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Abstract. The effective buckling length factor is an important parameter in the elastic buckling 

analysis of steel structures. The present article aims at developing a new method that allows the 

determination of the buckling factor values for frames. The novelty of the method is that it considers 

the interaction between the bracing and the elastic supports for asymmetrical frames in particular. The 

approach consists in isolating a critical column within the frame and evaluating the rotational and 

translational stiffness of its restraints to obtain the critical buckling load. This can be achieved by 

introducing, through a dimensionless parameter i, the effects of coupling between the axial loading 

and bending stiffness of the columns, on the classical stability functions. Subsequently, comparative 

and parametric studies conducted on several frames are presented for assessing the influence of 

geometry, loading, bracing, and support conditions of the frame columns on the value of the effective 

buckling length factor K. The results show that the formulas recommended by different approaches can 

give rather inaccurate values of K, especially in the case of asymmetric frames. The expressions used 

refer solely to local stiffness distributions, and not to the overall behavior of the structure. 
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1.  Introduction 

 
 The overall stability of columns is extremely important in the structural design process of 

buildings. Research has been carried out in this field, but more work is needed in developing a 

better understanding how the stability of a structure is influenced by the phenomena of buckling, 

and the need for simpler methods to determine the effective length factor K. This construct allows 

calculating the elastic critical load using one single formula covering all boundary conditions, 

expressed by the following equation: 

 

                      (1)

          
 Where, k represents the ratio between the effective length Lf and the actual length L of the 

column: 

 

        k = Lf/L                    (2) 

 



 For this reason, several researchers have carried out extensive investigation on the stability of 

frames and on the effective length concept as well. In this context, Bridge and Fraser (1987) 

proposed an iterative procedure for evaluating the effective length, based on linearized stability 

functions that consider the presence of axial forces in the restraining elements. In addition, they 

suggested a procedure to improve the effective buckling length factor alignment chart that consider 

the positive and negative rotational stiffness ratios in the case of braced frames. The authors 

indicated that it is quite possible to encounter situations where the value of the effective buckling 

length factor K can be greater than 1. These situations correspond to negative rotational stiffness 

values in the case of braced frames, Kalochairetis and Gantes (2012), Corsi et al. (2020).  

 

 Cheong-Siat-Moy (1999) developed expressions to estimate the buckling length of partially 

braced frames; he also considered the individual element and the overall behavior of the structural 

system to achieve an accurate buckling analysis (1986). The following formulation was derived for 

a column which is laterally restrained at the top, with a lateral restraint S, and restrained 

rotationally at both ends: 

 

     Sh3/EIc = β4(C-D)/(JC+FD)                (3) 

  

where,  

β = π/K 

C = R1β(1-cos β)+ β2Sinβ 

D = (R1+R2)β + R1R2 Sinβ 

F = R1(cosβ -1) – β2 

J = R1+R2+ β2+(R1R2Sin β)/β 

 

R1 and R2 are factor related to the joint stiffness ratio G, as given in equation (4) below. 

 

However, it is worth noting that the above approach of Cheong-Siat-Moy (1999) does not consider 

the coupling effect between the rotational and translational stiffness. 

 

 Aristizabal-Ochoa (1994a, 1994b and 1996) adopted the effective length concept on the 

stability of frames. The author derived an analytical relationship for the evaluation of the effective 

buckling length factor for braced, partially braced and unbraced columns. He also examined the 

influence of the uniformly distributed axial load on the effective length of braced columns and 

partially braced columns (1994). It is worth noting that the proposed formulas can be applied to 

frames with rigid and semi-rigid connections. However, these approaches do not consider the 

coupling effects between rotational and translational flexibilities. 

 

 Gantes and Mageirou (2005) developed an analytical expression similar to that used by 

Eurocode 3 (2005) for calculating the effective buckling length factor. The results obtained by the 

approach proposed for three-story sway frames are in perfect agreement with those given by the 

finite element method. However, the application of design codes such as Eurocode 3 (2005) and 

Ruiz et. al. (1999) leads to significant inaccuracies. In this context, Mageirou and Gantes (2006) 

developed a simplified approach for the assessment of the buckling load of multi-story frames with 

semi-rigid connections. In the study, the rotational and translational boundary conditions, 

including a semi-rigid connection, were taken into consideration. However, the effect of geometric 



irregularity and that of the loading of vertical elements belonging to the same levels were not 

considered. 

