
 

 

Emergence of dissipation and 
hysteresis from interactions among 
reversible, non-dissipative units: The 
case of fluid-fluid interfaces 

Holtzman, R., Dentz, M., Moura, M., Chubynsky, M., Planet, R. 
& Ortín, J 

Author post-print (accepted) deposited by Coventry University’s Repository 
 
Original citation & hyperlink:  

Holtzman, R, Dentz, M, Moura, M, Chubynsky, M, Planet, R & Ortín, J 2024, 
'Emergence of dissipation and hysteresis from interactions among reversible, non-
dissipative units: The case of fluid-fluid interfaces', Physical Review Fluids, vol. 9, 
064001 . https://doi.org/10.1103/PhysRevFluids.9.064001 
 

DOI 10.1103/PhysRevFluids.9.064001 
ESSN 2469-990X 
 
Publisher: American Physical Society 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other copyright 
owners. A copy can be downloaded for personal non-commercial research or study, 
without prior permission or charge. This item cannot be reproduced or quoted extensively 
from without first obtaining permission in writing from the copyright holder(s). The 
content must not be changed in any way or sold commercially in any format or medium 
without the formal permission of the copyright holders.  
 
This document is the author’s post-print version, incorporating any revisions agreed during 
the peer-review process. Some differences between the published version and this version 
may remain and you are advised to consult the published version if you wish to cite from 
it.  
 

https://doi.org/10.1103/PhysRevFluids.9.064001


Emergence of dissipation and hysteresis from interactions among1

reversible, non-dissipative units: The case of fluid-fluid interfaces2

Ran Holtzman,1, ∗ Marco Dentz,2 Marcel Moura,33

Mykyta Chubynsky,1 Ramon Planet,4 and Jordi Ort́ın4
4

1Centre for Fluid and Complex Systems,5

Coventry University, Coventry, United Kingdom6

2Institute of Environmental Assessment and Water Research (IDAEA),7

Spanish National Research Council (CSIC), Barcelona, Spain8

3PoreLab, The Njord Centre, Department of Physics, University of Oslo, Oslo, Norway9

4Departament de F́ısica de la Matèria Condensada,10
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Abstract

We examine the nonequilibrium nature of two-phase fluid displacements in a quasi-two-

dimensional medium (a model open fracture), in the presence of localized constrictions (“defects”),

from a theoretical and numerical standpoint. Our analysis predicts the capillary energy dissipated

in abrupt interfacial displacements (jumps) across defects, and relates it to the corresponding

hysteresis cycle, e.g. in pressure-saturation. We distinguish between “weak” (reversible interface

displacement, exhibiting no hysteresis and dissipation) and “strong” (irreversible) defects. We

expose the emergence of dissipation and irreversibility caused by spatial interactions, mediated

by interfacial tension, among otherwise weak defects. We exemplify this cooperative behavior for

a pair of weak defects and establish a critical separation distance, analytically and numerically,

verified by a proof-of-concept experiment.

I. INTRODUCTION13

Path-dependency (hysteresis) in pressure-saturation relationships during imbibition and14

drainage in two-phase displacements in porous media occurs in wide variety of natural and15

engineered processes, for instance soil moisture and geoenergy [1, 2]. This hysteresis is16

largely due to individual and cooperative capillary instabilities, known as Haines jumps [3],17

which are inherently related to energy dissipation [4, 5]. The ubiquity of these phenomena in18

various applications and the intriguing underlying physics motivated extensive experimental,19

numerical and theoretical studies [5–12]. The intrinsic complexity of porous media and non-20

local pore-scale interactions makes the quantitative understanding of the precise mechanisms21

that lead to these phenomena a challenging task. Modeling approaches that account for the22

metastability of two-fluid configurations and for hysteresis are often based on the aggregation23

of individual hysteretic units (hysterons), in the so-called compartment models (e.g. [6, 7]).24

Recently, based on quantitative insights from systematic studies in simplified model systems25

that allow to isolate individual features causing hysteresis [13, 14], a novel approach that26

does not rely on the concept of hysterons was suggested in [15].27

However, the possibility that non-hysteretic units interact cooperatively to give rise to28

hysteresis and dissipation remains unexplored, despite evidences from paradigmatic models29
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of collective phenomena such as the Random Field Ising Model (RFIM) [16, 17]. Here30

we address this open question by studying the passage of a two-phase interface through31

localized perturbations in the capillary pressure, representing single topographic defects32

(gap thickness constrictions) in a 2-D medium (Hele-Shaw cell).33

Two-phase fluid flow in Hele-Shaw cells—quasi-two-dimensional setups formed by two34

closely spaced parallel plates [18–20]—shares some salient features with two-phase flows35

in porous and fractured media. In both, the bulk behavior of the flow of fluids in the36

viscous (Stokes) regime can be described by Darcy’s law [21], and the stability of fluid-37

fluid interfaces is controlled by viscosity and density contrasts between the fluids [22]. A38

richer, more realistic model system is the “imperfect” Hele-Shaw cell, featuring gap-thickness39

constrictions and expansions, in which the interfaces are subjected to capillary instabilities40

akin to those observed in disordered media [13, 18]. Imperfect Hele-Shaw cells therefore41

stand out as an ideal playground to study two-phase displacements in disordered media.42

Using this model system, we study the notion of weak (reversible i.e. non-dissipative43

and non-hysteretic) and strong (dissipative and hysteretic) defects. We first classify sin-44

gle topographic defects as weak or strong, and quantify the associated energy dissipation45

and hysteresis. We then demonstrate, analytically, numerically, and experimentally, the46

emergence of dissipation and hysteresis due to spatial interactions (surface tension) among47

individually weak defects. We show that a pair of weak defects that is non-dissipative if48

separated far apart becomes strong (dissipative) when brought close enough together.49

The paper is organized as follows. Section II provides background on quasistatic pressure-50

driven displacements in imperfect Hele-Shaw cells, including the mathematical statements51

of pressure equilibrium and energy dissipation. Section III presents the solution for the52

interfacial configurations across single defects (capillary pressure distortions). We show the53

functional form of the interfacial shapes, which also reveal subtle morphological differences54

between imbibition and drainage, and distinct between weak (reversible, non-dissipative)55

and strong (irreversible, dissipative) defects. Section IV uses the above to compute an en-56

ergy balance from which we establish the energy dissipated during jumps. In Section V we57

consider cooperative effects in the presence of multiple defects, with a nonintuitive result—58

energy dissipation due to spatially-correlated interactions through interfacial tension for a59

pair of weak defects brought sufficiently close together. A theoretical analysis provides a60

critical value for the lateral separation between two weak defects that makes them collec-61
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tively dissipative. This prediction, derived in the limit of very narrow defects, is validated62

against numerical simulations, and qualitatively verified experimentally. Finally, in Sec. VI63

the original results of the work are briefly recalled and the main conclusions are drawn.64

Specific details of the calculations, numerical simulations and experiments are provided in65

the Appendices.66

II. BACKGROUND67

A. Model system: Imperfect Hele-Shaw cell68

Quasistatic pressure-driven displacements in imperfect Hele-Shaw cells have shown69

strongly nonlinear behavior and Haines jumps at pore and multipore scale, together with70

lack of reversibility between opposite displacement directions (imbibition and drainage)71

at continuum scale, hysteresis in the applied pressure vs wetting-phase saturation (PS)72

trajectories, and the return-point memory (RPM) property of closed partial cycles that is73

ubiquitous in porous media flows [14, 15, 23]. Below, we describe the theory allowing to74

compute the interfacial configurations and energy dissipation for the general case of an im-75

perfect Hele-Shaw cell with multiple defects (representing disordered media). In this paper76

we apply these concepts to displacements through (i) isolated defects (local constrictions),77

and (ii) a pair of defects, exposing their interaction.78

B. Establishing the equilibrium configurations79

The pressure balance of a two-phase interface invading an imperfect Hele-Shaw cell can80

be derived in quasistatic conditions [14, 15]. Without loss of generality, we assume in the81

following that the less wetting fluid is low-viscosity (e.g. air) and the more wetting fluid82

is viscous (e.g. liquid such as silicone oil). We consider that (i) the gap thickness in the83

cell changes in space (giving rise to an extended domain of connected constrictions and84

expansions); (ii) the fluids are immiscible, and displacements are driven by the change of85

the imposed pressure P at one end of the cell; and (iii) the cell is tilted in the direction that86

prevents the formation of viscous fingers [22]. With these conditions, the linearized pressure87
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balance takes the form88

