

the 2018 drought) and their socioeconomic instability are resulting in repetitive damage that could 

have long-term consequences. A prime example of this is in Jamaica; their economy has grown 0.8% 

in the past 4 years; however, it would have grown by 4% without the impacts of hurricanes (United 

Nations 2021). Subsequently, the recovery of agriculture is not the prevailing issue that is causing 

the consistent threat of food insecurity. There is a socioeconomic and political structure that can be 
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deemed more complex (Council on Foreign Relations 2021; Daut 2021; Human Rights Watch 2020), 

resulting in the continuity of food insecurity in Haiti. Indeed, unstable governance, a lack of funding 

and resources, and conflict are all present in Haiti (Edmonds 2013; Daut 2021; Human Rights Watch 

2020). However, by providing information on the areas that were initially damaged, at-risk land 

covers that can be assumed to be vulnerable in the future can be identified and efforts in building 

resilience can be made. Building back stronger mitigates against more severe immediate damage for 

future events. This prevention of loss and quicker recovery can subsequently increase the rate of 

development and reduce a country’s vulnerability in the long term (United Nations 2022). This 

narrative is more complex than can be measured currently in this research, however, it is something 

to consider.  As mentioned prior, a multivariable analysis would be a beneficial piece of research to 

complete, to understand the broader picture of all factors (socioeconomic and environmental) that 

influence the amount of damage inflicted by hurricanes.  

 

 

 

5.3.3. LONG-TERM IMPACT FINDINGS NOT ASSOCIATED WITH HURRICANE 

MATTHEW 

In addition to the impacts and recovery of the hurricane, this research identified variations in NDVI 

that were not associated with Hurricane Matthew that could have a direct impact on food insecurity. 

The largest drop in NDVI was identified 18 months post-hurricane (April to July 2018 growing 

season); the mean NDVI was 0.603, consequently it was 0.072 below the reference mean NDVI 

(Figure 41). Additionally, the mean NDVI 18 months post-hurricane was lower than the NDVI that 

was recorded immediately post-hurricane by 0.73. This indicates that this growing season was less 

productive in comparison to the average and the land was more severely impacted than post-

Hurricane Matthew. Further investigation identified that a severe drought affected Haiti in 2018 

(ReliefWeb 2019; Thin 2020), consequently leading to a decline in vegetation health, thus, 

agricultural production. The drought was reported to be due to the El Nino phenomenon. El Nino is 

an event that typically takes place every 2-7 years, whereby the sea-surface temperature is warmer 

than average, causing drought conditions (Klingaman and Keat 2018). This event typically develops in 

May, reaching its maximum strength between December and February, therefore it can be assumed 

that the NDVI would reflect the drought conditions in the September 2018 to November 2018 

growing season (24 months post-hurricane), as well as in the April 2019 to July 2019 growing season.  

However, based on the mean, minimum and maximum NDVI this was not the case for the 

September 2018 to November 2018 growing season. Figure 41 shows that the mean NDVI for the 
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September 2018 to November 2018 growing season was 0.011 above the reference mean NDVI. 

Therefore, highlighting that drought conditions did not appear to impact agricultural vegetation in 

the September 2018 to November 2018 growing season as expected. Despite this, the drought had a 

large impact on the April-July 2018 growing season.  Events such as this are predicted to worsen 

(Met Office N.D) and it is projected that future years will show a declining trend, with rainfall totals 

decreasing by as much as 6% (RTAC 2021). Consequently, drought will become an increasing threat 

for the country and could have more severe effects on agriculture than what was inflicted between 

April 2018-July 2018. As a result, droughts are another environmental issue that needs to be 

addressed and investigated further in Haiti.  It can be assumed that due to the impact on agriculture 

reflected in the results, events such as these are contributing to the food insecurity throughout Haiti. 

  

 

 

 

5.3.4. LONG-TERM IMPACTS CONCLUSION  

To conclude, based on the mean NDVI, agricultural land made a full recovery by 6 months post-

hurricane at a regional scale. Upon close investigation, some areas, for example, Torbeck had not 

reached near normal by 6 months post-hurricane. This could have been because of soil salinisation 

from the storm surge or seasonal fluctuations between growing seasons as highlighted in the results; 

without on-the-ground EC data to validate, it cannot be confirmed if the lower NDVI values 6 months 

Figure 40. Mean NDVI of 18-, 24- and 30-Months Post-Hurricane Compared to the Reference Mean NDVIs. 
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post-hurricane were due to salinisation.  However, by 12 months post-hurricane, these regions 

returned to normal. In the wider context, although vegetation returned to normal, it was established 

that the immediate impacts alone are enough to contribute to and exacerbate long-term 

socioeconomic issues. Despite this, the results confirm that efforts can be focused on mitigating the 

immediate impacts rather than trying to bring the agricultural land back to full health post-

hurricane. Finally, the long-term results highlighted other climatic-related hazards such as drought 

that had a larger impact on NDVI, as seen 18 months post-hurricane. This event impacted 

agricultural land more than what was seen immediately post-hurricane, thus highlighting the threat 

associated with drought and its potential impacts on food insecurity.  

 

 

 

5.4. EVALUATION 

The findings of this research meet the aim and objectives of this study, providing a reliable account 

of the immediate impacts and long-term recovery of Hurricane Matthew on the Sud and Grand’Anse 

Department, Haiti. However, an evaluation of the study brings attention to areas of the study that 

could be strengthened for future results to provide more reliable findings.  

 

Firstly, considering that the main agricultural practice in Haiti is smallholder farming, if this research 

was repeated on a more recent period, satellite imagery with a higher spatial resolution could have 

been employed. Although Landsat imagery has a consistent spatial resolution suitable for time series 

analysis, a surface reflectance product, and a QA pixel band for the purpose of cloud masking, the 

spatial resolution (30m) does not deliver the detail required for smallholder farming. Recent 

advances have generated wider availability of very-high resolution data (Rivas-Fandiño et al. 2023), 

such as Sentinel 2 and Planet Lab, however, these datasets did not cover the study period. Sentinel 2 

for example has a 10m spatial resolution, a revisit frequency of 6 days, and a surface reflectance 

product but was launched in 2015, making it unsuitable for this study period. Despite Landsat’s 

spatial resolution being too coarse to monitor individual fields for smallholder farms, it is sufficient 

for broader landscape analysis. Haiti Data (2017) identified land cover types which could be detected 

by Landsat.  Therefore, until on-the-ground data can be collected to accurately identify more specific 

land cover types for a smallholder farming scale, very-high-resolution data, although desired is not 

required.   
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In relation to CC being a large issue in the collection of data, CC composites were produced to mask 

and reduce CC for the time-series analysis (Section 3.4.1). This method reduced the risk of skewed 

data values from CC and increased the continuity of land that could be analysed across time series. 

The ‘lastNonNul’ function was employed to ensure that the last date in the time series that is not 

null of data is prioritised (Google Earth Engine N.D). This is essential as the latest possible date 

before the harvest begins is desired to produce the NDVI, as this is the most accurate representation 

of vegetation peak phenology. This means in the latest imagery (pre-harvest) if there were regions of 

CC, they would be presented as null. Subsequently, the imagery collected (roughly two weeks) prior 

would be employed to produce the NDVI. This meant that certain regions of NDVI were not 

reflecting full health prior to harvest. In some regions, this could have reduced the NDVI, impacting 

the mean, minimum, and maximum NDVIs that were extracted. Employing a satellite with a higher 

temporal resolution than Landsat (16 days) would reduce the severity of this issue as it would 

decrease the period between the imagery collected when the pre-harvest imagery is null due to CC. 

This would increase accuracy as it would be a truer reflection of full health prior to harvest. 

However, typically, increasing the temporal resolution compromises the spatial resolution and this 

would have decreased the detail of the findings. Therefore, with the resources available, the method 

employed to reduce CC was the most appropriate.  

 

When investigating and analysing NDVI across different land covers and communes, similar to 

research by Hu and Smith (2018), extracting the mean was employed to monitor the immediate 

impact and long-term recovery of Hurricane Matthew. Firstly, it must be acknowledged that the 

NDVI can only be cross compared across regions of the same land cover. Secondly, NDVI is not 

considered to be linear as characteristics of the imagery such as CC, exposure to soil background, or 

high biomass can lead to saturation of NDVI, decreasing NDVI’s sensitivity (Xue and Su 2017). This 

can result in some data values being skewed or in regions of high biomass for example, a point can 

be reached whereby NDVI no longer responds to variations in green biomass. Considering this, for 

future research, as opposed to the mean, alternative measures of NDVI could be explored (e.g., 

median, maximum with seasonal peak). For example, the median greatly reduces or removes the 

impact of outliers, especially in areas or land covers that are impacted by CC/cloud shadow or have 

high biomass saturating NDVI values. However, it must be mentioned that the median does not 

make use of all the information available in the data as it does not consider the precise value of each 

observation. Therefore, future assessments should assess which measure of NDVI is appropriate 
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depending on the project focus. To address this issue in this research, minimum and maximum NDVI 

values were employed alongside mean NDVI to account for anomalies. Furthermore, indices such as 

EVI could have been considered to reduce inaccuracies as it accounts for soil brightness. EVI was not 

employed due to it being easily affected by topography, therefore should not be employed in 

mountainous regions (Matsushita et al. 2007; Earth Observing System 2019). However, studies have 

shown that topographic correction can reduce the effects of topography on EVI (Valeriano, Sanches, 

and Formaggio 2016; Chen et al. 2020), consequently it should be considered for future research.  

 

Furthermore, to calculate the reference mean NDVI, data was collected from 6 years prior to 

Hurricane Matthew (2010-2015), mirroring the number of years recovery was being monitored 

(2016-2021). Due to reasons explained in Section 3.3.1, MODIS was employed in conjunction with 

Landsat to collect data for the reference mean NDVI. When comparing data sources, although the 

mean NDVI between the two sources were similar (Table 3), the MODIS mean was slightly higher. 

Therefore, employing MODIS in conjunction with Landsat could have slightly increased the reference 

mean NDVI values. Although employing MODIS alongside Landsat reduces consistency between 

years, considering the sources available, this was the most appropriate solution to the issues 

encountered. Preferably, Landsat would have been used consistently to ensure reliability throughout 

all results. Furthermore, there were low values of mean NDVI in the pre-hurricane data. Upon 

investigation it was identified that 2015 sustained the worst drought in the last 35 years (Reliefweb 

2016). Climatic conditions such as this may skew the average and it is recommended for future 

research that the average should be calculated over a longer period to minimise the effect of 

variability. This will ensure more accurate representation of the reference mean NDVI.  

 

Although objective 3 was successfully met, and it was determined that by 6 months post-hurricane 

agricultural land made a full recovery, a more detailed account of recovery would be beneficial. 

From Section 2.3, it has been concluded that a hurricane can increase SS and have a long-term 

impact on agricultural land. The method used in this study relied on extracting NDVI mean, minimum 

and maximum values to study the long-term recovery, therefore regional-scale quantitative outputs 

are derived, giving an overview of the land covers and communes. Alongside this, threshold maps 

were produced quantitively measuring the change in NDVI from post-hurricane to 6- and 12-months 

post-hurricane. This enabled identification of increases/decreases in NDVI to be located in 

association with the recovery, for example, looking at small regions of salinity intrusion in Section 

5.3. Although attention could be drawn to specific regions of change, NDVI alone could not infer the 
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reason behind the long-term changes. When working in regions such as Haiti where agricultural 

production tends to be smallholder farming (Rodrigues-Eklund et al. 2021), attention to finer details 

such as these need to be investigated. This is something that needs to be considered for future 

research; investigating smaller regions of interest (i.e., town-scale), with high-resolution imagery and 

on-the-ground data, because it would allow detailed patterns to be identified in the recovery. 

 

The issues encountered within this study regarding spatial resolution, processing techniques and 

validation of data, although limiting, are ones that many studies encounter (Hoque, Phinn and 

Roelfsema 2017). However, with the expected advancements in the remote sensing and spatial 

analysis field, these challenges may be overcome in the upcoming years further advancing how it can 

be used to aid the disaster management cycle. Despite these areas of the study that could be 

strengthened, this methodology has highlighted how efficient remote sensing is on a 

regional/national scale at identifying changes in vegetation. Climate-related hazards such as 

hurricanes can have a widescale impact, therefore investigating these via fieldwork would not be 

efficient when trying to identify where efforts should be focused. Furthermore, hurricanes can cause 

damage to lines of communication and infrastructure, making it challenging and unsafe for on-the-

ground research to be carried out. Thus, remote sensing is a safe and efficient way to monitor 

impacts on a regional scale in near-real-time (Brown et al. 2022). Instantly, it can be recognised that 

this methodology can be used for immediate response to hurricane events, yet it is also adaptable; 

with appropriate testing it could be used in regions worldwide. Additionally, because this index 

infers plant health from chlorophyll, it is not limited to assessing one type of disaster, therefore it 

can be used to monitor the damage of a plant under any shock, such as flooding or drought. Another 

important development from this methodology is the creation of the cloud composite, the method 

employed to mask and reduce CC, which increased the area that can be consistently assessed across 

the study site and should be considered for future research. 

 

 

 

5.5. LIMITATIONS 

The one major limitation of this research was the lack of/access to data. This is an issue for 

developing nations such as Haiti globally (The World Bank 2020). The reasons for a lack of data are 

broad and vary from country to country. In some regions there may be a lack of funding for data 

collection (Sarvajayakesavalu 2015), social and cultural clashes, or the collection process may be 

considered unsafe due to conflict/disease (The World Bank 2020). Some regions may not have the 
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resources or infrastructure to conduct research themselves (Elahi 2008; Cohen and Singh 2014), and 

a lack of trust in foreign organisations would hinder any external bodies that wish to carry out 

research (Ortiz-Ospina and Roser 2016). Acknowledged in Section 5.1, many of these challenges are 

present in Haiti, creating a challenging environment for data collection, thus the lack of access to 

data. Currently, Haiti is fighting one of its worst outbreaks of violence since 1986 when the Anti-

Duvalier protest movement took place (Human Rights Watch 2020). Violence alone makes data 

collection unsafe but complicity between politicians and gangs has further fuelled violence leading 

to a lack of trust within the country making even the risk of internal data collection higher. As 

mentioned in Section 5.1, Haiti’s history has led to an unstable government and a lack of funding, 

both of which persist to be issues preventing their development, thus funding for data collection 

(Cohen and Singh 2014). This has prevented the funding for research and infrastructure needed to 

support it. Furthermore, Haiti’s history could be considered the root cause of a lack of trust 

throughout the country towards external organisations. This was highlighted following the 2010 

earthquake where an erosion of trust was seen towards NGOs, the media, and support services 

throughout communities; to earn this back it is said consistent open communication, transparency, 

and respect are needed (Ground Truth Solutions 2022). Although this is in reference to aid 

associated with the earthquake, it concludes attitudes towards foreign organisations, therefore 

anyone external coming to do research may be challenged in earning the trust of the community. 

Thus, considering the above reasons, it is clear to see why data collection in Haiti is challenging. This 

is an issue that will only be improved with changes in social and political structures throughout the 

country, aiding development, and building trust back both within the communities of Haiti and with 

external services, organisations, and individuals from foreign countries (Ground Truth Solutions 

2022).  

 

In relation to this study, the lack of access to data prevented the validation of NDVI. Unfortunately, 

for similar reasons, only 18% of research papers that employ satellite imagery to monitor the 

impacts of hurricanes validated their findings due a lack of access to data and safety concerns for 

primary data collection (Huang et al. 2021). Despite the above challenges to data access, and the 

limitations this has inflicted upon this study, the methodology presented in this research was 

effectively adapted and identified the immediate impacts of Hurricane Matthew, distinguishing 

regions of severe damage, and monitored the long-term recovery.  
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5.6. PROSPECTS FOR FUTURE RESEARCH BASED   

As mentioned prior, due to limitations regarding time and resources, the scope of what this study 

could achieve was restricted. Hypothetically, this research would have benefitted from information 

sharing throughout the local community and working with a multidisciplinary team. Working within 

the local community, sharing information and data collation has numerous benefits, one being that 

it provides an opportunity for ground-truthing. Not only does ground truthing provide the 

opportunity to validate the findings, increasing the validity of the results, it allows for validation of 

new remote methodologies, expanding the capabilities of remote sensing. Indeed, a lack of on-the-

ground data prevented the parameters of salinity and land cover from being explored remotely. Had 

the time scale for this study allowed salinity and land cover data could have been collected from 

local smallholder farms. Measuring SS post-hurricane is something that has not been monitored yet 

in tropical climates, yet it is known that salinity can impact plant health and productivity, both 

immediately and in the long-term (Violette, Boulicot and Gorelick 2009; Williams 2009; Goto et al. 

2015). Collecting electrical conductivity measurements would enable correlations to the salinity 

indices, gauging if the index was representative of the true salinity. Indeed, Tran (2018) attempted 

to estimate salinity intrusion by correlating on-the-ground electrical conductivity values with 

spectral bands and salinity indices. Additionally, the lack of and access to data prevented a more 

detailed, in-depth analysis of the specific land covers and their recovery from Hurricane Matthew to 

be conducted. Using a secondary source (Haiti Data 2017), this research categorised agricultural land 

into three classes (Dense, Moderately Dense Agriculture and Agroforestry). Ideally, specific crop as 

well as their location would have been available. Consequently, relationships between damage and 

crop type could be established, allowing more detailed conclusions to be drawn about which crop is 

more resilient. Specifically, it could inform cropping patterns and more resilient practices to 

hurricanes. Collecting land cover data would enable training data with improved accuracy to conduct 

land cover classifications. With on-the-ground data, these methods could have been trialled and 

validated to provide a deeper understanding of the immediate and long-term impacts of parameters 

such as salinity post-hurricane. Findings such as this would contribute a wealth of knowledge to this 

discipline, therefore, collecting on-the-ground data to complete validation of these methods should 

be a focus of future studies.  

 

Additionally, working with a multidisciplinary team builds a clearer picture of smallholder farming 

within the Caribbean, aids data interpretation, and provides a holistic view of this study and the 
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impacts of hurricanes, further benefitting the community. In recent years, areas of study such as 

Plant Pathology have identified the need for an interdisciplinary approach; the complexity of 

challenges surrounding food security in relation to plant diseases now encapsulates agricultural and 

ecological sciences, national and global policies and regulations as well as the plant pathology 

discipline (Jeger et al. 2021). Similarly, this research would benefit from a team built from various 

disciplines, including agroecologists, earth observation and climate change scientist.   

 

Finally, working within the local community, through workshops and round-table discussions, stories 

and practices in preparation and response to Hurricane Matthew could be shared. Spreading 

awareness of the ideas and techniques that individuals employed highlights areas of strength and 

weakness within the agricultural sectors resilience against hurricanes. This allows knowledge gaps to 

be identified, enabling research to be focused in these key areas. For example, focus groups held in 

response to Hurricane Michael (2018, Florida Panhandle) expressed the need for long-term and 

continuous planning for hurricanes, specifying a lack of scientific evidence informing the preparation 

of specific commodities for hurricanes (Wiener, Alvarez-Berrios and Lindsey 2020). Consequently, 

focus groups and round table discussions would be helpful to complete in the early stages of future 

research to identify knowledge gaps, aid understanding of the local context and the importance of 

the research to the community which it could have a direct benefit on.    

  

For reasons discussed above, recommendations for future research within this discipline that aims to 

expand on this study is urged to connect with smallholder farmers and work collaboratively with a 

multidisciplinary team. Primary data collection is also key to expand the capabilities of remote 

sensing methods to effectivity study the impacts of hurricane on a national scale.   

