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Abstract

Improving the mathematical model of the cardiovascular system is an important aspect of the
control and design of ventricular assist devices. In this work, through numerical simulations, we
analyse the usage of fractional-order operators as a way to improve the circulation model. More
specifically, we show that the use of fractional-order derivatives in the lumped circulation model
can create different types of heart anomalous behaviours. This includes aortic regurgitation,
mitral stenosis and ischaemic cardiomyopathy.

1 Introduction

In 2015, 17.9 million people died around the world caused by cardiovascular disease and rose by
12.5% between 2005 and 2015 with a specific increase of ischaemic heart disease by 16.6% [1]. Even
though heart transplantation is considered as the best therapy for patients with end-stage congestive
heart failure [2], it is usually a delayed process that could last around 300 days or more on the average
for potential recipients. For this reason, the medical community has increased emphasis on the use of
ventricular assist devices (VADs) that can enhance the function of the natural heart while patients
wait for heart transplantation. These ventricular assists devices are mechanical devices that help the
heart with the pumping of the blood through the circulatory system (left ventricular assists device
(LVAD)) or through the pulmonary system (right ventricular assist device (RVAD)) [3, 4, 5]. There
are currently different types of VADs [6, 7], but the usual consists of a rotary pump applied to the
left ventricle [6].

To design proper VADs, different mathematical models for the cardiovascular system have been
considered (for instance, see [8, 9]). These are categorised as zero-dimensional (0-D) or lumped
parameter models and distributed parameter models or 1-D, 2-D and 3-D models [10]. The math-
ematical model must be able to properly characterise the cardiac cycle but also important aspects
like heart failure (usually studied by pressure-volume (PV) loop analysis [11]), which is a relevant
element in VADs’ control design [12, 13]. Besides, even though higher dimension models may better
describe the heart dynamics, we have to consider that it is a challenge to analyse control strate-
gies for VADs when using such models [3]. Therefore, we require a mathematical model that could
represent the heart complex dynamics while being as simple as possible.

An elementary way to describe the heart dynamics (including VADs) is by the use of Windkessel
models which are represented through electrical or mechanical networks [14, 3]. Nonetheless, such
simplicity has its drawbacks, for instance, the basic two-element Windkessel model explains aortic
pressure decay in diastole, but it fails shortly in systole [10]. A way to overcome such drawback
consists of adding more elements to the electrical representation [15, 16, 17]. Recently. in [18]
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a different approach has been proposed to solve this problem, it consists in the use of fractional-
order operators (derivatives or integrals of non-integer order [19]) in the arterial Windkessel model.
When talking about fractional-order operators, heterogeneous systems and phenomena exhibiting
anomalous diffusion can be well fitted by using fractional-order derivatives [20, 21]. Examples of
such systems are biological tissues [22] and large-scale complex networks [23, 24]. It is important to
mention that fractional-order operators does not complicate control design, since there are numerous
approaches for control of fractional-order systems that can be implemented (for instance, see [25]).
This implies that fractional order operators, when added to the cardiovascular model are a feasible
option that may better describe a wider range of real-case scenarios.

Considering the previous lines, in this work, we provide a qualitative analysis of the use of
fractional-order operators in the lumped circulatory model by considering two different mathemat-
ical models from the literature. This analysis demonstrates that fractional-operators extend the
capabilities of such models in the PV loop analysis. Specifically, we add fractional-order operators
to modify the rate of change of the aortic, atrial and arterial pressures in the circulation model. These
changes permit us to create different anomalous behaviours in the PV loops that resemble aortic
regurgitation, mitral stenosis or ischaemic cardiomyopathy dynamics. The remainder of this paper
is organised as follows: Section 2 presents the basic concepts and their connection with this work.
In Section 3, our main results are provided. Finally, Section 4 contains our concluding remarks.

2 Preliminary results

In the following subsections, we offer a description of the background knowledge that will be useful
to the reminder of this work.

2.1 The mathematical model

We base our analysis by considering the mathematical models of the cardiovascular system with
LVAD presented in [5] and [4].

