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Abstract 

Compared to feature engineering, deep learning approaches for citation context analysis have yet fully leveraged the 

myriad of design options for modeling in-text citation, citation sentence, and citation context. In fact, no single 

modeling option universally excels on all citation function classes or annotation schemes, which implies the untapped 

potential for synergizing diverse modeling approaches to further elevate the performance of citation context analysis. 

Motivated by this insight, the current paper undertook a systematic exploration of ensemble methods for citation 

context analysis. To achieve a better diverse set of base classifiers, we delved into three sources of classifier diversity, 

incorporated five diversity measures, and introduced two novel diversity re-ranking methods. Then, we conducted a 

comprehensive examination of both voting and stacking approaches for constructing classifier ensembles. We also 

proposed a novel weighting method that considers each individual classifier’s performance, resulting in superior 

voting outcomes. While being simple, voting approaches faced significant challenges in determining the optimal 

number of base classifiers for combination. Several strategies have been proposed to address this limitation, including 

meta-classification on base classifiers and utilising deeper ensemble architectures. The latter involved hierarchical 

voting on a filtered set of meta-classifiers and stacked meta-classification. All proposed methods demonstrate state-

of-the-art results on, with the best performances achieving more than 5% and 4% improvements on the 11-class and 

6-class schemes of citation function classification and by 3% on important citation screening. The promising empirical 

results validated the potential of our ensembling approaches for citation context analysis. 
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1. Introduction 

Citation context analysis (Zhang et al., 2013) is an important task in scientific text understanding. A citation context 

tells the reason for the citing authors to make a citation, i.e., citation function, and how important or relevant the cited 

paper is, i.e., citation importance, to the citing study. A plethora of studies have been made on machine learning 

algorithms for citation function classification (Teufel et al., 2006a; Aggarwal et al., 2010; Dong & Schäfer, 2011; 

Jochim & Schütze, 2012; Abu-Jbara et al., 2013; Iorio et al., 2013; Li et al., 2013; Jha et al., 2016; Hernández-Alvarez 

et al., 2017; Meng et al., 2017; Jurgens et al, 2018; Ihsan et al., 2023) and important citation screening (Wan & Liu, 

2014; Zhu et al., 2014; Valenzuela et al., 2015; Hassan et al., 2017; Pride & Knoth, 2017; Qayyum & Afzal, 2019; 

Nazir et al., 2020; ; Aljohani et al, 2021; Qayyum et al., 2021). Deep learning methods further pushed the states of the 

art (SOTA) significantly (Cohan et al., 2019; Beltagy et al., 2019; Zhang et al., 2022; Jiang & Chen, 2023; Qi et al., 

2023). 

        Despite the significant progress, several shortcomings remain unresolved in existing studies. Citations should be 

encoded in context. Citation context is a window of surrounding sentences. Example 1 in Figure 1 shows such an 

extreme example. To avoid misclassifying the citation “[Miller et al.]” in sentence S-124, it is necessary to look 

backward to the meta-statement of comparison in S-119. Several recent studies have explored citation context 

modelling (Lauscher et al., 2022; Jiang & Chen, 2023; Zhang et al., 2023; Qi et al, 2023). Being less discussed, most 

deep learning approaches generated a feature vector for the whole citation context or sentence (Munkhdalai et al., 

2016; Lauscher et al., 2017; Bakhti et al., 2018; Su et al., 2019), even some reporting SOTA performances (Cohan et 

al., 2019; Beltagy et al., 2019; Zhang et al., 2023; Qi et al., 2023), rather than individual in-text citations. This is 

problematic when applied to citation sentences with multiple in-text citations of different functions, illustrated by the 

examples from the dataset of this study, i.e., Example 2-3 in Figure 2. In-text citations should be modelled separately, 

apart from the context they occur.  
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Figure 1: Citation context is necessary for correct citation function classification. 

 

 
Figure 2: Multiple in-text citations may have different functions. 

 

        Indeed, Jiang and Chen (2023) have explored a large design space of in-text citation encoding, citation sentence 

encoding, and citation context encoding towards contextualised citation modelling. They observed that various strong 

models had their own advantages and disadvantages in recognising different citation functions. The abundant 

combinations of citation modeling options allow high promise to fuse the strong baselines into a more competent 

ensemble model for citation context analysis. In machine learning literature, classifier ensemble (Zhou, 2014), or 

multiple-classifier system (Kuncheva, 2014), has proven to be an effective at improving predictive performance in 

many subject areas (Jahrer et al., 2010; Xiao et al., 2018; Cao et al., 2020), including a diverse range of natural 

language text classification tasks (Szidarovszky et al., 2010; Rajani et al., 2015; Rajani & Mooney, 2018; Malmasi & 

Example 1: Meta-statement of comparison and contrast. (Teufel, 2010, pp. 434).   

We will outline here the main parallels and differences between our method and previous work. In cooccurrence 
smoothing [Brown et al. 1993] (CoCoGM), as in our method, a baseline model is combined with a similarity-based 
model that refines some of its probability estimates. In Brown et al’s work, given a baseline probability model P, 
which is taken to be the MLE, the confusion probability EQN between conditioning words EQN and EQN is defined 
as EQN and the probability that EQN is followed by the same context words as EQN. Then the bigram estimate 
derived by cooccurrence smoothing is given by EQN. In addition, the cooccurrence smoothing method sums over 
all words in the lexicon. [Miller et al] (CoCoGM) suggest a similar method... They do... 

Example 2: “Weak(ness)” and “Neut(ral)” citations appear in the same citation sentence.  

From: https://aclanthology.org/W00-1804.  

S-1. While Optimality Theory (OT) (Prince et al. 1993) [Weak] has been successful in explaining certain 
phonological phenomena such as conspiracies (Kisseberth 1970) [Neut], it has been less successful for 
computation. (...more weaknesses...)  

Example 3: “PSim” (similarity) and “Neut” citations appear in the same citation sentence. Context sentence S-2 is 
needed to infer the functions of the first two citations in the citation sentence S-1 (forming a citation segment and 
having the same function). 

From: https://aclanthology.org/J00-1004.  

S-1. Formalisms for finite-state and context-free transduction have a long history (e.g., Lewis and Stearns 1968; 
Aho and Ullman 1972) [PSim], and such formalisms have been applied to the machine translation problem, both 
in the finite-state case (e.g., Vilar et al. 1996) [Neut] and the context-free case (e.g., Wu 1997) [Neut]. S-2. In this 
paper we have added to this line of research by providing a method for automatically constructing fully lexicalized 
statistical dependency transduction models from training examples. 

 

https://aclanthology.org/W00-1804
https://aclanthology.org/J00-1004
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Dras, 2018; Barrault et al., 2019; Wang et al., 2020; Lin et al., 2022). The success of ensemble learning lies in the 

diversity among base classifiers (Brown et al., 2005; Ruta & Gabrys, 2005; Sesmero et al., 2021), which is fortunately 

guaranteed by the wide spectrum of contextualised citation modelling approaches. Therefore, the focus of the current 

paper is to present a comprehensive study of ensembling approaches to citation context analysis. 

        The main contributions of the current paper are three-fold. To the best of our knowledge, it is the first 

comprehensive study and application of ensemble methods to the important task of citation context analysis. To build 

a large pool of base models for citation context analysis, 175 models were trained based on 35 different citation 

modelling architectures as in Jiang and Chen (2023), 5 models per architecture initialized with different randomization. 

Then, a plethora of approaches to combining base classifiers (abbreviated to classifiers hereafter when the context is 

clear) were systematically evaluated. Thanks to the abundant diversity among classifiers, majority voting significantly 

improved citation context analysis performances on all the three annotation schemes that were adopted, and produced 

new states of the art. The success of ensembling is determined by classifier diversity. Our second contribution is the 

proposal of two heuristic methods to obtain a good diverse set of classifiers. The first method was to re-rank the pair-

wise diversity analysis results, which proved to be both effective and efficient in classifier selection and ensembling. 

The second method was to analyse and employ five famous pair-wise diversity measures to virtually expand the 

exploration of the space of subset of classifiers, which further improved ensembling performance. Finally, a novel 

reliability-enhanced confidence-based voting method was proposed to more intelligently break ties in majority voting, 

which used classifiers’ posterior probability (i.e., confidence) and performance (i.e., reliability).  

        The remaining of the paper is organised as follows. Sect. 2 reviews the related work about machine learning 

(Sect. 2.1) and deep learning (Sect. 2.2) approaches to citation context analysis, including important citation screening 

(Sect. 2.3), and the application of ensemble methods in the natural language processing field (Sect. 2.4). Sect. 3 briefly 

explains the methodological framework of ensembling that the current paper applied, including the ensembling 

framework (Sect. 3.1), the architecture of base classifiers (Sect. 3.2), sources of classifier diversity (Sect. 3.3), voting 

approaches to combine classifiers by simple rules (Sect. 3.4), stacking approaches to train meta-classifiers that learns 

to fuse classifiers (Sect. 3.5), the lattermost including building deep ensembles on top of shallow ensembles. After 

introducing datasets in Sect. 4, we will detail the experiments of each ensemble method in Sect. 5, more precisely, 

base classifiers in Sect. 5.1, voting in Sect. 5.2, stacking in Sect. 5.3, and deep stacking in Sect. 5.4. Sect. 6 concludes 

the paper with discussions of the pros and cons and potential future directions. 
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2. Related Work 

2.1. Machine Learning for Citation Function Analysis 

The first machine learning approach might belong to the seminar work by Teufel et al. (2006a). They developed a 

comprehensive set of features to capture the common cue phrases for expressing scientific concepts and to extract the 

syntactic information around these cue phrases or the main verbs of citation sentences. An Instance-Based k-nearest-

neighbor classifier (IBk) was employed to classify citation functions. To facilitate developing machine learning 

algorithms, for the first time, a comprehensive and operationalisable 12-class annotation scheme was proposed along 

with a carefully annotated dataset (Teufel et al., 2006b). Most subsequent studies, especially in the computer science 

and engineering domain including the current one, inherit from Teufel with certain simplifications, so these 

annotations schemes are to some extent mappable to each other (Dong & Schäfer, 2011; Abu-Jbara et al., 2013; Jha 

et al., 2017; Hernández-Alvarez et al., 2017; Jurgens et al., 2018; Su et al., 2019). The exception is Jochim and Schütze 

(2012), which categorised citations into quadchotomic dimensions of Moravcsik and Murugesan (1975): conceptual 

vs. operational, organic vs. perfunctory, evolutionary vs. juxtapositional, and confirmative vs. negational. 

        Teufel et al.’s foundational work spurred much research to refine and enrich the feature set for citation context 

analysis (Agarwal et al., 2010; Dong & Schäfer, 2011; Li et al., 2013; Abu-Jbara et al., 2013; Jha et al., 2017; 

Hernández-Alvarez et al., 2017; Meng et al., 2017; Ihsan et al., 2023). In summary, features are syntactic and lexical 

patterns around manually identified informative cue-phrases for different classes. Amongst them, Jochim and Schütze 

(2012) also highlighted the importance of named entity features, such as names of dataset, software, algorithm and 

method, which might be indicators of a usage citation. The most state-of-the-art feature engineering approach came 

from Jurgens et al. (2018), who used a simplified annotation scheme of six classes (see Table 1), which was later used 

by the Citation Context Classification (3C) shared tasks (Kunnath et al., 2020). To improve classification performance, 

novel features were introduced, like citation context topics, linguistic patterns bootstrapped around citations, and 

PageRank rankings (Jurgens et al., 2018). 

2.2. Deep Learning for Citation Function Analysis 

More recently, deep learning techniques have been applied to citation function classification. Initial works employed 

Convolutional Neural Networks (CNNs; Lauscher et al., 2017; Bakhti et al., 2018; Aljohani et al., 2023), Bidirectional 

Long-Short Term Memory (BiLSTM; Munkhdalai et al., 2016), or CNNs stacked over BiLSTM (Yousif et al., 2019) 
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to summarize citation sentence or citation context into a feature vector. To enhance contextual understanding, either 

pretrained word embeddings (Cohan et al., 2019; Roman et al., 2021) or contextualized language models (Beltagy et 

al., 2019; Maheshwari et al., 2021) were utilized. Witnessing the obvious class imbalance of citation function 

categories, Aljohani et al. (2023) applied focal loss and class weights to improve classification performance, while 

Jiang and Chen (2023) tried to merge and re-annotate six datasets in the computational linguistics Teufel et al.’s 

annotation scheme (Teufel et al., 2006b) to increase the sizes of the minority classes, such as “PSup” and “PBas”. 

There have been a few studies with a particular focus on signifying the importance of properly encoding citation 

context (Lauscher et al., 2022; Zhang et al., 2022; Jiang & Chen, 2023). For example, Lauscher et al. (2022) created 

a new dataset with manually annotated minimal set of context sentences that are necessary for citation function 

classification. This was similar to Jiang and Chen (2023), but the particular merit of the former is that context sentences 

are not limited to citations neighbourhood, instead can appear anywhere in the paper. While both datasets leave much 

space for research in the identification of useful context, or citation block according to Kaplan et al. (2016), Lauscher 

et al. (2022) used gold-standard citation context for citation function classifiers to demonstrate the necessity of it while 

Jiang and Chen (2023) empirically encoded 2 and 3 context sentences before and after the citation sentence without 

performing useful citation context sentence identification. As we pointed out in Sect. 1, most of these studies encoded 

the whole citation context or citation sentence, rather than individual in-text citations.  

        In parallel, there was also an obvious trend of multi-task learning to enhance citation function classification by 

jointly training and optimising both the primary task and complementary tasks that are semantically related. Su et al. 

(2019) used a CNN to encode citation context and used the same encodings for both citation function classification 

and citation provenance recognition, with the assumption that the two tasks are semantically close. Yousif et al. (2019) 

used BiLSTM to encode citation sentence and stacked another CNN layer to summarise the meaning of citation 

sentence. The encoded feature vector was used for both citation function and citation sentiment classification. Cohan 

et al. (2019) used a self-attention mechanism to summarise the BiLSTM encodings of citation context for citation 

function classification. The same encodings were also used for two auxiliary tasks, citation worthiness and section 

role predictions, which had much larger data sources for enhanced representation learning. The same auxiliary tasks 

were also used in subsequent studies (Oesterling et al., 2021; Qi et al., 2023). Oesterling et al. (2021) extended Cohan 

et al.’s work by incorporating hand-crafted features like cue list and TF-IDF vectors. Qi et al. (2023) expanded the 

SciBERT embeddings of each work with manual features such as part-of-speech tag, syntactic pattern, sentiment score, 
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and TF-IDF values. Different from previous works which used a shared-parameter structure (Zhou & Yang, 2018), 

Qi et al. decoupled the SciBERT encoders for the three tasks, with the main task further enhanced by a multi-head 

self-attention mechanism. In addition, all of them relied on one way of encoding in the wide spectrum of modelling 

options, e.g., self-attention over contextualised word embeddings such as SciBERT, which made them incapable of 

utilizing the pros of different modelling methods.  

