
Received October 31, 2016, accepted November 18, 2016, date of publication November 29, 2016,
date of current version January 4, 2017.

Digital Object Identifier 10.1109/ACCESS.2016.2632132

Owner Specified Excessive Access Control for
Attribute Based Encryption
FAWAD KHAN1,2, HUI LI2, (Member, IEEE), AND LIANGXUAN ZHANG2
1School of International Education, Xidian University, Xi’an 710071, China
2State Key Laboratory of Integrated Service Networks, School of Cyber Engineering, Xidian University, Xi’an 710071, China

Corresponding author: F. Khan (fawad.khan.xdu@gmail.com)

This work was supported by the National Natural Science Foundation of China under Grant U1401251 and Grant 61272457.

ABSTRACT Attribute-based encryption (ABE) has emerged as a promising solution for access control to
diverse set of users in cloud computing systems. Policy can just specify whether (or not) any specific user
should be given access to data, but it lacks to provide data owner the privilege to specify (howmuch) fraction,
or (which) specific chunk from that data to be accessed or decrypted. In this paper, we address this issue, and
propose a scheme that will give data owner excessive access control, so that he can specify specific chunk
out of total data to be accessed by user depending on his attributes. In our scheme, a data owner can encrypt
data over attributes specified in a policy, but even if user’s attributes satisfy the policy; he can decrypt data
(partially or fully) fractionally based on his attributes specified by owner. The owner can also prioritize user’s
access based on his designation, or hierarchal role in a specific organization. We also address to resolve the
issue of attributes repetition, due to which the cost of computations in encryption by owner and ciphertext
size is reduced. Furthermore, we achieve it with a single ciphertext over policy for entire data, and proof our
scheme to be secure in the generic group and random oracle model. Theoretical comparisons of computations
with existing constructions, and performance of the scheme evaluated in the Charm simulator is reasonable
enough to be adopted in practice.

INDEX TERMS Attribute, partial, full, encryption, decryption, symmetric key, chunk, excessive access,
repetition, fractional.

I. INTRODUCTION
Attribute Based Encryption (ABE) has evolved as an access
control mechanism for large target community. Cloud storage
is a service of cloud computing [30], utilized by data owners
to outsource their data to the servers. ABE is considered as a
promising solution for data access in cloud computing.

As cloud servers are not trust worthy, so owner undertakes
the responsibility to encrypt its data before outsourcing it
to the server. Owner defines an access policy for specific
attributes that it wishes to be mandatory for data access, and
then sends it along with ciphertext to the server. If attributes
of user key satisfy the policy specified in ciphertext; user
then can decrypt ciphertext correctly to get data. In ABE, for
example, the University can share an examination notice, or
provide access to particular data placed on its server (where
professors are entitled to view all data while students have
limited access to data) using policy named Simple defined as:
University∧ (ProfessorOR Student), for users with attributes
“University and Professor” , “University and Student” to

retrieve the data. We tag this policy as Simple, because in
rest of paper we will refer to this specific policy using its tag.
Policy can just define here that any user with attributes can
access the data, but it fails to define that out of those user
attributes, which attribute’s allows access to which fraction
(chunk) of data. We further elaborate it by the scenario; let’s
consider a video provider is encrypting a video for attributes
FreeUser , andPaidUser . If the policy is defined to be: (FreeUser
OR PaidUser ), then individual users having attributes either
FreeUser , or PaidUser can decrypt the video. Although, user
with any (one) of these attributes will have access to data,
but now the owner wants to restrict the user with FreeUser
attribute to decrypt and view just starting ‘‘five" minutes of
video, and user with PaidUser attribute to decrypt and view
the whole video. Although, both attribute’s satisfy the policy
and have access to data, but now they differ in the data being
accessed using them. In other words, video provider in this
case has restricted the access of FreeUser to a fraction of video
instead of whole video.

VOLUME 4, 2016
2169-3536 
 2016 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

8967



F. Khan et al.: Owner Specified Excessive Access Control for ABE

This is an important issue, which should be addressed to
give the data owner more privileges, so that he can specify
how much (fraction) of data can be accessed by users using
their attributes. To differentiate, there are two thing’s; one
is user’s attributes that qualify it for data access, if they
satisfy the policy specified by owner, while the other thing
is how much fraction of data can be accessed by using those
attributes. For Simple policy, as Student and Professor have
access to dissimilar variant of data; hence, we list them under
different attribute set Wi in policy, where Wi is a set of
attributes in policy providing access to different variants of
data. Another issue, to be addressed is the repeated attribute
(University in Simple policy) appearing in multiple attribute
sets Wi leading to more computation cost in encryption
operation at data owner.

Although, for both the scenario’s (Simple and Video
Provider policy); which we explained above can be dealt with
by defining two separate policies over ciphertexts (based on
attribute-sets Wi), with different symmetric decryption keys
for fractional data access; we argue that it should be done
with a single ciphertext over one policy with no attributes rep-
etition. Throughout the paper, we will use words fractional,
variant, and partial interchangeably for referring to a chunk
of data.

A. THIS WORK
In this paper, we address the issue of providing more access
control to data owner, and also propose a technique to resolve
an issue of attributes repetition in Linear Secret Sharing
Scheme (LSSS) accessmatrix, which arise due to provision of
excessive access. Removal of repeated attributes from access
matrix leads to reduced computations in encryption operation
and ciphertext size. Our proposed scheme, will allow owner
to encrypt data under one policy and single ciphertext over
attributes, and can specify (how much) fraction of data can
be accessed by user using his individual attributes or com-
bination of his attributes. User on retrieving the ciphertext
will check that if his attributes satisfy the policy specified
in ciphertext, then he can get access to either fraction-of or
full data depending on his attributes as specified by owner in
ciphertext. Moreover, owner can prioritize user’s data access
based on his hierarchal role in an organization. In this work,
the conformation of user’s attributes to satisfy ciphertext
policy does not lead to entire data access, but a part of it;
unless specified by owner.

B. PAPER ORGANIZATION
The rest of this paper is organized as follows. Related work
is detailed in Section II, followed by Section III containing
a brief overview of access structures, linear secret sharing
scheme and multi-authority ABE. Section IV details our
proposed scheme, while section V gives the performance
analysis and security proof of our scheme. Section VI
concludes the paper.

II. RELATED WORK
In this section, we will review attribute based encryption,
access hierarchies, and chunk based encryption.