Firstly, in [4], a fifth-order lumped parameter electric circuit to reproduce the left ventricle hemo-
dynamics of the heart is used. This model assumes that the right ventricle and pulmonary circulation
are healthy and normal. Also, a simple first-order forced differential equation to represent the LVAD
is considered (see Figure 1). Furthermore, [4] uses a time-varying capacitance (compliance), which
is derived by system identification procedures, to describe the contractual state of the left ventricle.
On the other hand, [5, 26] presents a mathematical model of the cardiac function that integrates
mechanical, electric and chemical activity on micro-scale sarcomere and macro-scale heart. More
specifically, this model includes the fifth-order lumped parameter electric circuit as well as the elec-
trical model for the LVAD from [4] but presents a different mathematical model of the mechanical,
electric and chemical activity to describe the behaviour of the contractual state in the left ventricle.
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Figure 1: Lumped parameter electric circuit used to reproduce the left ventricle hemodynamics of
the heart and LVAD.

Recalling from [5], the governing equations of the electric circuit shown in Figure 1 are given by

dV

dt
=

1

Rm
(PR − PV ) Θ (PR − PV )− 1

RA
(PV −m) Θ (PV −m)− δpn,

dm

dt
= − 1

CA
Fa +

1

CARA
(PV −m) Θ (PV −m) + δp

n

CA
,

dFa
dt

=
m− PS
LS

− RCFa
LS

,

dPR
dt

=
−PR + PS
CRRS

− 1

CRRM
(PR − PV ) Θ (PR − PV ) ,

dPS
dt

=
PR − PS
CSRS

+
Fa
CS

. (1)

Where V stands for the left ventricular volume, m is the aortic pressure, n corresponds to the pump
flow, Fa is the aortic total flow, PR stands for the atrial pressure and PS is the arterial pressure.
Besides, the function Θ(u) is a Heaviside function which takes the non-zero value of 1 for u > 0 or
0 otherwise. Moreover, the equation governing the pump flow is

dn

dt
=

1

L∗

[
PV −m−R∗n+ βω2

]
. (2)

In this work, we will consider no pump support. This can be set up by using δp = 0. In addition, we
use the same set of parameter values presented in [4] for its model and the same set for [5]’s model
when considering a case that shows ectopic PV loop oscillations using µ1 = 0.0024 and µ2 = 0.1584
on its electric activity model.
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2.1.1 Fractional-order Windkessel model

As we have mentioned in Section 1, the goal of this work is to study the addition of fractional order
operators in the lumped parameter circulation model (1). Recently, [27, 18] proposes a fractional-
order Windkessel model as an alternative to improve the systolic phase model description. Inspired
on the same approach, in Figure 2a, we introduce a two-element Windkessel model that uses a
fractance element CαF . This fractance element is equivalent to an infinite tree of capacitors and
resistors [28]. When this infinite tree is binary, it is proved to be of order α = 1

2 (for further details,
see [29, 23, 24]). To change α’s value, we can use the procedure described in [30] which consists
of allowing more complicated fractal networks or recursive trees to be constructed (see Fig. 2b).
Hence, using a fractional-order capacitor is equivalent to adding a fractal network in the circuit.

For a better understanding of the mathematical description behind a fractional-order capacitor,
consider the model for the fractional-order circuit shown in Fig. 2a. This model is given by

0Dαt Pa =
Qa
CαF
− Pa
RCαF

. (3)

Taking in to account expression (3). We have the following result

Proposition 1 By using the Caputo definition of the fractional derivative operator 0Dαt of order
0 < α < 1 [31]. The time response of system (3) is given by

Pa(t) = Pa(0)tα−1Eα,α(− 1

RCαF
tα) +

1

CαF

∫ t

0

Qa(t − τ)τα−1Eα,α(− 1

RCαF
τα)dτ, (4)

where Eα,α(z) is the Mittag-Leffler function of the complex value z [32].

Proof 1 The proof follows by applying the Laplace transform to (3) and obtain the inverse Laplace
transform L −1 [Pa(s)].

An important conclusion from Proposition 1 is that equation (4) describes the arterial pressure as a
power low equation with a diffusive term. This kind of representation implies some challenges that
have been recently discussed through various works (for instance, see [33, 34] and the references
therein). Taking the previous lines into consideration, it is important to mention that instead
of finding an analytical solution to our set of differential equations, in this work, we will offer a
qualitative analysis by numerically solving our set of fractional order differential equations. The
numerical solution will be computed by using the methods presented in [35], which consider that
the fractional derivative of order 0 < α ≤ 1 of a continuously differentiable real-valued function x(t)
is found by taking x(t) = 0 for all t < 0.

2.2 Pressure–volume loop analysis in cardiology

Since our analysis will focus on the behaviours obtained using fractional-order derivatives in left
ventricular PV loops, it is important to define why PV loops are a critical feature to study. We
can describe PV loop analysis as a reference method that offers unique insights into mechanical
cardiac efficiency. This includes the understanding of the pathophysiology, diagnosis, and treatment
of myocardial ischaemia, mitral and aortic regurgitation, mitral and aortic stenosis, and others (for
further details, see [36, 37]).