 

 

Finally, interpretation of results is based on individual variables supported by the findings of this 

research and published literature, however, the variables responsible for the varying degrees of 

damage across the ROI are broad. To have a thorough understanding of the different variables, both 

socio-economic and environmental, and the weight of influence they have on the impact of a 

hurricane would require a multivariable analysis. This would allow variables such as distance from 

the hurricane, land cover type, salinity, slope, access to resources, active organisations, and 

education to be assessed to determine the independent contribution of each of these risk factors to 
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the change in NDVI experienced in each location. This would allow the most influential factor that 

determines the severity of damage to be identified. Determining the factors that play a significant 

role in increasing the threats associated with hurricanes, and sequentially food insecurity would 

increase clarity on the most effective ways to mitigate against hurricanes and the long-term threats 

to food insecurity. Consequently, this would be a very beneficial piece of research despite its 

complex and challenging nature. Research such as this can be time-consuming and not cost-effective 

over a large ROI, therefore, study sites may have to be refined. Nevertheless, this is a knowledge gap 

that needs to be assessed, as identifying the most influential variables that affect the severity of 

damage can highlight where efforts need to be focused to increase resilience against future 

hurricanes.  
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CHAPTER 6 

6. CONCLUSION 

This research sought to assess the immediate impact of Hurricane Matthew on the agricultural land 

of the Sud and Grand’Anse departments, Haiti, and monitor the long-term term recovery utilising 

remote sensing. Assessments of post-hurricane damage typically quantified agricultural damage as a 

loss of yield and the associated cost. Therefore, the immediate and long-term impacts of the change 

to vegetation were disregarded, despite having a large impact on food production, consequently 

increasing food insecurity. Therefore, although the results are the main findings to be concluded as 

they meet the aim and objectives, the method employed to complete this research is considered a 

vital part of this study as a methodology has been created that can be replicated for future research. 

Therefore, the methods alongside the findings will be acknowledged in the conclusion.  

 

Overall, the assessment of immediate short-term changes following Hurricane Matthew can be 

considered successful. The methods used deduced findings that quantitively and qualitatively 

identified regions that sustained significant impacts post-Hurricane Matthew. This allowed 

conclusions to be drawn about what communes and land cover types were impacted more severely, 

addressing objective 4. The findings of this research can conclude that Hurricane Matthew had a 

large negative immediate impact on the agricultural vegetation in the Sud and Grand’Anse 

departments. More severe damage occurred in Dense Agriculture and Agroforestry land covers in 

comparison to Moderately Dense Agriculture. This finding is assumed to be associated with the 

relationship between wind and the height/surface area of the land cover species. Furthermore, 

communes such as Torbeck and Camp Perrin experienced more severe damage in comparison to Les 

Anglais, conveying which communes required more support post-hurricane. On closer inspection of 

change in NDVI, it was identified that some of the most severely impacted agricultural land was that 

running parallel to/surrounding river channels. This can be assumed to be due to flooding associated 

with the hurricane. Similarly, in some regions the impact of coastal flooding was clearly highlighted, 

this could be seen particularly well in the Torbeck region. These findings reinforce the destructive 

power of water on agricultural vegetation, making it one of the biggest potential threats associated 

with a hurricane. The short-term results provide an insight into the regions that are more vulnerable 

to the effects of hurricanes, and thus need more support and mitigation. Despite the damage seen 

across the region immediately post-hurricane, findings conclude that NDVI 6 months post-hurricane 

(April to July 2017) exceeded the April-July growing season NDVI average. This finding confirms that 
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a full recovery of agricultural vegetation took place by the next growing season, 6 months post-

hurricane. With the knowledge that this agricultural land can recover quickly, efforts can focus on 

preparedness and mitigation to reduce the severity of the immediate impact associated with 

hurricanes. This, in turn, will prevent the loss of agriculture. Additionally, results from monitoring the 

long-term recovery highlighted a significant drop in NDVI 18 months post-hurricane that was lower 

than that recorded immediately post-hurricane. This decrease in NDVI (sitting well below the 

reference mean NDVI), was associated with a drought event. Therefore, it can be assumed that in 

some cases drought can have a larger impact on agricultural vegetation than a hurricane, therefore 

posing as an equal, if not greater threat, acting as another component aiding to their food insecurity, 

vulnerability, and struggle of development in Haiti.  

 

It can be concluded that this research effectively assessed the immediate impact and monitored the 

long-term recovery of Hurricane Matthew on the agricultural land of the Sud and Grand’Anse 

department by employing remote sensing. The findings of this research highlighted regions of 

agricultural vulnerability and have identified crucial patterns of damage that could reoccur under 

similar circumstances in the future. Therefore, these findings can be used to educate locals and 

inform changes to policy. Furthermore, the methods of this research can be employed across other 

study sites, immediately following a climate-related hazard to identify regions of severe damage and 

inform where resources and support need to be concentrated. Furthermore, despite finding that 

Hurricane Matthew had no long-term impacts on the agricultural land, the method still proved the 

ability to monitor the long-term changes in vegetation accurately. Therefore, although there was no 

long-term damage to agricultural vegetation at this study site, this may not be the case for all 

regions. For example, a storm surge in a more arid region may have a more detrimental long-term 

effect on SS, thus decreasing plant productivity which could be identified utilising this method. 

Although overall, the findings of this research have met the aim and objectives, the limitations of the 

methods and findings of this research have proven the need for a more in-depth analysis. It has been 

acknowledged that more detailed knowledge of the land covers and a multivariable analysis would 

be beneficial in determining the weight of influence different variables have on the impact of the 

hurricane. This would benefit the research by providing further in-depth analysis, however, this 

research did not have the time nor resources to complete this. The aim and objectives of this 

research were met successfully, and with further testing in different regions, the method developed 

will contribute to further research related to climatic hazards in different regions worldwide.  
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For Haiti, it is clear that in addition to their exposure to hurricanes, socio-economic setbacks are 

further contributing to food insecurity, mainly due to the lack of national support and funding for 

agriculture, DRM, mitigation, and preparedness. Furthermore, hurricanes are limiting economic 

development both in the short and long term. Moreover, a lack of research in Haiti regarding the 

impact of hurricanes and associated areas of vulnerability has prevented the implementation of 

resilient practices. The findings of this research however provide a clear insight into the immediate 

impacts and long-term recovery of Hurricane Matthew, highlighting areas of vulnerability that will 

inform and potentially direct where mitigation efforts need to be focused in the future.  The 

research inevitably not only contributes to a literary and methodological gap but has the potential to 

support communities in Haiti and beyond, to work towards building resilience against future threats. 
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8. APPENDIX 

Figure 42. FAO (2010)- Haiti Land Use/Cover Map 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the Lanchester Library, 
Coventry University. 
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Figure 43. Ministry of Agriculture, Natural Resources and Rural Development (1998)- Land Cover/Use Map.  
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8.3. Link to GEE Code used to produce Post-Hurricane NDVI 

https://code.earthengine.google.com/b21d8d5a5eb8c6f7bf75a87282793d52 

https://code.earthengine.google.com/b21d8d5a5eb8c6f7bf75a87282793d52
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Figure 44. Snapshots of GEE Code for Pre-Hurricane NDVI. 



167 
 

 

8.4. Link to GEE Code use to produce Pre-Hurricane Imagery 

https://code.earthengine.google.com/d9933a2f448f89d05f6b22cf66268baf?noload=true 

 

 

 

 

Figure 45. Snap Shots of GEE Code for Pre-Hurricane NDVI Used to Calculate Average NDVI. 

https://code.earthengine.google.com/d9933a2f448f89d05f6b22cf66268baf?noload=true
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	CHAPTER 1 
	1. INTRODUCTION 
	1.1. HURRICANES AND FOOD SECURITY 
	One thing is known for certain; hurricanes can challenge food security within countries on both a local and regional scale. It is seen repetitively, across countries that are vulnerable to hurricanes, that the sheer force of wind, in conjunction with heavy rainfall and a potential storm surge, can cause immediate loss of agricultural vegetation. This was seen in 2017 when Hurricane Irma made landfall in Florida; the estimated total agricultural losses equated to $2.5 billion (Bond and Perez 2018). Similarly
	 
	Gaining information regarding the pattern and severity of damage to agricultural vegetation immediately post-hurricane, rather than obtaining just the area and loss of yield, can support preparedness, mitigation, and recovery efforts for future hurricanes. This is because identifying patterns of damage can determine areas of higher vulnerability, thus what regions need more support. This, in the long term, will contribute to building resilience. Additionally, literature does not monitor the long-term recove
	vegetation, as opposed to quantifying the impact economically, can help build resilience against future hurricanes. It is with the hope that in the long-term this will decrease the impact on food insecurity within vulnerable regions.  
	 
	 
	 
	1.2. FOOD SECUIRTY IN THE CARIBBEAN  
	For many nations such as Haiti, food security does not purely rely on commodity crop production and importing of goods. This is evident throughout the global south and in the Caribbean where smallholder farms are the main producers of food for domestic consumption and local market trade, thus, is the main source of food security.  
	 
	Smallholder farms, a common practice in Haiti, can be defined as farmers with less than 2ha (Csaki and De Haan 2003), producing food for their own consumption and local markets. Indeed, within the Sud and Grand’Anse departments (the ROI for this research), Haiti, agriculture is the main economic activity; 80% and 84% of households in Sud and Grand’Anse (respectively) have access to land for agriculture (RTAC 2021). Agroforestry is also a common practice within Haiti, typically this practice is found on the 
	 
	Years of history has shaped how Caribbean countries, including Haiti, now practise agricultural production to conquer their food and nutritional security challenges. Although the benefits of smallholder agriculture can be seen through data concluding that they have higher land productivity and yields, due to the informality of smallholder farms, there are several factors that prevent their sustainability. Challenges include limitations of low-level technology, and absence of barriers to prevent entry of pes
	vulnerability to climate and annual shocks that are beyond their control and poorly prepared and mitigated against. This relationship between food insecurity/rural poverty and climate change vulnerability is cyclical and if not addressed and mitigated against could have a significant negative impact on sustainable food production and thus, food security (Ewing-chow 2020). This additionally limits their ability to compete in domestic markets that are flooded with imports. Consequently, the food produced by s
	 
	 
	 
	1.3. THE IMPACT OF HURRICANES ON FOOD SECURITY IN HAITI 
	One country that is challenged with food insecurity and is also susceptible to hurricanes is Haiti. Haiti is currently the poorest country in the western hemisphere and has a heavy reliance on agriculture; with 29% of Haiti’s population working within this sector (The World Bank 2019). Despite this, 1.3 million Haitians suffer from severe hunger; which is one of the highest levels of food insecurity in the world (IPC 2022; World Food Program 2022). Alongside Haiti’s political instability and other challenge
	hurricane had a severe impact; an estimated 2.2 million people were affected, over 500 people lost their lives, up to 90% of homes were destroyed, and the damage to critical water and sanitation infrastructure contributed to an increase in the number of cholera cases (Marcelin, Cela and Shultz 2016; British Red Cross 2017; Action Aid 2022). In regard to agriculture and food insecurity, over 90% of crops were destroyed, with damage to the agricultural sector estimated to be $580 million (FAO 2016; The World 
	 
	 
	 
	1.4. AIM & OBJECTIVES 
	Considering the current literature (e.g., Shultz et al. 2016; Marcelin, Cela, and Shultz 2016; Khan et al.  2017; Pasetto et al. 2018; Ewing-Chow 2020; Ritchie 2021; Kianersi et al. 2021; Shroff 2022) and Haiti’s challenges, this desk-based study aims to assess the impact of Hurricane Matthew on the agricultural sector of the Sud and Grand’Anse departments, Haiti. This aim will be met by the following objectives: 
	1. Develop and test a methodology that utilises remote sensing data to assess changes in vegetation following Hurricane Matthew.  
	1. Develop and test a methodology that utilises remote sensing data to assess changes in vegetation following Hurricane Matthew.  
	1. Develop and test a methodology that utilises remote sensing data to assess changes in vegetation following Hurricane Matthew.  

	2. Critically assess the immediate impact of Hurricane Matthew.  
	2. Critically assess the immediate impact of Hurricane Matthew.  

	3. Monitor the long-term recovery between 2016 and 2021.  
	3. Monitor the long-term recovery between 2016 and 2021.  

	4. Assess the vulnerability of land cover types across agricultural dependant communes.  
	4. Assess the vulnerability of land cover types across agricultural dependant communes.  


	 
	To begin with, the literature review will establish the current situation in relation to food insecurity and hazards such as hurricanes, highlighting the links and the importance of the issue at hand. To follow, a detailed review of the different impacts of hurricanes on agricultural land will take place, accompanied by the methods used to monitor the impacts. The methodology will address the study site, data collection, and pilot studies as well as the final methods used to produce the results. The results
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 2 
	2. LITERATURE REVIEW 
	2.1. THE CURRENT CLIMATE OF WORLD HUNGER 
	World hunger is a complex issue. Hunger can be defined as periods when populations experience severe food insecurity. Consequently, families may experience entire days without eating due to a lack of money and resources or restricted access to food (World Health Organisation 2021). There are different categorisations of hunger worldwide, as well as a lack of resources to register birth rates, displacement rates and to record health data, leading to inaccurate figures regarding hunger. In politically vulnera
	 
	The Integrated Food Security Phase Classification (IPC), however, is a respected measurement of world hunger employed by governments, NGO’s, and UN agencies. The IPC is beneficial for countries such as Haiti as it is used to determine the severity and magnitude of acute and chronic food insecurity, and acute malnutrition situations to inform emergency responses as well as medium- and long-term policy and programme (IPC 2022). Figure 1 shows that based on the Acute Food Insecurity Scale, Catastrophe/Famine (
	account for <2.5% of individuals suffering from crisis worldwide, 3 million accounts for more than a quarter of the country’s population (The World Bank 2021). Thus, food security is a major threat to Haiti. 
	Figure
	Textbox
	Span
	Figure 1. Acute Food Insecurity Scale (IPC 2021). 

	 
	Haiti is a Caribbean country with a warm tropical climate and shares the island of Hispaniola with the Dominican Republic. It is the least developed nation in the Western Hemisphere (World Bank 2021); ranked the 15th lowest in the 2020 Human Development Report whereby countries are measured and ranked by development indicators such as education and life expectancy. Haiti’s complex history regarding political stability, conflict, and repetitive subjection to natural hazards create challenging circumstances f
	within countries such as Haiti, and although it’s a complex topic, research efforts and global unity can work together to prevent the issue from growing. 
	 
	In recent years, unifying efforts have been made to tackle world hunger. In 2015 the UN updated the Sustainable Development Goals (SDGs) with the 2nd goal, ‘Zero Hunger’, aiming to ‘end hunger, achieve food security, improve nutrition and promote sustainable agriculture’ by 2030 (United Nations 2020). Targets to achieve this goal include doubling the agricultural productivity of small-scale producers (United Nations 2020). As well as implementing resilient agricultural practices that will increase productiv
	Textbox
	Span
	Figure 2. Acute Food Insecurity Phases, Haiti 2017, 2019 and 2022 (IPC 2017, 2019, and 2022). 

	2.2. REASONS BEHIND HUNGER  
	To understand the reasons for food insecurity globally and the lack of progress with the associated SDG’s including ‘Zero hunger’, the causes behind hunger need to be explored. The factors contributing to food insecurity are extensive. Politics, governance, conflict, rising food prices, income, race/ethnicity, trade policies, access to land/resources, climate, and natural disasters, individually and as a combination, all impact hunger (Pawlak and Kolodiziejczak 2020). Many countries, including Haiti, are ch
	 
	Identifying the varying ways in which individual socioeconomic and environmental factors impact food security can assist in identifying mechanisms for managing it. Factors including regional policy decisions, inequality and unstable governance can negatively influence the distribution and access to food within and between countries (Smith 1998; Gregory, Ingram and Brklacich 2005; Concern 2021). It has been noted that economic and political inequalities, along with political agendas can dramatically shape fo
	these issues can have a long-term impact on the health of the land, thus impacting the productivity of agricultural practices. This can broadly be referred to as land degradation. Over the past 7 decades over 35% of arable land worldwide has been degraded (Gupta 2019); this adversely impacts citizens’ livelihoods, with most people affected living in poverty in developing countries (Olsson et al. 2019). This is because developing countries, such as Haiti, have a large reliance on agriculture, consequently ma
	 
	 
	 
	2.2.1.  LAND DEGRADATION  
	Generally, it can be stated that good soil health, diversity, a predictable and favourable climate, and clean groundwater are all key foundations in upkeeping a healthy agricultural system, thus increasing agricultural productivity. Healthy soils, in particular, are essential to production; soil supplies essential nutrients, water, oxygen, and root support that vegetation needs to grow and flourish (FAO 2015). Healthy soil can be defined as soil that functions as a living system; working in conjunction with
	 
	Despite being aware of the qualities and characteristics needed to sustain healthy agricultural practices, land degradation poses a severe threat, especially to soil health. Land degradation is the process in which the value of the biophysical environment is undesirably affected by a combination of human-induced processes acting upon the land; including human-induced climate change (IPCC 2019; Olsson et al. 2019). The undesirable effects referred to include direct damage to plants, soil 
	degradation, deforestation, groundwater contamination, and biodiversity loss. In relation to soil health, the FAO (2015) estimates that soil erosion removes 25-40 billion tonnes of topsoil every year. These impacts have a direct or secondary impact on soil health, impacting agricultural productivity. This is detrimental to those who rely on agriculture, exacerbating hunger.  
	 