γ
d2h(x)

dx2
− ρgeh(x) + P + pc [x, h(x)] = 0, (1)

where h(x) is the equilibrium interface position at x, γ the oil-air surface tension, ρ the oil89

density, ge is the effective gravity (which in a physical implementation could be changed by90

tilting the cell, ge = g sinα, where g is the gravitational acceleration and α the inclination an-91

gle from the horizontal). Here pc(x, y) is the perturbation in out-of-plane capillary pressure,92

determined by the variations in thickness (z). Here, the direction of the fluid advancement93

is parallel to the y-axis. For simplicity, we do not account for the minute variations in94

hydrostatic pressure of non-wetting fluid relative to the liquid pressure of the wetting fluid.95

Additionally, in our quasi-static model, the pressure changes associated with the viscosity of96

the two fluids are also neglected. The first and last terms in Eq. (1) account for the linearized97

in-plane component of the Young-Laplace pressure jump across the interface at each site x98

(for comparison with the exact nonlinear term see [23]), and the out-of-plane component99

arising from the presence of expansions and constrictions in the cell, respectively. The role100

of the two terms is different: the out-of-plane component is responsible for the interface101

deformation whereas the in-plane component is a restoring force resisting the deformation.102

In the quasistatic limit (zero driving rate) displacements are driven by minute changes of P ,103

separated by long time intervals required for reaching a new mechanical equilibrium h(x).104

The equilibrium configurations h(x) could also be derived from minimizing the Hamilto-105

nian106

H =

∫ ∞
−∞

dx

γ
2

[
dh(x)

dx

]2

+

h(x)∫
0

dy [ρgey − P − pc(x, y)]

 , (2)

and the pressure imbalance pe(x) experienced by the interface at each site x is given by107

pe(x) = −δH/δh(x). The condition of mechanical equilibrium in Eq. (1) corresponds there-108

fore to setting pe(x) = 0 [15]. In the framework of this model, PS trajectories are built109

from the sequence of equilibria. The passage from one equilibrium configuration to the next110

can be of two kinds. In the first, the system remains trapped in a local energy minimum,111

where the small change of external forcing P causes a correspondingly small evolution of the112

wetting-phase saturation Sw, resulting in a smooth PS trajectory. In the second, an abrupt113

change of state (Sw) takes place at the new value of P , in a Haines jump [3, 5]; this occurs114
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when the change of P suppresses the current local energy minimum, and the system is forced115

to abruptly jump to a new metastable equilibrium. Haines jumps are effectively instanta-116

neous in the time scale of change of the driving pressure, so that interfacial configurations117

experience irreversible changes at punctuated values of P .118

Numerically, this dynamics can be simulated iteratively by synchronous updates of h(x)119

in all unstable sites by a small amount in the direction that reduces |pe(x)|, stopping when all120

sites retain equilibrium (for details of the numerical procedure, see [15]). This deterministic121

rule is akin to the zero-temperature limit of the Glauber dynamics for RFIM [16, 24], which122

considers energy barriers between consecutive equilibria that are much larger than thermal123

fluctuations. The presence of the quenched disorder term pc[x, h(x)] in Eqs. (1) and (2)124

defines a rugged free energy landscape, so that for every applied pressure there are many125

different interfacial configurations h(x) that are local minimizers of H. The synchronous126

dynamics described above takes the current configuration to the closest available metastable127

minimum in a deterministic manner dictated by the quenched disorder. Ref. [15] proved that128

no parts of the interface recede under this dynamics, and a no-passing rule [25] is obeyed129

such that a configuration of larger (or equal) saturation compared to another will remain so130

under a monotonous evolution of the driving pressure. As a result, the original two-phase131

configuration is exactly recovered in any cyclic excursion of the driving pressure, a property132

known as RPM (return-point memory), ubiquitous to many athermal driven disordered133

systems [26–29].134

C. Energy dissipated between equilibrium configurations135

The amount of energy dissipated can be obtained from the change in interfacial energy136

due to fluid displacement and the mechanical work done by the applied pressure P . For a137

small interface displacement δh(x) the dissipated energy is138

d̄Ψ = dU − d̄W, (3)

where dU is the change in the internal energy, and139

d̄W = PdS = P

∫ ∞
−∞

δh(x)dx (4)
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is the work. Here the notation d� is used for infinitesimal changes of variables that are140

state functions (e.g. S), while d̄� is for changes of variables that are not (e.g. W ). In our141

2-D model, all energy units [Eq. (4) and throughout] are of energy per unit length, i.e. the142

out-of-plane thickness. U accounts for the capillary energy of the front deformation and for143

the gravitational potential energy of the oil phase (wetting fluid). We follow the convention144

that d̄Ψ ≤ 0.145

Noting that H = U − PS, we get δH = d̄Ψ− S dP . The fact that H = H [h(x), P ] and146

pe = −δH/δh(x) allows writing147

δH = −
∫ ∞
−∞

dx pe(x) δh(x)−
∫ ∞
−∞

dx

∫ h(x)

0

dy dP. (5)

From this, as well as from Eq. (2) and the expression H = U − PS, we can compute the148

internal energy as149

U =

∞∫
−∞

dx

γ
2

(
∂h

∂x

)2

+

h∫
0

dy (ρgey − pc)

 (6)

Finally, the energy lost between two equilibrium states, t− 1 and t, is found by integrating150

Eq. (3), which gives [12]151

Ψt−1→t =
[
U t − U t−1

]
− P t

[
Stw − St−1

w

]
. (7)

D. Energy dissipated per incremental change in interface configurations152

Here, we present an alternative method for computing energy dissipation between consec-153

utive interfacial configurations. For continuous, reversible displacements (isons), where the154

system stays in one local minimum of H, and a small change in P leads to a small change in155

h(x), pe(x) = 0 by definition. This reduces Eq. (5) to δH = −
∫∞
−∞ dx

∫ h(x)

0
dy dP = −S dP,156

which proves that d̄Ψ = 0, i.e., no dissipation. Since there are no energy losses in this case,157

d̄W = dU , and for a finite continuous displacement W = ∆U , with ∆U computed from158

Eq. (6).159

In irreversible displacements (rheons) P is constant (dP = 0) and δH = d̄Ψ. This in turn160

provides the energy dissipated for each elementary step δh within a Haines jump, using Eq.161
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(5):162

d̄Ψ = δH = −
∫ ∞
−∞

dx pe(x) δh(x). (8)

To obtain the total energy dissipated in a given jump between equilibrium states t− 1 and163

t, Ψt−1→t, one can integrate Eq. (8) over all the intermediate nonequilibrium steps k,164

Ψt−1→t = −
∑
k

∫ ∞
−∞

dx pke(x) δhk(x). (9)

Equations (8) and (9) present the energy dissipated as the sum of elementary products of165

unbalanced pressure pe(x) times the corresponding displacement δh(x). This will be used166

below (Section III) to provide an explanation for a nonintuitive observation: asymmetry167

between energy dissipation in drainage and imbibition. Furthermore, Eqs. (8)–(9) show168

that the energy dissipation within avalanches does not have to be proportional to the corre-169

sponding change in saturation, as the values of pe(x) can be different from site to site. This170

non-proportionality between changes in saturation and dissipation was shown numerically171

in disordered media constructed from defects of various strengths [12]. A related finding was172

shown for quasistatically driven disordered ferromagnets [17]. An extreme example of this173

non-proportionality arises in the limit in which dissipation approaches zero even as the size174

of the interface jump remains finite, as we will see below.175

III. INTERFACE CONFIGURATIONS: SINGLE DEFECT176

In this Section, we formulate an analytical solution for the equilibrium interface configu-177

ration for a single defect. When an incompressible wetting fluid (e.g. oil) imbibes or drains178

quasistatically in a smooth Hele-Shaw cell with a narrow gap of fixed width, filled with179

inviscid, non-wetting fluid (e.g. air), the interface is morphologically stable and h(x) = h0.180