Attribute based encryption [2]–[4], [11], [12], [35], [36]
has emerged as a valuable tool for access control in cloud
computing systems. ABE find applications in places, where
there are multiple sets of users in need to access different
pieces of data. In order to comply with it, owner encrypts data
over a ciphertext embedded with a policy of attributes; defin-
ing which individual attribute’s or their combination can help
decrypt data from ciphertext. There are two types of ABE.
The first one named as Key-Policy ABE (KP-ABE). The
first construction of KP-ABE was made by Goyal et al. [11].
In KP-ABE, the ciphertext is associated to attributes while
the user decryption key is linked to access policy. To correctly
decrypt, the policy in user key must conform to the attributes
in ciphertext. The second type of ABE is Ciphertext-Policy
ABE (CP-ABE). In CP-ABE [2], ciphertext is related to pol-
icy while attributes correspond to user decryption key. User
can decrypt properly to get data if attributes in user key satisfy
the policy in ciphertext. In single authority ABE schemes,
a single certification authority is responsible for managing
attributes, key generation and key distribution to users. This
poses issues like Quality of Service (QoS) and scalability.
To cater these problems, the foremost multi-authority ABE
was proposed by Chase and Melissa [8], but the scheme
required a central authority for coordination between all
authorities. Lekwo et al. [4] then proposed the first decen-
tralized multi-authority ABE in which all the authorities were
independent from each other and hence required no coordi-
nation. Several other works [13]–[17], [34] were proposed
to cater different issues regarding ABE but still the issue of
giving more privileges to data owner, so that it can restrict
user to (full or partial) fractional access of data based on its
attributes is un addressed.

To give different access rights to users; the data cannot
be encrypted with a single symmetric encryption key, but
rather with different chunk keys. The idea of chunk based
encryption [18], [20], [26], [27] is not new. In chunk based
encryption, data is divided into several chunks and each one
is encrypted using a different symmetric key. In [18], it is
utilized for providing confidentiality and integrity to data in
a cloud computing system while Yang et al. [20], utilized it
for revocable data access control.

Access hierarchies [19], [22], [25] play an important role in
granting access to users based on their roles. In this approach,
several chunk keys are derived from the parent node key
with the condition that chunk keys are derived only in the
top-down manner, i.e., from the parent nodes to its descen-
dant child nodes. To grant hierarchal access to users; keys
are given to users in hierarchal order, i.e., the user having
parent node key will have access to all data; in contrast the
user having key with no descendant node has the access to
only a part of data. A good construction of this is proposed
by Atallahs et al. [22], which has been proven secure

8968 VOLUME 4, 2016



F. Khan et al.: Owner Specified Excessive Access Control for ABE

against collusion. Vimercati et al. [19] proposed multi key
encryption approach to give different access rights to users
by adopting the scheme proposed in [22]. Several works
in which the concept is utilized are: enforcing access for
users on published XML documents [21], various variants
of video quality provision [23], encrypted database access
control [24], and cloud storage framework [29].

III. PRELIMINARY BACKGROUND
In the section, we will briefly discuss about access structures,
Linear Secret Sharing Scheme (LSSS) and multi authority
CP-ABE.

A. ACCESS STRUCTURES
Definition 3.1: Access Structure [7]. We let P1, . . . ,Pn

represent a set of parties. A collection X ⊆ 2{P1,...,Pn} is
monotone if ∀ Y ,Z : if Y ∈ X and Y ⊆ Z , then Z ∈ X .
Access structure specifically monotone will be a collection
of non-empty subsets of P1, . . . ,Pn. The sets in X are called
authorized sets.
In our work, we let attributes similar to parties and we
consider only monotone access structures.

B. LINEAR SECRET SHARING SCHEME
Our construction utilizes linear secret sharing scheme.
We adapt the definition from [7].
Definition 3.2: Secret sharing scheme

∏
over a set of

parties P is linear if:
1. Combination of shares from all parties forms a vector

over Zp.
2. A share generating matrix A exists for

∏
. Matrix A

has m rows and n columns. For x = 1 to m each x th row
of A corresponds to a party P(x). We let a column vector v
= {s, v2, . . . , vn} be a sharing vector; where s is the secret to
be shared is selected from Zp, and v2, . . . , vn ∈ Zp. Then A.v
is the vector of m shares of s according to

∏
. The share λi =

(A
→
v )i belongs to party p(i).

We let S denote the set of attributes. Define L ⊆ {1, . . . ,m}
as L = {x|p(x) ∈ S}. There exists a vector (1,0,. . . ,0) in
the span of Ax indexed by L, where Ax represent rows of
A. For linear reconstruction, we have constants of the form
{ wx ∈ Zp}x∈L such that, if λx are valid shares of secret s
according to

∏
, then s can be reconstructed by

∑
x∈L wx

λx = s.

C. MULTI-AUTHORITY EAC CP-ABE
We briefly describe the algorithms that are part of the multi
authority Excessive Access Control (EAC) CP-ABE scheme.

Global Setup(λ)→ GP: The algorithm takes as input the
security parameter λ and outputs the global parameters GP
for the system.

Authority Setup(GP) → SK ,PK : In this algorithm, the
input is global parameters of the system and output corre-
sponds to secret SK / public PK keys of the authorities.

Encrypt(S, (A, ρ),GP,PK ) → CT : Encrypt algorithm
takes as input the message S (symmetric keys for data
chunks), access matrix (A, ρ) , global parameters and the
public keys of authorities to output the ciphertext CT.

KeyGen (GID,GP, i, SK ) → Ki,GID : KeyGen algorithm
takes as input the user identity GID, specific attribute i,
GP and secret key of corresponding authority to generate a
decryption key Ki,GID for user.

Decrypt (CT ,GP,Ki,GID) → S: To decrypt the cipher-
text, this algorithm takes as input CT, GP and the set
of user attribute keys. For successful decryption the user
attribute keys should correctly satisfy the access matrix in the
ciphertext.
Definition 3.3: Amulti authority EAC CP-ABE scheme is

correct if the GP is obtained from global setup algorithm, CT
from encrypt algorithm, keysKi,GID corresponding to specific
attributes of user GID are generated using keygen algorithm
andmessage (S) is obtained fromCT using decrypt algorithm,
if the set of attributes in key satisfy the access matrix in CT.