2.3. Approaches to Important Citation Screening 

A closely related but not central task is important citation screening — recognising meaningful citations that play a 

significant role to the citing paper, which was embarked by several studies (Wan & Liu, 2014; Zhu et al., 2014; 

Valenzuela et al., 2015) and flourished in subsequent research (Hassan et al., 2017; Pride & Knoth, 2017; Qayyum & 

Afzal, 2019; Wang et al., 2020; Qayyum et al., 2021; Aljohani et al., 2021). This classification can be viewed as a 

simplified version of citation function classification, as citation importance is fundamentally linked to citation 

function. The distinction lies in the fact that citation function applies to each in-text citation, while citation importance 

has been evaluated per pair of citing and cited papers by previous studies. Consequently, these studies mainly used 

paper-level metadata (Wan & Liu, 2014; Valenzuela et al., 2015) and basic full-text features such as cue phrases and 

textual similarities (Zhu et al., 2014; Hassan et al., 2018; Qayyum & Afzal, 2019; Ghosh et al., 2022). Deep learning 

approaches to this task encountered the same challenges as in citation function classification that were discussed in 

the Introduction section (Yousif et al., 2019; Aljohani et al., 2021b; Maheshwari et al., 2021). Recently, Aljohani et 

al. (2023) reported much better performance on the task by use of focal loss to alleviate the issue of high degree of 

class imbalance. All existing paper handled the task of screening important citations at the paper level for each pair of 

citing and cited papers. The current paper, on the contrary, handles the problem at the in-text citation level. Ensembles 

of deep learning methods were proposed to identify important in-text citations, which could be easily amalgamated 

into important citation screening in the traditional sense. 

2.4. Ensemble Approaches to Natural Language Processing 

Ensemble approaches have been successfully applied to a wide range of natural language processing problems, for 

example, word alignment for machine translation (Wu & Wang, 2005), hedge identification (Szidarovsky et al., 2010), 

item recommendation (Jahrer et al., 2010), semantic lexicon induction (Qadir & Riloff, 2012), information extraction 

(Rajani et al., 2015), natural language identification (Malmasi & Dras, 2018), text generation for abstractive 
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summarization (Kobayashi, 2018), named entity normalization (Deng et al., 2019),  neural machine translation (Wang 

et al., 2020), medication mentioning identification in tweets (Dang et al., 2021), harmful news identification (Lin et 

al., 2022), etc. Notably, a lot of participants of the GermEval-2021 Shared Task on the Identification of Toxic, 

Engaging, and Fact-Claiming Comments used classifier ensembles, e.g., Akomeah et al. (2021), Tran & Kruschwitz 

(2021), etc. In fact, one of the most important findings of the 2019 International Workshop on Machine Translation 

was that most state-of-the-art systems were based ensemble methods (Barrault et al., 2019).  

        Most applications of ensemble methods in natural language processing were naïve, simply by combing a limited 

number of classifiers. Some used homogeneous classifiers or model architectures. Deng et al. (2019) combined several 

CNN-based architectures while Dang et al. (2021) and Lin et al. (2022) combined several BERT-based models. Others 

combined heterogeneous classifiers, like Jahrer et al. (2010), Rajani et al. (2015), Malmasi and Das (2018). There are 

several ways of generating homogeneous base classifiers, for example by using different input features (method used 

by the current paper), by using different model hyperparameters such as Random Forest (a combination of small 

decisions trees of different sizes), by training models on bootstrapped datasets, i.e., boosting (Zhou et al., 2014) such 

as Wu & Wang (2005), and by adding randomness to the training process (widely used for training and aggregating 

various deep learning model using different random seeds, also used by the current paper). The current paper explored 

the vast design space of citation modelling options for citation context analysis. For each citation modelling option, 

five seeds were used for training. Therefore, both the first and last methods were adopted to generate a pool of 

homogeneous base classifiers in the current paper, while boosting was not used due to prohibitive high cost of training 

a large number of deep learning models. 

        There are in general two ways of ensembling base classifiers, by combining base classifiers’ predictions using 

certain rules, often majority voting, or by developing a learnable combiner, called meta-classifier, to segregate base 

classifiers’ predictions. While most ensembling papers in the natural language processing domain used very simple 

combination rules, such as majority voting (Wu & Wang, 2005; Qadir & Riloff, 2012; Rajani et al., 2015; Kobayashi, 

2018; Deng et al., 2019; Dang et al., 2021) or as simple as an OR connective (Szidarovsky et al., 2010), some studies 

trained a meta-classifier to combine base models’ predictions (Jahrer et al., 2010; Wang et al., 2020; Lin et al., 2022). 

Malsami and Dras (2018) was the most comprehensive study amongst the ensemble-based natural language processing 

studies we were aware of. They systematically studied a wide range of combination rules, different types of meta-

classifiers, and stacked meta-classifiers (Sesmero et al., 2015), i.e., level-2 meta-classifiers trained on the outputs of 
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level-1 ensembles. The current paper also made a comprehensive exploration of both majority voting and meta-

classifier approaches for ensembling. In addition to stacked meta-classifier, we also studied stacked voter (Sect. 3.5). 

Besides, we also proposed a novel majority voting method, detailed in Sect. 3.4.  

        Note that, none of the reviewed papers studied the selection of proper base classifiers to ensemble because their 

base classifier pool sizes were small. In our work, more than 180 base classifiers were trained. A brute-force 

combination of all the base classifiers would fail to make meaningful improvements. Diversity analysis is an approach 

that was recognised as one of the key factors for building a successful ensemble (Nam et al., 2021). Kuncheva & 

Whitaker (2003) and Brown et al. (2005) were good resources for classifier diversity, covering most famous diversity 

measures, except ratio of errors (Aksela, 2003). Interested readers can refer to Kuncheva (2014) and Zhou (2014) for 

a more comprehensive coverage of diverse topics of building an classifier ensemble, while Sesmero et al. (2021) had 

a particular focus on learning a stacked ensemble. 

3. Ensembling Methodology  

3.1. Framework 

Figure 3 illustrates of the framework of building citation context analysis ensemble. The ensembling pipeline starts 

with a set of T base classifiers, either for citation function classification or important citation screening. Sect. 3.2 

explains technical basis of building them, while Sect. 3.3.1 explains in more details the different modelling options 

towards building the base classifiers. Due to the large number of base classifiers, the next step is to select R “best” 

candidates to combine in the follow-up stage. A naïve way is to select the top-R candidates according to their 

classification performance, but this is often suboptimal. It was widely believed more useful to select a diverse subset 

of classifiers which make different errors so that the large number of peers have a chance to rectify each other’s errors 

(Nam et al., 2021; Sesmero et al., 2021). This was done by the Diversity Analysis module based on five diversity 

measures widely used in the literature (Sect. 3.3.2). Mere diversity ranking may still lead to suboptimal results. On 

the one hand, it was important to include the few best-performing classifiers by observing a sharp performance drop 

of most classifiers from the top end. On the other hand, diversity ranking sometimes gave lower ranks to these top-

performing classifiers and often tended to include many suboptimal classifiers (merely because their predictions were 

different even though maybe incorrect). Therefore, the Diversity Re-ranking component was intended to rectify this 
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suboptimal behaviour (Sect. 3.3.3). After re-ranking, the Classifier Selection stage retained R classifiers to fuse. Here 

the predictions made by the base classifiers were called level-1 predictions.   

        After selecting the top-R classifiers that achieved a better trade-off between diversity and accuracy, the Classifier 

Combination stage used the level-1 predictions to build ensembles, either using majority voting methods (Sect. 3.4) 

or through training a meta-classifier, i.e., classifier stacking (Sect. 3.5). Note that the classifiers in this paper were 

homogeneous classifiers because they were trained following the same deep learning architecture (Sect. 3.2), but with 

different feature extraction (i.e., citation modeling) methods (Sect. 3.3.1). Both majority voting and meta-classifier 

could directly generate the final class label. In this case, we say a level-1 ensemble classifier was built. Predictions of 

level-1 ensembles could also be used for classifier combination. For example, in Figure 3, results of majority voting 

could be used to vote again or to train a level-2 meta-classifier (the downward arrow). Similarly, results of meta-

classifiers could also be used to build a level-2 voter (the upward arrow) or to train a level-2 meta-classifier. Results 

of all these options will be discussed in Sect. 5.4. 

 

Figure 3: The Framework of Ensembling for Citation Context Analysis.   

3.2. Architecture of Base Classifiers 

We used all modelling options presented in Jiang and Chen (2023) to train base classifiers for citation context analysis 

and the cross-disciplinary pretrained language model SciBERT (Beltagy et al., 2019) for encoding citation contexts 
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and fine-tuning. As illustrated in Figure 4, three factors were considered: the target citation string (converted to a 

pseudoword “CITSEG”)1, the enclosing citation sentence, and the surrounding citation context. Following the BERT 

tradition (Devlin et al., 2019), the token sequences of each sentence were separated by the sequence separator “[SEP]”. 

However, we also tested a different setup without inserting the sequence separator (detailed in Sect. 3.3.1). In addition, 

the whole token sequence of the citation context was prepended by the sequence classification symbol “[CLS]”. 

SciBERT was used to encode the citation context. 

 

 

 

Figure 4: Architecture for Citation Context Analysis. 

 

 

1  Following Jiang and Chen (2023), consecutive in-text citation strings were merged into a citation segment, represented by a pseudoword 
“CITSEG”. This is because all these in-text citations must have the same rhetorical role.  

We used ( CITSEG ) for evaluation . [SEP] Right context sentences [SEP]Left context sentences [SEP][CLS]
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        The feature vector for citation context analysis consisted of three parts to be discussed below, while the tested 

citation modelling options are introduced in Sect. 3.3.1. (i) The in-text Citation Encoder (i.e., CITSEG Encoder) used 

the encodings of the pseudoword “CITSEG” as the citation string representation, denoted by 𝐡, which is necessary 

for distinguishing between different citations in the same citation sentence. To this end, the pseudoword “CITSEG” 

was added to the vocabulary of SciBERT and its embeddings were learned during the fine-tuning process. (ii) Lauscher 

et al. (2022) estimated that for more than 90% citation instances the citation sentence alone is enough for correctly 

determining the citation function. Inspired by this finding, we used a Citation Sentence Pooler to produce the citation 

sentence representation, denoted by 𝐬, by pooling over all tokens of the citation sentence. (iii) To handle cases 

requiring multi-sentence contexts, the Citation Context Pooler was used to generate the citation context representation, 

denoted as 𝐜, from the whole citation context. In this study, the context window size was fixed to [-2, +3], i.e., two 

left and three right context sentences, including the central citation sentence. Indeed, Lauscher et al.’s annotations 

demonstrated that it is very rare to go beyond a citation context of six sentences to find the useful context sentences 

for determining citation functions. The final feature vector f was the concatenation of these three optional parts. In our 

experiments the Citation Context Classifier was a Multiple-Layer Perceptron (MLP) with one hidden layer. 

3.3. Sources of Diversity 

3.3.1. Citation Modelling 

The first source of classifier diversity comes from the citation modelling options for each component in Figure 4. A 

large part of this subsection is inherited from Jiang and Chen (2003) (see the “Citation function classification 

algorithms” section) and Jiang et al. (2022), the shorter conference version of the former paper (see Sect 4. CITATION 

FUNCTION CLASSIFICATION MODELS). For clarity purposes, we re-structured and expanded the descriptions of 

the citation modelling options in the current paper.   

        Citation modelling in context? To distinguish between multiple citation (segments) in the same citation 

sentence, we assume that the citation string representation 𝐡 is always used. There are several options for whether and 

how to incorporate the context where the citation string is encoded. The most extreme case is citation is encoded in 

context, but no context information is utilised for classification, i.e., 𝐟 = 𝐡 . If either (both) citation sentence 

representation or (and) citation context representation is (are) considered, then we have the following modelling 

options: 𝐟 = [𝐡; 𝐬] (both citation string and citation sentence are encoded in context and the latter is deemed to be 
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helpful for determining citation function or importance, suitable for citation instances whose roles can be determined 

using the citation sentence alone), 𝐟 = [𝐡; 𝐜] (the meaning of the citation context is used to enhance citation string 

representation, to account for the cases which require looking over the citation sentence to a larger surrounding 

context), or 𝐟 = [𝐡; 𝐬; 𝐜] (with the hope of enjoying the benefits of both the previous two methods).   

        Sequential or hierarchical context? We define two types of citation context: a sequential context concatenates 

all tokens of all sentences in the context without inserting the special sequence separator symbol (e.g., “[SEP]” in 

SciBERT and all models in the BERT family), while a hierarchical context inserts the sequence separator symbol 

after each sentence. The distinction impacts the way of pooling sentence representations (e.g., for the citation sentence 

representation s) and context representation.  

        Pooling sentence representations. In case of a sequential context, sentence representations can be pooled by 

applying a sentence mask to the tokens of each sentence. Either max pooling or self-attention could be used. For 

hierarchical context, there is one more option, i.e., the encodings of the sequence separator. These sentence poolers 

apply to both citation sentence and context sentence. 

        Pooling context representations. Again, either max pooling or self-attention can be used. In case of a sequential 

context, the citation context representation is pooled from its tokens. The latter is similar to the approach used in 

Munkhdalai et al. (2016). For hierarchical context, the Citation Context Pooler applies the pooling operation, either 

max pooling or self-attention, to over all the sentence representations in the context. As described in “Pooling sentence 

representations”, three options exist for pooling sentence representations: max pooling, self-attention, and the 

sequence separator.  

        Summary. Table 2 summarises the citation context analysis models that were used in the current paper. Below 

detail the parameters that control the modellings options discussed above.  

• Context type (ctx_type): Sequential context (sequential) v.s. hierarchical context (hierarchical). 

• Sentence pooler (sent_pooler): max pooling (max_pool) v.s. self-attention (self_attend) v.s. [SEP] (resp. 

N/A) when a hierarchical context is used (resp. in case of a sequential context).  

• In-text Citation Encoder (citseg): By default, it is always used (O) because it was found key to strong 

performance (Jiang and Chen, 2023). 



 14 

• Citation Sentence Pooler (cita_pooler): max pooling (max_pool) v.s. self-attention (self_attend) v.s. 

none (X); pooling was performed on word/token embeddings when a sequential context was used, or on 

sentence representations in case of a hierarchical context. 

• Citation Context Pooler (ctx_pooler): max pooling (max_pool) v.s. self-attention (self_attend) v.s. none 

(X); pooling was performed on word/token embeddings when sequence context was used, or on sentence 

representations in case of hierarchical context. 