 

 On the other side, Girgin et al. (2006) proposed a practical method to estimate the approximate 

buckling load values for regular and irregular frames, using fictitious loads to achieve lateral 

displacements. It is interesting to note that all the approach based on the fictitious load better 

results compared with the isolated subassembly approach. It is also interesting to cite the work 

developed by Raftoyiannis (2005) who attempted to assess the effects of connection semi-rigidity 

and bracing on the elastic critical buckling load of single-story frames. Adman and Saidani (2013) 

investigated the effect of the boundary conditions at the ends of columns. This was achieved by 

means of a general stability criterion resulting from the solution of stability equations, while 

considering the end conditions of the column in terms of the non-dimensional translational and 

rotational restraint indices, and their coupling effects. Webber et al. (2015) suggested two 

improvements to the effective length method. In the first one, the axial load in neighboring 

columns was included in the calculation of the effective length. In the second, a modification of 

the effective length ratio was proposed so that the buckling load of adjacent columns can be taken 

into consideration. The results obtained by the approach proposed are in good agreement with 

those given by the finite element method. However, the application of design codes such as 

Eurocode 3 (2005) leads to inaccuracies. This suggests that the recommendations in the code are 

limited and may need revisiting. 

 

 Li et al. (2016) established a new simplified instability analysis method that considers the 

vertical interaction effects of all the columns at the different stories. The idealized column model 

used in the classical G-factor method, as recommended by AISC (2010), was extended to include 

the columns of all floors and their restraining beams. However, the assumption taken for the 

rotations at the near and far ends of a beam cannot be fulfilled in all cases.  

 

With the joint stiffness ratio G, is defined by: 

 

 

     G = ∑(EcIc/Lc)/(EbIb/Lb)                 (4) 

 

 

 where E = Young’s modulus, I = moment of inertia of the cross-section, L = length of the 

member, and the summations are over all the columns (beams) intersecting at the joint. The 

subscripts b and c indicate beam and column, respectively. 

 

 Teh and Gilbert (2016) developed an accurate buckling model that allows determining the 

effective length of a column subjected to intermediate gravity loads for design applications based 

on a 2D second-order elastic analysis. It is also appropriate to cite the study conducted by 

Konstantakopoulos et al. (2012) for assessing the effects of steel columns with varying cross 

sections and subjected to axial forces applied concentrically or eccentrically, on the critical 

buckling load. The governing equation of the problem was solved using the Galerkin method. 

Several studies were undertaken over the last few decades on analysing the stability of frames and 

on the effective length concept as well, Zheng et al. (2021), Tain et al. (2021), Farajian et al. 



(2021). Rezaiee-Pajand et al. (2016) conducted a study in which they considered the effect of 

varying the cross sections of columns for the determination of the critical load of a simple frame 

with semi-rigid connections. Ihaddoudène et al. (2017) developed a simple mechanical model for 

determining the elastic buckling load for braced and unbraced multi-story planar frames with semi-

rigid connections. Then, based on the stability functions, the stiffness matrix of the proposed 

model was deduced. 

 

 Furthermore, Tian et al. (2016, 2017) developed a simplified analytical approach that considers 

the effects of internal axial loads with the aim of assessing the elastic stability of columns, through 

a relationship between the internal axial loads and end loads. Using the negative lateral stiffness 

bonding (Tong and Wang, 2006), the internal axial loads may be viewed as the equivalent end 

loads so that the critical buckling load can easily be determined using Euler's formula. Tian et al. 

(2020) then investigated the influence of the inclination angle of roofs on the values of the 

effective buckling length factors while taking into consideration the vertical interaction effects of 

all columns in different stories. Krzysztof and Alexandre de Macêdo (2021) studied the stability of 

a very slender thin-walled column with a box section. Stress and strain analysis was carried out 

using the finite element method, the technical stability theory and Euler's theory. The three 

methods were used to determine the critical compressive load. 