In summary, as shown in Figure 3, a PV loop plots the changes in ventricular pressure associated
with the changes in volume occurring during a cardiac cycle. A full description of the different
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Figure 2: Diastole and Systole response of the two element WK model.

concepts related to volumes, pressures, and areas in a PV loop (shown in Figure 3) can be found in
[38]. Below, we describe some of the pressure-volume concepts that will be of main interest in this
work

• The end-diastolic pressure volume relationship (EDPVR) (black dashed line). The slope of
this line gives the elastance of the ventricle. An important value over this line corresponds to
the End-diastolic volume (EDV) or preload, which helps to determine the initial value of the
arterial elastance line (shown as a red dashed line in Figure 3).

• The stroke volume. This is the difference between the end-diastolic volume and the end-systolic
volume. It is also known as the ejection fraction, i.e. the amount of blood to be ejected by the
left ventricle to the circulatory system.

• Arterial elastance line (red dashed line). This line allow us to measure the afterload which
is technically given by the pressure-volume relationship throughout the entire of ejection, but
assumed to be the slope of such a line drawn from the x-axis value of EDV to the end systolic
pressure value in point A.

• The slope of the End-systolic pressure volume-relationship (ESPVR) also known as contrac-
tility (blue dashed line). It also represents the elastance at end-systole Ees.

• The stroke work, which corresponds to the green shaded area of the PV loop.

• The four stages in the PV loop given by: A-Aortic valve closing, B-Mitral valve opening,
C-Mitral valve closing and D-Aortic valve opening.

3 Main results

In this section, we present the main results of our analysis. We start by describing how we modify
equations (1) to include fractional-order dynamics. Then, we vary the fractional-order derivative
orders and comment on their individual and grouped effects. Finally, we simulate the behaviour of
the fractional-order circulation model when changing other parameters in the circuit.
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3.1 The fractional-order circulation model

Consider the use of fractances in the left atrial, aortic and systemic compliances of the lumped
parameter electric circuit shown in Figure 1. Thus, equations for the left atrial pressure PR, the
aortic pressure m and the arterial pressure PS in (1) are rewritten as

dαmm

dtαm
= − 1

CA
Fa +

1

CARA
(PV −m) Θ (PV −m) + δp

n

CA
,

dαRPR
dtαR

=
−PR + PS
CRRS

− 1

CRRM
(PR − PV ) Θ (PR − PV ) ,

dαSPS
dtαS

=
PR − PS
CSRS

+
Fa
CS

. (5)

where αm, αR, αS ∈ (0, 1] are the fractional orders of the time derivatives for m,PR and PS , respec-
tively.

3.2 The role of αS

To understand the role of αm, αR and αS in the circulation model, we linearly vary these parameters
in [4]’s and [5]’s models. First, we analyse the effect of αS . If we let αm, αR = 1 and only vary
αS ∈ (0, 1], in mathematical terms, we are adding an infinite memory and non-local operator to
describe the rate of the arterial-pressure. Physically speaking, since the capacitor for the arterial
compliance in the circuit tries to model the biggest part of the cardiovascular system, when adding
a fractance (an infinite network of resistors and capacitors), we are trying to improve the description
of the arterial system by implicitly adding an infinite number of elements.

Figures 4a and 4b show the process of decreasing αS from 1 to 0.2. This process scarcely changes
the stroke work but creates an attractor that shows a right-shift of the PV loop in both model’s
responses (with a greater factor in [5]’s model). Such a shift to the right is presented in ischaemic
cardiomyopathy [37]. Besides, the slope of the ESPVR remains almost the same and the afterload
slope shows small increments.

Moreover, a specific analysis in [5]’s model (Fig. 4b) shows that PV loops with ectopic behaviours
using αm = αR = αS = 1 completely change when αS < 0.6. This change shows a little increase in
afterload and EDV which is quite similar to the one presented in aortic regurgitation. Finally, when
α < 0.3, the PV loop shows a progressive right-shifting greater than in [4]’s model.

3.3 The role of αR

The value of αR and αm mathematically and physically contain the same properties than αS , but
their role in the circulation model is different. If we consider αR, this affects the rate of change
in the atrial pressure. Here, Figure 5 presents the simulations when changing αR in the models of
[5] and [4] while fixing αm = αS = 1. First, from Figure 5a, we can see that for αR < 1 there is
a gradual right-shift of the PV as in the case of αS , but there is also a monotonically increasing
preload that is a characteristic feature of aortic regurgitation. Analysing Figure 5b, [5]’s model
initially presented an anomalous behaviour using αR = αm = αS = 1 which is normalised when
αR < 0.7 while showing a behaviour similar to the case of [4]’s model but in small proportions.