3.3.2. Diversity Measure 

The second source of classifier diversity comes from the combination of subsets of classifiers that are used to build 

ensembles. In ensemble learning, it is intuitively more plausible to choose the most “diverse” set of classifiers which 

make different prediction mistakes so that there is a higher chance to rectify single classifier’s prediction mistake by 

peers (Kuncheva & Whitaker, 2003). There are basically two categories of diversity measures: pairwise and non-

pairwise. Non pairwise measures calculate the overall diversity averaged across a subset of classifiers. In this paper, 

we trained 180 citation context analysis classifiers (36 citation modelling options ´ 5 seeds per option). Because the 

total number of possible subsets of classifiers is exponentially large, i.e., 2180, we refrained to choose pairwise diversity 

measures for the sake of computational feasibility. 

        Following the notations used in Kuncheva and Whitaker (2003), let Ci and Ck (out of in total T classifiers) be a 

pair of classifiers working on a dataset of 𝑁 samples. We defined four values based on the correctness of classifications 

to quantify pairwise diversity: (1) 𝑁!! – the number of samples that are correctly classified by Ci and Ck; (2) 𝑁!" – 

the number of samples that correctly classified by Ci but misclassified by Ck; (3) 𝑁"! – the number of samples that 

misclassified by Ci but correctly classified by Ck; and (4) 𝑁"" – the number of samples that are misclassified by both 

Ci and Ck. We have 𝑁 = 𝑁!! +𝑁!" +𝑁"! +𝑁"" . The pairwise diversity measures experimented in this paper 

included correlation coefficient (DivCC), Q statistic (DivQ), double fault (DivDF), disagreement measure (DivDM), and 

ratio of errors (DivRO) (Aksela, 2003), which are defined in Eqs. (1–5). A note is deserved for ratio of errors, where 

𝑁#$%%&'&()""  is the number of samples that are misclassified by both classifiers but misclassified into different classes 

and 𝑁*+,&""  is the number of samples that are misclassified by both classifiers in the same way. Ratio of errors reflects 

the most extreme and worst setting for ensembling because it means “several classifiers agree on an incorrect result” 

(Aksela, 2003). We also note that correlation coefficient, Q statistics and double fault are inversely proportional to 
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diversity, so we deliberately add a negative sign in Eq. (1–3). Although our definitions of DivCC, DivQ, DivDF slightly 

differ from their original definitions, they allow for sorting classifier diversity in a consistent way. 

DivCC: 								𝜌$,. = −
𝑁!!𝑁"" −𝑁"!𝑁!"

.(𝑁!! +𝑁!")(𝑁"! +𝑁"")(𝑁!! +𝑁"!)(𝑁!" +𝑁"")
 (1) 

DivQ: 								𝑄$,. = −
𝑁!!𝑁"" −𝑁"!𝑁!"

𝑁!!𝑁"" +𝑁"!𝑁!" (2) 

DivDF: 								𝐷𝐹$,. = −
𝑁""

𝑁!! +𝑁!" +𝑁"! +𝑁"" (3) 

DivDM: 								𝐷𝑖𝑠$,. =
𝑁!" +𝑁"!

𝑁!! +𝑁!" +𝑁"! +𝑁"" (4) 

DicRO:  								𝑅𝐸$,. =
𝑁#$%%&'&()""

𝑁*+,&""  (5) 

3.3.3. Diversity Re-Ranking 

The base classifiers used in this paper were all deep learning methods and the number of classifiers was big, therefore 

we decided to select the top 𝑅 “most diverse” subset of classifiers (from 𝑇	candidate classifiers). Using diversity 

measures discussed in Sect. 3.3.2, we could greedily select 𝑅 most diverse classifiers, while the diversity of one 

classifier was defined as the sum of all pairwise diversities between it and all other classifiers in the candidate set. 

However, this method was flawed because candidate classifiers’ performances varied a lot. When looking only at 

classifier diversity but totally ignoring classifier performance, the selected subset often included many weak classifiers 

and, what was more severe, often missed the strongest ones. This was caused by the symmetry of pairwise diversity 

measures and the fact that diversity measures were defined by classifier errors (Brown et al., 2005). More specifically, 

the weakest classifiers that make the most mistakes might have made many unique classification errors, potentially 

resulting in higher diversity. This could be seen from the empirically results of majority voting on a subset of weak 

classifiers that the ensemble could rival but hardly beat the strongest classifier, which was ,missed by diversity ranking 

(Table 3-5). 

        Therefore, this paper proposed two simple but effective diversity re-ranking methods to avoid this inferior 

situation. We relied on two things: classifier performance (e.g., macro F1), and classifier diversity (e.g., either one of 

the five diversity measures). The first method was value-based re-ranking, which was simply sorting classifiers in 

descending order of the sum of normalised classifier diversity and normalised classifier performance. Here normalised 
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diversity is calculated based on the sign of its value: If positive, the normalised diversity of a classifier in the candidate 

set is the diversity of the classifier divided by the maximal diversity; otherwise, the normalised diversity is the maximal 

diversity divided by the diversity of the classifier. The second method was rank-based re-ranking, which first sort 

classifiers in descending orders of classifier performance and classifier diversity, and then re-sort the classifiers in 

ascending order of the sum of classifier performance rank and classifier diversity rank.  

        Figure 5 shows a real example on our dataset using double fault (DF), where 𝑇 = 20,	𝑅 = 10, i.e., selecting 10 

most diverse classifiers from a pool of 20 candidates. Rank_DF (resp. Rank_F1) is the rank of classifier based on DF 

(resp. Macro F1) in descending order. Norm_DF and Norm_F1 are the normalised DF and normalised F1 respectively. 

To performance value-based and rank-based re-ranking, two weights are calculated: Weight_V = Norm_DF + 

Norm_F1, and Weight_R = Rank_DF + Rank_F1. Finally, ReRank_V and ReRank_R are the value-based and rank-

based re-ranking results in descending order of Weight_V and Weight_R respectively. Ties are broken using classifier 

performance, e.g., F1. A notable case in Figure 5 is shown in bold underlined. C16 has the highest classification 

performance, beating other candidates by a large margin. However, its diversity rank is very low. Fortunately, both 

re-ranking methods bring it to the top-10 list, which is preferred! Another notable case is in bold italic. C2 has very 

low rank in term of F1; its performance is poor. As we assumed earlier, such weak classifiers might be undesirably 

“diverse” only because they make too many errors, some of which may be unique. Fortunately, the rank-based 

reranking method is able to rule it out of the top-10 list, which may improve the performance of ensemble that is built 

on top of 10 selected classifiers. 
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Figure 5: An example of re-ranking 20 candidate classifiers which are originally sorted in double fault (DF).  

 

3.4. Majority Voting 

The first ensembling approach was majority voting. Formally speaking, out of T candidate classifiers, a subset of R 

most diverse classifiers were selected based on diversity measure (Sect. 3.3.2) and diversity re-ranking (Sect. 3.3.3). 

Both hard majority voting and soft majority voting (Zhou, 2014) were evaluated. For Hard majority voting, the most 

basic one was unweighted hard voting (HARD VOTE – UNWEIGHTED in future sections and tables), which simply 

counts the number of votes each class label received from base classifiers and chose the class label that won the most 

votes, and randomly selects a label when a tie happens. Due to this randomness, we decided to report the average 

performance over 10 random runs in the Results and Discussions section (Sect. 5). Intuitively, we felt it reasonable to 

have more trust in the stronger classifiers, so the weighted hard voting approach (HARD VOTE – WEIGHTED) used 

classifier performance to weight each vote, and the score for each label is the sum of the weighted votes. In HARD 

VOTE – WEIGHTED, ties are avoided most of the time, so there was little need for averaging over 10 random runs. 

        When it comes to soft majority voting, classifier confidence on each instance, i.e., the posterior probability of a 

classifier, was used for fusing decisions. A lot of choices existed in past literature (Malmasi & Dras, 2018), for example, 

Mean Probability Rule, Median Probability Rule, Product Rule, Highest Confidence, Corda Count, etc. Malmasi and 

Dras reported strong performances of the mean probability and median probability rules compared to hard majority 

vote. In our experiments, we saw similar performances of both methods, so we opted for Mean Probability Rule (SOFT 

Classifier DF F1 Rank_DF Rank_F1
C1 -3.9910 65.02 1 3
C2 -4.0013 64.12 2 19
C3 -4.0400 64.38 3 13
C4 -4.0516 64.95 4 5
C5 -4.0955 65.12 5 2
C6 -4.1252 64.65 6 7
C7 -4.1574 64.46 7 10
C8 -4.1690 64.99 8 4
C9 -4.1703 64.28 9 16
C10 -4.1742 64.56 10 8
C11 -4.1755 64.93 11 6
C12 -4.1768 64.41 12 12
C13 -4.2065 64.26 13 17
C14 -4.2155 64.12 14 20
C15 -4.2271 64.14 15 18
C16 -4.2542 66.16 17 1
C17 -4.2542 64.48 16 9
C18 -4.2581 64.42 18 11
C19 -4.2710 64.37 19 14
C20 -4.2735 64.36 20 15

Norm_DF Norm_F1 Weight_V Weight_R
1.0000 0.9828 1.9828 4
0.9974 0.9692 1.9666 21
0.9879 0.9731 1.9610 16
0.9850 0.9817 1.9667 9
0.9745 0.9842 1.9587 7
0.9675 0.9772 1.9447 13
0.9600 0.9742 1.9342 17
0.9573 0.9823 1.9396 12
0.9570 0.9716 1.9286 25
0.9561 0.9759 1.9320 18
0.9558 0.9814 1.9372 17
0.9555 0.9736 1.9291 24
0.9488 0.9712 1.9200 30
0.9467 0.9691 1.9158 34
0.9441 0.9694 1.9135 33
0.9381 1.0001 1.9382 18
0.9381 0.9746 1.9127 25
0.9373 0.9737 1.9110 29
0.9344 0.9730 1.9074 33
0.9339 0.9729 1.9068 35

Rerank_V Rerank_R
1 1
3 11
4 6
2 3
5 2
6 5
10 7
7 4
13 13
11 9
9 8
12 12
14 16
15 19
16 17
8 10
17 14
18 15
19 18
20 20
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VOTE – MEAN) as it was the best performing voting method in Malmasi and Dras (2018). See Figure 6 for the 

illustration of this fusing method. Meanwhile, we proposed a new soft weighting method called Reliability-Enhanced 

Soft Voting (SOFT VOTE – RELABILITY). Each classifier provided three types of information for decision fusion: 

vote (label predicted by classifier), confidence (posterior probability of predicted label), and reliability (performance 

of classifier, e.g., Macro F1 in this paper). Then, a soft vote is calculated by confidence ´ reliability. Then fusion 

decision was made by total number of votes and total number of soft votes, using the latter to break ties. This approach 

was proved to be an extremely effective and consistently robust voting method in our experiments.   

 

Figure 6. Soft Voting by Mean Probability Rule, Adapted from Malmasi and Dras (2018).  

3.5. Classifier Stacking 

Different meta-classifiers were selected in the literature for classifier stacking, such as Gradient Boosted Decision 

Tree (GDBT) and Neural Networks (NN) (Jahrer et al., 2010), Deep Neural Networks (Xiao et al., 2018), Logistic 

Regression (Shahri et al., 2020), Support Vector Machine (SVM) (Akomeah et al., 2021). Malmasi and Dras (2018) 

presented the most comprehensive comparison among nine meta-classifiers, including Logistic Regression (LogReg), 

Ridge Regression (Ridge), Linear SVM, RBF-Kernel SVM, LogReg, k-Nearest Neighbour (k-NN), Linear 

Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Perceptron and Decision Tree (DT). Our 

experimental results corroborated with Malmasi and Dras in that DT, Perceptron and QDA were not competitive. 

Contrastively, LogReg (with L1-regularisation or L2-regularization, the latter of which is similar to Ridge) and Linear 

SVM did not rival SVMs with kernels in our experiments. In addition, the experimental results of Random Forest (RF) 

and different variants of it were also not as convincing as Jahrer et el. showed, despite of extremely time-consuming 

C1

C2

CR

…

AVERAGE

sample

prediction

ARGMAX class label

class posterior
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hyperparameter tuning. Therefore, we decided to choose and report on k-NN, SVM (with polynomial and RBF kernels, 

abbreviated as SVM-Poly and SVM-RBF respectively), LDA, Categorical Naive Bayes (CatNB), and Bernoulli Naïve 

Bayes (BerNB). Different from most of the literature, we used both the predicated labels and posterior probabilities 

of base classifiers as inputs to meta-classifiers. Both SVM-Poly and SVM-RBF accepted posterior probabilities as 

input, while k-NN, CatNB and BerNB accepted class label as input. We did not choose Gaussian Naïve Bayes because 

we believed the posterior probability distribution of classifier predictions is not Gaussian. Out initial experimental 

results also confirmed this assumption through its inconspicuous performance, which were omitted to save space.  

        Note that meta-classifier needs data for training another classifier, which will then be applied to the test data. 

Different from voting methods which directly worked on the test data, we used two ways to evaluate meta-classifier 

performance. The first way was to only use test data, but this meant no particular held-out data for meta-classifier 

training. In this case, we adopted 5-fold cross validation, a machine learning approach to training more robust classifier 

and reporting more robust performance on datasets of limited size. The second way was to use the original validation 

data which were used to fine-tune the deep learning base classifiers. Ideally, there should be a held-out dataset just for 

meta-classifier training (Zhou, 2014), a portion of which should be reserved for meta-classifier hyperparameter tuning, 

as in Jahrer et al. (2010). However, this was impossible in our case. Therefore, we decided to enlarge the validation 

data with misclassified samples in the training set. We found that (1) the training instances were classified by all base 

classifiers with an extremely high accuracy, and (2) these classifiers proved to be able to generalize to the validation 

and test data as there was no catastrophic performance drop from validation to test. So, we expanded validation data 

with the training instances that were mis-classified by at least two base classifiers, and then used 5-fold cross-

validation to tune meta-classifier performance. Details will be given in the Dataset section (Sect. 4.2) and Results and 

Discussion section (Sect. 5).  

4. Dataset 

4.1. Citation Context Dataset 

We used the citation context dataset proposed in Jiang and Chen (2023). This dataset was created by re-annotating 

citation instances from six datasets in the computational linguistics (CL) domain. The six datasets were proposed by 

previous studies about citation function classification (Teufel et al., 2006a; Dong & Schäfer, 2011; Abu-Jbara et al., 

2013; Hernández-Alvarez et al., 2017; Jurgens et al., 2018; Su et al., 2019). The dataset contains 3356 citation contexts, 
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4784 in-text citations and 3854 citation targets with annotations. Note that, in this dataset, consecutive citation strings 

in each citation sentence were merged into a citation segment, represented by a pseudoword “CITSEG”. Each citation 

segment is a citation target and annotations were made to each citation segment. For example, in the exemplar citation 

sentence “SHRDLU (Winogard, 1973) was intended to address this problem.” (Figure 3), the in-text citation target 

“Winogard, 1973” was replaced by the pseudoword “CITSEG”. So, the citation sentence was tokenized into 

[“SHRDLU”, “(”, “CITSEG”, “)”, “was”, “intended”, “to”, “address”, “this”, “problem”, “.”]. For experiments, the 

dataset was randomly split into a training split (60%), a validation split (15%) and a test split (25%), making sure that 

each split had the same class distribution (Jiang & Chen, 2023). This paper used exactly the same data splits.   