 

 Gunaydin and Aydin (2019) completed a work in which they took into consideration the 

second order (P-Δ) and (P-δ) effects on the effective length factors in the case of multi-story 

frames; they also put forward tables of values of the effective length factors based on the 

developed analytical expressions. In the same context, a decomposition method for frames was 

developed by Ma and Xu (2020) to assess the stability of partially braced multi-story frames. The 

proposed method breaks down a frame into several individual stories and assesses the lateral 

stiffness of each story by means of a stability approach that is based on explicit closed-form 

solutions. Likewise, Sun et al. (2020) proposed modifying the values of the effective length factors 

based on experimental measurements of supports rotation stiffness of large-size and high-strength 

steel angle sections (LHS). In addition, a column curve was proposed to predict the LHS member 

bearing capacity. Simplified procedures for determining approximate values for the effective 

buckling length factor K of irregular, hence asymmetrical, frames are developed in the literature 

(Girgin et al. 2006; Slimani et al. 2018; Mahini (2022). However, these approaches only applicable 

to a specific type of frames and do not consider the coupling effects between of the variation in 

bracing and the column bases on the factor K, which limits the study. For example, Mahini’s 

method (2022) is only applicable to frames with tapered members. 

 

 The above-mentioned studies did not consider the case of asymmetric and partially braced 

frames with elastic supports and where the coupling effects are taken into account. These aspects 

are dealt with in the present study, thus suggesting a new method for determining the effective 

buckling length factor K in different situations. First, the classical stability functions are extended 

by through a dimensionless parameter  that consider the effects of coupling between the axial 

loading and bending stiffness of the columns, on the classical stability functions. Then, a 

parametric study is conducted to investigate the effect of various parameters on the factor K of 

columns. These parameters are: (i) geometry; (ii) loading; (iii) bracing; and (iv) support conditions 

of the frame columns. Finally, interaction between bracing and support conditions of the frame 

columns on the factor K is studied. 



2.  Analytical formulations 
 

 The following analysis refers to a rectangular frame (1b 1t  2t 2b) resting on two supports 

represented by rotational springs (ks1b and ks2b), as shown in Fig. 1. The frame is braced and the 

bracing is represented by a lateral elastic support consisting of a spring at the top of the column 

(2t). The spring has an axial rigidity kΔ. In addition, the frame is subjected to axial loading from 

the upper floor. The columns and beam have different section properties. 

 

The frame possesses the following characteristics:  

Column (1): length h1 = α1h, moment of inertia I1 = γ1I. Column (2): length h2 = α2h, moment of 

inertia I2 = γ2I. Beam (1'): length h'1 = α'1h, moment of inertia I'1 = γ'1I. The frame is subjected, at 

joints 1t and 2t, to vertical concentrated loads 1P and 2P, applied along the centerlines of columns 

(1) and (2), respectively. The horizontal bar (1') is connected to the columns via rigid connections.  

 

 

 

 
Fig. 1 Single rectangular frame resting on two rotating springs 
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 Additionally, the following are defined: 
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 The slope-deflection equations are used to define the moments (M) at the nodes in terms of 

rotations () and displacements (). For the different elements of the framework, these equations 

are expressed as follows: 
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(Ci, Si) are the expressions representing the modified stability functions for column (i); they are 

expressed as: 
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It is worth indicating that the effects of varying the loadings and geometries of the frame columns 

on the classical stability functions (Livesley and Chandler (1956), Slimani et al. (2018)) were 

introduced using the parameter i. 
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 The relations between the rotations 1 , b1 , 2 and b2  should be determined by adding up the 

moments at the nodes as follows: 

 

 The moment equilibrium about node 1b to calculate rotation b1  is given by: 
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 The moment equilibrium about node 2b to calculate rotation b2 is expressed as: 
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 Based on the results previously obtained, it becomes easy to express the slope-deflection 

equations for the two columns as follows: 
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Element 02: 
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 Since there are three unknowns 1 , 2  and 0 , three equilibrium equations are then needed. These 

are obtained through the summation of the moments at nodes 1t and 2t and the shearing forces at 

the upper ends of the columns. 

 

 When node 1t is in equilibrium: 
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 When relations (11.b) and (8.a) are taken into account, relation (13) takes the following form:  
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 The equilibrium equation at node 2t is: 
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 Similarly, when relations (12.b) and (8.b) are taken into consideration, relation (15) may be 

expressed in the form: 
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 Furthermore, considering equilibrium with respect to the displacement Δ allows writing: 
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 The expressions for the shear forces tT1  and tT2  are given, respectively, as: 
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 When relations (11.a) and (11.b) are taken into account, relation (18) becomes: 
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 Likewise, when relations (12.a) and (12.b) are taken into account, relation (19) becomes: 
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 Now, if relations (20) and (21) are used in relation (17), the expression below is obtained: 
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 The quantity β0 is a dimensionless load parameter associated with the global stability analysis. 