Modulations of the out-of-plane capillary pressure, pc(x, y) = p0
c + δpc(x, y), cause the inter-181

face to deform [14, 15, 30]. Expressing the modulation as δpc(x, y) = δp∗cF (x, y), where δp∗c182

is the maximum value and F (x, y) is the “normalized modulation”, we can rewrite Eq. (1)183

as [14]184

γ
d2η(x)

dx2
− ρgeη(x) + δp∗cF [x, η(x) + h0] = 0 , (10)
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FIG. 1. Our 2-D model system representing an imperfect Hele-Shaw cell with local perturbations

in thickness of width w and length ` (defects; in brown), which alter the out-of-plane capillary

pressure pc. Once the fluid-fluid interface (blue line) passes through a defect, the interface deforms

by η(x), measured relative to the flanks (which are at y = h0) such that the interface height

h(x) = h0 + η(x) is nonuniform. We consider both “mesa” defects (fixed pc within the defect) and

regular defects which include a sloping part of length `s (linear increase in pc) and a plateau (fixed

pc). We also consider both a single, isolated defect, and a pair of interacting defects (separated by

d); for simplicity, the interface, as well as its descriptors [h0, η(x)], and the defect position yd are

not shown for the defect pair.

where η(x) = h(x)− h0 (Fig 1). Note that h0 = (P + p0
c)/ρge. In the following we consider185

the case of δp∗c > 0 (δp∗c < 0 is analogous). We consider a defect with F (x, y) nonzero within186

a rectangle −w/2 < x < w/2, yd < y < yd + `, where w is the width of the defect and ` its187

length. We do not set yd = 0 to keep our formulation general such that it can be used for a188

disordered system with multiple defects.189

The effective pressure field given by the left-hand side of Eq. (10) can be split into two190

parts: pe(x) = pd(x) + δp∗cF [x, η(x) + h0], where pd accounts for the restoring force of the191

line and it is linear in η [14]. We obtain the equilibrium states, pe = 0, by equating192

pd(x) = −δp∗cF [x, η(x) + h0]. (11)

Here, we find two different scenarios depending on the number of possible equilibrium con-193

figurations (roots) ηc that fulfill Eq. (11). If for all h0 there is only one root, the defect does194

not lead to hysteresis or dissipation and is termed “weak”. In contrast, for an hysteretic195

and dissipative (“strong”) defect, for some interval of h0 the solution gives three equilibrium196

points: two stable equilibrium configurations, with the largest and smallest η, while the197

intermediate one is unstable. We note that for complex pc profiles it is possible to have198

9



p

y

(a)
pd

pc

ℓs

ℓ p

y

(b)
pd

pc

ℓs

ℓ p

y

(c)
pd

pc

ℓs

ℓ

FIG. 2. Geometrical construction of the equilibrium positions of the interfaces in the presence of

a localized defect: (a) weak; (b) strong; and (c) mesa. Blue lines correspond to the pressure field

exerted by the defect. Orange lines correspond to the restoring force (pressure) of the interface,

opposing the deformation. At equilibrium, pd = pc, and these states are presented as black dots

for stable equilibrium. Red dots correspond to unstable states.

more than three roots; here we consider only linear variations in pc.199

Figure 2 shows visual representations of these different scenarios. These 1-D represen-200

tations are exact for infinitely wide defects (when there is no x dependence), and remain201

qualitatively valid for defects of arbitrary width. We refer to panels (a–b) as “regular” de-202

fects, where the change of pc is continuous along the y axis. Panel (c) shows the special203

case of the “mesa” defect [13], where the modulation F [x, η(x)] is a rectangular function in204

y, so that the change in pc is discontinuous (non-regular). The 2-D interface shape when205

passing through a gap modulation can be derived by realizing that Eq. (10) can be written206

as δp∗cF [x, η(x) + h0] = −Lη(x) with a linear differential operator L. The interface shape207

h(x) is obtained using the Green’s function formalism [14]208

η(x) =

∞∫
−∞

dx′G0(x− x′)δp∗cF [x′, h0 + η(x′)], (12)

where G0(x) satisfies209

γ
d2G0(x)

dx2
− ρgeG0(x) = δ(x) , (13)

It takes the form [14]210

G0(x) =
`c
2γ

exp(−|x|/`c), (14)

with `c =
√
γ/ (ρge).211
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A. Interface configurations: Mesa defect212

For the special case of a mesa defect,213

F (x, y) = Rect
( x
w

)
Rect

(
y − (yd + `/2)

`

)
, (15)

where Rect(x) is the rectangular function Rect(x) = H(x + 1/2) − H(x − 1/2), H(x) is214

the Heaviside function, w is the width and ` the length of the defect. When passing such215

defects, the interface displacement is always hysteretic. The analytical solutions for the216

interface shape when passing through a mesa defect, derived in [15], are summarized below217

for completeness.218

Assuming that for |x| < w/2, h0 + η is between yd and yd + `, the integral in Eq. (12) can219

be evaluated analytically, which gives220

η(x) =
δp∗c
ρge

exp(−|x|/`c) sinh(w/2`c) , |x| > w/2

1− exp(−w/2`c) cosh(x/`c) , |x| ≤ w/2
(16)

The maximum deformation occurs at the defect centre x = 0, and equals221

ηm =
δp∗c
ρge

[1− exp(−w/2`c)] . (17)

During imbibition, the interface remains flat until it contacts the defect, h0 = yd, at which222

point it deforms abruptly to a shape given by Eq. (16); here and elsewhere in this paper,223

we assume that the defect is sufficiently long to accommodate the deformed interface, i.e.,224

` > ηm. At the end of the defect, y = yd + `, the interface gets pinned and deformation225

decreases continuously to zero (flat) by the time h0 = yd + `, at which point the interface226

exits the defect. During drainage, the initial part of the interface displacement is reversible227

(identical to that in imbibition), i.e. it gets pinned and deforms until h0 = (yd + `) −228

(δp∗c/ρge) [1− exp(−w/2`c)]. However, when h0 reaches yd (the point of interface jump in229

imbibition), the trivial solution η = 0 appears as a metastable solution, but the interface230

remains deformed (thus, hysteresis is observed). The jump is delayed until h0 is equal to231
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the external head hc, given by232

hc = yd −
δp∗c
2ρge

[1− exp(−w/`c)] . (18)

At that point the interface passes through the corners of the defect. For lower h0, the233

effective width we across which the defect is wet would have to be smaller than w, and the234

new equilibrium position would be235

h0 = yd −
δp∗c
2ρge

[1− exp(−we/`c)] > hc. (19)

However, this is not possible [15] and the nontrivial solution disappears.236

Note that for a very wide defect (w � `c), immediately before the jump during drainage237

the interface profile around x = −w/2 can be approximated as238

h(x) = yd+
δp∗c
2ρge

exp(∆x/`c)− 1 , ∆x < 0,

1− exp(−∆x/`c) , ∆x > 0.
(20)

where ∆x = x + w/2 and |∆x| � w. Thus, the solution is approximately symmetric239

with respect to the corner of the defect (x = −w/2, y = yd) as the center of symmetry240

[h(−w/2+∆x)−yd ≈ −{h(−w/2−∆x)−yd}]. Similarly for x = w/2 and the corresponding241

corner. We will compare this to the case of a wide regular defect with a slope below.242