        The dataset was originally annotated using a classical 12-class annotation scheme (Teufel et al., 2006a) plus a 

common function “Future (work)”. The annotation scheme was then mapped to a more coarse-grained and widely 

used 6-class scheme (Jurgens et al., 2016). “CoCoXY” means comparison and contrast between two cited papers. 

“Weak” means weakness of the cited paper. “CoCoGM” (resp. “CoCoR0”) means objective comparison and contrast 

about research goal and method (resp. empirical results), while “CoCo-” means the cited paper is inferior to the citing 

paper, i.e., a negative comparison. “PSim” means similarity between citing and cited papers. “PSup” means the citing 

and cited papers support each other theoretically, either technically or empirically. “PMot” means the citing paper is 

motivated by the cited paper. “PUse” means the citing paper uses some intellectual assets proposed by the cited paper. 

“PModi” means technical modification of the cited paper while “PBas” means ideational basis on the cited paper. 

Finally, “Neut” means anything else unable to be classified into other categories, or “neutral” citations, or often 

“background” citations. The authors of the dataset mapped the original annotations to a slightly simplified 11-class 

scheme, in which the “CoCo-” class was spread into “CoCoGM” (goal and method comparison) and “CoCoRes” 

(result comparison) because the former mixes comparisons about both methods and results), and the “Basis” class 

merged “PBas” and “PModi” because these classes were still too small. Citation functions could also be mapped to 

citation importance, for which mapping from citation function to citation importance by Valenzuela et al. (2015) was 

used.  Citation importance is binary, either important or unimportant.  
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12-class + “Future”  
(Teufel et al., 2006a)  

 
11-class  

6-class  
(Jurgens et al., 2016) 

 2-grade 
(Valenzuela et al., 2015) 

label 
size ratio  

label size ratio 
 

label size ratio 
 

grade size ratio 
citstr citseg citseg    

Future 97 85 2.21%  Future 85 2.21%  Future 85 2.21%  

  Important 2937 76.21% 

CoCoXY 200 152 3.94%  CoCoXY 152 3.94%  
Background 1615 41.90% 

 
Neut 1924 1463 37.96%  Neutral 1463 37.96%   
Weak 223 158 4.10%  Weakness 158 4.10%  

ComOrCon 944 24.49% 

 
CoCoGM 390 299 7.76%  

CoCoGM 328 8.51% 
  

CoCo- 108 80 2.08% 
   
 

CoCoRes 151 3.92% 
  

CoCoR0 107 100 2.59%    
PSup 123 100 2.59%  Support 100 2.59%   
PSim 247 207 5.37%  Similar 207 5.37%   
PMot 365 288 7.47%  Motivation 288 7.47%  Motivation 288 7.47%  
PUse 794 755 19.59%  Usage 755 19.59%  Uses 755 19.59%  

  
Unimportant 

917 27.39% PModi 72 65 1.69%  
Basis 167 4.33% 

 
Extends 167 4.33% 

 
PBas 134 102 2.65%    

Total 4784 3854              

Table 1. Citation Context Database and Annotation Schemes (adapted from Jiang and Chen (2023)). 

4.2. Meta-classifier Data 

The data splitting was done on citation segments. There were in total 2497 training instances, 582 validation instances 

and 775 test instances. The number of validation instances were comparatively small. So, we decided to expand the 

validation set for with training samples that were misclassified by at least TWO base classifiers. Considering 

“Support”, “Weakness”, “Basis”, “Similar” were the more difficult classes for most classifiers, more instances of these 

classes were added to enrich the validation set. They were treated as more confusing cases, and we hoped that 

improvement on these samples would boost meta-classifier performance. In total, there were 2112 training samples 

combined with the validation set for training the meta-classifier.  

5. Results and Discussions 

5.1. Base Classifiers 

The performances of the base classifiers on citation function classification were obtained from Jiang and Chen (2023). 

In addition, citation importance classifiers were trained using the same settings as in Jiang and Chen’s paper. Five 
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random rums were done using the same seeds and the best macro F1, average macro F1 and the standard deviation 

were reported. All experiments were run on one GeForce RTX 3080 GPU whose CUDA version was 11.6. Table 2, 

which is adapted from Table 5 in Jiang and Chen (2023), shows the performances of all 36 model architectures on 

citation function classification (with the 11-class and 6-class citation function schemes) and important citation 

screening (with the 2-grade citation importance scheme). The best classifiers achieved 66.16% best F1 (across five 

runs) and 63.5% average F1 (across five runs) on the 11-class scheme. The 66.16% best F1 was considered strong due 

to the cognitive complexity of this citation function scheme. The top-3 models (indeed model architectures) in term 

of best (macro) F1 were shown in bold underlined, bold and underlined fonts respectively in the table. Note that, 

with the 11-class scheme, there was a significant performance drop from 66.16% (top-1) to 65.12% (top-2). Less 

extreme but still significant performance drops also happened in the top-performing models on the 6-class scheme, 

from 74.03% (top-1) to 73.25% (top-3), and further to 72.81% (hie-21), then suddenly to 72.11% (hie-09). After that 

the model performance curve, if sorted in descending order, started to be flatter. This signifies the necessity of 

including the best performing model(s) into the ensemble. In addition, that the performance differences between the 

weakest classifiers were often minor, implying a higher chance of low classifier diversity among them, so it might be 

wiser to avoid building ensembles mainly based on weak classifiers.    

[Table 2: See Appendix] 

5.2. Majority Voting 

5.2.1. Experimental Setup 

Due to the large number of base classifiers (𝑇′ = 150), most of which significantly underperformed the few top ones, 

we decided to first select a set of 𝑇 classifiers in descending order of classifier performance as the pool of candidates. 

To ensure performance, the pool should be large enough, say 𝑇 = 50. We also tested a series of different sizes: 𝑇 ∈

{50, 40, 30, 20, 10}. Finally, a subset of 𝑅 diverse classifiers were chosen from the pool to fuse. The 𝑇 candidates 

were ranked in descending order of classifier diversity based on pair-wise diversity measures, as explained in Sect. 

3.3.2. In this way, it was still difficult to determine the best subset, i.e., the best R value, to fuse, so we tested different 

values of 𝑅 (𝑅 = 2,3,… , 𝑇) and reported the best performance together with the corresponding ensemble size 𝑅.  As 

introduced in Sect. 3.4, four voting methods were experimented, unweighted hard majority weighting (HARD – 

UNWEIGHTED), weighted hard majority voting (HARD – WEIGHTED), mean-probability soft majority voting 
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(SOFT – MEAN), and reliability-enhanced soft voting (SOFT – RELIABILITY). HARD – UNWEIGHTED was done 

10 times and averaged2. With other methods, whenever there was a tie, though being very rare, macro F1 was used to 

break the tie. For each fusion method, the five diversity measures introduced in Sect. 3.3.2 were tested and compared. 

For each diversity measure applied in combination with each fusion method, we reported both the original ensemble 

performance (the ¬RR column in Table 3-5) in term of macro F1 and the performances of diversity re-ranking defined 

in Sect. 3.3.3 (the RR_Rnk and RR_Val columns).  

5.2.2. Results 

Table 3-5 show the results under all experimental setups with the 11-class scheme, 6-class scheme and 2-grade scheme 

respectively. For majority voting, it was difficult to determine the best R (classifiers to fuse) when using pair-wise 

diversity measures. Therefore, we reported the performance that was obtained using the best R ranging between 2 and 

T. This is a significant drawback of the majority voting method. It was hardly possible to reliably determine the “best” 

R using a held-out set, because a small difference between the distributions of the validation and test samples would 

be amplified, causing the R “optimised” on the validation set to become suboptimal or even poor on the test set. This 

drawback can be alleviated by the classifier stacking approach, which trains a meta-classifier to optimise the weights 

of the contribution of each classifier, making fusion results more stable. The best majority voters were HARD - 

WEIGHTED on the 11-class scheme with a pool of 𝑇 = 40 candidate classifiers diversified by Q statistics and value-

based re-ranking (the shaded cell in Table 3), and SOFT - RELIABILITY on the 6-class scheme with a pool of 𝑇 =

40 candidates diversified by correlation coefficient and rank-based re-ranking (the shaded cell in Table 4). Compared 

to the best single models the performance gains were significant: for 11-class, a 4.6% absolute improvement from 

66.16% (seq-08 in Table 2) to 70.78% (Table 3), and for 6-class, a 3% absolute improvement from 74.03% (seq-01 in 

Table 2) to 77.05% (Table 4). On the 2-grade scheme, there were quite a few ensemble settings performing equally 

well, topping at 89.63%. This might be caused by the fact that the important citation screening task was comparatively 

not as complex as the citation function classification task, which was proved by the good single model performance 

topping at 86.65% (Table 2). The decision space was also much simpler. The diversities among classifiers were likely 

 

2 The following randomly picked seeds were used: 11, 107, 211, 509, 521, 929, 971, 1061, 1753, and 1979. 
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to be not as obvious as in citation function classification, resulting in many ensemble classifiers with similar 

behaviours.  

[Table 3–5: See Appendix] 

        Several conclusive observations could be made. Firstly, relatively weak classifiers did contribute to a stronger 

ensemble performance. When only a small number of top-performing classifiers were selected, e.g., 𝑅 = 10, 20 for 

11-class (Table 3), 𝑅 = 	10, 20 for 6-class (Table 4), and 𝑅 = 10 for 2-grade (Table 5), the ensemble performance 

were not optimal. The best performances appeared when 𝑅 = 40 for 11-class, 𝑅 = 50 for 6-class and 𝑅 = 30 for 2-

grade schemes. Secondly, from the results on all three annotation schemes, it was safe to claim that when the pool of 

candidate classifiers is large and diverse enough, diversity re-ranking methods consistently improves fusion 

performance (RR > ¬RR). Generally, rank-based re-ranking was overall better than value-based re-ranking 

(RR_Rnk > RR_Val). Both claims could be seen from the “AVG” rows in all three tables. The extreme opposite case 

was that, when 𝑇 = 10, doing diversity re-ranking was worse than no re-ranking on all three annotation schemes. The 

reasons might be that the candidate pool was too small, thus missed a lot of candidates that provided commentary 

views of the classification task. This explanation corroborates with our first claim that many weak classifiers are 

indeed helpful for building a better ensemble. The situation with the 2-grade scheme was an even more extreme 

opposite case, where the best voter appeared at 𝑇 = 30 without doing re-ranking (though a few value-based re-ranking 

results rivaled). We also noted that the best ensemble size for all these rivaling voters was all 𝑅 = 15, which first 

corroborate with the first claim above and also implied that there might be many important citation screeners that 

performed equally well, and the fusion of a subset of them reached the performance ceiling of majority voting because 

they reinforced each others’ decisions, reducing the ensemble’s capability of integrating more classifiers’ points of 

view. Thirdly, cognitively more challenging tasks might require a larger candidate pool to allow more diversity. 

This actually implied the effectiveness of performing diversity analysis for combining classifiers like citation function 

classification (Nam et al., 2021).  

5.3.  Classifier Stacking 

5.3.1. Experimental Setup 

Four types of meta-classifier were used, k-Nearest Neighbour (k-NN), Support Vector Machine (SVM), Naïve Bayes 

(NB) and Linear Discriminant Analysis (LDA). For k-NN, the following values were selected: 𝑘 = 5,7,11,13,15. 
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Base classifier’s predicted labels were used as inputs. For SVM, both polynomial kernels and RBF (Radial Basic 

Function) kernels were used. They were denoted as SVM-Poly and SVM-RBF. Base classifiers’ posterior probabilities 

(of predicted labels) were used as inputs for both SVM and LDA. For NB, Categorical Naive Bayes (CatNB) was used 

for citation function classification and Bernoulli Naïve Bayes (BerNB) was used for important citation screening, both 

with base classifiers’ predicted labels as inputs.  

        Table 6 summarises the hyperparameters tuned for each meta-classifier. For k-NN, the only option needs to be 

tuned was the weighting of instances (nearest neighbours used for voting), either “uniform” (i.e., equally weighted) 

or “distance” (inversely weighted based on distance to the test sample). For CatNB and BerNB, the only 

hyperparameter tuned was 𝛼, the additive value used for smoothing the Naïve Bayes estimate of the counts of feature 

values with respect to each category3. For SVM-RBF, the hyperparameter was 𝛾 in the RBF kernel function while 

SVM-Poly had one more parameter ¾ the degree of polynomial 𝑑4 . For both SVM-Poly and SVM-RBF, the 

regularisation coefficient 𝐶 was a common hyperparameter5. Due to the large number of hyperparameter settings of 

SVM, we first performed grid search using a large but coarse range of 𝐶 and 𝛾 values, found the poor value ranges 

for both parameters, and then narrowed down to a smaller but finer range of hyperparameters values as in Table 6. 

For all the meta-classifiers, the five diversity measures (Sect. 3.2.2) were also part of the hyperparameters to be tuned. 

Finally, note that only rank-based re-ranking was used in the meta-classifier experiments as this was proved an overall 

better re-ranker when there was abundance in candidate classifiers. 

[Table 6: See Appendix] 

        Two groups of experiments were done for classifier stacking. The first group was done purely on the test split. 

For a more robust evaluation, 5-fold cross validation was done and the best performance across all hyperparameter 

setups was reported. The cross-validation results on the test split were regarded as the upper limit of meta-classifier. 

The more common practice is to optimise the meta-classifiers on a held-out set, here using the validation set enriched 

with training samples that caused errors to at least two base classifiers, and apply the “optimal” parameter setting to 

the test split. Again, 5-fold cross validation and grid search were used for hyperparameter tuning on the held-out set. 

 

3 https://scikit-learn.org/stable/modules/naive_bayes.html#categorical-naive-bayes  
4 https://scikit-learn.org/stable/modules/svm.html#kernel-functions  
5 https://scikit-learn.org/stable/modules/svm.html#svm-classification  

https://scikit-learn.org/stable/modules/naive_bayes.html#categorical-naive-bayes
https://scikit-learn.org/stable/modules/svm.html#kernel-functions
https://scikit-learn.org/stable/modules/svm.html#svm-classification
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Then, meta-classifiers were trained using the “optimised” hyperparameters on the whole held-out samples and then 

were evaluated against the test set.   