Finally, using Eqs. (14), (16) and (22), the following system of equations are obtained: 
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 Therefore, the system of Eqs. (23) can be written in the following matrix form: 

 

                                                                  BX                 (24) 

where vectors X and B are given by Eqs. (25), and the matrix    is represented the by expression 

(26) below. 
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 Furthermore, the buckling equation of the system is obtained by putting the determinant of the 

unknown constants in Eqs. (24) as equal to zero. It is given as: 
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 As for the dimensionless critical load βcr, it is obtained by solving Eqs. (26). Subsequently, the 

reference elastic critical buckling load of the frame under study may be calculated from: 
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 The elastic critical buckling loads of columns (1) and (2) are given by the following formulas: 

                                                               crPP 11              (30.a) 

                                                                     crPP 22              (30.b) 

 Eqs. (29) may be used to deduce the reference effective buckling length factor K by means of 

the relation: 
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 Therefore, the effective buckling length factors of columns (1) and (2) may be expressed as: 
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3.  Comparison with other numerical and analytical approaches 
 

 In what follows is a comparison of the values of the effective buckling length factor K obtained 

using different approaches. The first approach consists in using the analytical method proposed in 

the present study, while the second one is based on a numerical analysis using structural analysis 

software, i.e. Autodesk Robot Structural Analysis (2013). This second approach consists in solving 

an eigenvalue problem by considering the classical stiffness matrix of an element and associating 

it with the geometrical stiffness matrix. Looking at the other approaches, it was decided to develop 

the methods of Le Messurier (1977), Lui (1992), Smyrell (1994) and Raftoyiannis (2005). To do 

this, the example of a rectangular frame, as shown in Fig. 2 was adopted. Note that that frame (a) 

corresponds to the situation where the supports are fixed, while the frame (b) represents the 

situation where the supports are hinged. 

 

 Frames in which the effects of modifying the geometry and boundary conditions were 

considered are illustrated in the example considered. The values of factor K for columns (1) and 



(2) as well as their deviations from their initial values obtained in this comparative study, are listed 

in Table 1 given below. 

 

 

Frame (a) 

 

Frame (b) 

Fig. 2 Frames used in the comparative study 

 

 The results obtained by the present study are close to those given by the Robot structural 

analysis software (2013) (the largest deviation found is less than 2%). These results constitute a 

positive validation test for the study. 

 

 Furthermore, it was observed that, in all cases of symmetrical structures (cases 1 and 4), the 

results obtained by the approaches of LeMessurier (1977), Smyrell (1994) and Raftoyiannis (2005) 

are very close to those obtained by the present study, the largest deviation found is less than 1%. 

This is not the case where the frame is asymmetrical as the current method is more accurate. 

For instance, in the case where 5.0'
1   (case 4) for frame (b), Lui's method (1992) is 

comparatively less accurate than those used in the other approaches. Moreover, the results of the 

calculation of factor K, as given by the method of Raftoyiannis (2005), are in perfect agreement 

with those obtained by the present study, because the two approaches are based on a rigorous 

analytical formulation. However, unlike the present study, the effects of geometric irregularity and 

loading were not taken into account in Raftoyiannis’ study (2005), in other words it is not 

applicable to asymmetrical frames. 

 

 Additionally, in cases 2 and 3 (asymmetric geometry), the results obtained by LeMessurier 

(1977) were relatively closer to those reported in the present study (the largest deviation found is 

less than 8%) than to those proposed by Lui (1992) and Smyrell (1994). These observations are 

more apparent in case 5 (asymmetric loading) where can we observe that the significant deviations 

between the present study and the method of LeMessurier (1977) are less than 1%. Cases 1 and 5 

show that the method proposed by Smyrell (1994) gives similar results, except that it does not take 

into account the effect of the variation in loading, as shown by the results reported in Table 1. 



 Furthermore, it is noted that for case 6 (asymmetric geometry and loading), the results obtained 

for frame (a) by the present study and those obtained by Lui’s method (1992) are close (maximum 

deviation is less than 2%). However, the results obtained for frame (b) show that LeMessurier's 

method (1977) is relatively more accurate than that proposed by Lui (1992). 
 