	As mentioned in Section 2.2, land degradation can be a product of conflict, urban development, and climate-related hazards induced by climate change; and although it is currently a prominent issue, it is likely to worsen. One of the largest concerns contributing to land degradation and exacerbating world hunger is climate change. Indeed, by 2050, land degradation interlinked with climate change is predicted to reduce crop yield by up to 10% globally and up to 50% in certain regions (Head 2019). Degraded lan
	 
	 
	 
	2.2.2. CLIMATE CHANGE AND CLIMATIC-RELATED HAZARDS 
	It has been established that climatic-related hazards can result in a large decline in agricultural production due to land degradation and also cause direct damage to crops. This results in a loss of subsistence agriculture (Gomez 2005; Olsson et al. 2019); in turn, decreases access to food, increasing food prices, contributing to food insecurity (FEWS NET 2015). In agricultural terms, climatic-related hazards can inflict both shock and stressors onto agricultural land (Farming First 2014). Shocks are sudde
	we have created irreversible damage to our climate that will be felt for years to come (van der Geest and van den Berg 2021). One consequence of irreversible damage is the increase in the frequency and intensity of climatic-related hazards, such as hurricanes. The annual occurrence of disasters is now more than three times that of the 1970s and 1980s (United Nations 2021). Additionally, human-induced factors, ironically including the global food system, are raising temperatures by 0.2 °C per decade (IPCC 20
	 
	A recent analysis shows that by 2050 climate change (without the current climate crisis) could increase the number of chronically hungry people by 78 million (Global Hunger Index 2021). This reinforces that climate change is a serious threat to world hunger on a global and local scale. Additionally, events associated with climate change and geographic vulnerability detract focus from investing in sustainable food systems, further exacerbating environmental degradation, preventing high productivity. This can
	 
	Although climate change is a global phenomenon, some countries are more vulnerable than others. This is due to a country’s geographic vulnerability; the degree of exposure to which a community, structure, or service is likely to be damaged or disrupted by a climatic-related hazard. These can be areas that already have a challenging climate, or regions that are more susceptible to the effects of climate change; for example, small island nations (IPCC 2014; Mohan 2016). Indeed, Mohan (2016) 
	found that hurricanes have a negative impact on agriculture, with smaller islands appearing to be more severely impacted. For example, in the Caribbean, disaster impacts convert to a loss of 975 calories per capita per day, accounting for 40% of recommended daily intake (United Nations 2021). In conjunction, these developing nations have a high dependence on natural resources such as crops, increasing their vulnerability and limiting their capacity to cope (Harrold et al. 2002), exacerbating the effect of c
	 
	Overall, it is evident that hurricanes and their associated impacts pose a major threat to agriculture immediately post-hurricane and in the long-term. Subsequently, considering Haiti’s consistent struggle with food insecurity and its vulnerability to hurricanes, both the short and long-term impacts of hurricanes on agricultural vegetation need to be understood. Bridging the existing knowledge gap and understanding how the agricultural sector is affected by disasters, specifically hurricanes, is key to buil
	 
	 
	 
	2.3. HURRICANES, ASSOCIATED IMPACTS & RECOVERY 
	Hurricanes, also known as tropical cyclones and typhoons, are amongst the most destructive natural disasters to affect specific regions around the globe (Gomez 2005). A hurricane is a storm that forms over tropical waters, bringing strong winds, flooding, and a storm surge(s), causing large-scale and 
	long-lasting damage. Hurricanes have both short- and long-term impacts on agricultural land, reducing productivity, and increasing food insecurity. GFDL (2021) identified a positive statistical relationship between Atlantic Sea Surface Temperature and the power dissipation index that measures the intensity of a hurricane due to climate change. This means that storm intensity increases in conjunction with sea surface temperatures. Subsequently, within the next century, it is likely that hurricanes in the Atl
	 
	When a hurricane makes landfall, the impacts are extensive. The process of damage arises from the three main hazards: strong winds, flooding associated with heavy rain and a high storm tide linked to storm surges. The force and impact of a hurricane can result in wide-scale socio-economic damage, however, specific to this research the impacts of a hurricane can have both short- and long-term impacts on agricultural vegetation (Gomez 2005; Arya, Mandal and Muley 2006; Chen 2009; Williams 2009; Wang et al. 20
	 
	One of the main impacts affecting agricultural land associated with hurricanes is the intrusion of saline waters due to storm surges (Gomez 2005; Arya, Mandal and Muley 2006; Rodgers, Murrah and Cooke 2009; Brun and Barros 2013; Kaiser et al 2013; Phonphan et al. 2014; Goto et al. 2015; Scudiero et al. 2016; Gorji, Sertel and Tanik 2017; Dharanirajan et al. 2018; Rahman et al. 2018; Davis, Wang, Dow 2019; Gorji et al. 2019; Nguyen et al. 2020; Tripathi and Tiwari 2021). The intrusion of saline waters on lan
	a negative impact on plant health and soil quality, consequently resulting in soil degradation, a loss of arable land and low crop productivity (Phonphan et al. 2014; Goto et al. 2015; Das et al. 2016; Scudiero et al. 2016; Gorji, Sertel and Tanik 2017; Rahman et al. 2018; Davis, Wang, Dow 2019; Gorjo et al. 2019; Nguyen et al. 2020; Tripathi and Tiwari 2021). 
	 
	Soil salinisation is a hazard that is increasingly inescapable within a climate that experiences high evaporation and low precipitation (Gorji, Sertel and Tanik 2017), therefore, the hazard commonly strikes in arid/semi-arid environments. However, due to sea level rise and natural hazards such as hurricanes resulting in storm surges inundating land with seawater, similar soil impacts that are seen in arid/semi-arid regions are more commonly being identified across coastal regions (Goto et al. 2015; Morshed,
	 
	Due to these varying factors, the impact of coastal flooding on SS varies globally. For example, Goto et al. (2015) found a strong negative correlation between the Normalised Difference Vegetation Index (NDVI) and post-flooding EC values following Typhoon 9918 (Southern Japan) in 1999. This indicates that increased SS was accountable for decreased plant health. Furthermore, following Hurricane Katrina, NDVI in the Weeks Bay Reserve, Alabama, decreased by 64% along the coast (Rodgers, Murrah, and Cooke 2009)
	could only be a long-term issue if drought conditions follow an event. Similarly, research investigating the same event, but in Thailand found the same negative effect of saltwater intrusion, emphasising that large patches of grassland and agricultural plantations such as coconut trees and orchards were affected (Kaiser et al. 2013).  
	 
	The fragile nature of water sources’ impact on agricultural land was highlighted particularly well after the Boxing Day Tsunami (2004). In Southeastern India salinity levels were raised by approximately one-quarter of the salinity of seawater, with conditions persisting for more than 10 months, despite the inundation and retreat lasting just 5 minutes (Violette, Boulicot and Gorelick 2009). In contrast, in Sri Lanka, damage was less extreme than the humanitarian sectors had assumed; by the Yala Season (May)
	 
	Other impacts associated with hurricanes are high wind speeds and flooding induced by intense rainfall. This too can result in the total loss and damage of vegetation (Walker 1991; Ramsey et al. 2001; Gomez 2005; Staben and Evans 2008; Ito 2010; Zhang et al. 2013; Hoque et al. 2016; Marzen et al. 2017; Feng et al. 2018; Hu and Smith 2018; Bellanthudawa and Chang 2021; Estoque et al. 2021). Furthermore, as well as the immediate impacts, in the long-term reduced vegetation cover induced by wind/flooding on un
	crops can be damaged/washed away, immediately destroying the harvest. For example, a 28.35% increase in barren land was recorded post-Hurricane Maria in Puerto Rico in 2017 (Hosannah et al. 2020), highlighting the immediate loss of crops associated with a hurricane. Secondly, flooding can result in soil erosion, decreasing the available nutrients. Water quality surveys conducted following Hurricane Katrina, at a station that drains agricultural land in Florida, showed an increased nutrient input consequent 
	 
	In regards to wind associated with hurricanes, typically, wind causes defoliation and snapping of trees, with the latter being the main cause of a reduced canopy cover (Walker 1991; Ito 2010). Dense and taller vegetation such as forests have been found to be more sensitive to damage (Walker 1991; James 2010; Hu and Smith 2018; Charrua 2021). The severity of damage inflicted by wind has been found to positively correlate with the duration and force of wind; higher durations of critical wind speed increase th
	impacts of wind on agricultural land associated with hurricanes and the potential long-term implication on understory communities. 
	 
	It is apparent that the hazards associated with hurricanes have a detrimental effect on all vegetation, including agriculture. However, dependant on factors such as climate and the severity of damage, impacts such as salinity and loss of nutrients due to soil erosion consequent from flooding and wind can persist long-term. These combined threats create a stressed agricultural system, challenging the agricultural sector by reducing productivity, contributing to food insecurity, and thus, hunger on a local sc
	 
	Research that works closely with farmers and locals within the community strive to understand the recovery of their agriculture to inform preparedness and prevention against the associated impacts of future hurricanes. Indeed, employing simple field techniques, Holt-Giménez (2001) conducted a study to measure farmers agroecological resistance to Hurricane Mitch in Central America. Agroecological refers to sustainable farming that employs a holistic and integrated approach, seeking to optimise interactions b
	 
	Agroecological farming practises include structural, agronomic and agroforestry techniques. Structural techniques encompass contour ploughing, ditches, and terraces to aid soil and water conservation management. Agronomic practices include relay cropping, intensive in-row tillage, 
	compost, vermiculture, animal manure, and integrated pest management. These benefit fertility, soil health, weed/pest control, water conservation and soil protection. Finally, agroforestry is centred around woodlots, multistorey/alley cropping, vegetive strips and live fences. Agroforestry techniques provide fuel, timber, and fruit, reduce run off mitigating erosion, enhance the nutrient cycle, and provide habitats for beneficial insects (Holt-Giménez 2001; Altieri et al. 2015).  
	  
	Furthermore, diversification has a large impact on resilience against various types and degrees of shock (Altieri et al. 2015). When agroecosystems are simplified, it affects their capacity to respond to change and generate ecosystem services. Consequently, a practise with increased biodiversity enhances ecosystem functions as different species and genotypes perform slightly different and have different niches. This diversity acts as a buffer against failure due to environmental fluctuations, resulting in a
	 
	Research such as this highlights the importance of knowledge surrounding resilient agricultural practices that reduce stress and improves the condition of agricultural land, achieving a productive landscape. Unfortunately, across many underdeveloped countries, there is a lack of understanding and education regarding appropriate agricultural practices as well as the impacts and recovery of agricultural land related to natural hazards (FAO 2017), this is the case in Haiti (Cohen and Singh 2014). Therefore, co
	2021). This provides the opportunity to build agricultural resilience against hurricanes. Consequently, using Haiti as the study site, this research aims to expand the current understanding of how agricultural land is affected by hurricanes by investigating the immediate impact and long-term recovery of the Sud and Grand’Anse departments following Hurricane Matthew (2016).  
	 
	 
	 
	2.4. HURRICANE MATTHEW (2016) 
	Hurricane Matthew was a category 4 hurricane that made landfall in Haiti on the 4th October 2016. The hurricane hit the southern peninsular and travelled through the Sud and Grand’Anse departments.  The storm caused winds of up to 145 MPH for prolonged periods, heavy rain, and a storm surge, resulting in swollen rivers, flash flooding, landslides, and the destruction of agriculture and infrastructure (Stewart 2017; The World Bank 2017). Furthermore, although the height of the storm surge along the coastline
	 
	Although short-term damage assessments were needed to quantify and understand the immediate impact of Hurricane Matthew on food security, the patterns and severity of damage to agriculture are important, as well as the long-term effects on the land. Despite this, there are no studies that monitor the short- and long-term impact on agricultural vegetation post-Hurricane Matthew even 
	though this could be detrimental to the long-term productivity of agriculture, contributing to food insecurity within Haiti. Indeed, research that is linked to Haiti post-Hurricane Matthew focuses on the cross between microfinance and food insecurity (Kianersi et al. 2021), governance and community response (Marcelin, Cela, and Shultz 2016), the cholera outbreak (Khan et al.  2017; Pasetto et al. 2018), and the psychosocial impact (Shultz et al. 2016). Consequently, Cohen and Singh (2014) state that in hurr
	 
	 
	 
	2.5. MONITORING THE IMPACTS OF HURRICANES 
	Monitoring the impacts of hurricanes is an essential part of the disaster management cycle that builds resilience. An effective disaster management cycle (Figure 3) highlights four phases- response, recovery, prevention/reduction, and preparedness (Hoque, Phinn and Roelfsema 2017). The latter phases, prevention/reduction and preparedness include appropriate measures and planning that reduce the likelihood and impact of hurricanes becoming disasters. Consequently, by monitoring the impact and recovery of hur
	enable mitigation efforts to be focused on regions of higher vulnerability, thus reducing the impacts of future hurricanes and minimise their effect on food security.   
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	Figure 3. The Hurricane Disaster Management Cycle (Hoque, Phin and Roelfsema 2017). 

	 
	It is more common for the impact and recovery of hurricanes on agricultural land to be assessed on a local community scale as opposed to a national scale. Typically, a social science approach is employed, working closely with farmers and the local community who manage the agricultural vegetation daily to understand the recovery of their agriculture to inform preparedness and prevention. This was the direction Holt-Giménez (2001) took; by networking with local farmers made possible by Movimiento Campesino a 
	that allows the rapid assessment of damage which is a key response in providing aid; this over a regional scale is critical.  
	 
	Over the past few decades, remote sensing and spatial analysis have become increasingly popular in supporting all 4 phases of the disaster management cycle to aid building resilience. Considering the scale of damage hurricanes can inflict, remote sensing and spatial analysis offers a suitable approach to monitor the regional impact of hurricanes on agricultural land (Hu and Smith 2018), as it is both cost-effective and time-efficient. Today, there are many freely available and accessible data sources alongs
	 
	Several studies (e.g., Wang et al. 2010; Hoque et al. 2017; Feng et al. 2018; Hu and Smith 2018; Tay et al. 2020; Charrua et al. 2021) have demonstrated the utility of remote sensing to monitor damage and recovery associated with hurricanes. Many of the studies employ Vegetation Indices (VIs) which combine values of surface reflectance at two or more wavelengths to highlight a particular property of vegetation (L3Harris 2022).  Hu and Smith (2018), for example, found that the health of vegetation returned t
	 
	 
	 
	2.6. MONITORING CHANGES IN LAND COVER 
	Land cover classifications help monitor how the land has changed. High wind speeds and flooding, both coastal and inland have immediate and long-term impacts on agricultural land. In the short term, this can result in agricultural loss, resulting in a loss of canopy, thus a change in land cover. Furthermore, soil salinisation and the loss of vegetation cover induced by wind and flooding have long-term impacts on understory communities, by inducing higher rates of soil erosion, reducing plant health and prod
	 
	The approach employed to monitor land cover change can be referred to as image classification; the two main approaches to classifying land are 1) Pixel-Based (PB) classification (Lam et al. 2011; Reif, Macon and Wozencraft 2011; Cherjarla et al. 2016; Grybas and Congalton 2015; Hu and Smith 2018; Charrua et al. 2020), and 2) Object-based Image Analsis (OBIA). (LaMantia-Bishop 2010; Badjana et al. 2015; Grybas and Congalton 2015; Phiri, Morgenroth and Xu 2019).  PB methods consist of individual pixels being 
	 
	Across both classification methods, there are a range of classification algorithms such as Random Forest (RF), and k-Nearest Neighbour (kNN) that can be used to produce land cover maps. These two 
	non-parametric classifiers have been reported as performing with the highest accuracy (Noi and Kappas 2017). Indeed, due to its improved accuracy and reliable outputs, alongside good processing speeds (Le Louarn et al. 2017; Charrua et al. 2021), RF was chosen to classify the impact of Tropical Cyclone Idai on the vegetated landscapes of Mozambique (Charrua et al. 2021). RF is frequently employed to assess landscapes and plant species due to the tuning parameters such as “number of features” and the maximum
	 
	In regards to assessing the immediate change in land cover post-hurricane, research that focuses on the impacts of wind dismisses agricultural land and typically focuses on tree species. Defoliation is a common occurrence in tropical and subtropical regions, as hurricanes result in the shredding of leaves and branches (Ito 2010). Walker (1991) and Estoque et al. (2021) have demonstrated the possibility to assess changes in vegetation cover by monitoring the canopy cover of large tree species remotely. Howev
	monitoring changes in vegetation, the spatial resolution of imagery being analysed contributes to the overall accuracy.  Ma, Su, and Guo’ (2017) employed WorldView-2 to obtain a very high spatial resolution satellite imagery of 2 and 0.5 m to compare canopy cover to LIDAR estimates; in contrast, Sahebjalal and Dashtekian’ (2013) employed Landsat, with a coarser resolution of 30 m to analyse land use-land cover changes in Iran. Subsequently, Ma, Su, and Guo (2017) achieved a very high overall accuracy of 93%
	 
	In contrast to PB classification, OBIA has frequently been employed to monitor the loss of canopy cover (Johansen et al. 2009; Whiteside and Boggs 2009; Chehata et al. 2014; Chong et al. 2017). It has been stated that to ensure high accuracy outputs, OBIA requires very high spatial resolution data. In particular, to accurately identify the row structure within banana plantations, Johansen et al. (2009) stated that the spatial resolution of imagery needed to be ≤2.5 m. Alternatively, OBIA could be used to id
	 
	Overall, it can be concluded that both PB and OBIA can be used to monitor land cover change; in the short-term assessing the loss of vegetation, and in the long-term investigating land cover change associated with the long-term impacts of the hurricane on the land. Consequently, both methods of classification will be trialled within a pilot study. 
	 
	  
	2.7. MONITORING CHANGES IN VEGETATION  
	Change in vegetation can be monitored to a high standard using VIs applied to remotely sensed multi-spectral imagery. In particular, NDVI has the ability to quickly delineate vegetation and vegetative stress (Huang et al. 2020). Through chlorophyll absorption taking place in the red band and reflection in the Near-Infra Red (NIR) band, NDVI determines the density of green on a patch of land (NASA 2000), ranging between -1 and 1. Due to this appeal, in conjunction with its simplicity and reliance on easily o
	 
	Whilst the use of NDVI can be highly effective, it’s limitations and capabilities need to be understood to avoid misuse.  NDVI has been found to be sensitive to the atmosphere and background soil brightness (Xue and Su 2017), especially in areas where vegetation cover is low (<40%) and the surface soil is exposed. Darker soil background may produce larger NDVI index values (Bausch 1993); this is something to be considerate of post-hurricane, as due to damage and vegetation being washed away, soil exposure m
	of high biomass, resulting in saturated NDVI values. Despite this, many studies (e.g., Rodgers, Murrah and Cooke 2009; Wang 2012; Li et al. 2016; Hu and Smith 2018; Taillie et al. 2020) have employed NDVI to monitor the impacts of hurricanes on vegetation. In particular, VIs have been used to measure the severity of vegetation damage subsequent to events such as hurricanes and associated salinity damage (Goto et al. 2015; Hu and Smith 2018; Charrua 2021).  Indeed, utilising the pre- and post-hurricane NDVI,
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	𝑁𝐷𝑉𝐼%= ∆𝑁𝐷𝑉𝐼𝑁𝐷𝑉𝐼𝑃𝑟𝑒𝑥100%       Eq 3. NDVI Ratio 
	 
	Furthermore, the outputs of NDVI can be analysed and presented in a range of different ways. One example includes thresholding NDVI. This is when the NDVI is split into ranges and given a class, for example, ‘Very Healthy Vegetation’= >0.66 (USGS 2018; Earth Observing System 2019). This method has been used as a tool to compare changes in vegetation (e.g., Gammal, Ali and Samra 2014; Walcker et al. 2019). This enables quantitative measures to be extracted about the area of land that 
	has changed from one class to another. Similarly, change detection can be utilised to monitor the change in NDVI from the initial to final state over the same geographic extent (L3Harris 2022). This method allows quantitative values to be given regarding the severity of damage within specific regions. 
	 
	The second VI, the Enhanced Vegetation Index (EVI) (Equation 4) is a modified version of NDVI that accounts for soil brightness to reduce inaccuracies. As can be seen in Equation 4, EVI includes a constant term that accounts for the soil background that NDVI is sensitive to; the soil adjustment factor ‘L’. Although this omits the issue of soil background, the soil adjustment factor ‘L’ makes it more sensitive to topographic correction, therefore, the topographic effect on the EVI must be accounted for (Mats
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	Whereby G = 2.5, C1 = 1, C2 = 7.5, L = 1, NIR = Near Infrared, Red = red band, Blue = Blue band, ∆𝑁𝐷𝑉𝐼 = Change in NDVI. 
	 