IV. OUR CONSTRUCTION
In this section, we will provide a detailed construction of our
scheme.

A. SECURITY MODEL
We define the security game for EAC CP-ABE system
between challenger and attacker in the following way.
We assume that the adversary can corrupt authorities stati-
cally but can make queries adaptively till the end of game.
This samemodel has been used by Chase et al. [9], and Chase
and Melissa [8] respectively. In our model, we give more
powers to attacker, that he can choose public keys of corrupt
authorities by himself; instead given to him by challenger at
the start of game.

We let S denote the set of all the authorities in system and
U denote the attributes universe. Each attribute belongs to one
authority.

Setup: The global setup algorithm is run. The attacker
specifies a set of corrupt (S0 ⊂ S) authorities to the chal-
lenger. Challenger then obtains the public and private keys of
uncorrupt (S − S0) authorities by running the authority setup
algorithm. Finally, challenger reveals the acquired public
keys to the attacker.

Phase 1: The attacker queries challenger for key pairs
(i,GID) corresponding to attribute i of good authority and
user identity GID. The challenger replies to the queries by
sending out the key pairs of the form Ki,GID to the attacker.
For attributes in corrupt authority, the attacker can generate
decryption keys by himself.

Challenge Phase: Attacker then specifies two equal length
messages under the access structure (A, ρ). Moreover, spec-
ifies for each attribute in ρ that it belongs to which attribute
set Wi. Let V denote the subset of rows of access matrix
A controlled by corrupt authorities. We denote VGID as the
subset of rows of A for which the attacker can acquire the
keys (i,GID) corresponding to attribute i and identity GID

VOLUME 4, 2016 8969



F. Khan et al.: Owner Specified Excessive Access Control for ABE

for uncorrupt authorities. The constraint on access matrix is
that the subspace spanned by VUVGID should not include
(1,0,. . . ,0) in its span for any of attribute set Wi. In other
words, the attacker cannot ask for those specific keys which
he can combine with keys of corrupt authorities to allow
successful decryption for specific attribute and identity GID.
Also the attacker gives public keys of corrupt authorities
attributes to challenger which appears in the image ρ. Chal-
lenger flips a random coin β = {0, 1} and encrypts a message
Mβ according to access policy.

Phase 2: Attacker makes further key queries (i,GID) but
under the constraint that queries dont violate the challenge
matrix (A, ρ) .
Guess: Attacker submits a guess β ′ for β. Attacker wins

the game if β ′ = β. The advantage of attacker in the security
game is Pr[β ′ = β]− 1/2.
Definition 4.1: A multi authority ciphertext policy

attribute based encryption scheme with excessive access
control is secure (against static corruption of authorities) if
all polynomial time adversaries have at most a negligible
advantage in security game.

FIGURE 1. System Model.

B. SYSTEM MODEL
We let a multi-authority cloud storage system as shown in
FIGURE1. It consists of owners, users, server, and attribute
authorities (AA).

Owner An entity who wants to publish data on the server
to be retrieved later by other users based on their attributes.
For publishing data it will first split the data into chunks and
encrypt each chunk with a new symmetric key followed by
defining a decryption policy based on attributes.

Server
It is an entity used for outsourcing owner’s data and

providing data access to users.
User It can request ciphertext from server, but can decrypt

only when his decryption keys satisfy the access policy in
ciphertext.

Attribute Authority Each Attribute Authority (AA) gen-
erates a public, private key pair for itself. Moreover, it

undertakes the responsibility for managing attributes and
generating keys for users based on their attributes handled
by AA. Authorities work in a decentralized fashion; hence no
coordination is required between them.

FIGURE 2. Data Chunks Encryption.

C. IDEA OF OUR CONSTRUCTION
In many situations, owner does not want to give access of
entire data, but a part or fraction of it. To provide owner
more privileges, so that he can specify how much fraction
of data can be accessed by user based on his attributes; data
needs to be divided into chunks, and encrypted using different
symmetric keys as shown in FIGURE2, where m1 is data
chunk 1 encrypted with symmetric keyK1,m2 is data chunk 2
encrypted with symmetric key K2 and so on for other data
chunks.

To enforce, fractional or partial access of data, one chal-
lenge is that owner must encrypt data using only one policy
and ciphertext for all individual data chunks encrypted with
different symmetric keys.

We define a scenario to illustrate our idea. Let’s consider
a research being carried out by university for designing dis-
ease measuring equipment for a hospital in collaboration
with some company. People from three different domains
hospital, university, and company are involved in work and
they have access to different fractions of data based on
their attributes. We define an excessive access control policy
named Complex as: {(University ∧ Student) OR (Hospital
∧ Patient)} OR {(University ∧ Professor) OR (Hospital ∧
Nurse)} OR {Company ∧ (HR ORMarketing OR Finance)}
OR {(Hospital ∧ Doctor) OR (Company ∧ Boss)}. The first
glance of this Complex policy shows that any individual with
specific set of attributes will have provision to same and all
data, but here owner wants to give different access rights to
users.

We use this {} notation to indicate that attributes enclosed
in these refer to an attribute set Wi. Each Wi contains a
diverse set of users having access to same data chunk. With
in an attribute set Wi, if

∑
cxλx = qi; then user can have

access to data. For Complex policy we have four attribute
sets as: (1). W1 = {(University ∧ Student) OR (Hospital ∧
Patient)}, (2). W2 = {(University ∧ Professor) OR (Hospital
∧ Nurse)}, (3). W3 = {Company ∧ (HR OR Marketing OR
Finance)}, and (4).W4 = {(Hospital∧Doctor)OR (Company
∧ Boss)}; where Wi is an attribute set. FIGURE3 shows the
data access for each attribute set Wi. The point worth noting
here is that attribute’s “University, Hospital, and Company”
appear in more than one attribute sets because user’s besides
their attribute’s need these to access data. Like in this policy,
“Student” belonging to W1 and “Professor” from W2 both
needs “University” attribute to access their data variant.
Excessive control can be enforced in this case, via parti-
tioning the data into three parts and encrypting chunks with

8970 VOLUME 4, 2016



F. Khan et al.: Owner Specified Excessive Access Control for ABE

FIGURE 3. Fractional Data Access of Attributes Sets.

three different symmetric keys. Next, for enforcing excessive
data access, we compare and contrast the two approaches
mentioned below.