B. Interface configurations: Regular defect243

We now consider a defect with a capillary pressure profile which varies in y,244

F (x, y) = a1(x)c(y), (21)

where245

a1(x) = Rect
( x
w

)
(22)

and246

c(y) =
1

`s
(y − yd)Rect

(
y − yd − `s/2

`s

)
+ Rect

(
y − yd − (`s + `)/2

`− `s

)
. (23)
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The defect has width w and length `, with the capillary pressure profile consisting of two247

parts: a slope (ramp) of length `s where pc increases linearly in y and a plateau of fixed pc248

(as in the mesa defect, cf. Fig. 1). In the ramp, the pressure slope is249

Π =
dpc(0, y)

dy
=
δp∗c
`s
. (24)

The interface deformation is calculated by substituting Eq. (21) in the integral equation (12),250

η(x) = δp∗c

∞∫
−∞

dx′G0(x− x′)a1(x′)c[h0 + η(x′)], (25)

where the propagator G0(x) is given by Eq. (14).251

In imbibition, prior to touching the defect, h0 < yd, the interface is undeformed, η(x) = 0.252

As the interface enters the defect, h0 > yd, as long as the interface deformation is small253

enough such that inside the defect it remains within the ramp, Eq. (25) becomes254

η(x) = Π

∞∫
−∞

dx′G0(x− x′)a1(x′)(h0 − yd) + Π

∞∫
−∞

dx′G0(x− x′)a1(x′)η(x′). (26)

We distinguish between two cases: the defect is weak if a solution of this equation exists, at255

least for small enough positive h0 − yd; it then changes continuously as h0 increases. The256

defect is strong if there are no solutions for positive h0− yd; in that case, upon entering the257

defect the interface experiences an abrupt jump that extends into the plateau.258

To obtain a closed-form analytical solution, we consider below two limits: infinitely nar-259

row and infinitely wide defects. For these, we find the threshold between weak and strong,260

and the interface shapes before and after the jump in the strong regime. For the general261

case of a finite defect width, the threshold calculation is provided in Appendix A, and the262

numerical methods for establishing the interface shape are described in Appendix B.263

The threshold between weak and strong defects in terms of the pressure slope, Π
(1)
c , is264

independent of `s given `c, w and γ. Dimensionality considerations provide265

Π(1)
c =

γ

`2
c

f

(
w

`c

)
, (27)
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where f is a dimensionless function. Given Π/Π
(1)
c and w/`c, the interface deformations266

before the jump in imbibition, ηimb, and after the jump in drainage, ηdra, are proportional267

to `s, thus,268

ηimb(x) = `sφimb

(
x

`c
;

Π

Π
(1)
c

,
w

`c

)
(28)

and269

ηdra(x) = `sφdra

(
x

`c
;

Π

Π
(1)
c

,
w

`c

)
, (29)

where φimb and φdra are dimensionless functions.270

1. Narrow defect limit (w � `c)271

Consider a narrow defect, w � `c, located at x = 0. We note that a1(x) = wδw(x) with272

δw(x) = w−1Rect(x/w), where in the limit w → 0, δw(x) approaches the Dirac delta δ(x).273

Introducing this approximation in Eq. (26), we obtain274

η(x) = Πw(h0 − yd)G0(x) + Πwη0G0(x), (30)

where η0 = η(0). For x = 0, this becomes275

η0 = Πw(h0 − yd)β0 + Πwη0β0, (31)

with β0 = G0(0) = `c/2γ. This gives276

η0 =
Πwβ0(h0 − yd)

1− Πwβ0

, (32)

so that we obtain the following solution:277

η(x) = G0(x)
Πw(h0 − yd)

1− Πwβ0

. (33)

This is consistent with our assumption that the solution for the interface configuration278

crosses the defect within the ramp when yd < h0 + η0 < yd + `s. This condition is satisfied279
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for sufficiently small and positive h0− yd, when the denominator of Eq. (33) is positive, i.e.,280

Π < Π(1)
n =

1

wβ0

=
2γ

w`c
. (34)

In this case, the defect is weak. Here Π
(1)
n is the narrow-defect approximation for the critical281

slope in a single defect, where the general threshold for a single defect, Π
(1)
c , is derived in282

Appendix A. Conversely, for Π > Π
(1)
n there is no solution crossing the defect within the283

ramp for positive h0− yd, indicating that the interface deforms abruptly beyond the sloping284

part, and the defect is strong. Note that a solution crossing the defect within the ramp285

does exist for strong defects when h0− yd is small enough and negative; this is the unstable286

solution marked by the red dot in Fig. 2(b).287

For the case where the interface deforms beyond the ramp length and reaches the plateau288

region, Eq. (25) gives289

η(x) = δp∗cwG0(x) = δp∗c
`cw

2γ
exp(−|x|/`c) =

Π

Π
(1)
n

`s exp(−|x|/`c). (35)

In cases where the defect width cannot be neglected, we make the assumption that the290

deformation is constant within the defect, providing291

η(x) =
Π

Π
(1)
n

`s

exp[−(|x| − w/2)/`c], |x| > w/2,

1, |x| < w/2.
(36)

As expected, this coincides with the w � `c limit of the mesa defect case, Eq. (16). The292

deformation is independent of h0 as long as the interface solution crosses the defect within293

the plateau. For a strong defect (Π/Π
(1)
n > 1), this occurs already for h0 = yd [again,294

considering a sufficiently long defect, η(0) = (Π/Π
(1)
n )`s < `]. Thus, during imbibition, the295

interface jumps from296

h = h−imb = yd (37)

to297

h = h+
imb = yd +

Π

Π
(1)
n

`s

exp[−(|x| − w/2)/`c], |x| > w/2,

1, |x| < w/2.
(38)

In drainage, in the beginning the interface displacement is identical to the mesa case, i.e.,298
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FIG. 3. Interface profiles before and after jumps for a narrow [w/`c = 0.2; (a)] and a wide

[w/`c = 20; (b)] regular ramp defects, for different capillary pressure slopes. The ramp part of

the defect is shown by a shading gradient, and the plateau part in uniform gray. The boundary

between these two regions is at h/`c = 1 and in panel (b) is marked with a green dotted line.

Dashed and solid lines represent the undeformed (flat) and deformed configurations, i.e. before

and after the jump in imbibition, and the opposite in drainage.

it pins at the edge of the defect, y = yd + `, until the deformation reaches the value given299

by Eq. (36), and then moves continuously. The jump in drainage occurs when the interface300

reaches the boundary between the plateau and the ramp (rather than the end of the defect,301

y = yd, in the mesa case), and the solution for the interface configuration, (36), meets the302

unstable branch and ceases to exist. At this point, h0 = yd+`s− η(0) = yd− `s(Π/Π(1)
n − 1),303

and the jump occurs between304

h−dra =


yd − `s

{
Π

Π
(1)
n

[1− exp(−(|x| − w/2)/`c)]− 1

}
, |x| > w/2,

yd + `s, |x| < w/2

(39)

and305

h+
dra = yd − `s(Π/Π(1)

n − 1). (40)

These interfacial jumps at various defect strengths, computed numerically for a suffi-306

ciently narrow defect w/`c = 0.2 (Appendix B), are illustrated in Fig. 3a. As the transition307

between weak and strong is approached, Π/Π
(1)
n → 1+, the difference between h+

imb and h−dra308

vanishes (barely noticeable for Π/Π
(1)
n = 1.01), although the jump remains finite (noting it309

can vanish for other defect profiles, not considered here).310
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2. Wide defects (w � `c)311

In case of a very wide defect, the width of the Green’s function G0 [which is on the order312

of `c; see Eq. (14)] is much smaller than the width of the defect, and G0 can be approximated313

by a delta function,314

G0(x) ≈ `2
c

γ
δ(x), (41)

such that Eq. (12) becomes315

η(x) =
`2
c

γ
δp∗cF [x, h0 + η(x)]. (42)

This approximation is valid far from lateral boundaries of the defect. Outside the defect,316

η(x) = 0. If the interface solution crosses the defect within the ramp, then inside the defect317

we get from the above318

η =
`2
cΠ

γ
(h0 + η − yd), (43)

and from this, or, equivalently from Eq. (26) with the same approximation for G0,319

η =
(`2
cΠ/γ)(h0 − yd)

1− `2
cΠ/γ

=
Π(h0 − yd)
ρge − Π

. (44)

This solution crosses the defect within the ramp for small enough positive h0 − yd if Π <320

Π
(1)
w = ρge = γ/`2

c . In this case, the defect is weak. Here Π
(1)
w is the wide-defect approxima-321

tion for the general solution for the threshold for a single defect, Π
(1)
c , derived in Appendix A.322

Otherwise (for Π > Π
(1)
w ), during imbibition the interface jumps into the plateau upon touch-323

ing it at yd. In that case, the deformation of the interface part which is inside the defect not324

too close to its edges is η = δp∗c/ρge = `s(Π/Π
(1)
w ), similar to that for the mesa defect [namely325

Eq. (16) for |x| < w/2 except near the defect edges]. Thus, the interface configuration before326

and after the jump is327

h−imb = yd (45)

and328

h+
imb =

yd, |x| > w/2,

yd + `s(Π/Π
(1)
w ), |x| < w/2.