	 
	 
	2.8. MONITORING CHANGES IN SOIL SALINITY 
	As mentioned in Section 2.3, storm surges associated with hurricanes increase SS, thus having a long-term impact on agricultural productivity. Consequently, monitoring SS to assess the long-term impact on recovery would be beneficial. There are two approaches used to monitor SS remotely, 1) the most used, ‘direct approach’, focuses on surface SS by measuring the spectral reflectance of bare 
	soil (Ivushkin et al. 2017), and 2), the indirect approach whereby vegetation reflectance is used as an indicator of SS. Method two can be used when vegetation prevents seeing the soil. To meet the desired outcome, the latter approach would be more efficient as the canopy cover reflects the conditions of the root zone. Thus, if the canopy is not as healthy following a storm surge, it can be assumed that salinity is higher within the root zone for example. The root zone, in particular, determines vegetation 
	 
	There are varying methodologies that have proven to be effective when monitoring SS over large spatial extents with repetitive measurements (e.g., Das et al. 2016; Gorji, Sertel and Tanik 2017; Ivushkin et al. 2017; Davis, Wang and Dow 2019; Nguyen et al. 2020; Rajendran et al. 2021; Zhu et al. 2021). The most common approach demonstrates the advantages of combining satellite image analysis with field data to assess the accuracy of SS estimates (Das et al. 2016; Morshed, Islam and Jamil 2016; Gorji, Sertel 
	accurate representation of the true EC. Furthermore, the different indices and ratios used to monitor SS across the study sites (e.g. Gorji, Sertel and Tanik 2016; Morshed, Islam and Jamil 2016; Asfaw, Suryabhagavan and Argaw 2018) show no consistency in regard to how well the indices perform. For example, Salinity Index 1 (SI1) (Equation 5), utilising the green and red band, performed well in monitoring salinity in Turkey (Gorji, Sertel and Tanik 2016) and Ethiopia (Asfaw, Suryabhagavan and Argaw 2018). Ye
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	𝑉𝑆𝑆𝐼=2 𝑥 𝐺𝑟𝑒𝑒𝑛−5 𝑥 (𝑅𝑒𝑑+𝑁𝐼𝑅)       Eq 7. VSSI Equation  
	 
	Although it has been established that estimation of SS through remote sensing is possible, due to the inconsistency in the performance of indices and their poor correlations in non-arid environments, if the methods were to be applied to this research, on-the-ground data would be required to validate the findings. However, in Haiti there is a lack of environmental data collected to validate the findings. The reasons for a lack of data collection are broad and vary from country to country. However, in Haiti, 
	 
	 
	 
	 
	2.9. SUMMARY 
	Overall, from reviewing the literature it has been established that despite efforts and global unity, food insecurity within certain countries, including Haiti, is not improving. The factors contributing to food insecurity are vast and interlinked, making it a complex issue. However, hurricanes, a hazard due to an increase in frequency and intensity due to climate change, pose a large reoccurring threat to food insecurity. Haiti has experienced the repetitive threat of hurricanes first-hand, and understandi
	research has a specified region of interest, it aims to develop a methodology that when tested, can be used universally to investigate and understand the short and long-term impacts of hurricanes and other climatic-related hazards worldwide.  The outputs of such research can provide insight into the patterns and severity of damage, informing policy change and better agricultural practices, with the end goal of building resilience against food insecurity. Consequently, this research aligns with the SDG Zero 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 3 
	3. METHODOLOGY 
	3.1.  INTRODUCTION TO THE METHODS  
	This methodology employed a desk-based quantitative research approach to fill the knowledge gap highlighted in the literature review on the short and long-term impacts of hurricanes on agricultural vegetation. Although the benefits of working within and amongst communities/alongside farmers is understood and would benefit this study, as mentioned, there are various factors that made primary data collection unattainable; the main circumstance being that conflict present within the ROI makes on-the-ground res
	 
	This chapter outlines the methodology for this research. There were many challenges when working towards the results, including the lack of, and access to data and limitations of the software. Consequently, this chapter will demonstrate how these challenges were overcome. The chapter will start by introducing the study site, data sources and data collection process, and explain the pilot studies that go on to create the foundations for the methods of this research. The final methods employed to monitor the 
	 
	 
	 
	3.2. DEFINING THE REGION OF INTEREST (ROI)  
	Within this research 3 ROIs will be assessed; 1) regional scale, across agricultural land of the Sud and Grand’Anse departments, 2) land covers; Agroforestry, Dense Agriculture and Moderately Dense Agriculture, alongside Forest and Savanna with Others, and 3) locally defined agriculturally dependant communes.  
	 
	Figure 4 shows the Sud and Grand’Anse Departments, Haiti, clipped to a 70km buffer from Hurricane Matthews track; this defines the regional scale ROI. Hurricane Matthew made landfall in the west of the Sud department, Haiti, travelling north through Grand’Anse (NOAA 2016), consequently these departments are the focus of this research as they sustained the most damage. To ensure all changes to agricultural land are associated with the impact of the hurricane, the departments have been clipped to a 70km buffe
	 
	In order to meet objective 4 (assess the vulnerability of land cover types across agricultural dependant communes), agricultural land covers and agricultural dependant communes needed to be defined in the ROI. There is a lack of on-the-ground and secondary data defining land covers within Haiti, therefore it is hard to separate specific agricultural land covers from other wild flora species. A national data set, Haiti Data (2017), met these requirements which utilised SPOT satellite imagery to produce a Bio
	 
	Furthermore, 7 communes in the ROI that are vulnerable to food insecurity, therefore requiring community agricultural support (RTAC 2021) were chosen to be assessed (Table 1). Commune boundaries were downloaded in shapefile format from HDX Data (2018). In-depth analysis of the communes enables areas of vulnerability to be highlighted, addressing objective 4. 
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	Figure 4. Map of ROI. Sources to Create the Map Include Sud and Grand’Anse Department and Communes’ Shapefiles (HDX 2018), and Land Cover Shapefiles (Haiti Data 2017), Clipped to 70km from the Hurricane Track (NOAA 2016).    

	 
	 
	 
	 
	 
	 
	Table 1. Defined Communes Undergoing In-Depth Analysis and their IPC Phases (IPC 2022). 
	P
	 
	 
	 
	3.3. ACQUISITION OF SATELLITE IMAGERY  
	Due to the extent of the study area, satellite imagery was the primary source of data for this research. When employing satellite imagery, it is important to understand what is required of the imagery and the user's needs. Being aware of characteristics such as spatial resolution; the physical dimensions that represent a pixel, as well as temporal resolution; how often data is collected in the same area, is key. Within this study, a higher spatial resolution is prioritised as it can improve the accuracy of 
	 
	Various data sources were explored including Planet Labs, Sentinel, Landsat and MODIS. Planet Labs and Sentinel were explored first due to the desired higher resolution data (3.7m and 10m respectively) (Planet 2021). Although they provide the surface reflectance product, prior to 2018 Planet did not provide their Usable Data Mask 2.0 (UDM2) to mask Cloud Cover (CC) and Sentinel 
	was not launched until 2015 which would cause issues in data continuity. Landsat and MODIS provided both data continuity and cloud masks, therefore were explored further. 
	 
	 
	 
	3.3.1. LANDSAT DATA  
	Landsat 8 Collection 2 Level 2 (C2L2) provides surface reflectance imagery with a 30 m spatial resolution. Despite a lower resolution, Landsat is one of the longest-running, resolution-consistent satellites and therefore is frequently chosen to investigate environmental change over time. Since the launch of Landsat 4-5 in 1984 (EO 2021) the Landsat series has consistently provided 30m spatial resolution data with a revisit time of 16 days. Landsat collates data in swath paths of 185 x 180km (USGS N.D), subs
	Despite this, Landsat 8 launched in 2013, therefore years prior to its launch require imagery from either Landsat 7/4-5. Landsat 7 was not appropriate due to a scan line corrector failure resulting in incomplete images (USGS N.D). Although data can be downloaded with masks that infill the missing data, the masks are an estimation and therefore are not as accurate, thus Landsat 7 could not be used. Furthermore, it was established that there was no SR data collected from Landsat 4-5 for the growing seasons be
	 
	 
	 
	3.3.2. MODIS DATA 
	Due to the lack of imagery in the pre-hurricane data collection period for Landsat, MODIS Surface Reflectance (MODIS/006/MOD09GA) was employed alongside Landsat to calculate the pre-hurricane reference mean NDVI from 2010-2015 (Section 3.5.1). MODIS data is collected daily, with 
	atmospheric correction and surface reflectance applied. However, MODIS has a coarse spatial resolution of 463m. Nevertheless, this was the most reliable and accessible product that could be employed alongside Landsat.  
	 
	 
	 
	3.3.3. DATA COLLECTION 
	To meet objectives 2 and 3, data was collected immediately pre- and post-hurricane, to enable the assessment of the impact, as well as every 6 months post-hurricane from 2016 to 2021 to monitor long-term recovery. Additionally, data was collected from 2010-2015 to calculate a reference mean NDVI to aid the analysis of the impact and recovery. When investigating agricultural vegetation, due to plant phenology and its impact on VIs, it is imperative to consider the time of data collection. Due to Haiti’s clim
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	Figure 5. Seasonal Calendar in a Typical Year (FEWS Net 2015). 

	 
	  
	 
	3.4. PILOT STUDIES 
	3.4.1. CLOUD COVER PILOT STUDY 
	When exploring and collecting data sources, an issue identified across all imagery was Cloud Cover (CC). For some time now, CC has been a constraint associated with the collection of satellite imagery globally (Marshall, Dowdeswell, and Rees 1994; Hu and Smith 2018; Man et al. 2018; Rahman et al. 2018; Tran et al. 2018; Sun et al. 2019; Qui, Zhu and Woodcock 2020; Rahman and Di 2020). Figure 6 shows the average CC in Haiti throughout the year (Weather Sparks N.D), highlighting that the months with high CC f
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	Figure 6. Cloud Cover Categories in Haiti (Weather Sparks N.D); Harvest Months July and November. 

	 
	 
	To reduce CC and subsequently increase the accuracy and consistency of the time-series analysis, various software and methods were explored to resolve the challenge of CC. As this is a global problem when working with satellite imagery, tools and algorithms have been developed to perform cloud masking at the pre-processing stage (Zhu, Wang, Woodcock 2015; Qui, Zhu and Woodcock 2020; QGIS 2021). Cloud masking was the first method explored, which essentially prepares imagery for processing and improves produc
	and Dow 2019; Sun et al. 2019). This method can be completed in ENVI or QGIS using the Cloud Mask plugin.  
	 
	Both ENVI and QGIS were trialled to mask CC using data collected from the same date to assess accessibility and the quality of the output. Within ENVI, due to accessibility issues, the QA pixel band was processed manually to remove the CC, in contrast, the QGIS plugin completed this process automatically. Figure 7 compares the difference between the QGIS plugin and ENVI outputs; it shows that the cloud mask in ENVI covered a larger area, masking both cloud and cloud shadows. The red cross point sits on a re
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	Figure 7. Difference Between QGIS Cloud Mask Plugin and Fmask Tool in ENVI Outputs from Imagery of the Same Dates. 

	Figure
	 
	Figure 8 shows the Sud and Grand’Anse Departments with the QGIS cloud mask applied across the pre-hurricane, post-hurricane (immediate), 6- and 12-months post-hurricane imagery. When selecting the data for this pilot study, metadata was used to select imagery with the least amount of on-land CC. Despite this, some images still had over 42% of land covered by clouds. The area being masked significantly reduced the area of the ROI that could be assessed. Additionally, when comparing the pre-hurricane to the p
	the imagery (regarding its location and area), further reducing the area that can be analysed. Consequently, cloud masked outputs alone were not suitable for analysis. 
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	Figure 8. QGIS Cloud Masking Plugin Applied to Pre and Post Hurricane Landsat Imagery (USGS 2016, USGS 2017, HDX 2018, QGIS and ENVI). 

	 
	 
	To resolve this, the creation of a cloud-masked composite was explored to produce the most complete image possible. Recently, Best-Available-Pixel (BAP) compositing methods have been proposed to eliminate the effects of CC (Man et al. 2018; Hosannah et al. 2020). BAP methods replace cloud pixels with the best-quality pixels from a set of images within a defined period (Man et al. 2018).  A composite image can be produced by mosaicking imagery to produce a cloud-free time series (Man et al. 2018; Hosannah et
	 
	To create the cloud masked composite, a method was developed by adapting scripts and processes applied in previous research; key influences were methods outlined by Tassi and Vizzari (2020) and 
	Tassi et al. (2021). Figure 9 shows the process employed to produce the reduced cloud composite image. Firstly, the data source was specified (Landsat 8 L2C2) and dates of collection were filtered (Table 2). Topographic correction was required to remove the influence of topography on the surface reflectance (Tassi et al. 2021). It must be acknowledged that although Landsat data includes terrain correction, this is dissimilar to topographic correction. Terrain correction ensures each pixel is displayed as vi
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	Table 2. Data Sources and Filtered Dates of Collection for Composite Images.  
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	Figure 10. Data Flow Diagram to Create the Reduced Cloud Cover Composite Image. The Filtered Dates Referred to in the DFD are Highlighted in Table 2. 
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	Figure 11. Cloud Cover Masked Composite vs Individual Images (Landsat 2016, GEE and ENVI); Composite % of On-Land CC= <0.5, 2016/11/04 % of on-land CC= 26.8, 2016/12/06 % of on-land CC= 7.77 , 2016/12/22 % of on-land CC= 2.9. 

	3.4.2. ASSESSING THE IMPACTS PILOT STUDY  
	The literature review identified that there were three parameters that could be explored to study the impacts of hurricanes on agricultural land: 1) the impact of a storm surge on soil salinisation and subsequently plant productivity, 2) change in land cover, where short-term change is associated with defoliation and the immediate destruction of crops, and long-term change results in permanent damage, thus potential land abandonment, and finally 3) change in vegetation from wind and flooding. It was establi
	 
	The first method explored was image classification. Image classification allows changes in land cover to be assessed, identifying patterns of land cover/land-use change after Hurricane Matthew. Short-term, this would identify immediate changes to the canopy, whereas long-term change could be associated with permanent damage to agricultural lands, such as land degradation. Additionally, image classification can be used to distinguish between crop types. This would allow an analysis of what species are more r
	 
	GEE was employed to trial both methods; the recent machine learning algorithms available in GEE such as Random Forest and Support Vector Machine have demonstrated higher performance and accuracy compared to the traditional maximum likelihood algorithm (Ghimire et al. 2012; Nery et al. 2016; Tassi and Vizzari 2020), and do not rely on the data having a normal distribution (Tassi and Vizzari 2020). The process used to perform the image classifications closely followed methods from Tassie et al. (2021), a meth
	RGB pan-sharpening, has been shown to increase accuracy (Mohanaiah et al. 2013; Godinho, Guiomar and Gil 2018; Mananze, Pocas, Cunha 2020; Tassi et al. 2021). Due to the collection of primary data not being possible, and the lack of detailed on-the-ground data regarding land cover, the training data used to classify the images was validated by employing very high-resolution imagery, Planet Labs and Google Earth Pro. After evaluating both image classification methods and including the data cube the findings 
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	Figure 12. Data Flow Diagram of Tassie et al. (2021) Methodology (Pixel-Based, PB; Pixel Based including the image textural information, PBT; Object-Based, OB; Object-Based using the L8 15m Panchromatic band, OBP). 
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	Figure 13. OBIA (Left), Kappa Value: 0.76, vs PB Classification (Right), Kappa Value: 0.60.  

	 
	 
	The second method explored NDVI.  NDVI can be employed to assess change in vegetation from pre- to post-hurricane and monitor the long-term recovery consequent of Hurricane Matthew. The aim of this in the short-term was to assess the impact of the hurricane on the change in vegetation to gauge the severity of damage. In the long-term, assessing change in vegetation can inform how long it takes for the vegetation to recover; from this it can be inferred if the hurricane inflicted long-term damage (land degra
	  
	As mentioned in Section 3.3.1, collection of pre-hurricane data was challenging as in some years (2010-2014) Landsat imagery was not available, thus MODIS was employed to assess NDVI. To make sure MODIS produced similar outputs to Landsat despite the difference in spatial resolution, a comparison of NDVI from the same timeframe was carried out between both sources. Extraction of the NDVI mean, minimum, maximum, and standard deviation were assessed for a subset of the study area to assess the variability in 
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	Figure 14. Comparison of MODIS and Landsat mean NDVI. Error Bars Highlight the Standard Deviation Around the Mean, Showing Little Difference. 
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	MODIS 
	MODIS 

	Landsat 
	Landsat 



	Mean 
	Mean 
	Mean 
	Mean 

	0.65 
	0.65 

	0.63 
	0.63 


	Min 
	Min 
	Min 

	-0.04 
	-0.04 

	-0.56 
	-0.56 


	Max 
	Max 
	Max 

	0.91 
	0.91 

	1.00 
	1.00 


	StdDev 
	StdDev 
	StdDev 

	0.11 
	0.11 

	0.16 
	0.16 




	Table 4. NDVI Statistics MODIS vs Landsat for Agricultural Land September-November 2015. 
	 
	Although both image classification methods were successful, the outputs produced were compared to the subset of the study region for NDVI. It was concluded that the image classification outputs were similar to NDVI. This was due to the lack of on-the-ground data, meaning specific vegetation types were not able to be determined. Consequently, the training classes for the classification were vague, for example, ‘dense vegetation’ and ‘sparse vegetation’. Classes such as this can be determined using NDVI, a re
	vegetation, especially with the resolution of satellite imagery available. Consequently, although the image classification could determine the change in land cover, the outputs could not deduce the detail that was initially desired without on-the-ground/secondary data. Although NDVI cannot specify crop type, it is more reliable than an image classification that solely relies on the knowledge of the user to train the data. Therefore, NDVI will be employed to assess changes in agricultural vegetation from pre
	 
	 
	 
	3.4.3. CONCLUDING THE METHODS PILOT STUDIES 
	The pilot studies set out to effectively reduce and mask CC and evaluate methods to assess the impact and recovery of Hurricane Matthew. To conclude, the cloud mask alone produced unsatisfactory outputs; the area of land that could be assessed was significantly decreased and remnants of cloud shadow still occupied the imagery. Subsequently, GEE was employed to create a mosaic of cloud-free imagery.  
	Regarding methods to assess impact and recovery, due to the lack of and accessibility to on-the-ground/secondary data regarding land cover in Haiti, the image classifications did not produce the desired outputs. The lack of secondary data had a large influence on the methods and thus the findings of this study therefore will be discussed further in Sections 5.4-5.5. Consequently, this pilot study determined that employing image classification to assess land cover change did not meet the aim and objectives o
	 
	 
	 
	3.5. ASSESSING THE IMPACT & RECOVERY OF HURRICANE MATTHEW IN HAITI   
	The pilot studies completed prior to finalising the methods built the foundations for this research and thus the results. Recapping from the CC Pilot Study (Section 3.4.1), data was collected, pre-processed, and cloud-masked in GEE. The Image Classification Pilot Study concluded that image classification was not a suitable method and that assessing change in vegetation using NDVI was the most effective way to meet the aim and objectives. The subsequent sections in this chapter will explain how NDVI was prod
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	Figure 15. Data Flow Diagram of Methods Used to Produce Results. The filtered Dates are Highlighted in Table 2. 

	Figure
	3.5.1. NDVI  
	As already established NDVI was the chosen VI employed to assess the impact and recovery of agricultural land subsequent to Hurricane Matthew. As seen in the literature review, Equation 1 shows how NDVI is calculated by employing the Red and NIR band.  
	 
	𝑁𝐷𝑉𝐼𝑁𝐼𝑅𝑅𝑒𝑑𝑁𝐼𝑅𝑅𝑒𝑑            EQ.1. NDVI  
	=
	(
	−
	)
	(
	+
	)

	Regarding data processing, NDVI was produced in GEE. Utilising the script produced to create the cloud masked composite, NDVI (EQ1) was coded and applied to the composite images. NDVI data was produced for immediately pre- and post-hurricane, as well as every 6 months post-hurricane (within both growing seasons) to monitor the long-term recovery. The 'lastNonNull' reducer was utilised for the immediately pre-hurricane composite and the 'firstNonNull' for the immediately post-hurricane composite. This means 
	 
	Once the data was processed, the mean NDVI across each individual ROI (regional, land cover and commune scale) was extracted. This was completed for both the pre- and post-hurricane data. The mean NDVI shows the average NDVI within each commune and land cover across each timeframe. Equation 8 shows how the reference mean NDVI was calculated from the pre-hurricane NDVI data. 
	These mean NDVI values were taken forwards to analyse the change in NDVI to assess the immediate impact and long-term recovery.  
	 
	𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑀𝑒𝑎𝑛 𝑁𝐷𝑉𝐼 =2010 𝑀𝑁+2011 𝑀𝑁+2012 𝑀𝑁+2013 𝑀𝑁+2014 𝑀𝑁+2015 𝑀𝑁6                   Equation 8. Reference Mean NDVI Calculation Applied to Each Growing season, Whereby MN Stands for Mean NDVI.  
	 