 

Table 1 Comparison of the values of factor K 

 

 Columns 
LeMessurier 

(1977) 

Lui 

(1992) 

Smyrell 

(1994) 

Raftoyiannis 

(2005) 

Robot 

(2013) 

Present 

study 

Case (1) : 1;1;1;1;1 '
1

'
1   iii  

Frame 

(a) 

1 
1.167 

(0.95%) 

1.170 

(1.21%) 

1.156 

(0.00%) 

1.156 

(0.00%) 

1.155 

(0.09%) 
1.156 

2 
1.167 

(0.95%) 

1.170 

(1.21%) 

1.156 

(0.00%) 

1.156 

(0.00%) 

1.155 

(0.09%) 
1.156 

Frame 

(b) 

1 
2.340 

(0.52%) 

2.379 

(2.19%) 

2.324 

(0.17%) 

2.328 

(0.00%) 

2.332 

(0.17%) 
2.328 

2 
2.340 

(0.52%) 

2.379 

(2.19%) 

2.324 

(0.17%) 

2.328 

(0.00%) 

2.332 

(0.17%) 
2.328 

Case (2) : 1;1;1;5.0;1;1 '
1

'
121   ii  

Frame 

(a) 

1 
1.347 

(2.05%) 

1.490 

(12.88%) 

1.156 

(12.42%) 
/ 

1.325 

(0.38%) 
1.320 

2 
0.891 

(4.50%) 

1.028 

(10.18%) 

1.082 

(15.97%) 
/ 

0.917 

(1.71%) 
0.933 

Frame 

(b) 

1 
2.702 

(1.39%) 

2.905 

(9.01%) 

2.324 

(12.80%) 
/ 

2.687 

(0.83%) 
2.665 

2 
1.776 

(5.73%) 

2.003 

(6.32%) 

2.189 

(16.19%) 
/ 

1.857 

(1.43%) 
1.884 

Case (3) : 1;1;5.0;1;1;1 '
1

'
121   ii  

Frame 

(a) 

1 
0.738 

(2.89%) 

0.723 

(4.87%) 

1.156 

(52.11%) 
/ 

0.755 

(0.66%) 
0.760 

2 
1.626 

(6.90%) 

1.445 

(5.00%) 

1.276 

(16.11%) 
/ 

1.515 

(0.39%) 
1.521 

Frame 

(b) 

1 
1.480 

(7.90%) 

1.214 

(24.46%) 

2.324 

(44.62%) 
/ 

1.602 

(0.31%) 
1.607 

2 
3.342 

(3.98%) 

2.427 

(24.49%) 

2.620 

(18.48%) 
/ 

3.220 

(0.19%) 
3.214 

Case (4) : 1;5.0;1;1;1 '
1

'
1   iii  

Frame 

(a) 

1 
1.286 

(0.55%) 

1.303 

(1.88%) 

1.276 

(0.23%) 

1.279 

(0.00%) 

1.285 

(0.47%) 
1.279 

2 
1.286 

(0.55%) 

1.303 

(1.88%) 

1.276 

(0.23%) 

1.279 

(0.00%) 

1.285 

(0.47%) 
1.279 

Frame 

(b) 

1 
2.642 

(0.27%) 

2.759 

(4.71%) 

2.620 

(0.57%) 

2.635 

(0.00%) 

2.667 

(1.21%) 
2.635 

2 
2.642 

(0.27%) 

2.759 

(4.71%) 

2.620 

(0.57%) 

2.635 

(0.00%) 

2.667 

(1.21%) 
2.635 



Case (5) : 1;1;1;1;2;1 '
1

'
121   ii  

Frame 

(a) 

1 
1.429 

(0.85%) 

1.727 

(21.88%) 

1.156 

(18.42%) 
/ 

1.407 

(0.71%) 
1.417 

2 
1.010 

(0.80%) 

1.221 

(21.86%) 

1.156 

(15.37%) 
/ 

1.002 

(0.00%) 
1.002 

Frame 

(b) 

1 
2.866 

(0.46%) 

3.261 

(14.30%) 

2.324 

(18.54%) 
/ 

2.845 

(0.28%) 
2.853 

2 
2.027 

(0.45%) 

2.306 

(14.27%) 