5.3.2. Results 

Table 7-9 show the 5-fold cross-validation results of all the meta-classifiers on the test split. Generally, k-NN often 

was not a strong meta-classifier, and SVM (either SVM-RBF or SVM-Poly) was among the most powerful meta-

classifier. On the 11-class scheme, the best performance was 70.81% by SVM-RBF (Table 7), which beat reliability-

enhanced soft voting, which was 70.78% (Table 3). However, a fundamental difficulty for voter was the choice of the 

right size (R) of the selected candidate set, for which there was no systematic way to decide. Classifier stacking 

removed this complexity by properly weighting the pool of candidates (of size T), which in essence softly excluded 

“bad” base classifiers by learning to set a small enough weight for them. Classifier stacking thus is a more convenient 

method to use, especially when the candidate pool is too large to manoeuvre manually. However, the on the 6-class 

and 2-grade schemes, the best performances of classifier stacking were 76.85% (Table 8) and 89.53% (Table 9) 

respectively, underperforming the voting counterparts, which reported 77.05% in Table 4 and 89.63% in Table 5. 

However, the performances were still significantly better than the best single classifier, by (70.78 - 66.16 =) 4.62% 

on the 11-class scheme, by (76.85 - 74.03 =) 2.82% on the 6-class scheme, by (89.53 - 86.65 =) 2.88% on the 2-grade 

scheme respectively. Note that, these performances were regarded as oracle values (imprecisely speaking upper-

bounds), as they were directly obtained from the test set through cross-validation.  

[Table 7–9: See Appendix] 

      Table 10-12, on the contrary, show the performances of the meta-classifiers that were tuned on the validation split 

through 5-fold cross validation, together the optimal hyperparameters for each meta-classifier. Table 13 shows the 

performances of these optimal meta-classifiers on the test split. Now the best performances were around 69.66% (by 

LDA) on the 11-class scheme (still a 3.50% increase), 77.33% (by SVM-Poly) on the 6class scheme (a significant 

3.30% increase), and 88.68% (by k-NN when k = 7) on the 2-grade scheme (only a 2.03% increase). We note that 

different meta-classifiers exhibited vastly different performances from each other, they, called level-1 meta-classifiers, 

also shew abundant variety and possible could be combined further. Indeed, we did some preliminary correlation 

analysis of the level-1 voters and level-1 meta-classifiers, and found that level-1 voters shew significantly limited 

diversity among each other (and indeed either further stacked voting or stacked meta-classifier on level-1 voters could 
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not bring performance improvement), while classifier diversity among level-1 meta-classifiers had much higher 

potential for further stacking to obtain better performance. So, we will focus on deep stacking of meta-classifiers in 

the following subsection. 

[Table 10–12: See Appendix] 

[Table 13: See Appendix] 

5.4. Deep Stacking 

5.4.1. Experimental Setup 

In the experiments, we only tested stacking on level-1 meta-classifiers, because they showed rich diversity. Reliability-

enhanced soft voting was used for building the stacked voter (results in Table 14). According to the results in Table 

7-9, SVM-RBF and SVM-Poly were chosen to build the stacked meta-classifier, for which 5-fold cross-validation was 

done on the test set for performance reporting (results in Table 15). Instead of finding the “most diverse” set of level-

1 meta-classifiers, we opted to perform an ablation-style study. We ran a series of experiments by first removing each 

category of level-1 meta-classifiers (i.e., k-NN with different k’s, NB either CatNB or BerNB, LDA, SVM (either 

SVM-RBF, SVM-Poly or both) and then removing more level-1 meta-classifiers of two or more categories. We 

decided to test a large number of such combinations to optimise the final ensemble’s performance. Both level-2 voter 

and level-2 meta-classifier (SVM-RBF and SVM-Poly). In Table 14 and 15, the “¬” symbol means a (number of) 

meta-classifiers of this type were excluded from the experiment. For k-NN’s, we also included the k’s of the excluded 

meta-classifiers. What is more, k = 5 or 15 did not perform well on the 11-class and 2-grade schemes, so they were 

pre-excluded from the ablation study. Similarly, k = 9–15 were pre-excluded for any experiments on the 6-class 

scheme. Finally, the “*” symbol means the best configuration among all ablation experiments about k-NN. This best 

configuration was used in further ablation with other classifiers, say the “¬ NB, k-NN *” and “¬ LDA, k-NN *” rows. 

The top-3 performances were highlighted by bold underscored, bold, and underscored fonts respectively.  

[Table 14: See Appendix] 

[Table 15: See Appendix] 
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5.4.2. Results 

Table 14 shows the performances of reliability-enhanced soft voting on different combinations of level-1 meta-

classifiers. The promising aspect was that voting on meta-classifiers significantly improved the ensemble 

performances over each individual level-1 meta-classifier (refer to Table 12): 71.48% v.s. 69.66% on the 11-class 

scheme, 78.16% v.s. 77.33% on the 6-class scheme, and 89.67% v.s. 88.86% on the 2-grade scheme. The level-2 

reliability-enhanced soft voting performances were also better than the cross-validated meta-classifier performances 

(refer to Table 7): 71.48% v.s. 70.81% on the 11-class scheme, 78.16% v.s. 76.85 % on the 6-class scheme, and 

89.67% v.s. 89.53% on the 2-grade scheme. The performances also outperformed the best level-1 majority voters 

(refer to Table 3-5): 71.48% v.s. 70.78% on the 11-class scheme, 78.16% v.s. 77.05 % on the 6-class scheme, and 

89.67% v.s. 89.63% on the 2-grade scheme. This is very encouraging. Meanwhile, it was very clear that using all 

level-1 meta-classifiers was not able to produce voting performance. On the 11-class and 6-class annotations, the “All” 

rows significantly underperformed other ablated meta-classifier combinations about k-NN. The most extreme case 

was the 2-grade scheme, where the best level-2 voter performance was obtained without any k-NN. Again, it highlights 

that, for majority voters, it is a very challenging problem how to select the best subset to combine. 

      Table 15 shows the performances of level-2 metaclassifier (SVM-RBF) on all three annotation schemes. First of 

all, the best level-2 meta-classifiers’ performances rivaled the best performances of level-2 voter, and significantly 

outperformed any single level-1 meta-classifier (refer to Table 7) or reliability-enhanced voter (refer to Table 3-5): 

71.75% v.s. 70.81% or 70.71% on the 11-class scheme, 78.03% v.s. 76.85% or 77.05 on the 6-class scheme, and 

89.63% v.s. 89.53% or 89.63% on the 2-grade scheme. What is more encouraging was that level-2 meta-classifier was 

easier to use than level-2 voters. This was demonstrated by the good performances of the level-2 meta-classifiers 

trained to combine all level-1 meta-classifier predictions (the “All” row in Table 15). Indeed, on the 11-class and 6-

class schemes, the best performances were obtained from learning on all level-1 meta-classifiers, while on the 2-grade 

scheme, this resulted in the third highest performance. This confirmed our previous hypothesis that level-2 meta-

classifier might have the ability to softly exclude unsuitable level-1 meta-classifiers by setting the correct weights 

to exclude them from ensembling. Level-2 meta-classifier also stablised the performances of level-1 meta-classifiers, 

making the final ensemble more robust.  
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6. Concluding Remarks 

Recently, Jiang and Chen (2023) presented a comprehensive study of the wide range of options of citation modelling 

and their impact on the performance of citation function classification. Their study laid the foundation for building 

ensemble classifier for citation context analysis, i.e., (one of the) sources of classifier diversity, including the 

modelling options of in-text citation, citation sentence and citation context. Motivated by their important finding that 

there is no single best classifier for all citation function categories, the current paper focused on experimenting and 

evaluating various ways of building ensemble classifiers to improve the performance of citation context analysis, 

extended from citation function classification to important citation screening.  

        Our main contribution is the exploitation of three sources of classifier diversity to facilitate ensemble building, 

namely citation modelling, diversity ranking and diversity re-ranking. The large space of citation modelling options 

allowed us to design 36 deep learning architectures and trained 180 deep learning models to perform citation context 

analysis, 5 models per architectures using different random seeds, out of which a diverse set of classifiers were selected 

as candidate for combination by using five pair-wise diversity measures. One major contribution of the current paper 

was the proposal of two diversity re-ranking methods to make a better trade-off of classifier performance against 

classifier diversity. We found that the most diverse base classifiers often tended to be weak, and the strongest ones 

were often excluded. Diversity ranking alone tended to result in suboptimal ensembling performances. Both our 

proposed diversity re-ranking methods, namely value-based re-ranking and rank-based re-reranking, had significant 

impact on the success of ensembles, and rank-based re-ranking method was generally more stable than value-based 

re-ranking (averaged across five diversity measures). 

        Three types of ensembling methods were used and evaluated, including majority voting, meta-classifier (equiv. 

classifier stacking) and deep classifier stacking. Apart from using unweighted hard voting, weighted hard voting, and 

mean probability soft voting, we also proposed a fourth voting method, called reliability-enhanced soft voting, which 

defined soft vote as the product of base classifier’s performance (reliance) and posterior probability of prediction 

(confidence). Reliability-enhanced soft voting was proved to be an effective fusing method, evidenced by the results 

that reliability-enhanced soft voting and weighted hard voting were the two best methods on the 11-class and 6-class 

annotation schemes for citation function classification. Rank-based re-ranking proved to perform better in combination 

with both voting methods. Meanwhile, it was demonstrated necessary to build a large enough pool of base classifiers 
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for diversity analysis and classifier selection. This also implied the value of weak classifiers. The strongest classifiers 

and a diverse subset of relatively weak classifiers both contributed to performance improvement of ensembles.  

        However, it was extremely a challenging task to choose the optimal number of base classifiers to fuse, severely 

harming the usability of majority voting in practice. To circumvent this obstacle, meta-classifiers were trained directly 

on a large pool of base classifiers after diversity analysis so that the need for further classifier selection was eliminated, 

with the hope that useless classifiers will be softly ruled out by receiving low weights. On both the citation function 

classification and important citation screening tasks, kernel support vector machine proved to be the most successful. 

Significant performance improvement was observed, especially on the 6-class scheme with a 3.50% absolute 

improvement to 77.33% macro F1 compared to the state of the art reported in Jiang and Chen (2023). More 

experiments showed that a level-2 ensemble could exploit the diversity among level-1 meta-classifiers to further 

improve ensemble performance. Reliability-enhanced soft voting and kernel support vector machine (on level-1 meta-

classifiers) significantly improved the performance, achieving 5.50% and 5.59% absolute increases respectively on 

the 11-class citation function scheme, 4.14% and 3.99% on the 6-class scheme, and 4.02% and 3.99% on the task of 

important citation screening. Again, meta-classifier was proved easy to use because the tedious selection of candidate 

classifiers was avoided. More specifically, training a level-2 meta-classifier on all level-1 meta-classifiers produced 

the best (or at least rivaling) ensembling performances, while reliability-enhanced soft voting on all level-1 meta-

classifiers was severely suboptimal. Overall, the current study emphasized the necessity of proper diversity analysis 

and the superiority of deep classifier stacking in building a powerful citation context analysis ensemble.  
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10. Appendix (Tables) 

Model citseg ctx_type 
Encoding methods  11-class   6-class  2-grade  

cita_pooler ctx_pooler sent_pooler  best avg std   best avg std  best avg std  
seq-01 O sequential max_pool CLS N/A  63.93 62.72 1.11   74.03 70.88 1.87  84.27 83.37 1.29  
seq-02 O sequential max_pool max_pool N/A  63.21 62.61 0.45   70.23 68.25 1.60  85.49 84.25 0.70  
seq-03 O sequential max_pool self_attnd N/A  64.26 62.82 1.04   70.99 68.86 1.71  86.16 85.37 0.86  
seq-04 O sequential self_attnd CLS N/A  63.12 62.07 1.00   69.96 68.22 1.58  84.74 84.13 0.53  
seq-05 O sequential self_attnd max_pool N/A  64.12 62.82 1.20   71.56 69.05 1.85  85.13 83.46 1.15  
seq-06 O sequential self_attnd self_attnd N/A  65.12 63.05 1.60   72.19 69.81 1.37  86.04 84.67 0.80  
seq-07 O sequential X CLS N/A  64.65 61.01 2.21   71.48 69.75 1.07  84.80 83.99 0.48  
seq-08 O sequential X max_pool N/A  66.16 63.53 1.55   70.98 69.90 1.21  85.88 84.21 1.04  
seq-09 O sequential X self_attnd N/A  63.92 62.80 0.89   71.91 69.66 1.47  86.20 84.77 0.79  
seq-10 O sequential max_pool X N/A  63.93 62.72 1.11   71.89 70.18 1.77  85.82 84.57 0.81  
seq-11 O sequential self_attnd X N/A  64.42 63.01 0.89   71.32 69.69 1.01  86.00 85.11 0.57  
seq-12 O sequential X X N/A  64.93 63.50 1.04   73.56 70.22 2.44  86.00 84.74 0.68  
hie-01 O hierarchical SEP max_pool SEP  62.78 61.76 0.89   69.39 68.42 1.25  84.00 83.81 0.15  
hie-02 O hierarchical SEP self_attnd SEP  61.42 61.42 0.96   71.08 69.87 1.51  84.90 83.57 0.76  
hie-03 O hierarchical max_pool max_pool SEP  63.30 63.30 1.12   71.71 69.60 1.36  84.00 83.81 0.15  
hie-04 O hierarchical max_pool self_attnd SEP  63.79 63.79 1.71   72.10 70.25 1.69  84.90 83.57 0.76  
hie-05 O hierarchical self_attnd max_pool SEP  63.69 63.69 2.21   70.09 67.83 1.74  84.42 83.41 1.17  
hie-06 O hierarchical self_attnd self_attnd SEP  63.79 63.79 1.71   72.10 70.25 1.69  84.90 83.57 0.76  
hie-07 O hierarchical max_pool max_pool max_pool  62.63 62.16 0.51   70.22 67.94 1.38  85.60 84.18 1.07  
hie-08 O hierarchical max_pool self_attnd max_pool  65.02 62.10 2.24   69.77 68.24 1.33  84.41 83.53 0.99  
hie-09 O hierarchical max_pool max_pool self_attnd  63.38 62.45 0.59   72.11 70.07 1.8  85.74 84.06 1.10  
hie-10 O hierarchical max_pool self_attnd self_attnd  63.31 62.44 0.89   71.40 70.02 1.03  85.49 84.17 1.18  
hie-11 O hierarchical self_attnd max_pool max_pool  64.46 62.17 1.99   72.38 69.33 3.07  85.82 84.45 1.31  
hie-12 O hierarchical self_attnd self_attnd max_pool  63.43 62.26 0.83   70.78 69.56 1.57  85.41 84.55 0.59  
hie-13 O hierarchical self_attnd max_pool self_attnd  64.99 63.56 1.15   71.49 69.52 1.66  85.93 84.80 0.70  
hie-14 O hierarchical self_attnd self_attnd self_attnd  63.16 62.09 1.02   71.32 68.35 2.22  86.45 85.88 0.55  
hie-15 O hierarchical X max_pool SEP  61.17 59.98 1.14   73.24 70.19 2.41  84.49 83.69 0.53  
hie-16 O hierarchical X self_attnd SEP  63.22 62.25 0.89   71.56 70.40 1.18  85.24 84.14 1.00  
hie-17 O hierarchical X max_pool max_pool  64.56 64.16 0.39   70.90 70.04 0.94  86.65 84.41 1.37  
hie-18 O hierarchical X self_attnd max_pool  64.95 62.82 1.64   72.09 69.35 2.11  85.05 83.64 1.16  
hie-19 O hierarchical X max_pool self_attnd  62.62 61.61 1.18   71.89 70.48 1.04  85.11 83.98 0.96  
hie-20 O hierarchical X self_attnd self_attnd  63.15 62.39 0.60   70.72 69.75 1.1  86.46 84.15 1.66  
hie-21 O hierarchical SEP X N/A  63.48 61.27 1.39   72.81 70.96 1.32  85.37 84.10 1.13  
hie-22 O hierarchical max_pool X N/A  63.48 61.27 1.39   72.81 70.96 1.32  85.37 84.10 1.13  
hie-23 O hierarchical self_attnd X N/A  62.55 61.09 1.05   70.38 69.28 1.19  86.12 84.52 0.89  
hie-24 O hierarchical X X N/A  64.37 62.80 1.51   72.07 71.21 0.70  85.88 84.94 0.69  