	 
	 
	3.5.2. ANALYSING THE CHANGE IN NDVI  
	The methods employed to analyse the NDVI data include 1) change detection, 2) threshold maps showing change in NDVI, and 3) comparison of NDVI mean, minimum and maximum values from immediately pre- to post-hurricane (to infer severity of damage) and long-term, against the reference mean NDVI to monitor how long it takes vegetation returned to a ‘near normal’ state.  
	 
	The first method used to both visually and descriptively analyse the data was the classification of NDVI values into classes to produce change detection maps. Thresholding into classes of health has been applied in several studies to quantify damage and aid interpretation (Sahebjalal and Dashtekian 2013; Gammal, Ali and Samra 2014; Walcker et al. 2019). For different climatic regions, the NDVI ranges determining the health of a class differ (Gammal, Ali and Samra 2014; Aquino et al. 2018; USGS 2018; Earth O
	 
	 
	 
	 
	Table 5. NDVI Ranges Associated with Vegetation Health (Earth Observing Systems 2019). 
	 
	 
	 
	 
	 

	Class 
	Class 

	Range  
	Range  



	Health 
	Health 
	Health 
	Health 

	Dead/Inanimate Vegetation  
	Dead/Inanimate Vegetation  

	-1 – 0 
	-1 – 0 


	TR
	Unhealthy  
	Unhealthy  

	0 – 0.33 
	0 – 0.33 


	TR
	Moderately Healthy  
	Moderately Healthy  

	0.33 – 0.66 
	0.33 – 0.66 


	TR
	Very Healthy  
	Very Healthy  

	>0.66 
	>0.66 




	 
	 
	𝐴𝑟𝑒𝑎 (𝐾𝑚2)=(𝑃𝑖𝑥𝑒𝑙 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝐶𝑙𝑎𝑠𝑠 ×900)1,000,000                                  Equation 9. Area (Km2) 
	 
	Where 900 is the area of a Landsat pixel (m2) and 1,000,000 is the conversion of m2 to km2.  
	 
	The second approach employed ‘Image Change Workflow’ tools in ENVI to produce threshold maps showing change in NDVI from pre- to post-hurricane. This tool assesses the difference between the pre-hurricane and post-hurricane image to present the change that has occurred, classifying the change in NDVI experienced in each pixel into thresholds (for example, an increase in NDVI of 0.05-0.1). The thresholds were customised, employing the most effective interval ranges to present this set of data; classes for ch
	 
	The final approach employed to analyse change in vegetation consisted of extracting the NDVI mean, minimum and maximum values across each of the ROIs, similar to Hu and Smith (2018). These values were extracted for immediately pre- and post-hurricane, and every 6 months post-hurricane from 2016 to 2021 within the peak growing seasons (April-July and September-November). Additionally, the mean NDVI from both growing seasons (2010-2015) were extracted to calculate the reference mean NDVI, as mentioned previou
	mean gives more detail of the range of change experienced from pre- to post-hurricane. Data was extracted in ENVI employing the ‘Quick Stats’ tool and was investigated further in Excel. Comparing post-hurricane NDVI to the reference mean NDVI enabled conclusions to be drawn regarding whether agricultural vegetation had returned to a ‘near normal’ status, inferring if Hurricane Matthew had a long-term impact on agricultural productivity. For example, the productivity of the newly planted crops in a new growi
	 
	A key element of analysis is determining changes that are a result of the hurricane and not related to variability in the data. For example, analysis of pre-hurricane September-November mean NDVI (Table 5) show a difference of 0.052, thus any change in NDVI recorded post-hurricane <0.05 cannot be linked to the impact of the hurricane with certainty, as it could be considered natural variation. Therefore, to avoid addressing changes in NDVI that could be classed as seasonal fluctuations when assessing the im
	Table 6. September-November Growing Season Pre-Hurricane Mean NDVIs 
	 
	 
	 
	 
	 

	September-November Mean NDVIs 
	September-November Mean NDVIs 



	Stats 
	Stats 
	Stats 
	Stats 

	2010 (MODIS) 
	2010 (MODIS) 

	2011 (MODIS) 
	2011 (MODIS) 

	2012 (MODIS) 
	2012 (MODIS) 

	2013 (Landsat) 
	2013 (Landsat) 

	2014 (MODIS) 
	2014 (MODIS) 

	2015 (Landsat) 
	2015 (Landsat) 


	Mean 
	Mean 
	Mean 

	0.757 
	0.757 

	0.763 
	0.763 

	0.745 
	0.745 

	0.781 
	0.781 

	0.730 
	0.730 

	0.762 
	0.762 




	 
	 
	 
	3.6. CONCLUSION OF METHODS  
	To successfully meet the aim and objectives of this research, pilot studies were carried out to ensure that the most effective methods were employed. The first pilot study sought to find the best 
	approach to mask and reduce CC; this was a major issue when collecting data, as it significantly reduced the area of the study site that could be assessed. The pilot study concluded that cloud-masked composite images were the most effective method to create cloud-reduced imagery. The second pilot study evaluated methods to assess impact and recovery, and concluded that due to a lack of/access to on-the-ground data, images could not be classified to the detail that was desired. Consequently, the final method
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 4 
	4. RESULTS 
	The findings of this research will be addressed in the order of the objectives. Firstly, the pre-hurricane reference mean NDVI for each growing season will be presented, followed by the results of the immediate impacts, finishing with the long-term recovery. The results will go in-depth, comparing the communes and land covers (Figure 15) to aid understanding of the impacts and recovery of Hurricane Matthew across the Sud and Grand’Anse departments. 
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	Figure 16. Map of ROI; Communes and Land Covers within 70km of Hurricane Matthews Track (As Found in Section 3.2). 

	4.1. PRE-HURRICANE VEGETATION  
	Pre-hurricane Reference Mean NDVIs were employed to assess when agricultural vegetation had returned to near normal, i.e., a mean NDVI above the reference mean NDVI. The reference mean NDVI data shows that consistently, across all agricultural land, communes, and land covers, the reference mean NDVI was higher in the September-November growing season than in April-July growing season (Table 6). Chambellan had the highest average NDVI within both growing seasons with Dame Marie reporting values 0.005 below C
	Table 7. Reference Mean NDVI for Each Growing Season, Including Land Covers and Communes. 
	 
	 
	 
	 
	 

	Sep - Nov Growing Season Reference Mean NDVI 
	Sep - Nov Growing Season Reference Mean NDVI 

	April - July Growing Season Reference Mean NDVI 
	April - July Growing Season Reference Mean NDVI 



	Agricultural Land 
	Agricultural Land 
	Agricultural Land 
	Agricultural Land 

	0.756 
	0.756 

	0.675 
	0.675 


	Non-Agricultural Land 
	Non-Agricultural Land 
	Non-Agricultural Land 

	0.784 
	0.784 

	0.711 
	0.711 


	Commune Agricultural Land 
	Commune Agricultural Land 
	Commune Agricultural Land 


	Arniquet 
	Arniquet 
	Arniquet 

	0.701 
	0.701 

	0.591 
	0.591 


	Camp-Perrin 
	Camp-Perrin 
	Camp-Perrin 

	0.749 
	0.749 

	0.668 
	0.668 


	Chambellan 
	Chambellan 
	Chambellan 

	0.842 
	0.842 

	0.790 
	0.790 


	Dame Marie 
	Dame Marie 
	Dame Marie 

	0.835 
	0.835 

	0.785 
	0.785 


	Les Anglais 
	Les Anglais 
	Les Anglais 

	0.734 
	0.734 

	0.620 
	0.620 


	Les Cayes 
	Les Cayes 
	Les Cayes 

	0.659 
	0.659 

	0.568 
	0.568 


	Torbeck 
	Torbeck 
	Torbeck 

	0.707 
	0.707 

	0.629 
	0.629 


	Land Covers 
	Land Covers 
	Land Covers 


	Agroforestry 
	Agroforestry 
	Agroforestry 

	0.792 
	0.792 

	0.724 
	0.724 


	Dense Agriculture 
	Dense Agriculture 
	Dense Agriculture 

	0.715 
	0.715 

	0.630 
	0.630 


	Moderately Dense Agriculture 
	Moderately Dense Agriculture 
	Moderately Dense Agriculture 

	0.737 
	0.737 

	0.642 
	0.642 


	Forest 
	Forest 
	Forest 

	0.808 
	0.808 

	0.748 
	0.748 


	Savanna with Others 
	Savanna with Others 
	Savanna with Others 

	0.800 
	0.800 

	0.727 
	0.727 




	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	4.2. IMMEDIATE SHORT-TERM IMPACT 
	4.2.1. COMPARISON OF PRE- AND POST-HURRICANE NDVI  
	To assess the immediate impact, the NDVI from pre- to post-hurricane was assessed and compared (Figure 16). Pre-Hurricane agricultural land, specifically in the north Grand’Anse Department, a region dominated by Agroforestry, had a high NDVI with the majority of NDVI values >0.75.  Whereas pre-hurricane NDVI in the Sud Department was less consistent and, in some regions, NDVI values range from 0.2-0.3. However, on close inspection of agricultural land in the Torbeck commune, for example, many regions of Den
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	Figure 17. Pre-Hurricane NDVI (Left), Post-Hurricane NDVI (Right). 

	Figure
	4.2.2. CHANGE DETECTION  
	Figure 17 highlights that overall, the NDVI of vegetation decreased, specifically in the Sud department, with large regions shifting from ‘very healthy vegetation’ to ‘moderately healthy vegetation’. This decrease is related to isolated areas of vegetation post-hurricane being classed as ‘unhealthy’ parallel to river courses within the Sud department. As seen in Figure 18, ‘very healthy’ vegetation decreased by 381.7 km2, and ‘moderately healthy’ and ‘unhealthy vegetation’ increased by 406.9 km2 and 37.5 km
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	Figure 18. Pre-Hurricane (Left) vs Post-Hurricane (Right) NDVI Change Detection. 
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	Figure 19. Pre vs Post-Hurricane NDVI Health Change Detection Area (km2). 

	4.2.3. NDVI MEAN, MINIMUM, AND MAXIMUM & THRESHOLD MAPS SHOWING CHANGE IN NDVI  
	Figure 19 highlights areas of damage across the ROI. Negative values of change, which this study is more concerned with are represented in tones of red. Whereas areas that have experienced a positive change are highlighted in green. Within the thresholds of change maps, all areas that are classed as ‘Unclassified’ (areas of white within the imagery with no border around) are regions of cloud that were masked, but not filled in the creation of the composite; therefore, they contain no value. Figure 19 emphas
	In conjunction with change detection, the mean, minimum, and maximum NDVI statistics of both agricultural and non-agricultural land covers and agriculturally dependent communes were extracted and compared to further understand the overall impact. Assessing the change in NDVI from pre- to post-hurricane and the difference between post-hurricane NDVI and the reference mean NDVI across land cover types and communes highlights what regions sustained more damage (Table 7), enabling further understanding of the o
	 
	 
	 
	Textbox
	Span
	Figure 20. Threshold Map Highlighting the Change in NDVI from Pre to Post-Hurricane Matthew. 

	Figure
	 
	Table 8. A) Land Covers, Change in NDVI Pre to Post-Hurricane Ranked; B) Land Covers, Difference Between Post-Hurricane NDVI and Reference Mean NDVI Ranked; C) Communes, Change in NDVI Pre to Post-Hurricane Ranked; D) Communes, Difference Between Post-Hurricane 
	A 
	A 
	A 
	A 
	A 

	 
	 

	B 
	B 



	Land Cover 
	Land Cover 
	Land Cover 
	Land Cover 

	Change in NDVI from Pre- to Post-Hurricane 
	Change in NDVI from Pre- to Post-Hurricane 

	Rank  
	Rank  

	 
	 

	Land Cover 
	Land Cover 

	Difference Between Post-Hurricane NDVI and Reference mean NDVI 
	Difference Between Post-Hurricane NDVI and Reference mean NDVI 

	Rank  
	Rank  


	Forest  
	Forest  
	Forest  

	-0.086 
	-0.086 

	1 
	1 

	 
	 

	Forest  
	Forest  

	-0.099 
	-0.099 

	1 
	1 


	Dense Agriculture 
	Dense Agriculture 
	Dense Agriculture 

	-0.064 
	-0.064 

	2 
	2 

	 
	 

	Dense Agriculture 
	Dense Agriculture 

	-0.090 
	-0.090 

	2 
	2 


	Agroforestry  
	Agroforestry  
	Agroforestry  

	-0.063 
	-0.063 

	3 
	3 

	 
	 

	Agroforestry  
	Agroforestry  

	-0.078 
	-0.078 

	3 
	3 


	Moderately Dense Agriculture  
	Moderately Dense Agriculture  
	Moderately Dense Agriculture  

	-0.034 
	-0.034 

	4 
	4 

	 
	 

	Moderately Dense Agriculture  
	Moderately Dense Agriculture  

	-0.077 
	-0.077 

	4 
	4 


	Savanna with Others 
	Savanna with Others 
	Savanna with Others 

	-0.012 
	-0.012 

	5 
	5 

	 
	 

	Savanna with Others 
	Savanna with Others 

	-0.052 
	-0.052 

	5 
	5 


	 
	 
	 

	 
	 

	 
	 

	 
	 

	 
	 

	 
	 


	C 
	C 
	C 

	 
	 

	D 
	D 


	Communes  
	Communes  
	Communes  

	Change in NDVI from Pre- to Post-Hurricane 
	Change in NDVI from Pre- to Post-Hurricane 

	Rank  
	Rank  

	 
	 

	Communes  
	Communes  

	Difference Between Post-Hurricane NDVI and Reference mean NDVI 
	Difference Between Post-Hurricane NDVI and Reference mean NDVI 

	Rank  
	Rank  


	Chambellan  
	Chambellan  
	Chambellan  

	-0.125 
	-0.125 

	1 
	1 

	 
	 

	Torbeck  
	Torbeck  

	-0.140 
	-0.140 

	1 
	1 


	Torbeck 
	Torbeck 
	Torbeck 

	-0.110 
	-0.110 

	2 
	2 

	 
	 

	Camp-Perrin  
	Camp-Perrin  

	-0.124 
	-0.124 

	2 
	2 


	Camp-Perrin 
	Camp-Perrin 
	Camp-Perrin 

	-0.106 
	-0.106 

	3 
	3 

	 
	 

	Arniquet 
	Arniquet 

	-0.121 
	-0.121 

	3 
	3 


	Les Cayes  
	Les Cayes  
	Les Cayes  

	-0.088 
	-0.088 

	4 
	4 

	 
	 

	Les Cayes  
	Les Cayes  

	-0.112 
	-0.112 

	4 
	4 


	Arniquet 
	Arniquet 
	Arniquet 

	-0.062 
	-0.062 

	5 
	5 

	 
	 

	Chambellan  
	Chambellan  

	-0.083 
	-0.083 

	5 
	5 


	Dame Marie 
	Dame Marie 
	Dame Marie 

	-0.062 
	-0.062 

	5 
	5 

	 
	 

	Les Anglais 
	Les Anglais 

	-0.074 
	-0.074 

	6 
	6 


	Les Anglais 
	Les Anglais 
	Les Anglais 

	-0.040 
	-0.040 

	6 
	6 

	 
	 

	Dame Marie  
	Dame Marie  

	-0.072 
	-0.072 

	7 
	7 




	 
	 
	Table 8 and Figure 19 show that overall, there was a larger negative impact across agricultural land, with the mean NDVI decreasing by 0.055 from pre- to post-hurricane, in comparison to only 0.025 (pre- to post-hurricane) in non-agricultural land. This is also reinforced by the minimum value where the minimum NDVI decreased by 0.075 from pre- to post-hurricane in comparison to non-agricultural land only decreasing by 0.013.  
	 
	 
	 
	Table 9. Pre- vs Post-Hurricane NDVI Statistics Across Agricultural Land vs Non-Agricultural Land. 
	  
	  
	  
	  
	  

	Agricultural Land 
	Agricultural Land 

	Non-Agricultural Land 
	Non-Agricultural Land 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 


	Mean 
	Mean 
	Mean 

	0.731 
	0.731 

	0.676 
	0.676 

	-0.055 
	-0.055 

	0.741 
	0.741 

	0.716 
	0.716 

	-0.025 
	-0.025 


	Min 
	Min 
	Min 

	-0.915 
	-0.915 

	-0.991 
	-0.991 

	-0.075 
	-0.075 

	-0.973 
	-0.973 

	-0.985 
	-0.985 

	-0.013 
	-0.013 


	Max 
	Max 
	Max 

	1.000 
	1.000 

	1.000 
	1.000 

	0.000 
	0.000 

	1.000 
	1.000 

	1.000 
	1.000 

	0.000 
	0.000 




	 
	The commune of Arniquet is ranked the 5th most damaged commune based on the difference in mean NDVI from pre- to post-hurricane. However, based on the difference between minimum NDVI values pre- to post-hurricane, Arniquet is ranked 1st, with the minimum NDVI decreasing by 0.918 (Table 9). It can be inferred that some regions within this commune have sustained severe damage, however, the area experiencing the damage is only a small region, therefore did not have a large influence on mean NDVI. Coupled with 
	Communes 
	Communes 
	Communes 
	Communes 
	Communes 

	Arniquet 
	Arniquet 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane 
	Pre-Hurricane 

	Post-Hurricane 
	Post-Hurricane 

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane Mean & Reference Mean NDVI 
	Difference Between Post-Hurricane Mean & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.642 
	0.642 

	0.580 
	0.580 

	-0.063 
	-0.063 

	-0.121 
	-0.121 


	Min 
	Min 
	Min 

	0.229 
	0.229 

	-0.689 
	-0.689 

	-0.918 
	-0.918 

	  
	  


	TR
	Max 
	Max 

	0.889 
	0.889 

	0.903 
	0.903 

	0.014 
	0.014 




	Table 10. Arniquet Pre- vs Post-Hurricane NDVI Statistics. 
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	Figure 21. Threshold Map of Arniquet Agricultural Land. 

	 
	 
	By assessing the change in mean and minimum NDVI values pre- to post-hurricane alongside the difference between mean NDVI post-hurricane and the reference mean NDVI, the two most impacted communes are Torbeck and Camp-Perrin. Torbeck’s mean NDVI (Table 10) is the lowest below the reference mean NDVI and experiences the largest change in mean NDVI from pre- to post-hurricane (decreasing by 0.112). Additionally, the commune showed a considerable decrease in minimum NDVI (0.361) from pre- to post-hurricane. Fi
	 
	 
	Table 11. Torbeck Pre vs Post-Hurricane NDVI Statistics. 
	Communes 
	Communes 
	Communes 
	Communes 
	Communes 

	Torbeck 
	Torbeck 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.679 
	0.679 

	0.568 
	0.568 

	-0.112 
	-0.112 

	-0.139 
	-0.139 


	Min 
	Min 
	Min 

	-0.533 
	-0.533 

	-0.894 
	-0.894 

	-0.361 
	-0.361 

	  
	  


	Max 
	Max 
	Max 

	0.993 
	0.993 

	0.956 
	0.956 

	-0.038 
	-0.038 
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	Figure 21. Threshold Map, Torbeck Agricultural Land. 

	 
	 
	Similarly, Camp-Perrin was the second most impacted commune based on the mean and minimum change in NDVI from pre- to post-hurricane and the difference between mean NDVI post-hurricane and reference mean NDVI (Table 11). Consequently, the mean NDVI is 0.125 below the September-November growing season reference mean NDVI and the minimum NDVI value decreased by 0.597 post-hurricane. Figure 23 highlights that the most severe damage is concentrated within the centre of this commune running from east to west wit
	Table 12. Camp-Perrin Pre- vs Post-Hurricane NDVI Statistics. 
	Communes 
	Communes 
	Communes 
	Communes 
	Communes 

	Camp-Perrin 
	Camp-Perrin 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.731 
	0.731 

	0.625 
	0.625 

	-0.107 
	-0.107 

	-0.125 
	-0.125 


	Min 
	Min 
	Min 

	0.037 
	0.037 

	-0.560 
	-0.560 

	-0.597 
	-0.597 

	  
	  


	TR
	Max 
	Max 

	1.000 
	1.000 

	0.985 
	0.985 

	-0.015 
	-0.015 
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	Figure 22. Threshold Map, Camp-Perrin Agricultural Land. 
	 