2.324 

(15.16%) 
/ 

2.022 

(0.20%) 
2.018 

Case (6) : 2;2;1;2;1;2;1;2 '
1

'
1212121    

Frame 

(a) 

1 
0.830 

(11.11%) 

0.760 

(1.74%) 

1.156 

(54.75%) 
/ 

0.755 

(1.07%) 
0.747 

2 
1.660 

(11.11%) 

1.520 

(1.74%) 

1.156 

(22.62%) 
/ 

1.465 

(1.94%) 
1.494 

Frame 

(b) 

1 
1.655 

(8.88%) 

1.270 

(16.45%) 

2.324 

(52.89%) 
/ 

1.535 

(0.99%) 
1.520 

2 
3.310 

(8.92%) 

2.477 

(18.49%) 

2.324 

(23.53%) 
/ 

2.990 

(1.61%) 
3.039 

 

4.  Parametric study relating to the overall effective buckling length factor 
 

 Parametric studies were conducted on several frames in order to assess the influence of loading, 

bracing and column support conditions on the value of the overall effective buckling length factor 

K. 

 

4. 1. Influence of bracing and column loading 
 

 A parametric study was performed on a frame with hinged supports (Fig. 2 (a)) and on another 

one with fixed supports (Fig. 2 (b)); the dimensionless stiffness of the bracing spring (R∆) of the 

frame and the loading of column (2) were simultaneously varied while those of column (1) were 

kept unchanged. In the present study, the length ratios and inertia moment ratios are taken as equal 

to 1 ( =  = =  =  = = 1). 

 

4. 1. 1.  Frames with hinged supports ( ) 

 It should be specified that this parametric study was carried out by considering the variation of 

the values of the dimensionless stiffness of the bracing spring (R∆) of the frame. For this, it was 

considered interesting to vary the stiffness ratio of the spring (R∆), from 0 to infinity; these 

situations correspond to unbraced and braced frames, respectively. Note also that this study was 

carried out by considering five combinations of load ratios, namely (δ1 = 1) with (δ2 = 0.25, 0.5, 1, 

2, and 4), as shown in Fig. 3. 

 The numerical results are represented, in graphical form, in Fig. 4 which shows the variation of 

the overall effective buckling length factor K as a function of the stiffness ratio of the spring (R∆), 

for a frame with various loading situations (δ2 = 0.25, 0.5, 1, 2, and 4). 

 



 
 

 

Fig. 3 Geometries and loadings of the frame under study 

 

  

 

 

 

Fig. 4 Variation of K as a function of R∆, with . 



4.1.2 Frame with fixed supports ( )  

 The parametric study carried out in the previous section, was repeated, but this time by varying 

the values of the bracing spring ratio (R∆) for a frame with fixed supports (Fig. 5). 

 

 

 
 
 

Fig. 5 Geometries and loadings of the frame under study 

 

 

 The numerical results obtained are represented, in graphical form, in Fig. 6 which shows the 

evolution of the overall effective buckling length factor K as a function of the spring stiffness ratio 

(R∆), for a frame under various loading situations ( δ2 = 0.25, 0.5, 1, 2, and 4). 

 

  

 



 
Fig. 6 Variation of K as a function of R∆, with Sri = ∞ 

 

4. 2. Influence of bracing and column bases 
 

 A parametric study was performed on a frame resting on two supports represented by 

rotational springs with dimensionless stiffness values ( ). For this, the value of the 

stiffness ratio of the bracing spring (R∆) of the frame was varied, while changing the stiffness 

ratios of the rotational springs ( ) in both columns. For this, it was decided to vary the 

stiffness ratio of the spring (R∆), from 0 to ∞, which corresponds to situations of unbraced and 

braced frames, respectively. In addition, the present study was carried out by considering seven 

combinations of the stiffness ratios of the rotational springs, namely  =  = 0, 0.5, 1, 2, 4, 

10, ∞). At this stage of the study, the length, inertia and loading ratios are taken equal to 1 ( = 

 = =  =  = = 1), as can be seen in Fig. 7. 

 



 
Fig. 7 Geometries and loadings of the frame under study. 

 

 Furthermore, the numerical results are represented, in graphical form, in Fig. 8 which 

shows the variation of the overall effective buckling length factor K as a function of the stiffness 

ratio of the spring (R∆), for a frame with various situations of the rotational springs (  = = 

0, 0.5, 1, 2, 4, 10, ∞). 