(46)
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An exception to the validity of this calculation is for Π/Π
(1)
w just above and very close to329

1. In such case, Π may be above Π
(1)
w yet below the exact threshold Π

(1)
c ; even if not, the330

influence of the edges extends very far inside the defect (see Fig. 3b). For drainage (except331

for Π/Π
(1)
c ≈ 1) immediately before the jump the interface passes very close to the corners332

of the defect at y = yd; this is similar to the mesa but not to the regular narrow defect333

case. It can be shown then that the interface shape around the defect edge at x = −w/2334

still has a center of symmetry, but at height yd + `s/2, instead of in the corner of the defect.335

Mathematically, h(x0 + ∆x) − yd − `s/2 ≈ −[h(x0 − ∆x) − yd − `s/2] when |∆x| � w,336

where x0 is such that 0 < x0 + w/2 � w, and analogously for x near w/2. The interfacial337

configurations before and after the jump in drainage are then338

h−dra =


yd − `s

Π/Π
(1)
w − 1

2
, |x| > w/2,

yd + `s
Π/Π

(1)
w + 1

2
, |x| < w/2.

(47)

and339

h+
dra = yd − `s

Π/Π
(1)
w − 1

2
. (48)

These analytical expressions are confirmed by the numerical computations (Appendix B),340

see Fig. 3b.341

IV. ENERGY BALANCE: DISSIPATION DURING JUMPS342

We begin by considering a closed imbibition-drainage cycle for a strong defect. The first343

dissipation event occurs when the interface enters the defect in imbibition. The external344

pressure is ρgeh0 = ρgeh
−
imb = ρgeyd, and the work is Wimb = ρgeyd

∞∫
−∞

dx ηimb(x); here we345

used the fact that the deformation after the jump, ηimb(x), equals h+
imb− h

−
imb. The internal346

energy change during this deformation is347

∆Uimb = U{h+
imb} − U{h

−
imb}

=

∞∫
−∞

dx

[
γ

2

(
dηimb

dx

)2

+
ρge
2

(η2
imb + 2ydηimb)− δp∗c

∫ yd+ηimb

yd

dy F (x, y)

]
, (49)
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where U{h} denotes the functional dependence of the internal energy on the interface con-348

figuration. Thus, we obtain for the dissipated energy349

Ψimb = ∆Uimb −Wimb =

∞∫
−∞

dx

[
γ

2

(
dηimb

dx

)2

+
ρge
2
η2

imb − δp∗c
∫ yd+ηimb

yd

dy F (x, y)

]
. (50)

The second dissipation event occurs when the interface leaves the defect in drainage. The350

work done on the interface is Wdra = −ρgeh+
dra

∞∫
−∞

dx ηdra(x), where the deformation of the351

interface before the jump, ηdra(x) = h−dra − h
+
dra. The change of internal energy is352

∆Udra = U{h+
dra} − U{h

−
dra}

= −
∞∫

−∞

dx

[
γ

2

(
dηdra(x)

dx

)2

+
ρge
2

(η2
dra + 2h+

draηdra)− δp∗c
∫ h+dra+ηdra

h+dra

dy F (x, y)

]
.

(51)

This provides the following dissipated energy:353

Ψdra = ∆Udra −Wdra = −
∫ ∞
−∞

dx

[
γ

2

(
dηdra(x)

dx

)2

+
ρge
2
η2

dra − δp∗c
∫ h+dra+ηdra

h+dra

dy F (x, y)

]
.

(52)

A. Energy Dissipation: Mesa defect354

For imbibition in a mesa defect, in the rightmost term in Eq. (50)355

∫ yd+ηimb

yd

dy F (x, y) = Rect(x/w)ηimb(x), (53)

which, together with the fact that ηimb equals η from Eq. (16), allows us to calculate the356

integral in Eq. (50), giving357

Ψimb = −1

2

δp∗2c `c
ρge

[
w

`c
+ exp(−w/`c)− 1

]
. (54)
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Similarly, for drainage we substitute in Eq. (52) h+
dra for hc from Eq. (18), to obtain358

∫ h+dra+ηdra

h+dra

dy F (x, y) = Rect(x/w)[ηdra(x) + hc − yd]. (55)

Using η from Eq. (16) for ηdra in Eq. (52) gives359

Ψdra = −1

2

δp∗2c `c
ρge

[
1−

(
1 +

w

`c

)
exp(−w/`c)

]
. (56)

The total dissipated energy for a closed hysteresis cycle, Ψtot = Ψimb + Ψdra, is given by360

Ψtot = −wδp
∗2
c

2ρge
[1− exp(−w/`c)] . (57)

In the narrow defect limit, w � `c, we get361

Ψimb ≈ Ψdra ≈ −
1

4

δp∗2c w
2

ρge`c
. (58)

This dependence on system parameters is expected when analyzing the terms in Eqs. (54)362

and (56) separately, as they are all of the same order of magnitude. In particular, the363

dependence on the defect width w is quadratic, as ηm ∼ w [fixing all other parameters in364

Eq. (58)] and the width of the region where η ≈ ηm is w-independent.365

For the wide-defect limit, w � `c, dissipation in imbibition reduces to366

Ψimb ≈ −
1

2

δp∗2c w

ρge
. (59)

Here, the dependence on w is linear and matches those of the second and third terms in367

Eq. (54); this is because ηimb in the wide-defect limit is (i) approximately constant in the368

region of width ≈ w, and (ii) that constant is w-independent [fixing all other parameters in369

Eq. (59)]. The first term in Eq. (54) is negligible (as the integrand peaks near the edges of370

the defect in regions of width ∼ `c � w).371

For drainage in the wide-defect limit, the dissipation is372

Ψdra ≈ −
1

2

δp∗2c `c
ρge

. (60)
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This is width-independent, and considerably smaller than in imbibition (Ψimb), suggesting373

that the second and third terms approximately cancel out. Thus, in the wide defect limit,374

dissipation can be thought of as coming from the edges of the defect, rather than its whole375

width. This can also be seen by examining the out-of-equilibrium pressure (pe) during376

a jump, which is used in Eqs. (8)–(9) to compute the dissipation as a force-displacement377

product; this is illustrated in Video S1 in Supplementary Information (SI). The imbalance at378

the edges in drainage implies that it is the source for a appreciable portion of the dissipation.379

We note that as the example in Video S1 is for a moderately-wide defect (not the wide-defect380

limit), a substantial part of the dissipation is associated with the motion of the central parts381

of the interface.382

B. Energy Dissipation: Regular defect383

For regular defects, the last term in the dissipation calculations, Eqs. (50) and (52),384

becomes more complicated, because the defect consists of two parts. With F (x, y) given by385

Eq. (21), this term is386

∫ yd+ηimb

yd

dy F (x, y) = Rect(x/w)