Basic Scheme In, Traditional-ABE (T-ABE) schemes, all
users have access to one and only single data encrypted
using a symmetric key enclosed in M . Moreover, this M
is encrypted using a secret s raised to a pairing in the
form of M ∗ e(g, g)s. The secret s is shared among user’s
attributes in ciphertext using LSSS matrix shares λx . Using
T-ABE schemes, in-order for owner to give different data
access to users for Complex policy; it will have to break
the policy into 4 individual attribute sets Wi policies and
then compute the ciphertext for each of the policy. This
is due to the fact that for T-ABE schemes we cannot
have more than one secret s in a ciphertext for policy.
As mentioned earlier, three attributes “University, Hospi-
tal and Company” repeats in attribute sets Wi, or in other
words these are shared by other attributes to access data.
For Complex policy, there are overall 12 “distinct” attributes,
but due to repetition the overall number is 16. This rep-
etition increases the computational effort while computing
ciphertexts in encryption operation by owner and moreover,
elongates its size.

Our SchemeWe propose our method, in which the owner
can enjoy the privilege of excessive access control by defining
a single policy over one ciphertext with no attributes rep-
etition. Moreover, users having access to various different
chunks of data will all have to satisfy that just one policy.
To do so, the excessive access Complex policy should be
rewritten with no-attributes repetition for our scheme in its
compact form as: (University ∧ (Professor OR Student)) OR
(Hospital ∧ (Patient OR Doctor OR Nurse)) OR (Company
∧ (HR OR Marketing OR Finance OR Boss)). The LSSS
matrix for the compact complex policy is also constructed.
In our approach, instead of defining separate policies like
in traditional ABE schemes; we define different secrets qi
to be shared for attribute sets Wi. The sharing vectors for
secrets qi are evaluated by the formed LSSS matrix with
distinct attributes, but due to repetition of attribute’s between
multiple Wi; shares λx for repeated attributes are also mul-
tiple. For Complex policy, we have 16 evaluated λx shares
for attributes belonging to four 4 attribute sets. We remove
the repeated attributes λx shares, so that they correspond
exactly to 12 “distinct” attributes, and also conform to secrets
qi by employing our proposed methodology mentioned in
section IV - D of this paper.

D. ELIMINATING REPEATED ATTRIBUTES
Based on the fact that summation of attribute’s share’s λx
leads to secret reconstruction, i.e.,

∑
cxλx = qi in Wi if

the attributes ∈ Wi form a span of (1,0,. . .0). We exploit
this secret re-construction property to eliminate the repeated
attributes shares appearing across multiple Wi. We have two
types of attributes namely: Oattr and Rattr .
Oattr , represents other attribute appearing with repeated

one in policy, cO denotes coefficient of other attribute share,
Rattr for repeated attribute appearing multiple times, and
cR is the coefficient of repeated attribute share. cO, and cR
correspond to values cx for which

∑
cxλx = qi (secret recon-

struction). For Simple policy, Rattr corresponds to University
while Oattr represents Student and Professor. For eliminating
the repeated attributes we utilize the following equation:

(Oattr ) = (1/cO){(qi)− (cR)(Rattr )}

Where qi denotes secret to be shared for an attribute setWi.
Elimination is done by putting all values in equation, and
by fixing the value of repeated attribute Rattr share; there by
obtaining the values for other attributesOattr shares. We refer
reader to Appendix A, for an example of using this method
for eliminating the repeated attributes.

E. PROPOSED SCHEME
In our construction, policy is defined over the ciphertext
only once for all data chunks with no attribute repetition by
employing the methodology as stated above.

Global Setup(λ)→ GP: In global setup, a bilinear group
G of prime order p is chosen. Global parameters are set to p,
g, e(g, g) and H ; where g is a generator of group G and H is
a hash function that maps global identities GID to elements
in G. We will model H as random oracle for security proof.

Authority Setup(GP) → SK ,PK : Each authority selects
for itself a random value t ∈ Zp. For each attribute i that
belongs to authority, it chooses a random value αi ∈ Zp.
It keeps values {t , αi∀i} as secret key, SK and publishes
{gt , e(g, g)αi∀i} as public key, PK.
Encrypt(S, (A, ρ),GP,PK ) → CT : The owner first

takes data M = [m1,m2, . . . ,mk ] encrypted with S =
[S1, S2, . . . , Sk ], where Si corresponds to the chunk mi and
S corresponds to M . After that, he defines an excessive
access policy W = [W1 OR W2 OR...OR Wk OR Wk+1],
where Wi corresponds to symmetric chunk key Si, and Wk+1
corresponds to symmetric key S. Then, he rewrites the policy
without attributes repetition and forms an LSSS matrix A
of size m x n. The algorithm takes as input; a message S
(symmetric keys for data chunks), global parameters, an
access matrix A of size m x n with ρ containing a map of
its rows to attributes, and PK’s from relevant authorities.
To proceed, it will first choose random values qi, vi,2, . . . ,
vi,n ∈ Zp to form a sharing vector vi = {qi, vi,2, . . . , vi,n};
where qi is secret to be shared for each attribute set Wi.
Further, it computes λx = Ax · vi for Ax ∈ Wi where Ax is x th

row of A. Moreover, it will choose a random vector w ∈ Zp
of length n with 0 as its first entry. Compute wx = Ax · w.

VOLUME 4, 2016 8971



F. Khan et al.: Owner Specified Excessive Access Control for ABE

Then it will use the algorithm in section D to remove
the repeated values of shares λx , so that attributes are not
repeated, and finally it computes the ciphertext as:

CT = {Ci = Si · e(g, g)qi ,C1,x = e(g, g)λx · e(g, g)αρ(x)wx ,

C2,x = gtwx for ρ(x) ∈ Wi|i = 1, 2, . . . , k + 1}.