	Les Cayes was the commune that experienced the smallest difference in the minimum NDVI from pre- to post-hurricane, decreasing by 0.053 (Table 12). Despite this, the mean NDVI decreased by 0.088 post-hurricane, 0.112 below the reference mean NDVI for the September to November growing season. Figure 24 shows that dense areas of damage (decrease in NDVI >0.3) are concentrated around/to the north of the main urban area circled in the figure. Additionally, the large negative changes in NDVI within this commune 
	Table 13. Les Cayes Pre vs Post-Hurricane NDVI Statistics. 
	Communes 
	Communes 
	Communes 
	Communes 
	Communes 

	Les Cayes 
	Les Cayes 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.635 
	0.635 

	0.547 
	0.547 

	-0.088 
	-0.088 

	-0.112 
	-0.112 


	Min 
	Min 
	Min 

	-0.786 
	-0.786 

	-0.839 
	-0.839 

	-0.053 
	-0.053 

	  
	  


	Max 
	Max 
	Max 

	0.982 
	0.982 

	0.979 
	0.979 

	-0.003 
	-0.003 
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	Figure 23. Threshold Map, Les Cayes Agricultural Land. 

	 
	 
	Finally, Dame Marie and Chambellan emphasise the severe damage that can be seen running parallel to the coast and around river channels. Dame Marie experienced a 0.400 decrease in the minimum NDVI from pre- post-hurricane (Table 13), highlighting that some regions sustained significant damage. Figure 25 shows that change in NDVI >-0.3 was common, along the coastline and to the northeast/southeast of the town of Dame Marie, circled in the figure. In contrast, the more severe damage in Chambellan surrounded v
	Table 14. Dame Marie Pre vs Post-Hurricane NDVI Statistics. 
	Communes 
	Communes 
	Communes 
	Communes 
	Communes 

	Dame Marie 
	Dame Marie 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.825 
	0.825 

	0.763 
	0.763 

	-0.062 
	-0.062 

	-0.071 
	-0.071 


	Min 
	Min 
	Min 

	-0.408 
	-0.408 

	-0.807 
	-0.807 

	-0.400 
	-0.400 

	  
	  


	Max 
	Max 
	Max 

	0.993 
	0.993 

	0.991 
	0.991 

	-0.002 
	-0.002 
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	Figure 24. Threshold Map, Dame Marie Agricultural Land. 

	Table 15. Chambellan Pre vs Post-Hurricane NDVI Statistics. 
	Communes 
	Communes 
	Communes 
	Communes 
	Communes 

	Chambellan 
	Chambellan 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.844 
	0.844 

	0.759 
	0.759 

	-0.086 
	-0.086 

	-0.083 
	-0.083 


	Min 
	Min 
	Min 

	0.039 
	0.039 

	-0.152 
	-0.152 

	-0.191 
	-0.191 

	  
	  


	Max 
	Max 
	Max 

	0.995 
	0.995 

	0.989 
	0.989 

	-0.006 
	-0.006 
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	Figure 25. Threshold Map, Chambellan Agricultural Land. 

	  
	In regard to land cover, the results of the difference between the mean NDVI post-hurricane compared to the reference mean NDVI showed that Dense Agriculture was the most severely damaged agricultural land cover (Table 15). Dense Agriculture’s mean NDVI was 0.089 below the reference mean NDVI with most damage being in the Torbeck commune (Figure 27). In contrast, Agroforestry’s mean NDVI post-hurricane was 0.078 below the average (Table 16). Despite this, Agroforestry had a larger decrease in minimum NDVI (
	Table 16. Dense Agriculture Pre vs Post-Hurricane NDVI Statistics. 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 

	Dense Agriculture 
	Dense Agriculture 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.689 
	0.689 

	0.625 
	0.625 

	-0.063 
	-0.063 

	-0.089 
	-0.089 


	Min 
	Min 
	Min 

	-0.786 
	-0.786 

	-0.975 
	-0.975 

	-0.189 
	-0.189 

	  
	  


	Max 
	Max 
	Max 

	0.999 
	0.999 

	1.000 
	1.000 

	0.001 
	0.001 
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	Figure 26. Threshold Map, Dense Agriculture. 

	Table 17. Agroforestry Pre vs Post-Hurricane NDVI Statistics. 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 

	Agroforestry 
	Agroforestry 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.777 
	0.777 

	0.714 
	0.714 

	-0.064 
	-0.064 

	-0.078 
	-0.078 


	Min 
	Min 
	Min 

	-0.622 
	-0.622 

	-0.991 
	-0.991 

	-0.369 
	-0.369 

	  
	  


	Max 
	Max 
	Max 

	1.000 
	1.000 

	1.000 
	1.000 

	0.000 
	0.000 
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	Figure 27. Threshold Map, Agroforestry. 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	The NDVI statistics for non-agricultural land cover, Forest, and Savanna with Others, allowed for further comparison of the severity of damage. Out of all land covers, Forest was the most damaged with the minimum NDVI decreasing by 0.733 from pre- to post-hurricane, consequently, the mean NDVI decreased by 0.086 (Table 17). Forest lies predominantly within the centre of the ROI, with dense regions of damage within the east (Figure 29).  
	Table 18. Forest Pre vs Post-Hurricane NDVI Statistics. 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 

	Forest 
	Forest 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.795 
	0.795 

	0.709 
	0.709 

	-0.086 
	-0.086 

	-0.098 
	-0.098 


	Min 
	Min 
	Min 

	0.114 
	0.114 

	-0.619 
	-0.619 

	-0.733 
	-0.733 

	  
	  


	Max 
	Max 
	Max 

	0.996 
	0.996 

	1.000 
	1.000 

	0.004 
	0.004 

	  
	  




	 
	Figure
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Textbox
	Span
	Figure 28. Threshold Map, Forest. 

	 
	Across the ROIs assessed, Les Anglais (0.040), Moderately Dense Agriculture (0.034) and Savanna with the Presence of Others (0.012) experienced a change in mean NDVI from pre- to post-hurricane <0.05. Therefore, based on the significance level established in section 3.5.2., the changes experienced (Figures 30-32 and Tables 18-20) are not likely to be the result of the hurricane. 
	 
	 
	Table 19. Les Anglais Pre vs Post-Hurricane NDVI Statistics. 
	Communes 
	Communes 
	Communes 
	Communes 
	Communes 

	Les Anglais 
	Les Anglais 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.700 
	0.700 

	0.660 
	0.660 

	-0.040 
	-0.040 

	-0.074 
	-0.074 


	Min 
	Min 
	Min 

	-0.182 
	-0.182 

	-0.315 
	-0.315 

	-0.133 
	-0.133 

	  
	  


	Max 
	Max 
	Max 

	0.995 
	0.995 

	0.958 
	0.958 

	-0.038 
	-0.038 
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	Figure 29. Threshold Map, Les Anglais Agricultural Land. 

	 
	 
	 
	 
	 
	 
	 
	 
	Table 20. Moderately Dense Agriculture Pre vs Post-Hurricane NDVI Statistics. 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 

	Moderately Dense Agriculture 
	Moderately Dense Agriculture 



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.694 
	0.694 

	0.660 
	0.660 

	-0.034 
	-0.034 

	-0.077 
	-0.077 


	Min 
	Min 
	Min 

	-0.915 
	-0.915 

	-0.980 
	-0.980 

	-0.064 
	-0.064 

	  
	  


	Max 
	Max 
	Max 

	1.000 
	1.000 

	1.000 
	1.000 

	0.000 
	0.000 
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	Figure 30. Threshold Map, Moderately Dense Agriculture. 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	Table 21. Savanna with Presence of Others Pre vs Post-Hurricane NDVI Statistics. 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 
	Land Covers 

	Savanna with Others  
	Savanna with Others  



	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Post-Hurricane  
	Post-Hurricane  

	Difference Between Pre and Post 
	Difference Between Pre and Post 

	Difference Between Post-Hurricane & Reference Mean NDVI 
	Difference Between Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.759 
	0.759 

	0.747 
	0.747 

	-0.012 
	-0.012 

	-0.052 
	-0.052 


	Min 
	Min 
	Min 

	-0.650 
	-0.650 

	-0.880 
	-0.880 

	-0.231 
	-0.231 

	  
	  


	Max 
	Max 
	Max 

	1.000 
	1.000 

	1.000 
	1.000 

	0.000 
	0.000 

	  
	  




	 
	Figure
	 
	Textbox
	Span
	Figure 31. Threshold Map, Savanna with Presence of Others. 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	4.2.4. THRESHOLD MAP DATA EXTRACTION 
	The area (km2) of each change in NDVI threshold for agricultural land (presented in Figure 19) is presented in Table 22. The results show that overall, the area of agricultural land that sustained a 
	negative impact on NDVI was larger than the areas that increased in NDVI post-hurricane. Considering the significance level established in section 3.5.1., a total area of 1,252.6 km2 experienced a decrease in NDVI that can be associated with the impact of the hurricane. The area of land that experienced an increase in NDVI was 911.2 km2. The trend in Table 20 shows that as the change in NDVI increased (positive or negative), the area of land experiencing the change decreased, with the exception of the last 
	Table 22. Area of Agricultural Land Change in NDVI Classes. 
	Agricultural Land Thresholds of Change in NDVI 
	Agricultural Land Thresholds of Change in NDVI 
	Agricultural Land Thresholds of Change in NDVI 
	Agricultural Land Thresholds of Change in NDVI 
	Agricultural Land Thresholds of Change in NDVI 



	Threshold 
	Threshold 
	Threshold 
	Threshold 

	Area (km2) 
	Area (km2) 


	Change >0.3 
	Change >0.3 
	Change >0.3 

	12 
	12 


	Change 0.25-0.3 
	Change 0.25-0.3 
	Change 0.25-0.3 

	11.2 
	11.2 


	Change 0.2-0.25 
	Change 0.2-0.25 
	Change 0.2-0.25 

	24.8 
	24.8 


	Change 0.15-0.2 
	Change 0.15-0.2 
	Change 0.15-0.2 

	55.2 
	55.2 


	Change 0.1-0.15 
	Change 0.1-0.15 
	Change 0.1-0.15 

	116.7 
	116.7 


	Change 0.05-0.1 
	Change 0.05-0.1 
	Change 0.05-0.1 

	239.9 
	239.9 


	Change 0.0-0.05 
	Change 0.0-0.05 
	Change 0.0-0.05 

	451.4 
	451.4 


	No Data 
	No Data 
	No Data 

	0 
	0 


	Change (0.0) -(-0.05) 
	Change (0.0) -(-0.05) 
	Change (0.0) -(-0.05) 

	537.3 
	537.3 


	Change (-0.05) -(-0.1) 
	Change (-0.05) -(-0.1) 
	Change (-0.05) -(-0.1) 

	436.6 
	436.6 


	Change (-0.1) -(-0.15) 
	Change (-0.1) -(-0.15) 
	Change (-0.1) -(-0.15) 

	305.9 
	305.9 


	Change (-0.15) -(-0.2) 
	Change (-0.15) -(-0.2) 
	Change (-0.15) -(-0.2) 

	201.4 
	201.4 


	Change (-0.2) -(-0.25) 
	Change (-0.2) -(-0.25) 
	Change (-0.2) -(-0.25) 

	129.9 
	129.9 


	Change (-0.25) -(-0.3) 
	Change (-0.25) -(-0.3) 
	Change (-0.25) -(-0.3) 

	80.2 
	80.2 


	Change > (-0.3) 
	Change > (-0.3) 
	Change > (-0.3) 

	98.6 
	98.6 
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	Figure 32. Area Experiencing >-0.3 Change in NDVI Across Agricultural Land Covers. 

	Figure
	 
	 
	4.3. LONG-TERM IMPACT RESULTS 
	Table 22 accompanied by Figure 34 show that by 6 months post-hurricane (April to July 2017 growing season), the mean NDVI was 0.032 more than what was recorded immediately post-hurricane and was 0.033 and higher than the reference mean NDVI for the April to July growing season. Additionally, Figure 34 shows that the mean NDVI 12 months post-hurricane exceeded the Sep-Nov reference mean NDVI highlighting that there were no long-term impacts on the foundations of the land affecting the agricultural vegetation
	 
	Table 23. Long-Term Recovery NDVI Mean, Minimum, Maximum, and Growing Season NDVI Averages. 
	Stats 
	Stats 
	Stats 
	Stats 
	Stats 

	Pre-Hurricane  
	Pre-Hurricane  

	Immediately Post-hurricane  
	Immediately Post-hurricane  

	6 Months Post-Hurricane (Apr-Jul 2017) 
	6 Months Post-Hurricane (Apr-Jul 2017) 

	12 Months Post-Hurricane (Sep-Nov 2017) 
	12 Months Post-Hurricane (Sep-Nov 2017) 

	18 Months Post-Hurricane (Apr-Jul 2018) 
	18 Months Post-Hurricane (Apr-Jul 2018) 

	24 Months Post-Hurricane (Sep-Nov 2018) 
	24 Months Post-Hurricane (Sep-Nov 2018) 

	30 Months Post-Hurricane (Apr-Jul 2019) 
	30 Months Post-Hurricane (Apr-Jul 2019) 

	36 Months Post-Hurricane (Sep-Nov 2019) 
	36 Months Post-Hurricane (Sep-Nov 2019) 

	42 Months Post-Hurricane (Apr-Jul 2020) 
	42 Months Post-Hurricane (Apr-Jul 2020) 

	48 Months Post-Hurricane (Sep-Nov 2020) 
	48 Months Post-Hurricane (Sep-Nov 2020) 

	54 Months Post-Hurricane (Apr-Jul 2021) 
	54 Months Post-Hurricane (Apr-Jul 2021) 

	60 Months Post-Hurricane (Sep-Nov 2021) 
	60 Months Post-Hurricane (Sep-Nov 2021) 



	Mean 
	Mean 
	Mean 
	Mean 

	0.731 
	0.731 

	0.676 
	0.676 

	0.708 
	0.708 

	0.773 
	0.773 

	0.603 
	0.603 

	0.767 
	0.767 

	0.666 
	0.666 

	0.773 
	0.773 

	0.679 
	0.679 

	0.757 
	0.757 

	0.735 
	0.735 

	0.768 
	0.768 


	Min 
	Min 
	Min 

	-0.915 
	-0.915 

	-0.991 
	-0.991 

	-0.998 
	-0.998 

	-1.000 
	-1.000 

	-0.960 
	-0.960 

	-0.999 
	-0.999 

	-0.999 
	-0.999 

	-0.996 
	-0.996 

	-0.785 
	-0.785 

	-1.000 
	-1.000 

	-1.000 
	-1.000 

	-1.000 
	-1.000 


	Max 
	Max 
	Max 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 

	1.000 
	1.000 


	StdDev 
	StdDev 
	StdDev 

	0.127 
	0.127 

	0.151 
	0.151 

	0.137 
	0.137 

	0.144 
	0.144 

	0.142 
	0.142 

	0.131 
	0.131 

	0.147 
	0.147 

	0.132 
	0.132 

	0.139 
	0.139 

	0.151 
	0.151 

	0.140 
	0.140 

	0.157 
	0.157 


	Sep-Nov/April-July Growing Season Reference Mean NDVI 
	Sep-Nov/April-July Growing Season Reference Mean NDVI 
	Sep-Nov/April-July Growing Season Reference Mean NDVI 

	0.756 
	0.756 

	0.756 
	0.756 

	0.675 
	0.675 

	0.756 
	0.756 

	0.675 
	0.675 

	0.756 
	0.756 

	0.675 
	0.675 

	0.756 
	0.756 

	0.675 
	0.675 

	0.756 
	0.756 

	0.675 
	0.675 

	0.756 
	0.756 
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	Figure 33. April-July (Left) and September-November (Right) Growing Season Long-Term Recovery Compared with the Growing Season Reference Mean NDVI. 

	Figure
	Figure
	Threshold maps comparing immediately post-hurricane NDVI with 6 months post-hurricane NDVI shows that NDVI did not increased in all regions by 6 months post-hurricane. Table 23 shows that 1646 km2 of land increased in NDVI and 1002.9 km2 decreased in NDVI from immediately post-hurricane to 6 months post-hurricane. Although the ‘decreased in NDVI’ area is considered large, Figure 35 demonstrates that the areas that have experienced a decrease in NDVI are <0.1. In contrast, Figure 36 highlights that the decre
	Table 24. Area of Agricultural Land Increase/Decreasing in NDVI from Immediately Post-Hurricane to 6 Months Post-Hurricane. 
	Class 
	Class 
	Class 
	Class 
	Class 

	Area (km2) 
	Area (km2) 



	Increased NDVI  
	Increased NDVI  
	Increased NDVI  
	Increased NDVI  

	1646.0 
	1646.0 


	Decreased NDVI 
	Decreased NDVI 
	Decreased NDVI 

	1002.9 
	1002.9 
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	Figure 34. Threshold Map, Agricultural Land Immediately Post-Hurricane to 6 Months Post-Hurricane. 
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	Figure 35. Threshold Map, Agricultural Land Immediately Post-Hurricane to 12 Months Post-Hurricane. 