Table 2. Base Classifiers of Citation Function Classification and Their Performances.   
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69.97//K-
20 

70.01//R
=10 

69.64//R
=9 

69.28//R
=8 

69.91//R
=8 

AVG 70.01 70.36 70.32 70.33 70.54 70.42 69.98 70.52 70.00 69.78 70.16 70.12 69.91 69.50 69.82 

SO
FT – M

EA
N

 

DivCC 69.73//R
=42 

70.66//R
=23 

70.07//R
=34 

69.92//R
=15 

70.55//R
=17 

70.04//R
=24 

69.90//R
=29 

69.76//R
=28 

69.90//R
=29 

70.00//R
=12 

70.15//R
=14 

69.91//R
=13 

69.75//R
=5 

69.67//R
=10 

69.75//R
=5 

DivDF 69.67//R
=15 

69.99//R
=22 

69.90//R
=24 

69.50//R
=37 

69.74//R
=17 

69.73//R
=14 

69.76//R
=26 

70.02//R
=24 

70.28//R
=8 

70.65//R
=12 

70.13//R
=14 

70.76//R
=10 

69.70//R
=5 

69.67//R
=10 

69.70//R
=5 

DivQ 69.63//R
=24 

70.66//R
=23 

70.38//R
=28 

69.92//R
=15 

70.27//R
=16 

70.10//R
=16 

69.90//R
=29 

70.03//R
=21 

69.92//R
=21 

69.67//R
=14 

69.69//R
=12 

69.91//R
=17 

69.75//R
=5 

69.67//R
=10 

69.67//R
=10 

DivRE 69.50//R
=6 

70.11//R
=27 

70.06//R
=21 

69.98//R
=19 

70.36//R
=17 

69.98//R
=19 

69.90//R
=29 

69.66//R
=25 

69.90//R
=29 

70.00//R
=12 

70.15//R
=14 

69.91//R
=13 

69.72//R
=8 

69.67//R
=10 

69.72//R
=8 

DivDM 69.63//R
=24 

70.66//R
=23 

69.95//R
=20 

69.92//R
=15 

70.27//R
=16 

69.98//R
=24 

69.90//R
=29 

70.48//R
=27 

69.90//R
=29 

69.51//R
=15 

69.69//R
=14 

69.78//R
=13 

69.75//R
=5 

69.67//R
=10 

69.75//R
=5 

AVG 69.63 70.42 70.07 69.85 70.24 69.97 69.87 69.99 69.98 69.97 69.96 70.05 69.73 69.67 69.72 

SO
FT – RELIA

BILITY
 

DivCC 70.17//R
=44 

70.54//R
=22 

70.33//R
=29 

70.42//R
=28 

70.19//R
=17 

70.11//R
=24 

69.48//R
=28 

70.26//R
=28 

69.59//R
=26 

69.80//R
=9 

69.83//R
=12 

69.58//R
=11 

69.46//R
=10 

69.46//R
=10 

69.46//R
=10 

DivDF 69.95//R
=17 

69.87//R
=29 

69.89//R
=10 

69.86//R
=17 

70.12//R
=32 

69.89//R
=15 

69.83//R
=29 

70.06//R
=15 

70.06//R
=15 

70.41//R
=12 

70.55//R
=14 

70.43//R
=14 

69.77//R
=5 

69.46//R
=10 

69.77//R
=5 

DivQ 69.82//R
=45 

70.42//R
=24 

70.33//R
=29 

70.42//R
=28 

70.41//R
=31 

70.25//R
=15 

70.19//R
=25 

70.50//R
=25 

70.03//R
=27 

69.48//R
=20 

69.83//R
=12 

69.83//R
=12 

69.46//R
=10 

69.46//R
=10 

69.46//R
=10 

DivRE 69.85//R
=47 

70.11//R
=34 

69.84//R
=25 

70.12//R
=28 

70.43//R
=37 

70.12//R
=28 

69.31//R
=30 

70.46//R
=26 

69.68//R
=28 

69.80//R
=9 

69.91//R
=13 

69.81//R
=16 

69.46//R
=10 

69.46//R
=10 

69.46//R
=10 

DivDM 69.93//R
=43 

70.54//R
=32 

70.30//R
=39 

70.34//R
=38 

70.26//R
=30 

70.46//R
=24 

69.31//R
=30 

70.38//R
=25 

69.79//R
=27 

69.48//R
=20 

69.70//R
=19 

70.04//R
=9 

69.46//R
=10 

69.46//R
=10 

69.46//R
=10 

AVG 69.94 70.30 70.14 70.23 70.28 70.17 69.62 70.33 69.83 69.79 69.96 69.94 69.52 69.46 69.52 

Table 3. Performances of majority voting-based ensembles for 11-class citation function classification. 
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T 50 40 30 20 10 
Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val 

H
A

RD
 – U

N
W

EIG
H

T  

DivCC 75.94 
//R=11 

76.93//R
=18 

76.52//R
=10 

75.85//R
=9 

75.98 
//R=23 

75.65//R
=10 

75.86//R
=20 

76.04//R
=9 

75.79//R
=23 

76.33//R
=5 

76.24//R
=17 

76.16//R
=8 

75.71//R
=9 

75.65//R
=10 

75.65//R
=10 

DivDF 76.41 
//R=17 

76.45//R
=30 

76.54//R
=31 

75.53//R
=11 

76.66 
//R=19 

76.15//R
=16 

75.62//R
=28 

75.62//R
=28 

75.67//R
=25 

76.31//R
=13 

76.01//R
=18 

75.07//R
=14 

75.71//R
=9 

75.65//R
=10 

75.65//R
=10 

DivQ 75.94 
//R=11 

76.62//R
=17 

76.25//R
=17 

75.81//R
=7 

75.98 
//R=23 

76.14//R
=23 

76.07//R
=19 

75.78//R
=15 

75.74//R
=24 

76.33//R
=5 

76.24//R
=17 

76.37//R
=7 

75.71//R
=9 

75.65//R
=10 

75.65//R
=10 

DivRE 76.12 
//R=22 

76.44//R
=16 

76.30//R
=26 

75.81//R
=7 

75.98 
//R=23 

75.81//R
=7 

75.86//R
=20 

76.10//R
=28 

75.67//R
=24 

76.33//R
=5 

76.24//R
=17 

76.09//R
=8 

75.71//R
=9 

75.65//R
=10 

75.65//R
=10 

DivDM 76.14 
//R=22 

76.81//R
=16 

76.11//R
=18 

75.75//R
=9 

75.90 
//R=23 

75.88//R
=22 

76.19//R
=20 

76.04//R
=9 

75.74//R
=26 

76.33//R
=5 

76.16//R
=8 

75.94//R
=5 

75.71//R
=9 

75.65//R
=10 

75.65//R
=10 

AVG 76.11 76.65 76.34 75.75 76.10 75.93 75.92 75.92 75.72 76.33 76.18 75.93 75.71 75.65 75.65 

H
A

RD
 – W

EIG
H

TED
 

DivCC 76.24 
//R=23 

76.89//R
=18 

76.83//R
=10 

75.88//R
=9 

75.91//R
=24 

75.67//R
=18 

76.02//R
=21 

76.07//R
=9 

75.76//R
=24 

76.05//R
=5 

76.22//R
=6 

76.26//R
=7 

75.92//R
=10 

75.92//R
=10 

75.92//R
=10 

DivDF 76.57 
//R=11 

76.41//R
=30 

76.43//R
=31 

75.79//R
=17 

76.67//R
=19 

75.72//R
=16 

76.13//R
=22 

75.54//R
=10 

75.77//R
=25 

76.60//R
=5 

76.23//R
=7 

75.72//R
=13 

75.92//R
=10 

75.92//R
=10 

75.92//R
=10 

DivQ 76.09 
//R=11 

76.94//R
=16 

76.21//R
=17 

75.80//R
=13 

75.81//R
=23 

76.05//R
=23 

75.96//R
=25 

76.00//R
=26 

75.85//R
=26 

76.05//R
=5 

76.22//R
=6 

76.22//R
=6 

75.92//R
=10 

75.92//R
=10 

75.92//R
=10 

DivRE 76.55 
//R=14 

76.59//R
=16 

76.53//R
=15 

75.73//R
=10 

75.88//R
=23 

75.79//R
=20 

75.93//R
=21 

76.38//R
=28 

75.76//R
=24 

76.12//R
=14 

76.22//R
=6 

76.04//R
=8 

75.92//R
=10 

75.92//R
=10 

75.92//R
=10 

DivDM 76.34 
//R=22 

76.88//R
=17 

76.47//R
=18 

75.97//R
=9 

75.91//R
=24 

75.97//R
=22 

76.47//R
=17 

76.50//R
=12 

75.89//R
=24 

76.26//R
=13 

75.99//R
=8 

76.26//R
=7 

75.92//R
=10 

75.92//R
=10 

75.92//R
=10 

AVG 76.36 76.74 76.49 75.83 76.04 75.84 76.10 76.10 75.81 76.22 76.18 76.10 75.92 75.92 75.92 

SO
FT – M

EA
N

 

DivCC 75.61//R
=33 

75.82//R
=18 

76.15//R
=10 

76.09//R
=23 

76.66//R
=15 

75.47//R
=17 

76.07//R
=20 

76.11//R
=12 

75.48//R
=21 

75.99//R
=5 

75.48//R
=6 

75.72//R
=8 

75.72//R
=5 

74.93//R
=10 

74.93//R
=10 

DivDF 76.43//R
=25 

75.66//R
=16 

76.54//R
=16 

75.88//R
=17 

76.43//R
=18 

76.66//R
=16 

75.94//R
=12 

76.48//R
=17 

76.26//R
=15 

75.63//R
=13 

75.74//R
=9 

75.49//R
=5 

75.79//R
=5 

74.93//R
=10 

74.93//R
=10 

DivQ 75.66//R
=24 

75.83//R
=18 

75.82//R
=7 

75.65//R
=22 

76.10//R
=17 

75.88//R
=23 

76.01//R
=19 

75.82//R
=15 

76.20//R
=14 

75.99//R
=5 

75.73//R
=13 

75.72//R
=8 

75.72//R
=5 

74.93//R
=10 

75.07//R
=7 

DivRE 75.70//R
=16 

75.62//R
=15 

75.79//R
=10 

76.09//R
=23 

76.55//R
=16 

75.87//R
=24 

76.07//R
=20 

76.11//R
=12 

75.85//R
=28 

75.99//R
=5 

75.48//R
=6 

75.34//R
=19 

75.72//R
=5 

74.93//R
=10 

74.93//R
=10 

DivDM 75.62//R
=7 

76.03//R
=14 

75.41//R
=20 

75.54//R
=11 

76.56//R
=16 

75.82//R
=21 

76.01//R
=19 

75.82//R
=15 

75.61//R
=13 

75.99//R
=5 

75.73//R
=13 

75.34//R
=19 

75.72//R
=5 

75.07//R
=7 

75.07//R
=7 

AVG 75.80 75.79 75.94 75.85 76.46 75.94 76.02 76.24 75.88 75.92 75.63 75.52 75.73 74.96 74.99 

SO
FT – RELIA

BILITY
 

DivCC 76.06//R
=22 

77.05//R
=18 

76.13//R
=18 

75.89//R
=7 

75.96//R
=22 

75.95//R
=17 

75.80//R
=25 

76.13//R
=9 

75.73//R
=29 

75.84//R
=19 

76.35//R
=17 

75.88//R
=8 

76.35//R
=9 

75.70//R
=7 

75.70//R
=7 

DivDF 76.49//R
=25 

76.41//R
=30 

76.61//R
=31 

75.46//R
=17 

76.59//R
=19 

76.60//R
=16 

75.78//R
=22 

75.75//R
=10 

75.71//R
=25 

75.74//R
=13 

75.91//R
=17 

75.65//R
=13 

76.35//R
=9 

75.70//R
=7 

75.70//R
=7 

DivQ 76.09//R
=11 

76.88//R
=16 

76.30//R
=18 

75.89//R
=7 

75.60//R
=23 

76.19//R
=23 

76.20//R
=19 

75.84//R
=15 

76.26//R
=14 

76.02//R
=14 

76.35//R
=17 

76.20//R
=6 

76.35//R
=9 

75.70//R
=7 

75.70//R
=7 

DivRE 76.06//R
=22 

76.43//R
=16 

76.48//R
=20 

75.89//R
=7 

75.96//R
=22 

75.89//R
=7 

75.72//R
=20 

75.88//R
=12 

75.64//R
=28 

76.44//R
=8 

76.35//R
=17 

76.44//R
=8 

76.35//R
=9 

75.70//R
=7 

75.70//R
=7 

DivDM 76.27//R
=22 

76.82//R
=16 

76.13//R
=18 

75.82//R
=13 

76.15//R
=13 

75.91//R
=22 

76.20//R
=19 

76.13//R
=9 

75.73//R
=29 

75.84//R
=17 

76.20//R
=6 

75.84//R
=17 

76.35//R
=9 

75.70//R
=7 

75.70//R
=7 

AVG 76.19 76.72 76.33 75.79 76.05 76.11 75.94 75.95 75.81 75.98 76.23 76.00 76.35 75.70 75.70 

Table 4. Performances of majority voting-based ensembles for 6-class citation function classification.  
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T 50 40 30 20 10 
Re-rank ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val ¬RR RR_Rnk RR_Val 