The owner then sends CT, (A, ρ) for compact policy along
with excessive access policy W = [W1 OR, . . . ,OR Wk+1]
to the server. Ciphertext Ci values correspond to attribute sets
Wi in access policy.
KeyGen (GID,GP, i, SK ) → Ki,GID : To create a key

for user GID corresponding to an attribute i of authority, it
computes Ki,GID = gαi/t · H (GID)1/t .
Decrypt (CT ,GP, {Ki,GID}) → S: For decryption, the

primary assumption is that the ciphertext is encrypted under
access matrix (A, ρ) . The user will determine his attributes
belonging to particular attribute set using excessive access
policy W , the span (1, 0, . . . , 0) and exact ciphtertext cor-
responding to his keys using (A, ρ). If the decryption
user keys {Kρ(x),GID} can form a span (1, 0, . . . , 0) over
the subset of access matrix rows Ax ∈ Wi, then user
will choose constants ux ∈ Zp, so that

∑
x ux Ax =

(1, 0, . . . , 0) whereAx ∈ Wi, and then will decrypt as follows:∏
x(C1,x/e(C2,x ,Kρ(x),GID))ux = e(g, g)qi .
After correctly finding e(g, g)qi user will divide this by

value of Ci (corresponding to his attribute set Wi) to obtain
Si which is symmetric chunk key for mi.

F. CORRECTNESS
The proposed excessive access control scheme is correct.
To decrypt, the user will first choose constants ux ∈ Zp, so
that

∑
x ux Ax = (1, 0, . . . , 0); then will decrypt as follows:∏

x

(C1,x/e(C2,x ,Kρ(x),GID))ux

=

∏
x

(e(g, g)λx e(g, g)αρ(x)wx/e(gtwx , gαρ(x)/t · H (GID)1/t ))ux

=

∏
x

(e(g, g)λx e(g, g)αρ(x)wx/e(g, g)αρ(x)wx

· e(g,H (GID))wx )ux

=

∏
x

(e(g, g)λx/e(g,H (GID))wx )ux

= e(g, g)qi

V. ANALYSIS OF THE SCHEME
In this section, we will analyze the performance of our
scheme, and give a security proof for our construction.

A. PERFORMANCE EVALUATION
We will first compare the theoretical computations and
security model of our scheme with existing Water’s con-
structions BSW07 [2], W09 [3], LBW11 [4], RW13 [5], and
RW15 [6], and then we will demonstrate with the help of two
policies the effect of attributes repetition on the performance

TABLE 1. Comparison with existing water’s constructions.

of schemes. Finally, we will present our scheme running time
performance.

In TABLE I, the notations used for various entities are: SM ,
SS, FS for security model, selective and full security, l for
the number of authorities, m for number of user attributes,
n for number of attributes in access structure,W for attribute
sets in access structure, and z for number of user’s attributes
utilized for satisfying the policy. Moreover, we represent E
for exponential andP for pairing operation. TABLE I contains
the operations carried out by various constructions in key
generation, encryption and decryption operations. As seen
from the table our scheme has comparable computations in
terms of key generation and encryption but it surpasses all
other schemes in decryption by utilizing just one pairing and
exponential operation per attribute.

TABLE 2. Comparison of computations for simple and complex policy.

Now, we will demonstrate the effect of attributes repetition
on the performance of schemes. For traditional ABE schemes,
in-order to provide excessive access; the owner needs to
divide the policy based on the attributes sets Wi, and then
encrypt separate ciphertexts for those policies due to which
attributes shared with in multiple Wi are repeated. In our
scheme, attributes are not repeated; hence the ciphertext size
is short, and fewer computations have to be performed in
encryption operation by owner. Moreover, we achieve it with
a single ciphertext over one policy. TABLE II lists computa-
tions performed by the all schemes for Simple and Complex
policy. Our scheme has less computational operations for
both the policies in encryption and decryption algorithms.

We have implemented our scheme in Charm [31], [33],
which is a cryptographic tool for defining and evaluating
pairing based constructions. It is based on a high level
language python and utilizing [28], pairing based cryp-
tography libraries. All charm routines work on underlying
asymmetric groups, even if the basic constructions are in

8972 VOLUME 4, 2016



F. Khan et al.: Owner Specified Excessive Access Control for ABE

symmetric groups. So, we need to convert our scheme to its
asymmetric version although it reduces efficiency; now we
have three multiplicative cyclic groups G1,G2 and GT of
prime order p, and the bilinear map e : G1 x G2 → GT is
between them. All our simulations are executed on a (3 GB
allocated Ram) Hyper-V Virtual Machine running (Ubuntu
14.04, Python3.4.3 and Charm-Crypto-0.43) on dell inspiron
laptop Intel(R) Core(TM) i5-3337U CPU@ 1.80GHz with
8 GB Ram.

TABLE 3. Average running time in milliseconds(ms) of our scheme for (S),
(C) Policy with parameters.

In TABLE III, we give the running time (ms) of global
setup: GS, authority setup: AS, key generation: KG, encryp-
tion: Enc, decryption: Dec algorithms for our scheme
evaluated in Charm for Simple and Complex policies. The
notations Attr , U and V represent number of attributes, users
and data variants for policy P in TABLE III. In prior one,
there are two (2) user’s having access to different variants
of data, while in Complex policy there are nine (9) user’s
having access to four (4) variants of data. Decryption time
evaluated for Simple policy includes time of both Student and
Professor to get their share of symmetric key. Similarly it
applies for Complex policy containing nine users from four
different attribute sets.

B. SECURITY PROOF
We proof our scheme to be secure using generic bilinear
group model previously employed in [1], [2], [4], and [10].
Wewill modelH (hash function) as a random oracle. Security
model assures that adversary cannot succeed to break our
scheme given only black box access to group operations
and H .
We describe the generic bilinear group model as described

in [1].We letψ0 andψ1 are two random encodings of additive
group Zp. Each of ψ0 and ψ1 is an injective map from Zp to
{0, 1}m for m > 3log(p). Formally, we represent the groups
as: G0 = {ψ0(x) : x ∈ Zp} and G1 = {ψ1(x) : x ∈ Zp}.
Assume that we have access to oracles for evaluating
the group operations in G0 and G1. Moreover, we have
the oracle to compute the non-degenerate bilinear map e:
G0 × G0→ G1.

In the security game, the attacker has to distinguish
between Ci = M0e(g, g)qi and Ci = M1e(g, g)qi .
We now consider a modification in the game [2], where the
attacker must distinguish between Ci = M0e(g, g)qi and
Ci = M0e(g, g)ai , where ai ∈ Zp is selected for each attribute
set Wi. We simplify the notations that we use as: g denote
ψ0(1), gx denote ψ0(x), e(g, g) denote ψ1(1) and e(g, g)y

denote ψ1(y).
We now simulate the modified security game in

generic bilinear group model, where Ci is set to e(g, g)ai .