η
2
imb/(2`s), ηimb < `s,

ηimb − `s/2, ηimb > `s,
(61)

for imbibition, and387

∫ h+dra+ηdra

h+dra

dy F (x, y) = Rect(x/w)

(ηdra + h+
dra − yd)2/(2`s), ηdra < `s + yd − h+

dra,

ηdra + h+
dra − yd − `s/2, ηdra > `s + yd − h+

dra

(62)

for drainage.388

Calculating dissipation analytically (or even finding the expression for η) for regular389

defects of an arbitrary width and slope is considerably more difficult than for mesa defects.390

This is because the solution for the interface can be in both the ramp and the plateau parts391

of the defect, requiring matching between all the different parts of the interface. Numerical392

results for ηimb and ηdra can be obtained as described in Appendix B, followed by numerical393

integration to obtain Ψimb and Ψdra. Nonetheless, analytical results can be obtained for394
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specific cases. First, as there is no dissipation for weak defects, the dissipated energy for both395

imbibition and drainage vanishes as the defect strength approaches the limit Π/Π
(1)
c → 1+.396

On the other hand, for Π/Π
(1)
c � 1, the interface solution crosses the defect entirely within397

the plateau region, and therefore ηimb and ηdra equal those for a mesa defect with the same398

w and δp∗c . Therefore, the first two terms in Eqs. (50) and (52) are identical for mesa and399

regular defects. If the interface jumps far into the plateau region, the third term resembles400

that in the mesa case (e.g., for imbibition ηimb − `s/2 ≈ ηimb); if it is not (as is the case for401

narrow defects in drainage, see Fig. 3a), the term is negligible. Therefore, the dissipation402

for Π/Π
(1)
c � 1 is approximately equal to that in a mesa defect (with the same w and δp∗c),403

Ψimb ≈ −
1

2

δp∗2c `c
ρge

ψimb = −`
2
s`

3
cΠ

2

2γ
ψimb (63)

and404

Ψdra ≈ −
`2
s`

3
cΠ

2

2γ
ψdra. (64)

Here,405

ψimb =
w

`c
+ exp(−w/`c)− 1 (65)

and406

ψdra = 1−
(

1 +
w

`c

)
exp(−w/`c). (66)

Both the approach to zero dissipation as Π → Π
(1)
c , and the approach to the mesa results407

for Π/Π
(1)
c � 1, are confirmed by Fig. 4, where numerical computations for a regular defect408

of an intermediate width (w/`c = 2) are compared to analytical mesa results.409

Similarly, it is easy to calculate the dissipation for a regular defect with an arbitrary410

slope Π, in the narrow defect limit (w � `c). The dissipation, that turns out to be equal411

in imbibition and drainage, is obtained using Eqs. (37)–(40) for the interface shapes [h−imb,412

h+
imb, h−dra and h+

dra] in Eqs. (50), (52), (61) and (62), as well as the expression for Π
(1)
n given413

by Eq. (34):414

Ψimb = Ψdra = −w`
2
s

2
Π

(
Π

Π
(1)
n

− 1

)
= −`

2
s`

3
c

4γ
Π(Π− Π(1)

n )

(
w

`c

)2

. (67)

This equals the dissipation for the mesa defect in Eqs. (63)–(64) when both (i) w � `c, in415

which case we can approximate the expressions in Eqs. (65)–(66) by (1/2)(w/`c)
2; and (ii)416
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FIG. 4. Dimensionless dissipated energy against dimensionless capillary pressure perturbation for

mesa and regular defects with w/`c = 2 (`s/`c = 1 for regular defects). For very strong defects

(large δp∗c), the results for mesa and regular defects converge. The difference between imbibition

and drainage, which is significant for mesa defects as well as for very strong regular defects, vanishes

as δpc approaches the threshold between weak and strong.

Π� Π
(1)
n , when Π(Π− Π

(1)
n ) ≈ Π2 in Eq. (67).417

It is useful to consider the following dimensionless quantity,418

ψ = − Ψ

`2
s`

3
cΠ(Π− Π

(1)
c )/(2γ)

. (68)

For arbitrary defect widths and slopes, Eqs. (27)–(29) predict that ψ depends only on the419

dimensionless parameters w/`c and Π/Π
(1)
c . According to Eq. (67), for narrow defects it is420

expected to depend only on w/`c (and be identical for imbibition and drainage), while for421

an arbitrary width w it should approach the expressions in Eqs. (65)–(66) as Π/Π
(1)
c →∞.422

This is demonstrated by plotting the dissipation for various defect widths w and Π/Π
(1)
c423

(Fig. 5). Figure 5 also shows that as Π/Π
(1)
c → 1, ψ approaches a finite value, and therefore424

the dissipation is linear in Π − Π
(1)
c just above the threshold; this was shown in Eq. (67)425

for narrow defects, here confirmed for an arbitrary width. This linear dependence is a426

consequence of the finite interfacial jump; a faster approach to zero is expected when this is427

not so. Moreover, the limits for ψ as Π/Π
(1)
c → 1 are the same for imbibition and drainage,428

see also Fig. 4. Therefore, the dissipation for imbibition and drainage is similar for narrow429

defects (regardless of strength Π) and for arbitrary widths when Π− Π
(1)
c � Π

(1)
c .430

The dependence of dissipation on the defect width for a regular defect is similar to that431

23



10
-1

10
0

10
1

10-2

10
-1

100

10
1

FIG. 5. Rescaled dissipated energy ψ [Eq. (68)] in imbibition (blue) and drainage (red) for various

values of Π/Π
(1)
c (a single regular defect). For narrow defects (w/`g � 1), the imbibition and

drainage curves collapse (independently of Π/Π
(1)
c ), with ψ ∝ w2. For arbitrary widths, for small

slopes i.e. Π/Π
(1)
c → 1, imbibition and drainage approach the same limit, whereas as the slope

increases (“stronger” defect; black arrows), Π/Π
(1)
c →∞, the dissipation approaches the bounding

values of the dissipation in a mesa defect (dashed gray), given by the expressions in Eqs. (65)–(66).

For imbibition at very wide defects, dissipation scales with the width, ψ ∝ w1.

for a mesa defect for fixed Π � Π
(1)
c . This can be explained by considerations similar to432

those we used for the mesa defects. For narrow defects, all the terms in Eqs. (50) and (52)433

are of the same order of magnitude and ∝ w2. For wide defects, the second and third terms434

are ∝ w, giving rise to that dependence of Ψ on w in imbibition, but they cancel out for435

drainage resulting in w-independent dissipation. However, in contrast to mesa defects, for436

regular defects dissipation also vanishes as Π → Π
(1)
c , i.e. the terms that are of the same437

order of magnitude must cancel out. This is easy to confirm for imbibition in wide defects,438

where the first term is negligible and the last two terms in the integrand are constant within439

the defect not too close to its edges. The sum of these terms is440

ρge
2
η2

imb − δp∗c
∫ yd+ηimb

yd

dy F (x, y) =

(1/2)(ρge − Π)η2
imb, ηimb < `s,

(1/2)(ρge − Π)η2
imb + (Π/2)(ηimb − `s)2, ηimb > `s,

(69)

where we have used Eq. (61). This has the incorrect (positive) sign for any ηimb > 0 when441
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Π < Π
(1)
w = ρge, thus, there are no nonzero solutions for ηimb, i.e., no stable deformed442

configurations, and the defect is weak. For a strong defect [Π > Π
(1)
w ] and ηimb = `s(Π/Π

(1)
w )443

[see Eqs. (45)–(46)], this sum is negative and approaches zero when Π→ Π
(1)
w , as expected.444

We can also verify that the last two terms in the expression for drainage cancel out for any445