H
A

RD
 – U

N
W

EIG
H

T  

DivCC 89.06//R
=19 

89.38//R
=11 

89.06//R
=19 

89.18//R
=17 

89.22//R
=17 

89.18//R
=17 

89.63//R
=15 

89.43//R
=11 

89.63//R
=15 

89.18//R
=17 

88.99//R
=20 

89.34//R
=17 

88.93//R
=9 

88.90//R
=9 

88.93//R
=9 

DivDF 88.65//R
=23 

89.22//R
=13 

88.74//R
=19 

88.79//R
=22 

88.97//R
=9 

88.86//R
=21 

89.02//R
=19 

89.22//R
=11 

89.03//R
=18 

89.18//R
=17 

88.99//R
=20 

89.18//R
=17 

88.78//R
=10 

88.90//R
=7 

88.78//R
=10 

DivQ 89.26//R
=23 

89.38//R
=11 

89.63//R
=11 

89.18//R
=17 

89.18//R
=9 

89.22//R
=13 

89.63//R
=15 

89.06//R
=27 

88.90//R
=19 

89.18//R
=17 

88.99//R
=20 

88.99//R
=20 

88.93//R
=9 

88.90//R
=9 

88.93//R
=9 

DivRE 88.79//R
=22 

89.38//R
=9 

88.88//R
=20 

88.65//R
=23 

89.22//R
=17 

89.18//R
=17 

89.63//R
=15 

89.22//R
=11 

89.63//R
=15 

89.18//R
=17 

88.99//R
=20 

89.18//R
=17 

88.93//R
=9 

88.90//R
=9 

88.93//R
=9 

DivDM 89.26//R
=21 

89.55//R
=9 

89.15//R
=22 

88.77//R
=19 

89.18//R
=9 

88.86//R
=17 

89.63//R
=15 

89.02//R
=15 

89.26//R
=17 

89.34//R
=17 

88.99//R
=20 

89.34//R
=17 

88.93//R
=9 

88.90//R
=9 

88.93//R
=9 

AVG 89.00 89.38 89.09 88.91 89.15 89.06 89.51 89.19 89.29 89.21 88.99 89.21 88.90 88.90 88.90 

H
A

RD
 – W

EIG
H

TED
 

DivCC 89.06//R
=18 

89.43//R
=10 

89.06//R
=19 

89.18//R
=17 

89.22//R
=17 

89.38//R
=18 

89.63//R
=15 

89.43//R
=11 

89.63//R
=15 

89.18//R
=17 

89.14//R
=20 

89.34//R
=17 

89.06//R
=10 

89.02//R
=8 

89.02//R
=8 

DivDF 88.86//R
=20 

89.43//R
=28 

89.02//R
=28 

89.10//R
=14 

89.26//R
=24 

89.10//R
=20 

89.10//R
=12 

89.22//R
=11 

89.22//R
=18 

89.18//R
=17 

89.14//R
=20 

89.34//R
=18 

89.14//R
=10 

89.02//R
=6 

88.61//R
=10 

DivQ 89.26//R
=23 

89.38//R
=11 

89.63//R
=11 

89.18//R
=17 

89.18//R
=9 

89.22//R
=13 

89.63//R
=15 

89.26//R
=26 

89.06//R
=22 

89.18//R
=14 

89.14//R
=20 

89.14//R
=20 

89.31//R
=8 

89.02//R
=8 

89.02//R
=8 

DivRE 88.86//R
=27 

89.38//R
=9 

88.90//R
=20 

88.90//R
=20 

89.38//R
=18 

89.18//R
=17 

89.63//R
=15 

89.26//R
=26 

89.63//R
=15 

89.38//R
=14 

89.14//R
=20 

89.34//R
=18 

89.38//R
=10 

89.02//R
=8 

89.02//R
=8 

DivDM 89.26//R
=21 

89.55//R
=9 

89.38//R
=22 

88.90//R
=20 

89.18//R
=9 

89.71//R
=12 

89.63//R
=15 

89.22//R
=26 

89.26//R
=16 

89.34//R
=17 

89.14//R
=20 

89.34//R
=17 

89.06//R
=10 

88.90//R
=9 

89.02//R
=8 

AVG 89.06 89.43 89.20 89.05 89.24 89.32 89.52 89.28 89.36 89.25 89.14 89.30 89.19 89.00 88.94 

SO
FT – M

EA
N

 

DivCC 88.58//R
=16 

89.38//R
=11 

88.74//R
=17 

88.77//R
=17 

89.18//R
=9 

88.77//R
=17 

89.63//R
=15 

89.26//R
=11 

89.63//R
=15 

89.02//R
=18 

88.65//R
=18 

89.34//R
=17 

88.61//R
=7 

88.70//R
=9 

88.61//R
=7 

DivDF 88.49//R
=23 

89.31//R
=10 

88.74//R
=22 

88.62//R
=16 

88.86//R
=8 

88.94//R
=14 

89.06//R
=19 

89.06//R
=11 

88.90//R
=18 

89.02//R
=18 

88.65//R
=18 

89.02//R
=18 

88.72//R
=7 

88.86//R
=7 

88.61//R
=7 

DivQ 89.31//R
=20 

89.38//R
=11 

89.34//R
=9 

88.77//R
=17 

89.18//R
=9 

88.81//R
=6 

89.63//R
=15 

89.06//R
=27 

88.78//R
=9 

89.02//R
=18 

88.77//R
=13 

88.65//R
=18 

88.61//R
=7 

88.70//R
=9 

88.56//R9 

DivRE 88.58//R
=16 

89.38//R
=11 

88.74//R
=17 

88.65//R
=18 

89.18//R
=9 

88.77//R
=17 

89.63//R
=15 

89.06//R
=27 

89.63//R
=15 

89.02//R
=18 

88.81//R
=12 

89.02//R
=19 

88.61//R
=7 

88.70//R
=9 

88.61//R
=7 

DivDM 89.31//R
=20 

89.34//R
=9 

89.31//R
=20 

88.44//R
=19 

89.18//R
=9 

88.65//R
=17 

89.63//R
=15 

89.10//R
=24 

89.26//R
=17 

89.34//R
=17 

88.81//R
=12 

89.34//R
=17 

88.56//R
=9 

88.70//R
=6 

88.56//R9 

AVG 88.85 89.36 88.97 88.65 89.12 88.79 89.52 89.11 89.24 89.08 88.74 89.07 88.62 88.73 88.59 

SO
FT – RELIA

BILITY
 

DivCC 89.06//R
=19 

89.38//R
=11 

89.06//R
=19 

89.18//R
=17 

89.22//R
=17 

89.18//R
=17 

89.63//R
=15 

89.22//R
=11 

89.26//R
=17 

89.18//R
=17 

88.77//R
=19 

89.34//R
=17 

88.93//R
=9 

88.90//R
=9 

88.93//R
=9 

DivDF 88.65//R
=23 

89.59//R
=9 

88.74//R
=19 

88.65//R
=23 

88.97//R
=9 

88.94//R
=14 

89.06//R
=19 

89.02//R
=15 

89.02//R
=17 

89.18//R
=17 

88.77//R
=19 

89.18//R
=17 

88.72//R
=7 

88.90//R
=7 

88.56//R
=7 

DivQ 89.26//R
=23 

89.38//R
=11 

89.63//R
=11 

89.18//R
=17 

89.18//R
=9 

89.22//R
=13 

89.63//R
=15 

89.22//R
=11 

88.90//R
=19 

89.18//R
=17 

88.93//R
=12 

88.77//R
=19 

88.93//R
=9 

88.90//R
=9 

88.93//R
=9 

DivRE 88.74//R
=23 

89.38//R
=11 

88.86//R
=27 

88.65//R
=17 

89.22//R
=17 

89.18//R
=17 

89.63//R
=15 

89.22//R
=11 

89.63//R
=15 

89.18//R
=17 

88.81//R
=12 

89.18//R
=17 

88.93//R
=9 

88.90//R
=9 

88.93//R
=9 

DivDM 89.26//R
=21 

89.55//R
=9 

89.10//R
=20 

88.77//R
=19 

89.18//R
=9 

88.86//R
=17 

89.63//R
=15 

89.02//R
=15 

89.26//R
=17 

89.34//R
=17 

88.81//R
=12 

89.34//R
=17 

88.93//R
=9 

88.90//R
=9 

88.93//R
=9 

AVG 88.99 89.46 89.08 88.89 89.15 89.08 89.52 89.14 89.21 89.21 88.82 89.16 88.89 88.90 88.86 

Table 5. Performances of majority voting-based ensembles for 2-grade important citation screening. 
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Meta-classifier Hyperparameters Explanations Range 
k-NN  weight Method of weighting nearest neighbours according to their distances to the central instance. ["uniform", "distance"] 
CatNB 𝛼 The additive value used for smoothing the Naïve Bayes estimates with respect to each category. [0.0001, 0.0002, …, 0.001, 0.002, …, 

0.01, 0.02, …, 0.1, 0.2, 1.0, 1.1, …, 6.0] 
BerNB 𝛼 Same as above. Same as above 
LDA l The regularisation factor for the shrinkage estimator of covariance matrices in situations where 

the number of training samples is small compared to the number of features6:  
Σ = (1 − 𝜆)Σ + 𝜆I 

[0.00, 0.05, …, 0.90, 0.95, 1.00] 

SVM-RBF C 
 
𝛾 

Regularisation coefficient which controls the trade-off between errors on training data and 
margin maximization. 
The kernel distance coefficient in 𝜅(𝑥, 𝑥") = exp(−𝛾‖𝑥 − 𝑥"‖#).  

[0.5, 0.6, …, 1.0, 1.1, 1.2, …, 2, 3, …, 10] 
 
[0.002, 0.004, …, 0.01, 0.02, 0.04, …, 
0.10, 0.12, 0.14, …, 0.20] 

SVM-Poly C  
 
𝛾 
d 

Regularisation coefficient which controls the trade-off between errors on training data and 
margin maximization. 
The kernel distance coefficient in 𝜅(𝑥, 𝑥") = (𝛾〈𝑥, 𝑥"〉 + 𝑟)$, where 𝑟 was defaulted to 0. 
The degree of polynomial. 

Same as above 
 
Same as above 
[2, 3, 4] 

Table 6. Summary of hyperparameters of meta-classifiers. 

 

 

6 https://en.wikipedia.org/wiki/Linear_discriminant_analysis#Practical_use  

https://en.wikipedia.org/wiki/Linear_discriminant_analysis#Practical_use
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RR_Rnk; R =  50 40 30 20 10 BEST,  

CatNB 70.33 69.47 69.55 69.04 68.34 70.33//R=50 

Dis, a N/A, 0.0008 DF, 0.0004 DF, 0.0007 DM, 0.8 DF, 0.02 0.0008 

k-NN (k = 7) 67.1 68.3 69.12 69.82 68.32 69.82//R=20 

Dis, weighting N/A, uniform DF, uniform DF, uniform DF, uniform RE, uniform DF, uniform 

k-NN (k = 9) 67.9 69.14 69.47 69.59 67.92 69.59//R=20 

Dis, weighting N/A, uniform QS/DM, distance RE, distance DF, uniform CC/QS/DM, uniform DF, uniform 

k-NN (k = 11) 67.9 68.84 68.81 69.33 67.45 69.33//R=20 

Dis, weighting N/A, uniform DF, distance DF, distance DM, uniform CC/QS/DM, uniform DM, uniform 

k-NN (k = 13) 68.19 68.61 68.46 69.43 67.56 69.43//R=20 
Dis, weighting N/A, distance CC, distance DF, distance CC, uniform CC/QS/DM, uniform CC, uniform 

LDA 69.76 70.29 70.4 69.46 69.45 70.40//R=30 
Dis, l N/A, 0.75 QS/DM, 0.8 DF, 0.45 DM, 0.3 RE, 0.2 DF, 0.45 

SVM-RBF 69.53 70.81 70.41 70.13 68.85 70.81//R=40 

Dis, C, d, g  N/A, 1.2, 2, 0.02 RE, 1.4, 2, 0.01 QS/RE/DM, 0.9, 2,  
0.04 

DF, 0.7, 2, 0.1 DF, 1, 2, 0.08 RE, 1.4, 2, 0.01 

SVM-Poly 70.18 70.03 70.37 70.14 68.09 70.37//R=30 

Dis, C, d, g N/A, 5, 2, 0.01 QS/DM, 9, 2, 0.01 QS/RE/DM, 0.7,  
2, 0.04 

DF, 0.3, 2, 0.1 DF, 0.5, 2, 0.16 QS/RE/DM, 0.7,  
2, 0.04 

Table 7. Meta-classifier performance of 5-fold cross validation on 11-class scheme on test split. 