Moreover, S represents the set of authorities andU represents
the set of attributes universe. Simulator runs the global setup
algorithm and gives g to the attacker. Attacker then specifies
a set S ′ ⊂ S of corrupt authorities, and discloses it to the sim-
ulator. Simulator randomly chooses t ∈ Zp for uncorrupted
authorities, and αi ∈ Zp where i ∈ U corresponds to attributes
that are controlled by uncorrupted authorities; queries group
oracles for evaluating gt , e(g, g)αi and gives these values to
attacker.

Attacker then requestsH (GID) for the first time. Simulator
chooses a random value hGID ∈ Zp, queries group oracles
for ghGID and sends it to attacker. Also, the simulator keeps
a copy of the sent value, so that the requested GID value in
future will be dealt with the same evaluated value. Attacker
then requests a key Ki,GID for an attribute i belonging to a
particular authority and identity GID. In response, simulator
computes gαi/t · H (GID)1/t by querying the group oracles,
and send it back to the attacker. After some time, attacker will
specify an access matrix (A, ρ) for challenge ciphertext with
attributes specified for attributes setsWi. Moreover, values of
corrupt authority attributes that appear in ρ (corresponding
to rows of A) of access matrix will be sent by attacker to
simulator. Simulator confirms the validity of these attributes
by querying group oracles.

Simulator will now produce the challenge cipher-
text. To follow up, it will first choose random values
qi, vi,2, . . . , vi,n ∈ Zp to form a sharing vector vi =
{qi, vi,2, . . . , vi,n}; where qi is secret to be shared for each
attribute set Wi. Further, it computes λx = Ax · vi for Ax
∈ Wi where Ax is x th row of LSSS matrix A with no repeated
attributes. Moreover, selects a vector w = {0,w2, . . . ,wn}
where each w2, . . . ,wn is selected randomly from Zp and
evaluates wx = Ax · w . Simulator will give λx shares values
to elimination algorithm for removal of repeated attributes.
Finally it will select random values ai ∈ Zp for Wi. With
the help of group oracles the simulator now computes the
ciphertext as:

{C0 = e(g, g)ai ,C1,x = e(g, g)λx

· e(g, g)αρ(x)wx , C2,x = gtwx ∀ x}.

The challenge ciphertext is given to the attacker. We argue
that by all, but with negligible probability, an attacker view
regarding if Ci is set to e(g, g)ai in place of e(g, g)qi is iden-
tical in simulation. This illustrates that attacker cannot attain
non negligible advantage in modified security game; hence,
he cannot gain non negligible advantage in real security
game.

We condition on attackers queries to input values, as the
value’s given to attacker during simulation, or the values
which he received in response of previous queries which he
made to oracles. The event occurs with greater probability.
As ψ0 and ψ1 are random injective maps from Zp into a set
with greater than p3 elements; to guess an element appearing
in image of ψ0, ψ1 occurs with negligible probability which
has not been attained before.

VOLUME 4, 2016 8973



F. Khan et al.: Owner Specified Excessive Access Control for ABE

Under aforementioned condition, attacker can query as
a multi variate polynomial in variables ai, αj,t ,γx,wx,hGID,
where j stands for uncorrupted authorities, x ranges over
rows of challenge access matrix and GID ranges over
allowed identities. We take γx as the linear combination
of variables (qi, vi,2, . . . , vi,n) for attribute sets Wi and wx
= (0,w2, . . . ,wn). Further, we state that for each different
pair of queries responding to unlike polynomials, attacker
receives different answers. Difference is non-zero for random
assignment of values to variables for two query polynomials.
This event occurs with greater probability which we can
realize using union bound and Schwartz-Zippel lemma as the
polynomials have at most degree 4.

We see that ai only appears as e(g, g)ai , so the queries
attacker can make about ai will be of the form cai + other
terms, where c is constant. Attackers view can change only
when it makes two different polynomial queries, f and f ′ into
G1 but if it replace ai = qi; the result will be same (one)
polynomial. This implies that, f − f ′ = cai − cqi for some
constant c. We conclude that attacker can query cqi.

TABLE 4. Possible Query Terms.

Now we will show that a query cqi cannot be made by
attacker, and hence we arrive at a contradiction. We can
see the possible queries attacker can make in TABLE IV.
By inspecting we came at a conclusion that attacker can
only make queries of the form which are linear combinations
of 1, ai and other terms appearing in TABLE IV.

We remind that attacker knows the values of αi, t for
corrupted authorities; that’s why the linear combinations of
these values can appear in TABLE IV .

Recall that qi can be constructed by λx = Ax ·vi where vi =
(qi, vi,2, . . . , vi,n) for attribute setWi. Hence the only appear-
ance of qi in TABLE IV can be constructed using the linear
combination of λx . To order query of the form cqi; attacker
needs to choose constants βx such that

∑
x λx = cqi by asking

for query (λx+αρ(x)wx) to form βx(λx+αρ(x)wx). For corrupt
authorities attributes, attacker can construct polynomials of
the form −βxαρ(x)wx to cancel out this term for the above
polynomial. For uncorrupted authorities attributes, attacker
needs to query (αρ(x)wx + hGIDwx) this; in-order to cancel
out −βxαρ(x)wx , which leaves an extra term of −βxhGIDwx .
We note that attacker can access this term (αρ(x)wx+hGIDwx)
if it requests for a key corresponding to a particular attribute
ρ(x) and identity GID.

The gathering of these terms for each identity GID will
cancel this term only if the span (1,0,. . .,0) of length n vector
is in the rows Ax ∈ Wi of A belonging to corrupt author-
ities, or uncorrupted one’s for which he acquired the keys

for (ρ(x),GID). Under this condition, the attacker has broken
the rules of security game and requested for a set of keys
for an identity GID with which he is capable to decrypt the
challenge ciphertext.

Therefore, we have presented that attacker cannot
construct a query of the form cqi for some constant c. Hence,
under these conditions that hold with all but with negligible
probability, we state that the attackers viewwhen ai is random
is identical to when ai = qi. This proves that the attacker
cannot attain a non-negligible advantage in the security game.

VI. CONCLUSION
In this paper, we have proposed an excessive access control
scheme for data owner using a single ciphertext over policy
without attributes repetition. The owner can enjoy limiting the
user’s access to just specified chunks of data, instead of whole
data.Moreover, owner can also grant privileged data access to
users based on their hierarchal role in a specific organization.
Comparison, in contrast to traditional approaches depicts its
effectiveness in terms of providing variant data access in a
single policy over ciphertext, and by less computations in
encryption and decryption operation. Our proposed scheme
is proven secure in generic group and random oracle model.
Performance evaluation of scheme in Charm simulator is
good to adopt it in practice. We will try to further enhance its
performance in future, and extend it to other types of access
structures besides LSSS.