Π > Π
(1)
w . For η > `s + yd − h+

dra the sum of these terms becomes446

ρge
2
η2

imb − δp∗c
∫ h+dra+ηdra

h+dra

dy F (x, y) =
Π

(1)
w

2
η2

dra − Π`s(ηdra + h+
dra − yd − `s/2), (70)

where we used Eq. (62). Using Eq. (47) for h−dra = ηdra + h+
dra and Eq. (48) for h+

dra, we see447

that the sum vanishes for all Π values.448

V. COOPERATIVE ORIGIN OF HYSTERESIS AND DISSIPATION449

A single mesa defect is strong, with interface displacement (e.g. PS trajectory) which is450

hysteretic and irreversible (dissipative). A disordered medium composed of multiple mesa451

defects, is also hysteretic and dissipative [12]. From this, one might naively conclude that452

the overall hysteretic response is simply the sum of the response of basic hysteretic entities453

(here, “defects”). This conforms with the conventional thinking behind compartment models454

such as Leverett and Preisach (where basic hysteretic entities are called “hysterons”) [26].455

Following the same logic, one would expect that a medium composed of multiple weak456

defects—each of which is non-hysteretic, reversible and non-dissipative—will also be non-457

hysteretic and reversible. To examine this, we consider a simple system composed of two458

identical regular, weak defects of width w at a distance d apart (measured between their459

centers, with d ≥ w), positioned at y = yd (Fig 1). Similarly to the single defects considered460

in Sections. III and IV, each defect has a capillary pressure profile which is linearly increasing461

in y over a distance `s, after which it remains constant (plateau), with the total defect length462

`. For each system with a given interdefect distance d, we compute the energy dissipated in463

imbibition and drainage, analytically and numerically, as described below.464
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A. Interactions between a pair of weak defects: Analytical evaluation465

The local pressure balance in Eq. (10) is general, and thus it can be used for any number466

of defects, regular or irregular. For the pair of weak defects considered here, we write the467

capillary pressure profile as468

F (x, y) = a2(x)c(y), (71)

where c(y) has the same form as in the single regular defect case [Eq. (23)], with the term469

a1(x) [Eq. (22)] replaced here with a2(x) consisting of two rectangular functions,470

a2(x) = Rect

(
x+ d/2

w

)
+ Rect

(
x− d/2
w

)
= w [δw(x+ d/2) + δw(x− d/2)] , (72)

where we use δw(x) introduced in Section III B 1. Note that for d = w, the two-defect system471

reduces to a single defect of width 2w.472

Consider the case when the defects are narrow (w/`c � 1), so that we can replace473

δw(x) → δ(x). Using the resulting approximation of a2(x) in (26) (substituting a2 for a1),474

under the assumption that the interface solution crosses the defects within the ramps, the475

deformation is476

η(x) = Πw[G0(x+ d/2) +G0(x− d/2)][(h0 − yd) + η1], (73)

where we set η1 = η(−d/2) = η(d/2) by using the symmetry of the domain. Imposing477

x = d/2 in (73), we obtain478

η1 =
Πwβ1(h0 − yd)

1− Πwβ1

with β1 = G0(d) +G0(0) (74)

and therefore479

η(x) = [G0(x+ d/2) +G0(x− d/2)]
Πw(h0 − yd)

1− Πwβ1

. (75)

This is consistent with our assumption that the interface solution crosses the defects within480

the ramps for sufficiently small positive h0 − yd, when the denominator is positive, i.e.,481

Π < Π(2)
n =

1

wβ1

=
1

wβ0[exp(−d/`c) + 1]
=

Π
(1)
n

exp(−d/`c) + 1
≤ Π(1)

n . (76)
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As for the single defect, this is the criterion for weakness of the pair of defects, and Π
(2)
n482

is the (narrow-defect approximation of) the critical slope for the transition from weak to483

strong. This method can be extended to an arbitrary number of defects which can also have484

different defect strengths (disordered media). Note that this critical slope for the two-defect485

system is always smaller than the one for the single defect, Π
(1)
n . This holds for defects of486

arbitrary width; for derivation of the critical slope Π
(2)
c for this case see Appendix A. For487

slopes within Π
(2)
c < Π < Π

(1)
c , each defect is non-dissipative (weak) when isolated (single488

defect only), whereas a system of two such defects is dissipative and hysteretic (strong).489

Within the narrow-defect approximation, let us consider now a situation where the slope

of the individual defects is Π < Π
(1)
n , that is, each defect by itself is weak. The two-defect

system is strong if Π > Π
(2)
n , implying that

[exp(−d/`c) + 1] >
Π

(1)
n

Π
. (77)

This inequality indicates that the two-defect system becomes strong if the separation dis-490

tance d between the defect centers is w ≤ d < dc, where491

dc = `c ln

(
Π

Π
(1)
n − Π

)
. (78)

This is meaningful only for dc > w ≈ 0, that is, for
Π

(1)
n

2
≤ Π < Π(1)

n . Thus, there is a factor492

of two between the largest and smallest slopes where a single defect is weak but a pair can493

be strong. The factor of two reduces for wider defects; in the limit w/`c � 1, it approaches494

unity, as the critical slope approaches ρge = γ/`2
c , independent of d.495

Considering the case when the interface solution crosses the defects within the plateaus,496

Eq. (25) (with a1 replaced by a2) gives for narrow defects497

η(x) = Πw`s[G0(x+ d/2) +G0(x− d/2)]. (79)

At the defects, this gives498

η(±d/2) =
Πw`s`c

2γ
[1 + exp(−d/`c)] =

Π

Π
(2)
n

`s, (80)
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a result analogous to the single-defect case [see Eq. 36]. For dissipation calculations, since499

the width of the defect cannot be neglected, we write500

η(x) =
Π

Π
(2)
n

`s


exp{−[|x| − (d+ w)/2]/`c}, |x| > (d+ w)/2,

cosh[x/`c]/ cosh[(d− w)/(2`c)], |x| < (d− w)/2,

1, (d− w)/2 < |x| < (d+ w)/2,

(81)

where we have assumed that η(x) is constant within the defects, and equal to Eq. (80), and501

the first two lines are, essentially, Eq. (79), with d replaced by d + w in the first line and502

d−w in the second (a negligible change) to make the result continuous. If the pair is strong503

(Π/Π
(2)
n > 1), during imbibition the interface experiences a jump when it first touches the504

defects, just as in the single-defect case; thus, the interface configurations before and after505

the jump are506

h−imb = yd (82)

and507

h+
imb = yd +

Π

Π
(2)
n

`s


exp{−[|x| − (d+ w)/2]/`c}, |x| > (d+ w)/2,

cosh[x/`c]/ cosh[(d− w)/(2`c)], |x| < (d− w)/2,

1, (d− w)/2 < |x| < (d+ w)/2.

(83)

Likewise, during drainage the interface behaves similarly to the single-defect case, where the508

jump occurs when it reaches the boundary between the plateau and the ramp, with509

h−dra =


yd − `s

{
Π

Π
(2)
n

(1− exp{−[|x| − d+w
2

]/`c})− 1
}
, |x| > (d+ w)/2,

yd − `s
{

Π

Π
(2)
n

(1− cosh[ x
`c

]/ cosh[d−w
2`c

])− 1
}
, |x| < (d− w)/2,

yd + `s, (d− w)/2 < |x| < (d+ w)/2

(84)

and510

h+
dra = yd − `s(Π/Π(2)

n − 1). (85)

The corresponding calculations of interface shapes for defects of an arbitrary width can be511

done numerically using the method in Appendix B.512
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The dissipated energy in imbibition and drainage can be evaluated using eqs. (50) and513

(52), with the values of h±imb and h±dra computed analytically or numerically, and the ex-514

pressions for the integrals of F (x, y) from Eqs. (61)–(62), where Rect(x/w) are replaced515

by Rect([x + d/2]/w) + Rect([x − d/2]/w). For the narrow defect approximation, using516

Eqs. (82)–(85), as well as Eq. (76) for Π
(2)
n , the result reads517

Ψimb = Ψdra = −w`2
sΠ

[
Π

Π
(2)
n

− 1

]
. (86)

This expression resembles its counterpart for the single-defect case, Eq. (67), except for518

the critical threshold at which dissipation approaches zero [Π
(2)
n instead of Π