	Figure
	 
	Table 25. Area of Agricultural Land Increase/Decreasing in NDVI from Immediately Post-Hurricane to 12 Months Post-Hurricane. 
	Class 
	Class 
	Class 
	Class 
	Class 

	Area (km2) 
	Area (km2) 



	Increased NDVI 
	Increased NDVI 
	Increased NDVI 
	Increased NDVI 

	2323.8 
	2323.8 


	Decreased NDVI 
	Decreased NDVI 
	Decreased NDVI 

	409.6 
	409.6 




	 
	Tables 25 and 26 present the change in the mean, minimum, and maximum NDVI for each commune and land cover from post-hurricane to 6 months post-hurricane, as well as the difference between the 6 months post-hurricane (April-July 2017) mean NDVI value and the reference mean NDVI April-July growing season values found in Table 6. Table 25 shows that for all commune’s 6-month post-hurricane mean NDVI values are >0.024 higher than the April-July growing season average, once again suggesting that a full recovery
	Table 26. Communes Immediately Post-Hurricane vs 6 Months Post-Hurricane NDVI Statistics. 
	Communes  
	Communes  
	Communes  
	Communes  
	Communes  

	Torbeck  
	Torbeck  

	Les Anglais  
	Les Anglais  

	Camp-Perrin 
	Camp-Perrin 

	Dame Marie  
	Dame Marie  



	Stats 
	Stats 
	Stats 
	Stats 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.568 
	0.568 

	0.657 
	0.657 

	0.089 
	0.089 

	0.028 
	0.028 

	0.660 
	0.660 

	0.644 
	0.644 

	-0.016 
	-0.016 

	0.024 
	0.024 

	0.625 
	0.625 

	0.715 
	0.715 

	0.090 
	0.090 

	0.047 
	0.047 

	0.763 
	0.763 

	0.826 
	0.826 

	0.063 
	0.063 

	0.041 
	0.041 


	Min 
	Min 
	Min 

	-0.894 
	-0.894 

	-0.260 
	-0.260 

	0.634 
	0.634 

	  
	  

	-0.315 
	-0.315 

	-0.148 
	-0.148 

	0.167 
	0.167 

	  
	  

	-0.560 
	-0.560 

	-0.085 
	-0.085 

	0.475 
	0.475 

	  
	  

	-0.807 
	-0.807 

	-0.642 
	-0.642 

	0.165 
	0.165 

	  
	  


	Max 
	Max 
	Max 

	0.956 
	0.956 

	0.929 
	0.929 

	-0.03 
	-0.03 

	  
	  

	0.958 
	0.958 

	0.988 
	0.988 

	0.031 
	0.031 

	  
	  

	0.985 
	0.985 

	0.997 
	0.997 

	0.013 
	0.013 

	  
	  

	0.991 
	0.991 

	0.999 
	0.999 

	0.009 
	0.009 

	  
	  


	Communes  
	Communes  
	Communes  

	Arniquet 
	Arniquet 

	Chambellan  
	Chambellan  

	Les Cayes  
	Les Cayes  

	  
	  

	  
	  

	  
	  

	  
	  


	Stats 
	Stats 
	Stats 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	  
	  

	  
	  

	  
	  

	  
	  


	Mean 
	Mean 
	Mean 

	0.580 
	0.580 

	0.638 
	0.638 

	0.058 
	0.058 

	0.047 
	0.047 

	0.759 
	0.759 

	0.831 
	0.831 

	0.073 
	0.073 

	0.041 
	0.041 

	0.547 
	0.547 

	0.601 
	0.601 

	0.054 
	0.054 

	0.033 
	0.033 

	  
	  

	  
	  

	  
	  

	  
	  


	Min 
	Min 
	Min 

	-0.689 
	-0.689 

	-0.168 
	-0.168 

	0.520 
	0.520 

	  
	  

	-0.152 
	-0.152 

	-0.090 
	-0.090 

	0.062 
	0.062 

	  
	  

	-0.839 
	-0.839 

	-0.347 
	-0.347 

	0.492 
	0.492 

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  


	Max 
	Max 
	Max 

	0.903 
	0.903 

	0.931 
	0.931 

	0.028 
	0.028 

	  
	  

	0.989 
	0.989 

	0.999 
	0.999 

	0.010 
	0.010 

	  
	  

	0.979 
	0.979 

	0.998 
	0.998 

	0.019 
	0.019 

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  




	 
	Table 27. Land Covers Immediately Post-Hurricane vs 6 Months Post-Hurricane NDVI Statistics. 
	Land Cover 
	Land Cover 
	Land Cover 
	Land Cover 
	Land Cover 

	Agricultural Land 
	Agricultural Land 



	TBody
	TR
	Dense Agriculture  
	Dense Agriculture  

	Moderately Dense Agriculture 
	Moderately Dense Agriculture 

	Dense Agroforestry 
	Dense Agroforestry 


	Stats 
	Stats 
	Stats 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 


	Mean 
	Mean 
	Mean 

	0.625 
	0.625 

	0.659 
	0.659 

	0.034 
	0.034 

	0.029 
	0.029 

	0.660 
	0.660 

	0.678 
	0.678 

	0.018 
	0.018 

	0.037 
	0.037 

	0.714 
	0.714 

	0.756 
	0.756 

	0.042 
	0.042 

	0.032 
	0.032 


	Min 
	Min 
	Min 

	-0.975 
	-0.975 

	-0.350 
	-0.350 

	0.625 
	0.625 

	  
	  

	-0.980 
	-0.980 

	-0.984 
	-0.984 

	-0.004 
	-0.004 

	  
	  

	-0.991 
	-0.991 

	-0.998 
	-0.998 

	-0.007 
	-0.007 

	  
	  


	Max 
	Max 
	Max 

	1.000 
	1.000 

	0.998 
	0.998 

	-0.002 
	-0.002 

	  
	  

	1.000 
	1.000 

	1.000 
	1.000 

	0.000 
	0.000 

	  
	  

	1.000 
	1.000 

	1.000 
	1.000 

	0.000 
	0.000 

	  
	  


	Land Cover 
	Land Cover 
	Land Cover 

	Non-Agricultural Land 
	Non-Agricultural Land 
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	Forest 
	Forest 

	Savanna With Others 
	Savanna With Others 

	  
	  

	  
	  

	  
	  

	  
	  


	Stats 
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	Stats 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	Post-Hurricane  
	Post-Hurricane  

	6 Months Post-Hurricane (April-July 2017) 
	6 Months Post-Hurricane (April-July 2017) 

	Difference Between Post and 6 Months Post 
	Difference Between Post and 6 Months Post 

	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 
	Difference Between 6 Months Post-Hurricane & Reference Mean NDVI 

	  
	  

	  
	  
	 
	 
	 

	  
	  

	  
	  


	Mean 
	Mean 
	Mean 

	0.709 
	0.709 

	0.755 
	0.755 

	0.045 
	0.045 

	0.006 
	0.006 

	0.747 
	0.747 

	0.757 
	0.757 

	0.010 
	0.010 

	0.030 
	0.030 

	  
	  

	  
	  

	  
	  

	 
	 


	Min 
	Min 
	Min 

	-0.619 
	-0.619 

	0.003 
	0.003 

	0.622 
	0.622 

	  
	  

	-0.880 
	-0.880 

	-0.469 
	-0.469 

	0.412 
	0.412 

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  


	Max 
	Max 
	Max 

	1.000 
	1.000 

	0.986 
	0.986 

	-0.014 
	-0.014 

	  
	  

	1.000 
	1.000 

	1.000 
	1.000 

	0.000 
	0.000 

	  
	  

	  
	  

	  
	  

	  
	  

	  
	  




	Finally, although it has been established that a full recovery was made by 6 months post-Hurricane Matthew, the long-term NDVI outputs drew attention to other significant events that impacted agricultural vegetation. Firstly, as mentioned in Section 4.1, across the agricultural land cover, the mean NDVI is consistently lower in the April-July growing season in comparison to the September to November growing season. This is clear, visually, in the April-July (6, 18-, 30-, 42-, and 54-months post-hurricane) N
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	Figure 36. Long-Term Agricultural Land NDVI. 

	4.4. SUMMARY OF THE RESULTS 
	Firstly, the reference mean NDVI results highlighted the seasonal fluctuations in NDVI between the April-July and the September-November growing season. NDVI within the September-November growing season was consistently higher than the April-July growing season.  
	To conclude, Hurricane Matthew had an immediate impact on agricultural vegetation, specifically in the Sud department. Patterns of severe damage were concentrated along the coastline and running parallel to valleys. The two most impacted communes were Torbeck and Camp-Perrin, conversely, Les Anglais was the least impacted. In regard to agricultural land cover, Dense Agriculture and Agroforestry sustained a larger area experiencing a decrease in NDVI >0.3 than Moderately Dense Agriculture. Overall, across ag
	In the long-term, agricultural vegetation returned to near normal by 6 months post-hurricane, with the mean NDVI values being above the reference mean NDVI by 6 months post-hurricane. This finding was consistent across all communes and land covers. Despite the threshold maps highlighting that some regions decreased in NDVI from immediately post-hurricane to 6 months post-hurricane, these decreases were small and can be associated with the seasonal fluctuations between the April-July and September to Novembe
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 5  
	5. DISCUSSION 
	This chapter will first interpret and describe the short-term impacts, acknowledging the potential reasons for the changes in NDVI. This will be followed by the long-term recovery and discussion of what the short/long-term impact results mean for building resilience in Haiti’s agricultural sector. Within both sections, the land covers and communes will be discussed. Finally, there will be a thorough evaluation of this research, identifying the successes of the study as well as limitations, with suggestions 
	 
	Evidence has shown that the severity of hurricane damage on agriculture can contribute to food insecurity. Within Haiti, this has been exacerbated by a lack of research on the country’s geographical vulnerability (Cohen and Singh 2014).  That being said, little has been acknowledged regarding the socio-economic and geo-political factors (including access to/availability of secondary data) that have influenced this further. Throughout the discussion, consideration will therefore be made to Haiti’s complex hi
	 
	 
	 
	5.1. HAITI’S SOCIO-ECONOMIC & POLITICAL HISTORY, AND CURRENT STATUS 
	Haiti’s socio-economic position continues to be hindered by uncertainty, environmental fragility, political instability, and associated violence (The World Bank 2022). Haiti is the poorest nation in the western hemisphere, with a GDP per capita of US$1,815 in 2021 (World Bank 2021), with approximately 1.2 million suffering from severe hunger (World Food Program 2022).  Whilst Haiti’s food insecurity has largely been associated with the reoccurring environmental shocks that it has been subjected to, includin
	 
	Haiti’s path to development can be traced back to 1804 when Haiti gained independence from France. Haiti was the first country to be founded by formerly enslaved people and in order to stem their growth further and prevent potential threats to the current state of norm regarding colonialism and slavery, a sizeable debt was enforced on the country amounting to what would be $21 billion dollars today (Edmonds 2013; Daut 2021). Haiti, in effect, were being made to pay for their freedom twice, first through con
	 
	A period of structural adjustment occurred during this period, with infrastructure starved, preventing necessary investment in education, health and transportation, key to a country’s socio-economic development. Moreover, Haiti’s history laid the foundation for a lack of trust amongst the government and locals towards other countries and is predominantly responsible for the underfunding of the country's education and healthcare in the 20th century (Daut 2021). The repercussions of Haiti’s trouble history ha
	 
	Haiti’s past, which has paved its current status, is capping future generations’ potential and preventing adequate preparedness and resilience-building mechanism against threats such as hurricanes from being put in place (World Bank 2022). It is no surprise, therefore, that Haiti does not have the capacity to prioritise future threats over current ones that are unfolding today. Without access to education, funding, and resources, the preparation and mitigation to build resilience against threats such as hur
	 
	 
	 
	5.2. IMMEDIATE IMPACT  
	Chapter 4 provides evidence that Hurricane Matthew had a severe negative immediate impact on the agricultural vegetation of the Sud and Grand’Anse Department, Haiti. The discussion of the immediate impacts is separated into sub-categories to highlight and compare the change in NDVI values across the communes and land covers.    
	 
	 
	5.2.1. IMMEDIATE IMPACT- LAND COVER SUBSETS  
	The immediate impact of Hurricane Matthew demonstrated that, overall, agricultural land cover sustained more substantial damage than non-agricultural land covers (including Forest and Savanna with Others). Despite this, out of all land covers, Forest was the most severely impacted, experiencing the largest change in the mean and minimum NDVI from pre- to post-hurricane (Table 17). Although the most severely impacted, the area of Forest within the study site was very small (70.8 km2). In comparison, the seco
	 
	In the order of the most impacted land covers, it appears there is a relationship between the intensity of damage and the surface area/height of vegetation (n.b. this assumption does not consider other influential variables such as distance from the hurricane). This relationship was acknowledged in Section 2.5, stating that taller trees sustained more damage subsequent to Hurricane Katrina (Wang et al. 2010). It is known that a larger surface area captures more energy from the wind, consequently, trees of a
	supports this. Figure 33 highlights that Agroforestry (assumed to have the largest surface area out of the agricultural land covers) sustained the largest area that experienced a decrease in NDVI >0.3; meaning that Agroforestry was the most severely impacted land cover. Additionally, considering non-agricultural land covers, as mentioned above, Forest suffered the most damage (Table 17) and can be assumed to have an even larger surface area than Agroforestry. This is assumed due to the species present in Ha
	 
	Upon closer inspection of the mean and minimum NDVI, Agroforestry only experienced a decrease in the minimum NDVI of 0.369, compared to 0.733 in Forest, as well as a smaller change in mean NDVI. This could be due to the combination of trees/shrubs planted amongst crops in the Agroforestry practice. As mentioned in section 2.3, the diversity agroforestry provides can increase resilience against extreme storm events such as hurricanes (Chen 2009; Lin 2011; Felix and Holt-Gimenez 2017; Sridhar and Chaturvedi 2
	be one of the main impacts of a hurricane (Daley et al. 2020) but will still protect understory communities.  
	  
	Being able to identify which land covers are more severely affected by hurricanes is beneficial for building resilience through preparedness, mitigation, and implementation of more sustainable agricultural practices, as it highlights what land covers are more vulnerable to the impacts of hurricanes (USDA 2022). This can also be useful on a regional scale for developing frameworks and informing policy changes. Amongst research studying the effects of hurricanes, Forests are the predominant land cover assesse
	 
	  
	5.2.2. IMMEDIATE IMPACT- COMMUNE SUBSETS  
	In addition to the individual land covers assessed, an in-depth analysis of specific communes took place. Changes in mean NDVI from pre- to post-hurricane, in particular, reflect that certain communes’ such as Torbeck, and Camp-Perrin, suffered the largest negative impact on agricultural 
	vegetation. Conversely, Les Anglais sustained the smallest change in NDVI. Torbeck, which lies in the east of the Sud department and is predominantly classified as Dense Agriculture, experienced the largest change in NDVI from pre- to post-hurricane. What is more, regarding the difference between the mean NDVI post-Hurricane and the reference mean NDVI, Dense Agriculture was the most impacted agricultural land cover. This land cover represented 122.7 km2 of 156.9 km2 of the agricultural land within the Torb
	 
	Considering that coastal flooding is a major threat associated with hurricanes (Rodgers, Murrah, and Cooke 2009; Goto et al. 2015), as seen in Torbeck, it would be expected that the coastal commune of Dame Marie would sustain similar damage along the coast, however, this was not the case. In this case, Hurricane Matthew's approach ran parallel to the coastline (Figure 15), which decreased the severity of the hazard (NOAA N.D). Thus, this region did not experience as intense damage in comparison to regions s
	correct places. For example, mitigation directly targeting soil salinisation can include gypsum application, switching to a more salt-tolerant rotation, or using grass leys to improve soil structure and salt-flushing potential (Gould et al. 2020). Additionally, hard and green engineering techniques can be employed to mitigate the direct threat of the storm surge. Hard engineering structures such as levees and storm surge barriers are the most common, however soft engineering approaches are becoming more com
	 
	 
	Despite a widescale decrease in NDVI, there were anomalies of small, isolated patches of land near the coastline that increased in NDVI in Torbeck (Figure 38). This suggests that vegetation within these regions coped well with flooding conditions, thus experiencing an increase in NDVI post-hurricane. One staple crop that Haiti has cultivated for many years is rice (RTAC 2021). This crop is well known to be able to flourish in flooded soils whereas other crops would die (Eckardt 2017). This appears to be the
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	Figure 37. Top: Les Cayes/Torbeck Threshold Map, Bottom: Land Use Map (SERTIT 2018). 
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	Camp-Perrin was also severely impacted following Hurricane Matthew. However, due to the commune’s location inland the damage was not related to the storm surge. Further investigation suggests that the severity of damage is associated with land cover types and rainfall patterns. The middle of the commune is dominated by Agroforestry, with the north and south mainly Moderately Dense Agriculture.  The changes in NDVI in comparison to the land cover map (Figure 39) demonstrate that there is a relationship betwe
	the regions of Moderately Dense Agriculture. Figure 33 further supports this statement, highlighting that Agroforestry sustained the largest area of damage decreasing in NDVI by >0.3, whereas Moderately Dense Agriculture sustained the smallest area of damage. As we know from Section 5.2.1, the more severe damage in Agroforestry can be associated with the larger surface area/taller species present within this land cover, meaning they capture more energy from the wind and thus experience more severe damage (W
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	Figure 38. Camp-Perrin Threshold Map Compared to a Map Highlighting the Agricultural Land Covers. 

	Figure
	Evidence showed that Les Anglais, on the other hand, experienced a change in mean NDVI below the significance level of 0.05, therefore it cannot be said with certainty that the change was subsequent of the impact of Hurricane Matthew, as it falls within the range of seasonal variation. Despite this, individual regions of a negative change in NDVI >0.2 within Les Anglais reflect that the threat associated with Hurricane Matthew that inflicted the greatest change in NDVI was flooding. Previous events of flood
	 
	Analogous patterns can also be seen across other communes. Dame Marie, for example, experienced some of the most severe damage around the main town, aligning with the mouth of the Dame Marie River. Furthermore, in Chambellan, the highest negative change in NDVI (>0.25) follows the River Bras Gauche that progresses to the River Grand’Anse. Figure 40 highlights isolated areas of severe damage caused by the flooding of river channels, consequently flooding and damaging agricultural vegetation in the surroundin
	This supports literature such as Gomez (2005), 
	Hoque 
	et al.
	 
	(2016), Marzen 
	et al.
	 

	in this study and subsequent results can identify areas that are vulnerable to flooding, enabling mitigation efforts to be focused in the correct regions. Considering Haiti’s socioeconomic status and environment, some mitigation options presented in Table 27 would not be feasible. For example, ‘Adjustment of Agricultural Production Periods’ may be hard to implement as many Haitians rely on natural irrigation for agricultural production (Abraham 2015), thus explaining why the growing seasons coincide with th
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	Figure 39. Chambellan, Dame Marie and Les Anglais Communes with a River Shapefile Overlaid Showing the Correlation Between River Courses and Damage Post-Hurricane. 

	Figure
	Table 28. Adaptation Methods for Reducing Flooding Impacts on Agricultural Farmland (Li et al. 2021). 
	Method 
	Method 
	Method 
	Method 
	Method 

	Concept 
	Concept 

	Benefits 
	Benefits 


	Engineering Methods 
	Engineering Methods 
	Engineering Methods 



	Improving Drainage systems 
	Improving Drainage systems 
	Improving Drainage systems 
	Improving Drainage systems 

	Improve drainage and sewer systems. 
	Improve drainage and sewer systems. 

	Increase the infiltration volume of the paving and build a reservoir to reduce the chance of damage to agricultural products. 
	Increase the infiltration volume of the paving and build a reservoir to reduce the chance of damage to agricultural products. 


	Heightening Farmland 
	Heightening Farmland 
	Heightening Farmland 

	Add 10-60 cm more to the height of the farmland ridge. 
	Add 10-60 cm more to the height of the farmland ridge. 

	Reduce the flood risk area. 
	Reduce the flood risk area. 


	Adding Food Control and Strengthening Structural Capacity 
	Adding Food Control and Strengthening Structural Capacity 
	Adding Food Control and Strengthening Structural Capacity 

	Add pumping stations in urban parks or wasteland.  
	Add pumping stations in urban parks or wasteland.  

	Reduce flooding in key areas.  
	Reduce flooding in key areas.  


	Non-Engineering Methods 
	Non-Engineering Methods 
	Non-Engineering Methods 


	Adjustment of Agricultural Production Periods or Changing Crops  
	Adjustment of Agricultural Production Periods or Changing Crops  
	Adjustment of Agricultural Production Periods or Changing Crops  

	Avoid flood seasons or change cropping patterns in flood-prone areas. 
	Avoid flood seasons or change cropping patterns in flood-prone areas. 

	Reduce the probability of losing agricultural output due to flooding. 
	Reduce the probability of losing agricultural output due to flooding. 


	Fallowing 
	Fallowing 
	Fallowing 

	Encourage fallowing in areas prone to flooding and provide subsidies.  
	Encourage fallowing in areas prone to flooding and provide subsidies.  

	Avoid losing agricultural output due to flooding.  
	Avoid losing agricultural output due to flooding.  


	Create Protected Areas 
	Create Protected Areas 
	Create Protected Areas 

	Land acquisition program to delimit protected lands. 
	Land acquisition program to delimit protected lands. 

	Restore flood-prone area to its ecological condition, therefore reducing agricultural losses due to flooding. 
	Restore flood-prone area to its ecological condition, therefore reducing agricultural losses due to flooding. 