APPENDIX
REMOVING REPEATED ATTRIBUTES FROM LSSS MATRIX
Here, we demonstrate how to remove the repeated attributes
from LSSS matrix. Suppose the data owner wants to share
fractional access of data using the “Simple” policy University
∧ (Professor OR Student). For this policy, the attribute sets
are W1 = (University ∧ Professor) and W2 = (University ∧
Student). Using T-ABE schemes, this policy is broken down
based on the attribute sets Wi, and a separate ciphertext will
be evaluated for bothWi. Attribute University appears in both
Wi; hence, it will be evaluated for both the ciphertexts.

For Our proposed scheme, the data owner will write this
policy in its compact form with no attributes repetition as:
University ∧ (Professor OR Student). For this compact pol-
icy the LSSS matrix M based on AND-OR gates [4], [32]
is shown in FIGURE4 (a). For demonstration purpose
(to have an idea regarding secret sharing and its re-
construction), the shares of secret “s” are calculated as
λ1, λ2 and λ3. For re-construction the users based on
their attributes will find the coefficients ci by the relation∑
ciMi =(1,0,. . .,0). In this case c1 = c2 = c3 = 1. Com-

bination of either Professor or Student share with University
share will lead to re-construction of secret in FIGURE4 (a).

For excessive access control, we need to share 2 secrets
q1, q2 accordingly for W1,W2. Hence, we encounter a prob-
lem that attribute “University” appears in each of the LSSS
matrix as seen in FIGURE4 (b), (c) for W1 and W2. To solve
this problem, we use our proposed approach mentioned in

8974 VOLUME 4, 2016



F. Khan et al.: Owner Specified Excessive Access Control for ABE

FIGURE 4. LSSS Matrix (a) Shares of secret s for all attributes, (b). Shares
of secret q1 for attribute set W1, (c). Shares of secret q2 for attribute
set W2, (d). Shares of q1&q2 for all attributes with no repetition.

section IV - D of paper. The equations for determining the
shares of Professor and Student are:

Professor, λ2 = (1/c2){(q1)− (c1)(λ1)}

Student, λ3 = (1/c3){(q2)− (c1)(λ1)}

Take any random value of λ1 ∈ Zp (here its taken as 10),
putting values of q1, q2, c1, c2 and c3, we get values of λ2, λ3
as seen in FIGURE4 (d). We note here, that the users having
attributes (either Professor, OR Student) if combine their
shares λ2, λ3 with λ1 corresponding to University; this will
lead to one of the secret recovery either q1 or q2. Different
secret reconstruction will lead to a variant data decryption
key. The attribute shares in FIGURE4 (d) will be used
for evaluating the ciphertext by owner. Finally, comparing
FIGURE4 (a), (d) we see that in-contrast to a single secret
being shared in prior one, we can share multiple secrets over
same set of attributes and policy with no repetition.

REFERENCES
[1] D. Boneh, X. Boyen, and E.-J. Goh, ‘‘Hierarchical identity based

encryption with constant size ciphertext,’’ in Advances in Cryptology—
EUROCRYPT. Berlin, Germany: Springer, 2005, pp. 440–456.

[2] J. Bethencourt, A. Sahai, and B. Waters, ‘‘Ciphertext-policy attribute-
based encryption,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2007,
pp. 321–334.

[3] B. Waters, ‘‘Ciphertext-policy attribute-based encryption: An expressive,
efficient, and provably secure realization,’’ in Public Key Cryptography—
PKC. Berlin, Germany: Springer, 2011, pp. 53–70.

[4] A. Lewko and B. Waters, ‘‘Decentralizing attribute-based encryption,’’ in
Advances in Cryptology—EUROCRYPT. Berlin, Germany: Springer, 2011,
pp. 568–588.

[5] Y. Rouselakis and B. Waters, ‘‘Practical constructions and new proof
methods for large universe attribute-based encryption,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2013, pp. 463–474.

[6] Y. Rouselakis and B. Waters, ‘‘Efficient statically-secure large-universe
multi-authority attribute-based encryption,’’ in Proc. Int. Conf. Financial
Cryptogr. Data Secur., 2015, pp. 315–332.

[7] A. Beimel, ‘‘Secure schemes for secret sharing and key distribution,’’
PhD thesis, Israel Inst. Technol., Technion, Haifa, Israel, 1996. [Online].
Available: https://www.cs.bgu.ac.il/ beimel/Papers/thesis.pdf

[8] M. Chase, ‘‘Multi-authority attribute based encryption,’’ in Theory of
Cryptography. Berlin, Germany: Springer, 2007, pp. 515–534.

[9] M. Chase and S. S. Chow, ‘‘Improving privacy and security in multi-
authority attribute-based encryption,’’ in Proc. 16th ACM Conf. Comput.
Commun. Secur., 2009, pp. 121–130.

[10] V. Shoup, ‘‘Lower bounds for discrete logarithms and related problems,’’ in
Advances in Cryptology—EUROCRYPT. Berlin, Germany: Springer, 1997.

[11] V. Goyal, O. Pandey, A. Sahai, and B. Waters, ‘‘Attribute-based encryption
for fine-grained access control of encrypted data,’’ inProc. 13th ACMConf.
Comput. Commun. Secur., 2006, pp. 89–98.

[12] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, ‘‘Fully
secure functional encryption: Attribute-based encryption and (hierarchical)
inner product encryption,’’ in Advances in Cryptology—EUROCRYPT.
Berlin, Germany: Springer, 2010, pp. 62–91.

[13] J. Li, B. Zhu, and Z. Wan, ‘‘Privacy-aware attribute-based encryption with
user accountability,’’ in Information Security. Berlin, Germany: Springer,
2009, pp. 347–362.

[14] J. Lai, R. H. Deng, and Y. Li, ‘‘Fully secure cipertext-policy hiding CP-
ABE,’’ in Information Security Practice and Experience. Berlin, Germany:
Springer, 2011, pp. 24–39.