 

 
Fig. 8 Variation of K as a function of R∆ with Sri varying from 0 to ∞ 



5.  Discussion of the results 
 

 Regarding the influence of the bracing and column loading, for frames with hinged support, it 

was observed that the stiffness ratio of the bracing spring (R∆) increases, the overall effective 

buckling length factor K decreases, in a monotonous manner, going from a value close to 3.70 for 

a load ratio equal to 4 (δ2 = 4) until attaining asymptotic values related to the load ratios of column 

(2), as illustrated in Fig. 4 above. Afterwards, one may observe that, in this case, the factor K is 

highly sensitive to the load ratio (2) when this load ratio is higher than 1 for a braced frame (R = 

) In addition, when the load ratio (δ2) increases from 0.25 to 4, the factor K also increases by 

approximately 100% for a spring stiffness ratio R∆ = 0 (unbraced frame). For braced frame (R∆ = 

∞), when the ratio of the loading is greater than 1, we observe that the factor K become greater 

than 1 as the rotational stiffness of the column end is negative (Bridge and Fraser 1987; Corsi et al. 

2020). It can therefore be said that the variation of the bracing and the loading have almost the 

same effects on the values of the factor K. These results contradict the tendency to think that the 

coefficient K has a higher sensitivity to the bracing compared to the loading. 

 

 For frames with fixed supports, as shown in Fig. 6 above, when the stiffness ratio of the bracing 

spring (R∆) increases, the overall effective buckling length factor K decreases, in a monotonous 

manner, by a value close to 1.83 for a load ratio equal to 4 (δ2 = 4) until attaining asymptotic 

values related to the load ratios of column (2). Moreover, it may be noted that in this case, the 

factor K is highly sensitive to the load ratio (δ2) when this load ratio is greater than 0.5 in the 

vicinity of R∆ = ∞ (braced frame). In addition, when the load ratio (δ2) increases from 0.25 to 4, 

the factor K increases by approximately 100% for a spring stiffness ratio R∆ = 0 (unbraced frame). 

Finally, it was observed that the values of the factor K for the frame with hinged supports are 

higher by approximately 100% and 40% for the values R∆ = 0 and R∆ = ∞, respectively, in 

comparison with those obtained in the case of a frame with fixed supports. 

 

 Regarding the influence of the bracings and column bases, as shown in Fig. 8, the bracing 

spring stiffness ratio (R∆) increases, the overall effective buckling length factor K decreases from 

values close to 2.32 (frame with hinged supports) and 1.16 (frame with fixed supports) until 

attaining asymptotic values related to the stiffness ratios of the rotational springs. Moreover, it is 

easy to see that, in this case, the factor K is highly sensitive to the stiffness ratios of the rotational 

springs in the vicinity of R∆ = 0 (unbraced frame), which is different from the case where the 

values of K are obtained in the vicinity of R∆ = ∞ (braced frame). These observations indicate that 

in accordance with the results obtained in the literature, in the case of an unbraced frame, the 

variation of the column bases have a large effect on the values of the factor K, in comparison with 

the values of factor K obtained in the case of a braced frame. 

 

6.  Conclusion 
 

 The present study aimed at developing an analytical model intended to determine the effective 

buckling lengths in irregular structures.  

 

 The slope-deflection method was used in the present study along with the accurate 

classical stability functions for the buckling analysis of the structures studied in this 

article.  



 Using the analytical development for the determination of the exact values of the effective 

buckling length factor allowed the carrying out the parametric studies proposed in this 

article. 

 The method developed by this research covers both symmetrical and asymmetrical frames, 

where geometric irregularities and loading are considered. 

 The current method gives better accuracy for asymmetrical frames than those methods 

developed by previous researchers. For symmetrical frames, the results are similar. 

 

 Finally, the results obtained from the current parametric studies carried out on several frames, 

allowed determination of the sensitivity of the factor K to the interaction between the variations of 

the different parameters presented in the study. Namely: 

 The interaction effect between of the variation in bracing and loading of columns on the 

factor K in frames with hinged supports. 

 The interaction effect between of the variation in bracing and loading of columns on the 

factor K in frames with fixed supports. 

 The interaction effect between of the variation in bracing and the column bases on the 

factor K. 
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