 

RR_Rnk; R =  50 40 30 20 10 BEST  

CatNB 75.07 75.27 76.06 75.90 76.70 76.70//R=10 
Dis, a N/A, 0.02 DF, 0.04 DF, 4.4 DF 1.8 CC/RE, 3.9 CC/RE, 3.9 

k-NN (k = 5) 73.96 75.04 74.72 74.70 76.66 76.66//R=10 
Dis, weighting N/A, uniform DF, uniform DF, uniform DF distance CC/RE, uniform CC/RE, uniform 

k-NN (k = 7) 76.15 74.49 74.78 74.83 76.15 76.15//R=10 
Dis, weighting N/A, CC/RE, 

uniform 
CC/RE, distance DF, distance DF, distance CC/RE, uniform CC/RE, uniform 

LDA 75.39 76.85 75.40 75.91 76.35 76.85//R=40 
Dis, l N/A, 0.25 DF, 0.2 DF, 3 RE, 0.25 QS/DM, 0.1 DF, 0.2 

SVM-RBF 76.67 76.01 76.37 76.71 75.76 76.71//R=20 
Dis, C, d, g  N/A, 5, 2, 0.006 QS/DM, 8, 2, 

0.004 
DF, 3, 2, 0.01 DF, 0.5, 2, 

0.12 
QS/DM, 1.8, 2,  
0.1 

DF, 0.5, 2, 0.12 

SVM-Poly 75.99 75.59 76.38 76.75 75.24 76.75//R=20 
Dis, C, d, g N/A, 1.3, 2, 0.02 DF, 1.8, 3, 0.02 DF, 0.1, 2, 

0.1 
DF, 1.3, 3, 
0.04 

CC/RE, 0.2, 2, 
0.18 

DF, 1.3, 3, 0.04 

Table 8. Meta-classifier performance of 5-fold cross validation on 6-class scheme on test split. 
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RR_Rnk; R =  50 40 30 20 10 BEST 

BerNB N/A, 88.24 88.43 88.16 88.62 87.44 88.62//R=20 
Dis, a N/A, 6 DM, 3.6 CC/DF, 0.0001 CC/RE, 1.0 QS/RE/DM, 0.0001 CC/RE, 1.0 

k-NN (k = 7) 86.69 87.36 87.91 88.28 88.81 88.81//R=10 
Dis, weighting N/A, uniform QS, uniform CC/DF/RE, distance DF, distance CC, uniform CC, uniform 

k-NN (k = 9) 86.6 87.32 88.67 88.61 88.48 88.67//R=30 
Dis, weighting N/A, uniform QS, uniform RE, distance DF, distance CC, uniform RE, distance 

k-NN (k = 11) 86.97 87.52 88.73 88.41 89.02 89.02//R=10 
Dis, weighting N/A, uniform QS/DM, uniform CC/DF, uniform DF, distance CC, uniform CC, uniform 

k-NN (k = 13) 87.13 87.52 88.51 88.62 89.15 89.15//R=10 

Dis, weighting N/A, uniform QS, uniform RE, distance DF, distance DF, uniform DF, uniform 

LDA 88.33 88.7 88.7 88.54 88.53 88.70//R=30 
Dis, l N/A, 0.9 CC/QS/RE, 

1.0/0.9/1.0 
QS/DM, 1.0 QS/DM, 0.7 DF, 0.9 QS/DM, 1.0 

SVM-RBF 88.23 88.81 89 89.3 89.3 89.30//R=10 
Dis, C, d, g  N/A, 0.3, 2, 0.002 CC/RE, 0.1, 2, 

0.004 
QS/DM, 01, 2, 0.004 QS/DM, 0.1, 2, 

0.004 
CC, 0.1, 2, 0.002 CC, 0.1, 2, 0.002 

SVM-Poly 88.41 88.81 89 88.81 89.53 89.53//R=10 
Dis, C, d, g N/A, 0.1, 2, 0.006 CC/DF/QS/RE, 

0.1, 2, 0.008 
QS/RE/DM, 0.1, 2, 
0.01/0.006/0.01 

QS/DM, 0.1, 2, 
0.01 

CC, 0.1, 2, 0.02 CC, 0.1, 2, 0.02 

Table 9. Meta-classifier performance of 5-fold cross validation on 2-grade scheme on test split. 
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RR_Rnk; R =  50 40 30 20 10 BEST 

CatNB 72.62 73.45 73.58 72.54 72.17 73.58//R=30 
Dis, a N/A, 2.1 DF, 2.3 DM, 0.04 DM, 0.001 DF, 3.7 DM, 0.04 

k-NN (k = 7) 72.13 72.43 72.04 72.3655 72.07 72.43//R=40 
Dis, weighting N/A, distance RE, distance DM, distance DF, uniform DF, uniform RE, distance 

k-NN (k = 9) 72.19 72.27 71.65 72.28 72.13 72.28//R=20 
Dis, weighting N/A, distance QS/DM, distance RE, uniform DF, uniform DF, distance DF, uniform 

k-NN (k = 11) 72.2 72.15 71.7 72.28 72.07 72.28//R=20 
Dis, weighting N/A, distance RE, distance DM, uniform DF, uniform DF, distance DF, uniform 

k-NN (k = 13) 72.2 72.02 71.64 71.63 71.99 72.20//R=50 
Dis, weighting N/A, distance RE, distance DM, distance DF, distance DF, distance distance 

LDA 72.52 73.8 72.82 72.51 72.08 73.80//R=40 
Dis, l N/A, 0.9 QS/DM, 0.9 DF, 0.95 DM, 0.7 DM, 0.85 QS/DM, 0.9 

SVM-RBF 72.8 72.83 73.06 72.89 72.81 73.06//R=30 
Dis, C, d, g  N/A, 1.9, 2, 0.04 RE, 1.9, 2, 0.04 DM, 1.2, 2, 0.06 DF, 1.7, 2, 0.04 DF, 1.2, 2, 0.14 DM, 1.2, 2, 0.06 

SVM-Poly 72.92 72.93 72.43 72.2 71.92 72.93//R=40 
Dis, C, d, g N/A, 0.1, 2, 0.08 QS/DM, 0.1, 2, 0.16 DM, 1, 2, 0.04 DF, 0.6, 2, 0.12 DF, 0.4, 2, 0.2 QS/DM, 0.1, 2, 0.16 

Table 10. Meta-classifier optimisation by 5-fold cross validation on 11-class scheme (on enriched validation set). 

 

RR_Rnk; R =  50 40 30 20 10 BEST 

CatNB 74.73 75.71 76.57 75.1 75.78 76.57//R=30 
Dis, a N/A, 4.6 DF, 5.9 RE, 5.3 QS, 3.8 DF, 1.0 RE, 5.3 

k-NN (k = 7) 75.33 76.93 77 76.86 75.23 77.00//R=30 
Dis, weighting N/A, uniform CC/QS/RE/DM, 

distance 
RE, distance DF, distance QS, distance RE, distance 

k-NN (k = 9) 75.62 76.17 76.89 76.83 75.61 76.89//R=30 
Dis, weighting N/A, CC/RE, 

uniform 
CC/QS/RE/DM, 
distance 

QS, distance QS, distance QS, distance QS, distance 

k-NN (k = 11) 75.13 76.22 76.88 76.92 76.08 76.92//R=20 
Dis, weighting N/A, CC/RE, 

uniform 
CC/QS/RE/DM, 
distance 

RE, distance Df, distance QS, distance DF, distance 

k-NN (k = 13) 75.01 76.22 76.97 76.76 75.94 76.97//R=30 
Dis, weighting N/A, CC/RE, 

uniform 
CC/QS/RE/DM, 
distance 

RE, distance DF, distance QS, distance RE, distance 

LDA 74.8 75.12 75.1 74.36 74.7 75.12//R=40 
Dis, l N/A, 1 CC/QS/RE/DM, 1.0 QS, 0.5 QS/DM, 0.45/1.0 QS, 0.3 CC/QS/RE/DM, 1.0 

SVM-RBF 76.31 76.85 77.5 77.29 75.47 77.50//R=30 
Dis, C, d, g  N/A, 6, 2, 0.02 CC/QS/RE/DM, 1.7, 

2, 0.04 
RE, 0.9, 2, 0.06 DM, 0.7, 2, 0.1 CC/RE/DM, 

0.1, 2, 0.02 
RE, 0.9, 2, 0.06 

SVM-Poly 76.19 76.85 76.68 76.36 74.42 76.85//R=40 
Dis, C, d, g N/A, 0.6, 2, 0.06 CC/QS/RE/DM, 0.2, 

3, 0.06 
CC, 0.6, 3, 0.04 DM, 0.5, 3, 0.06 QS, 1.9, 3, 0.1 CC/QS/RE/DM, 0.2, 

3, 0.06 

Table 11. Meta-classifier optimisation by 5-fold cross validation on 6-class scheme (on enriched validation set). 
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RR_Rnk; R =  50 40 30 20 10 BEST 

BerNB 89.58 89.79 90.01 90.06 89.8 90.06//R=20 
Dis, a N/A, 4.9 CC/QS, 0.0001 CC/QS, 0.0001 DM, 0.0001 QS, 0.0001 DM, 0.0001 

k-NN (k = 7) 90.37 90.83 90.16 90.84 90.68 90.84//R=20 
Dis, weighting N/A, uniform CC, uniform QS, uniform DM, uniform DF, uniform DM, uniform 

k-NN (k = 9) 90.27 90.79 90.15 89.86 90.79 90.79//R=40 
Dis, weighting N/A, uniform CC/QS, uniform DM, uniform DM, uniform DF, distance CC/QS, uniform 

k-NN (k = 11) 90.27 90.59 89.89 90.08 90.33 90.59//R=40 
Dis, weighting N/A, uniform RE, uniform QS, uniform DM, uniform DM, uniform RE, uniform 

k-NN (k = 13) 90.53 90.58 90.13 90.08 90.14 90.58//R=40 
Dis, weighting N/A, uniform DF, uniform DF, uniform DM, uniform DF, distance DF, uniform 

LDA 90.41 90.68 90.45 89.99 90.23 90.68//R=40 
Dis, l N/A, 0.65 DM, 0.5 QS/DM, 0.65 DF, 0.6 DM, 0.75 DM, 0.5 

SVM-RBF 90.16 90.23 90.41 90.36 90.85 90.85//R=10 
Dis, C, d, g  N/A, 0.1, 2, 0.002 DM, 4, 2, 0.18 DM, 0.1, 2, 0.04 DM, 1.3, 2, 0.006 CC/RE, 2, 2, 0.008 CC/RE, 2, 2, 0.008 

SVM-Poly 90.16 90.23 90.41 90.36 90.85 90.85//R=10 
Dis, C, d, g N/A, 0.1, 2, 0.002 DM, 4, 2, 0.18 DM, 0.1, 2, 0.04 DM, 1.3, 2, 0.006 CC/RE, 2, 2, 0.008 CC/RE, 2, 2, 0.008 

Table 12. Meta-classifier optimisation by 5-fold cross validation on 2-grade scheme (on enriched validation set). 

 

 11-class 6-class 2-grade 
 valid test valid test valid test 

NB 73.58//R=30 67.79 76.57//R=30 76.43 90.06//R=20 88.24 
Dis, a CatNB: DM, 0.04  CatNB: RE, 5.3  BerNB: DM, 0.0001  

k-NN (k = 7) 72.43//R=40 68.26 77.00//R=30 75.35 90.84//R=20 88.86 
Dis, weighting RE, distance  RE, distance  DM, uniform  

k-NN (k = 9) 72.28//R=20 69.26 76.89//R=30 75.52 90.79//R=40 87.45 
Dis, weighting DF, uniform  QS, distance  CC/QS, uniform  

k-NN (k = 11) 72.28//R=20 68.78 76.92//R=20 75.95 90.59//R=40 87.71 
Dis, weighting DF, uniform  DF, distance  RE, uniform  

k-NN (k = 13) 72.20//R=50 68.98 76.97//R=30 75.44 90.58//R=40 87.87 
Dis, weighting distance  RE, distance  DF, uniform  

LDA 73.80//R=40 69.66 75.12//R=40 75.75 90.68//R=40 88.18 
Dis, l QS/DM, 0.9  CC/QS/RE/DM, 1.0  DM, 0.5  

SVM-RBF 73.06//R=30 69.60 77.50//R=30 75.40 90.85//R=10 86.45 
Dis, C, d, g  DM, 1.2, 2, 0.06  RE, 0.9, 2, 0.06  CC/RE, 2, 2, 0.008  

SVM-Poly 72.93//R=40 68.43 76.85//R=40 77.33 90.85//R=10 86.45 
Dis, C, d, g QS/DM, 0.1, 2, 0.16  CC/QS/RE/DM, 0.2, 3, 0.06  CC/RE, 2, 2, 0.008  

Table 13. Meta-classifier performances after being tuned on enriched validation set. 
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Excluded from voting 11-class 6-class 2-grade 
    

All 70.30 77.07 89.34 
 k ¹ 5,15 k ¹ 9–15 k ¹ 5,15 
¬ k-NN (1) 71.35 77.62 89.38  

k ¹ 11–13,5,15 k ¹ 7, 9–15 k ¹ 7–9,5,15 
¬ k-NN (2) 71.10 77.81* 89.55  

k ¹ 9,11–13,5,15 k ¹ 5, 9–15 k ¹ 11,7–9,5,15 
¬ k-NN (3) 71.14  89.38  

k ¹ 7,11–13,5,15  k ¹ 13,7–9,5,15 
¬ k-NN (4) 71.66* --- 89.10 

 k ¹ 7–9,5,15 --- k ¹ 11–13,5,15 
¬ k-NN (5) 71.48 76.74 89.67* 

 k ¹ 7–9,11–13,5,15 k ¹ 5–7, 9–15 k ¹ 11–13,7–9,5,15 
¬ NB 71.48 78.12 89.34 
¬ LDA 70.43 78.16 89.34 
¬ SVM-RBF 70.39 77.31 89.34 
¬ SVM-Poly 70.46 77.37 89.34 
¬ SVM 70.39 77.49 88.74 
    

¬ NB, LDA 70.17 77.56 89.14 
¬ NB, SVM-RBF 70.23 78.04 89.34 
¬ NB, SVM-Poly 70.23 78.10 89.34 
¬ LDA, SVM-RBF 69.90 77.59 89.34 
¬ LDA, SVM-Poly 70.01 78.07 89.18 
¬ NB, k-NN * 70.76 77.04 89.50 
¬ NB, k-NN (5) 71.29 77.40 Same as above 
¬ LDA, k-NN * 70.68 78.12 89.50 
¬ LDA, k-NN (5) 71.03 77.15 Same as above 

Table 14. Performances of level-2 reliability-enhanced soft voting on level-1 meta-classifiers. 
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Excluded from voting 11-class 6-class 2-grade 
    

All 71.75* 78.03* 89.57 
 k ¹ 5,15 k ¹ 9–15 k ¹ 5,15 
¬ k-NN (1) 71.49 77.92 89.58  

k ¹ 11–13,5,15 k ¹ 7,9–15 k ¹ 7–9,5,15 
¬ k-NN (2) 71.41 77.84 89.58  

k ¹ 9,11–13,5,15 k ¹ 5,9–15 k ¹ 11,7–9,5,15 
¬ k-NN (3) 71.45 --- 89.43  

k ¹ 7,11–13,5,15 --- k ¹ 13,7–9,5,15 
¬ k-NN (4) 71.28 --- 89.63* 

 k ¹ 7–9,5,15 --- k ¹ 11–13,5,15 
¬ k-NN (5) 71.51 77.89 89.53 

 k ¹ 7–9,11–13,5,15 k ¹ 5–7,9–15 k ¹ 11–13,7–9,5,15 
¬ NB 71.37    77.63 89.58 
¬ LDA 71.07    77.84 89.41 
¬ SVM-RBF 71.27 77.55 89.37 
¬ SVM-Poly 71.58 77.76 89.37 
¬ SVM 71.17 77.52 89.37 
    

¬ NB, LDA 70.88 77.96 89.37 
¬ NB, SVM-RBF 71.41 77.92 89.37 
¬ NB, SVM-Poly 71.71 77.99 89.37 
¬ LDA, SVM-RBF 70.27 77.98 89.37 
¬ LDA, SVM-Poly 71.12 77.92 89.20 
¬ NB, k-NN * Same as ¬ NB Same as ¬ NB 89.58 
¬ NB, k-NN (5) 71.44 77.13 89.53 
¬ LDA, k-NN * Same as ¬ LDA Same as ¬ LDA 89.58 
¬ LDA, k-NN (5) 71.44 76.96 89.53 

Table 15. Performances of level-2 meta-classifier on level-1 meta-classifiers. 

 

 

 