[15] N. Doshi and D. Jinwala, ‘‘Hidden access structure ciphertext policy
attribute based encryption with constant length ciphertext,’’ in Advanced
Computing, Networking and Security. Berlin, Germany: Springer, 2011,
pp. 515–523.

[16] X. Li, ‘‘Efficient ciphertext-policy attribute based encryption with hidden
policy,’’ in Internet and Distributed Computing Systems. Berlin, Germany:
Springer, 2012, pp. 146–159.

[17] Y. Zhang, ‘‘Anonymous attribute-based encryption supporting efficient
decryption test,’’ in Proc. 8th ACM SIGSAC Symp. Inf., Comput. Commun.
Secur., 2013, pp. 511–516.

[18] N. Virvilis, S. Dritsas, and D. Gritzalis, ‘‘A cloud provider-agnostic secure
storage protocol,’’ in Critical Information Infrastructures Security. Berlin,
Germany: Springer, 2010, pp. 104–115.

[19] D. Vimercati et al., ‘‘A data outsourcing architecture combining cryptogra-
phy and access control,’’ in Proc. ACM Workshop Comput. Secur. Archit.,
2007, pp. 63–69.

[20] K. Yang and X. Jia, ‘‘Expressive, efficient, and revocable data access
control for multi-authority cloud storage,’’ IEEE Trans. Parallel Distrib.
Syst., vol. 25, no. 7, pp. 1735–1744, Jul. 2014.

[21] G. Miklau and D. Suciu, ‘‘Controlling access to published data using
cryptography,’’ in Proc. 29th Int. Conf. Very Large Data Bases, vol. 29.
2003, PP. 898–909.

[22] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, ‘‘Dynamic and
efficient key management for access hierarchies,’’ ACM Trans. Inf. Syst.
Secur., vol. 12, no. 3, p. 18, 2009.

[23] T.-Y. Ma, T.-W. Hou, and S.-Y. Tseng, ‘‘Hierarchical key management of
scalable video coding,’’ in Proc. 3rd Int. Conf. Intell. Inf. Hiding Multime-
dia Signal Process. (IIHMSP), vol. 1. 2007, pp. 399–402.

[24] E. Damiani, ‘‘Key management for multi-user encrypted databases,’’ in
Proc. ACM Workshop Storage Secur. Survivability, 2005, pp. 74–83.

[25] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, ‘‘Over-encryption: management of access control evolution on
outsourced data,’’ in Proc. 33rd Int. Conf. Very Large Data Bases (VLDB),
2007, pp. 123–134.

[26] W. Wang, Z. Li, R. Owens, and B. Bhargava, ‘‘Secure and efficient access
to outsourced data,’’ in Proc. ACMWorkshop Cloud Comput. Secur., 2009,
pp. 55–66.

[27] A. Yun, C. Shi, and Y. Kim, ‘‘On protecting integrity and confidentiality of
cryptographic file system for outsourced storage,’’ inProc. ACMWorkshop
Cloud Comput. Secur., 2009, pp. 67–76.

[28] B. Lynn. The Stanford Pairing Based Crypto Library. [Online]. Available:
https://crypto.stanford.edu/pbc/

[29] R. Huang, X. Gui, S. Yu, andW. Zhuang, ‘‘Research on privacy-preserving
cloud storage framework supporting ciphertext retrieval,’’ in Proc. Int.
Conf. Netw. Comput. Inf. Secur. (NCIS), vol. 1. 2011, pp. 93–97.

[30] P. Mell and T. Grance, ‘‘The NISTDefinition of Cloud Computing,’’ NIST,
Gaithersburg, MD, USA, Tech. Rep. SP 800-145, 2011.

[31] Charm. [Online]. Available: http://www.charm-crypto.com/
[32] Z. Liu, Z. Cao, and D. S. Wong, ‘‘Efficient generation of linear secret

sharing scheme matrices from threshold access trees,’’ IACR Cryptology
ePrint Archive, 2010.

[33] J. A. Akinyele, ‘‘Charm: A framework for rapidly prototyping cryptosys-
tems,’’ J. Cryptograph. Eng., vol. 3, no. 2, pp. 111–128, 2013.

VOLUME 4, 2016 8975



F. Khan et al.: Owner Specified Excessive Access Control for ABE

[34] V. Odelu, A. K. Das, Y. S. Rao, S. Kumari, M. K. Khan, and K.-K. R. Choo,
‘‘Pairing-based CP-ABE with constant-size ciphertexts and secret keys for
cloud environment,’’ Comput. Standards Interfaces, May 2016. [Online].
Available: http://dx.doi.org/10.1016/j.csi.2016.05.002

[35] V. Odelu and A. K. Das, ‘‘Design of a new CP-ABE with constant-size
secret keys for lightweight devices using elliptic curve cryptography,’’
Secur. Commun. Netw., vol. 9, no. 17, pp. 4048–4059, 2016.

[36] S. Chatterjee and A. K. Das, ‘‘An effective ECC-based user access control
scheme with attribute-based encryption for wireless sensor networks,’’
Secur. Commun. Netw., vol. 8, no. 9, pp. 1752–1771, 2015.

FAWAD KHAN received the B.S. degree in
electrical engineering fromUET Peshawar in 2010
and the M.S. degree in electrical engineering
from CECOS University in 2014. He is currently
pursuing the Ph.D. degree with the School of
Cyber Engineering, Xidian University. He was
with NUCES-FAST as a Lab Engineer from 2011
to 2015. His research interests include content cen-
tric networks, information security, and machine
learning.

HUI LI (M’10) received the B.S. degree from
Fudan University in 1990, and the M.S. and Ph.D.
degrees from Xidian University in 1993 and 1998,
respectively. In 2009, he was with Department of
Electrical and Computer Engineering, University
of Waterloo, as a Visiting Scholar. He is currently
a Professor with the School of Cyber Engineering,
Xidian University. His research interests include
the areas of cryptography, security of cloud com-
puting, wireless network security, and information

theory. He served as the TPC Co-Chair of ISPEC 2009 and IAS 2009, and
the General Co-Chair of E-Forensic 2010, ProvSec 2011, and ISC 2011.

LIANGXUAN ZHANG received the B.S. degree
in mathematics from Xiangtan University in 2014.
He is currently pursuing the master’s degree
with the School of Cyber Engineering, Xidian
University. His current research interests include
security and privacy issues in cloud computing and
applied cryptography.

8976 VOLUME 4, 2016