	 
	Despite the risk that flooding associated with hurricanes has on agricultural land, there are many benefits to utilising floodplains for agricultural production, therefore many communities utilise the land surrounding river channels. For example, close proximity is beneficial for irrigation purposes, especially in regions with sparse or seasonal rainfall (National Geographic Society 2022), like Haiti. Additionally, the land tends to be rich in nutrients, increasing fertility, making it a good foundation for
	 
	Typically, the wettest month in Haiti is May, averaging around 190mm of rain in the Grand’Anse Department (World Weather Online 2022), therefore, with the average climate, flooding tends not to be a major concern. Unless, associated with events such as storms and hurricanes, which due to climate change are increasing in intensity (GFDL 2021). In Hurricane Matthews's case, over 800mm of rain was recorded across regions in Haiti (NASA Earth Observatory 2016). Heavy rainfall events such as this increases surfa
	 
	Knowing that this is where significant damage is concentrated allows flooding mitigation and preparedness strategies to be implemented, such as adapting crop types to reduce future impacts, thus building back stronger.  It has been stated that reforestation and planting stabilising vegetation that reduces erosion is key to reducing flooding in Haiti (Benge N.D). Reforestation removes water from the catchment by increasing the amount of precipitation that gets intercepted. Additionally, roots increase ground
	an issue this is for agricultural through the decreasing NDVI values, thus it must be mitigated to build resilience.  
	 
	Overall, from the results it can be concluded that there are three significant factors that can determine the severity of damage that a commune sustains immediately post-hurricane. The first is land cover; generally, Dense Agriculture and Agroforestry sustain more damage than Moderately Dense Agriculture. Camp Perrin demonstrates this well, as there is a clear distinction between the severity of damage recorded in Agroforestry compared to Moderately Dense Agriculture. Secondly, water courses within a commun
	  
	 
	 
	5.2.3. IMMEDIATE IMPACT- CONCLUSION  
	Overall, the assessment of immediate short-term changes following Hurricane Matthew can be considered successful. The results allowed conclusions to be drawn about what communes and land cover types were impacted more severely, identifying regions of vulnerability and addressing objective 4. To conclude it can be said that the immediate impacts associated with Hurricane Matthew on the agricultural land of the Sud and Grand’Anse departments caused significant damage, with communes such as Torbeck and Camp Pe
	 
	  
	  
	5.3. LONG-TERM IMPACT   
	Objective three of this research set out to monitor the long-term recovery of agricultural land. The mean NDVI results showed that compared to the reference mean NDVI, agricultural land had fully recovered and had a higher mean NDVI by 6 months post-hurricane at a regional scale. As highlighted in Figure 35, not all agricultural land returned to near normal 6 months post-hurricane. Although the ‘decreased in NDVI’ area is considered large, Figure 35 demonstrates that the areas that have experienced a decrea
	 
	Although the findings of objective three (to monitor the long-term recovery of agricultural land from 2016-2021) are minor and indicate no widescale long-term damage, these findings should still be reported. This is because impacts associated with hurricanes have been found to have long-term effects on agricultural land, consequently affecting the health and productivity of agricultural vegetation (Reliefweb 2004; Breda 2008; Violette, Boulicot and Gorelick 2009; Gould et al. 2020), with potential impacts o
	 
	 
	 
	5.3.1. LONG-TERM IMPACT- LAND COVER AND COMMUNES 
	Across the communes (Table 25) and land covers (Table 26), although each returned to near normal, there were variations in recovery. Across all land covers, the mean NDVI was higher 6 months post-
	hurricane (April-July 2017) than the April to July growing season NDVI average. Additionally, the mean NDVI was higher than what was recorded immediately post-hurricane. The long-term NDVI mean, min, and max, show that canopies that would be assumed to obtain a higher NDVI such as Forest and Agroforestry (due to more dense green chlorophyll) (Zaitunah et al. 2018), make larger increases in NDVI from immediately post-hurricane to 6 months post-hurricane. This may be because there is a higher chance of defoli
	  
	In regard to the long-term recovery of the communes, results show that the NDVI of agricultural vegetation was better than the reference mean NDVI 6 months post-hurricane. Additionally, all communes, bar Les Anglais had higher mean NDVI 6 months post-hurricane was recorded immediately post-hurricane. Les Anglais was one of the least impacted communes immediately post-hurricane, therefore had a higher NDVI than most communes. Considering the trend of the April-July growing season consistently having a lower 
	hurricane to 6 months post-hurricane. It can be assumed that this is due to the planting of new crops and regrowth of vegetation sustaining defoliation as this can take place within the months following a hurricane (Walker 1991; Howard and Schokman 1995; Ostertag, Scatena and Silver 2003), thus significantly increasing the NDVI across communes that are dominated by dense vegetation such as Agroforestry. Once again, as seen across the individual land cover subsets, the communes all make a full recovery by 6 
	 
	 
	5.3.2. LONG-TERM IMPACTS IN THE WIDER CONTEXT 
	The finding that agricultural land can recover by 6 months post-hurricane could be considered a reassuring finding to communities and government. Firstly, it highlights that long-term threats such as increased SS (Rodgers, Murrah, and Cooke 2009; Han et al. 2018) are not impacting agricultural land in the long-term. This is supported by figure 36 as 12 months post-hurricane no long-term damage was identified around the coast. Furthermore, with the recovery of agricultural vegetation taking place naturally w
	 
	To a community so dependent on agriculture, although the results show there are no long-term impacts on agriculture, the 6-month recovery period would be crucial. Xiao (2011) and Mohan and Strobl (2017) and (2021) have shown that hurricanes can directly impact individuals' livelihood; many people would be out of work, and rising food prices increase food insecurity and related health issues, all of which could have a long-term impact. Indeed, Mohan and Strobl (2021) found that the negative impact on unemplo
	 
	Despite the quick recovery of agricultural land following Hurricane Matthew, both the Sud and Grand’Anse Departments continue to suffer from food insecurity. As of June 2022, 4.5 million Haitians suffer from food insecurity, with the Sud department being classified in a state of emergency (IPC 2022). This number has increased since 2016 (World Food Program 2016), despite support scattered throughout the communes. With the knowledge that the agricultural land can return to the reference mean NDVI value quick
	social structure of the country may have the largest influence on how the communities respond to such events. Thus, although the hurricane causes the direct loss of food, how the country responds is aiding the persisting issue of food insecurity. The 2010 Haiti earthquake is a prime example (Savard, Sael, and Clormeus 2020) of how Haitian public institutions and an unstable government did not anticipate such risks, thus planning and recovery efforts were weak. Consequently, over ten years later the country 
	 
	Within Section 5.3, the term ‘recovery’ has been referred to. Recovery can be defined as a return to a normal state, replicating the environment prior to the shock. Within this research, the normal state of health has been defined by the reference mean NDVI of each growing season, therefore results of communes or land covers where the mean NDVI matches or exceeds the reference mean NDVI can be declared as ‘recovered’. Considering the status of food insecurity in Haiti prior to and post-Hurricane Matthew (Wo
	 
	Overall, it can be concluded that Hurricane Matthew did not have a long-term impact on agricultural land in the Sud and Grand’Anse Department and a full recovery was made 6 months post-hurricane. Although this is a positive finding, the short-term impacts in conjunction with Haiti's susceptibility to hazards, both climatic-related and non-climatic related (as evidenced by the 2010 earthquake and the 2018 drought) and their socioeconomic instability are resulting in repetitive damage that could have long-ter
	deemed more complex (Council on Foreign Relations 2021; Daut 2021; Human Rights Watch 2020), resulting in the continuity of food insecurity in Haiti. Indeed, unstable governance, a lack of funding and resources, and conflict are all present in Haiti (Edmonds 2013; Daut 2021; Human Rights Watch 2020). However, by providing information on the areas that were initially damaged, at-risk land covers that can be assumed to be vulnerable in the future can be identified and efforts in building resilience can be mad
	 
	 
	 
	5.3.3. LONG-TERM IMPACT FINDINGS NOT ASSOCIATED WITH HURRICANE MATTHEW 
	In addition to the impacts and recovery of the hurricane, this research identified variations in NDVI 
	that were not associated with Hurricane Matthew that could have a direct impact on food insecurity. The largest drop in NDVI was identified 18 months post-hurricane (April to July 2018 growing season); the mean NDVI was 0.603, consequently it was 0.072 below the reference mean NDVI (Figure 41). Additionally, the mean NDVI 18 months post-hurricane was lower than the NDVI that was recorded immediately post-hurricane by 0.73. This indicates that this growing season was less productive in comparison to the aver
	September 2018 to November 2018 growing season was 0.011 above the reference mean NDVI. Therefore, highlighting that drought conditions did not appear to impact agricultural vegetation in the September 2018 to November 2018 growing season as expected. Despite this, the drought had a large impact on the April-July 2018 growing season.  Events such as this are predicted to worsen (Met Office N.D) and it is projected that future years will show a declining trend, with rainfall totals decreasing by as much as 6
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	Figure 40. Mean NDVI of 18-, 24- and 30-Months Post-Hurricane Compared to the Reference Mean NDVIs. 
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	5.3.4. LONG-TERM IMPACTS CONCLUSION  
	To conclude, based on the mean NDVI, agricultural land made a full recovery by 6 months post-hurricane at a regional scale. Upon close investigation, some areas, for example, Torbeck had not reached near normal by 6 months post-hurricane. This could have been because of soil salinisation from the storm surge or seasonal fluctuations between growing seasons as highlighted in the results; without on-the-ground EC data to validate, it cannot be confirmed if the lower NDVI values 6 months 
	post-hurricane were due to salinisation.  However, by 12 months post-hurricane, these regions returned to normal. In the wider context, although vegetation returned to normal, it was established that the immediate impacts alone are enough to contribute to and exacerbate long-term socioeconomic issues. Despite this, the results confirm that efforts can be focused on mitigating the immediate impacts rather than trying to bring the agricultural land back to full health post-hurricane. Finally, the long-term re
	 
	 
	 
	5.4. EVALUATION 
	The findings of this research meet the aim and objectives of this study, providing a reliable account of the immediate impacts and long-term recovery of Hurricane Matthew on the Sud and Grand’Anse Department, Haiti. However, an evaluation of the study brings attention to areas of the study that could be strengthened for future results to provide more reliable findings.  
	 
	Firstly, considering that the main agricultural practice in Haiti is smallholder farming, if this research was repeated on a more recent period, satellite imagery with a higher spatial resolution could have been employed. Although Landsat imagery has a consistent spatial resolution suitable for time series analysis, a surface reflectance product, and a QA pixel band for the purpose of cloud masking, the spatial resolution (30m) does not deliver the detail required for smallholder farming. Recent advances ha
	 
	In relation to CC being a large issue in the collection of data, CC composites were produced to mask and reduce CC for the time-series analysis (Section 3.4.1). This method reduced the risk of skewed data values from CC and increased the continuity of land that could be analysed across time series. The ‘lastNonNul’ function was employed to ensure that the last date in the time series that is not null of data is prioritised (Google Earth Engine N.D). This is essential as the latest possible date before the h
	 
	When investigating and analysing NDVI across different land covers and communes, similar to research by Hu and Smith (2018), extracting the mean was employed to monitor the immediate impact and long-term recovery of Hurricane Matthew. Firstly, it must be acknowledged that the NDVI can only be cross compared across regions of the same land cover. Secondly, NDVI is not considered to be linear as characteristics of the imagery such as CC, exposure to soil background, or high biomass can lead to saturation of N
	depending on the project focus. To address this issue in this research, minimum and maximum NDVI values were employed alongside mean NDVI to account for anomalies. Furthermore, indices such as EVI could have been considered to reduce inaccuracies as it accounts for soil brightness. EVI was not employed due to it being easily affected by topography, therefore should not be employed in mountainous regions (Matsushita et al. 2007; Earth Observing System 2019). However, studies have shown that topographic corre
	 
	Furthermore, to calculate the reference mean NDVI, data was collected from 6 years prior to Hurricane Matthew (2010-2015), mirroring the number of years recovery was being monitored (2016-2021). Due to reasons explained in Section 3.3.1, MODIS was employed in conjunction with Landsat to collect data for the reference mean NDVI. When comparing data sources, although the mean NDVI between the two sources were similar (Table 3), the MODIS mean was slightly higher. Therefore, employing MODIS in conjunction with
	 
	Although objective 3 was successfully met, and it was determined that by 6 months post-hurricane agricultural land made a full recovery, a more detailed account of recovery would be beneficial. From Section 2.3, it has been concluded that a hurricane can increase SS and have a long-term impact on agricultural land. The method used in this study relied on extracting NDVI mean, minimum and maximum values to study the long-term recovery, therefore regional-scale quantitative outputs are derived, giving an over
	reason behind the long-term changes. When working in regions such as Haiti where agricultural production tends to be smallholder farming (Rodrigues-Eklund et al. 2021), attention to finer details such as these need to be investigated. This is something that needs to be considered for future research; investigating smaller regions of interest (i.e., town-scale), with high-resolution imagery and on-the-ground data, because it would allow detailed patterns to be identified in the recovery. 
	 
	The issues encountered within this study regarding spatial resolution, processing techniques and validation of data, although limiting, are ones that many studies encounter (Hoque, Phinn and Roelfsema 2017). However, with the expected advancements in the remote sensing and spatial analysis field, these challenges may be overcome in the upcoming years further advancing how it can be used to aid the disaster management cycle. Despite these areas of the study that could be strengthened, this methodology has hi
	 
	 
	 
	5.5. LIMITATIONS 
	The one major limitation of this research was the lack of/access to data. This is an issue for developing nations such as Haiti globally (The World Bank 2020). The reasons for a lack of data are broad and vary from country to country. In some regions there may be a lack of funding for data collection (Sarvajayakesavalu 2015), social and cultural clashes, or the collection process may be considered unsafe due to conflict/disease (The World Bank 2020). Some regions may not have the 
	resources or infrastructure to conduct research themselves (Elahi 2008; Cohen and Singh 2014), and a lack of trust in foreign organisations would hinder any external bodies that wish to carry out research (Ortiz-Ospina and Roser 2016). Acknowledged in Section 5.1, many of these challenges are present in Haiti, creating a challenging environment for data collection, thus the lack of access to data. Currently, Haiti is fighting one of its worst outbreaks of violence since 1986 when the Anti-Duvalier protest m
	 
	In relation to this study, the lack of access to data prevented the validation of NDVI. Unfortunately, for similar reasons, only 18% of research papers that employ satellite imagery to monitor the impacts of hurricanes validated their findings due a lack of access to data and safety concerns for primary data collection (Huang et al. 2021). Despite the above challenges to data access, and the limitations this has inflicted upon this study, the methodology presented in this research was effectively adapted an
	 
	 
	5.6. PROSPECTS FOR FUTURE RESEARCH BASED   
	As mentioned prior, due to limitations regarding time and resources, the scope of what this study could achieve was restricted. Hypothetically, this research would have benefitted from information sharing throughout the local community and working with a multidisciplinary team. Working within the local community, sharing information and data collation has numerous benefits, one being that it provides an opportunity for ground-truthing. Not only does ground truthing provide the opportunity to validate the fi
	 
	Additionally, working with a multidisciplinary team builds a clearer picture of smallholder farming within the Caribbean, aids data interpretation, and provides a holistic view of this study and the 
	impacts of hurricanes, further benefitting the community. In recent years, areas of study such as Plant Pathology have identified the need for an interdisciplinary approach; the complexity of challenges surrounding food security in relation to plant diseases now encapsulates agricultural and ecological sciences, national and global policies and regulations as well as the plant pathology discipline (Jeger et al. 2021). Similarly, this research would benefit from a team built from various disciplines, includi
	 
	Finally, working within the local community, through workshops and round-table discussions, stories and practices in preparation and response to Hurricane Matthew could be shared. Spreading awareness of the ideas and techniques that individuals employed highlights areas of strength and weakness within the agricultural sectors resilience against hurricanes. This allows knowledge gaps to be identified, enabling research to be focused in these key areas. For example, focus groups held in response to Hurricane 
	  
	For reasons discussed above, recommendations for future research within this discipline that aims to expand on this study is urged to connect with smallholder farmers and work collaboratively with a multidisciplinary team. Primary data collection is also key to expand the capabilities of remote sensing methods to effectivity study the impacts of hurricane on a national scale.   
	 
	 
	Finally, interpretation of results is based on individual variables supported by the findings of this research and published literature, however, the variables responsible for the varying degrees of damage across the ROI are broad. To have a thorough understanding of the different variables, both socio-economic and environmental, and the weight of influence they have on the impact of a hurricane would require a multivariable analysis. This would allow variables such as distance from the hurricane, land cove
	the change in NDVI experienced in each location. This would allow the most influential factor that determines the severity of damage to be identified. Determining the factors that play a significant role in increasing the threats associated with hurricanes, and sequentially food insecurity would increase clarity on the most effective ways to mitigate against hurricanes and the long-term threats to food insecurity. Consequently, this would be a very beneficial piece of research despite its complex and challe
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	CHAPTER 6 
	6. CONCLUSION 
	This research sought to assess the immediate impact of Hurricane Matthew on the agricultural land of the Sud and Grand’Anse departments, Haiti, and monitor the long-term term recovery utilising remote sensing. Assessments of post-hurricane damage typically quantified agricultural damage as a loss of yield and the associated cost. Therefore, the immediate and long-term impacts of the change to vegetation were disregarded, despite having a large impact on food production, consequently increasing food insecuri
	 
	Overall, the assessment of immediate short-term changes following Hurricane Matthew can be considered successful. The methods used deduced findings that quantitively and qualitatively identified regions that sustained significant impacts post-Hurricane Matthew. This allowed conclusions to be drawn about what communes and land cover types were impacted more severely, addressing objective 4. The findings of this research can conclude that Hurricane Matthew had a large negative immediate impact on the agricult
	a full recovery of agricultural vegetation took place by the next growing season, 6 months post-hurricane. With the knowledge that this agricultural land can recover quickly, efforts can focus on preparedness and mitigation to reduce the severity of the immediate impact associated with hurricanes. This, in turn, will prevent the loss of agriculture. Additionally, results from monitoring the long-term recovery highlighted a significant drop in NDVI 18 months post-hurricane that was lower than that recorded i
	 
	It can be concluded that this research effectively assessed the immediate impact and monitored the long-term recovery of Hurricane Matthew on the agricultural land of the Sud and Grand’Anse department by employing remote sensing. The findings of this research highlighted regions of agricultural vulnerability and have identified crucial patterns of damage that could reoccur under similar circumstances in the future. Therefore, these findings can be used to educate locals and inform changes to policy. Further
	 
	For Haiti, it is clear that in addition to their exposure to hurricanes, socio-economic setbacks are further contributing to food insecurity, mainly due to the lack of national support and funding for agriculture, DRM, mitigation, and preparedness. Furthermore, hurricanes are limiting economic development both in the short and long term. Moreover, a lack of research in Haiti regarding the impact of hurricanes and associated areas of vulnerability has prevented the implementation of resilient practices. The 
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	Figure 42. FAO (2010)- Haiti Land Use/Cover Map 
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	Figure 43. Ministry of Agriculture, Natural Resources and Rural Development (1998)- Land Cover/Use Map.  
	 

	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	8.3. Link to GEE Code used to produce Post-Hurricane NDVI 
	 
	https://code.earthengine.google.com/b21d8d5a5eb8c6f7bf75a87282793d52
	https://code.earthengine.google.com/b21d8d5a5eb8c6f7bf75a87282793d52
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	Figure 44. Snapshots of GEE Code for Pre-Hurricane NDVI. 

	 
	 
	 
	8.4. Link to GEE Code use to produce Pre-Hurricane Imagery 
	 
	https://code.earthengine.google.com/d9933a2f448f89d05f6b22cf66268baf?noload=true
	https://code.earthengine.google.com/d9933a2f448f89d05f6b22cf66268baf?noload=true
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	Figure 45. Snap Shots of GEE Code for Pre-Hurricane NDVI Used to Calculate Average NDVI. 

	 
	 
	 
	 