3.4 The role of αm

Since the aorta is the main artery that carries blood away from the heart to the rest of the body,
aortic pressure plays an imperative role in the cardiovascular system. Also, the aortic pressure is
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Figure 4: Changes in αS with αm = αR = 1 using the models of [5] and [4].
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Figure 5: Changes in αR with αm = αS = 1 using the models of [5] and [4].
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Figure 6: Changes in αm with αR = αS = 1 using the models of [5] and [4].

affected by the ventricular pressure whose behaviour is modified by using different mechanic-electric
models (to describe the ventricular contraction) or by the mitral valve functioning. In this context,
the value of αm plays a crucial role, because it directly affects the rate of change in the aortic
pressure.

Here, we perform simulations of both [5] and [4] models when changing αm and fixing αR = αS =
1. For both models, we have an erratic PV behaviour that includes negative diastolic pressures when
αm < 0.6. The presence of negative diastolic pressure values is a phenomenon that has been studied
since long ago as an effect of mitral stenosis [39]. Nonetheless, since the simulation stops working
when αm < 0.47, this erratic performance seems to be caused by numerical errors in both models.
Such numerical inconsistencies may be fixed by using a smaller integration step but paying a high
computational cost.

3.5 Changing fractional-orders equally and the effect of other parameters

As we have seen from previous sections, changing αm, αR and αS separately while fixing the other
parameters give an insight about their effect on the cardiovascular model. Here, in Figure 7, we
show the influence of adding equal and unequal fractional-order values. Such simulations show the
presence of a slight right-shifting over time but with no highly anomalous behaviours. In this case,
the use of fractional-order operators seems to transform the PV loop into a quasi-periodic attractor
for [4]’s model and erase the ectopic oscillations while increasing the stroke volume for [5]’s model.

Finally, some of the parameters in the circulation model (1) are known to produce certain effects.
For example, the value of Rm decrease/increase the stroke volume by changing the ESV and EDV
positions while fixing ESPVR and changing RS decrease/increase the stroke volume by fixing ESPVR
but changing the afterload. Since this effect has been studied using [4]’s model, Figure 8 only shows
the effects of Rm and RS on this model while using fixed αm = αR = αS = 0.7. These simulations
show that the effects of Rm and RS prevail while the fractional-order derivatives continue adding a
right-shifting.
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10



4 Concluding remarks

In this work, we have introduced a qualitative analysis of the use of fractional-order operators in two
cardiovascular models with distinct left ventricular contractile element models, by adding fractances
instead of capacitors to represent aortic, atrial and arterial compliances. Moreover, through PV
loop analysis, we have demonstrated that fractional-order derivatives can help to characterise heart
anomalous behaviours. Specifically, it may help at describing aortic regurgitation, mitral stenosis and
ischaemic cardiomyopathy. Future work includes the design of a parameter identification technique
to fit the parameter’s using real data, the inclusion of the LVAD model in the analysis and a
controller’s design methodology for the LVAD that considers the use of fractional-order derivatives
in the model.
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[19] Duarte Valério and Jose da Costa. An introduction to fractional control. 01 2012.

[20] Clara Ionescu and James F. Kelly. Fractional calculus for respiratory mechanics: Power law
impedance, viscoelasticity, and tissue heterogeneity. Chaos, Solitons & Fractals, 102:433 – 440,
2017.

[21] Miguel Angel Moreles and Rafael Lainez. Mathematical modelling of fractional order circuit
elements and bioimpedance applications. Communications in Nonlinear Science and Numerical
Simulation, 46:81 – 88, 2017.

[22] Richard L Magin. Fractional calculus in bioengineering, volume 2. Begell House Redding, 2006.

[23] Mihir Sen, John P. Hollkamp, Fabio Semperlotti, and Bill Goodwine. Implicit and fractional-
derivative operators in infinite networks of integer-order components. Chaos, Solitons & Frac-
tals, 114:186–192, 2018.

[24] A.-J. Guel-Cortez, M. Sen, and B. Goodwine. Closed form time response of an infinite tree of
mechanical components described by an irrational transfer function. In 2019 American Control
Conference (ACC), pages 5828–5833, July 2019.

12
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