(1)
n ] and the519

factor of two; this is intuitive, as for two defects far apart the dissipation is additive, and the520

threshold remains the same. Equation (86) is also consistent with the fact that two touching521

defects (d = w) are equivalent to a single defect of twice the width. Finally, we find that522

the accuracy of the narrow-defect theory can be improved upon replacing in Eq. (86) the523

approximate threshold, Π
(2)
n , with the exact result, Π

(2)
c [Eqs. (A3)–(A4)], providing524

Ψimb = Ψdra = −wl2Π

[
Π

Π
(2)
c

− 1

]
. (87)

B. Interactions between a pair of weak defects: Numerical verification525

To examine these intriguing theoretical predictions, we use numerical computations and526

simulations varying the distance d for a fixed defect shape (slope Π, ramp length `s, width527

w), computing the energy dissipated during the imbibition and drainage trajectories (see528

Appendix C for parameter values). We calculate the dissipated energy using (i) the numeri-529

cal computations described in Appendix B; (ii) direct numerical simulations of the interface530

evolution and the corresponding energy dissipation [12] (referred to as simulations, to dis-531

tinguish from the numerical computations of Appendix B). While the numerical simulations532

are more computational costly than the computations in Appendix B, the simulations can be533

used for any arbitrary capillary pressure field pc(x, y) (e.g. disorder with prescribed defect534

strength distributions in [12]).535

Our numerical evaluations show that for pairs of weak defects sufficiently far apart, d > dc536

[where dc is approximated by Eq. (78)], there is no dissipation and hysteresis (Video S2 in537
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FIG. 6. Emergence of energy dissipation (“strong” behavior) in a pair of weak defects. As long as

the defects are sufficiently far apart (d > dc), the system is reversible and there is no dissipation.

Once d < dc, the displacement becomes irreversible, and dissipation and hysteresis emerge. We

plot the dissipation calculated from simulations ([12]) and numerical computation (Appendix B;

dotted lines), where blue and red refer to imbibition and drainage, respectively. Also plotted are

the analytical solutions from two variants of the narrow defect theory: (1) Eq. (86) (approximate

Π
(2)
n [dash-dot]; and (2) the more accurate Eq. (87) with an exact value of Π

(2)
c [thick dashed].

SI), whereas for d < dc, dissipation emerges (Fig. 6). This dissipation arises from abrupt538

jumps of the interface along the defect slope in both imbibition and drainage, such that the539

PS response becomes hysteretic; the closer the defects are, the stronger the dissipation (and540

the width of the hysteresis cycle, e.g. see Videos S3–S4 in SI).541

As expected for narrow defects, [Eq. (86)], the numerical computations give nearly identi-542

cal dissipated amounts for imbibition and drainage. The simulations provide similar results,543

though slightly exaggerate the difference between imbibition and drainage, due to numerical544

discretization errors (can be reduced by refinement, at the expense of higher computational545

cost). The distance at which dissipation vanishes in the numerical computations is identi-546

cal to the exact result for the critical distance from Eqs. (A3)–(A4) (“theory(2)” in legend547

of Fig. 6). The narrow defect theory [dissipation from Eq. (86) and critical distance from548

Eq. (78); “theory(1)” in legend of Fig. 6] provides a reasonable approximation. For wider549

defects, the deviation between the dissipation computed in imbibition and drainage, and550

between these and the dissipation evaluated with Eq. (87), increases. We note that the close551

agreement between the simulated dissipation for imbibition and Eq. (86) is coincidental.552
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C. Interactions between a pair of weak defects: Experimental observation553

Here, we provide an experimental proof-of-concept showing the emergence of dissipation554

in a pair of weak defects as they are brought close to each other. We use 3-D printing to555

manufacture a series of systems (imperfect Hele-Shaw cells), with a single weak defect and556

two pairs of identical defects at two different separation distances. As we cannot measure557

the energy dissipated experimentally, we use the hysteresis cycle as a proxy for reversibility;558

the larger the area within a closed PS cycle is, the larger the dissipation [12]. Details of559

the experiments including the manufacturing, setup and image analysis, are provided in560

Appendix D.561

Our experiments validate the findings we obtained theoretically and numerically: while a562

single regular defect of given geometry (weak) can behave reversibly, showing no hysteresis563

(and thus no dissipation) (Fig. 7a; see also Video S5 in SI), a pair of defects (each of identical564

geometry to the former) close enough together becomes hysteretic (Fig. 7b; Video S6 in SI)565

due to the spatial interactions between the otherwise reversible entities. Decreasing the566

pair separation increases the hysteresis (Fig. 7c; Video S7 in SI). In Fig. 7, we measure the567

maximum deformation ηm along the middle line of the defect, and the baseline position hf568

as the vertical distance between the unperturbed interface (far from the defect) and the569

bottom of the defect, i.e., hf = h0 − yd (see also Fig. 1).570

We note that in these experiments, effects that are not considered in our 2-D linear571

model can be of importance [31]. One such effect is large interface deformation resulting572

in nonlinear curvature, where in our 2-D model we (i) approximate the total curvature as573

the sum of in- and out-of-plane components, and (ii) use a linear approximation for the574

former (vs. the full nonlinear formulation, e.g. see [23]). Further differences between our575

2-D model and the experiments arise from 3-D effects related to (i) the curvature of the576

meniscus between adjacent defects; (ii) the finite width of the meniscus in-plane projection;577

and (iii) thin liquid film advancing ahead of the experimentally-observed 2-D projection of578

the (3-D) meniscus, resulting in an uncertainty in its position, hence ηm > 0 at hf < 0579

in Fig. 7; see further elaboration in Appendix D. These effects preclude a quantitative580

comparison between our theoretical predictions and the experiments, which are presented581

here as proof-of-concept that qualitatively supports our theory.582

Interestingly, we expect the curvature of the meniscus between adjacent defects to lead583
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FIG. 7. Imbibition-drainage cycle for a single regular defect (a) and a pair of regular defects of

width w = 10 mm, with a separation (measured between their centres) d of (b) 13 mm and (c)

11 mm, respectively. For each case, we show the imbibition-drainage trajectories in terms of the

interface deformation ηm vs. its baseline position hf (left panels) and an experimental image of

the interface (right). Here ηm is the distance between the blue dot and the red line. Defects

are highlighted by green rectangles. While the interface moves through a single regular defect

reversibly, i.e. with no hysteresis and therefore no dissipation (a), a pair of such defects close

enough together exhibits hysteresis (b), which increases as their separation distance decreases (c),

confirming our theoretical prediction.

to a very different response of (i) two weak defects of width w in close proximity and (ii)584

a single defect of width 2w. This is because for a very narrow (yet finite) gap between the585

defects (d ≈ w), additional liquid-solid interfaces (of a finite area) are created. This change586

in meniscus configuration is expected to affect the dissipation and hysteresis. In our 2-D587

model, the amount of energy dissipated in these two cases will approach each other (cf.588

Eq. (86)).589
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VI. CONCLUSIONS590

In this paper, we study energy dissipation during quasi-static fluid-fluid displacements591

across an imperfect Hele-Shaw cell (with “defects” i.e. local perturbations in thickness and592

thus capillary pressure pc). To explore the fundamental mechanisms for energy dissipation593

and hysteresis, we consider a simple system comprising of isolated (single) defects of two594

shapes: “regular” with continuous (here linear) variations in pc (in the direction of fluid595

advancement), and “mesa” defects where pc changes abruptly. Depending on the slope of596

pc, the system can be classified as either (i) “weak”, where the interface passage across597

the defect (imbibition and drainage) is fully reversible with no dissipation and hysteresis;598

and (ii) “strong”, with dissipation and hysteresis. We derive analytical expressions for599

the evolution of the fluid-fluid configuration as it deforms when it passes through defects600

and the corresponding energy dissipation, which are validated numerically. The analysis601

exposes subtle morphological differences between imbibition and drainage, originating from602

the differences in wet area when a jump occurs.603

A novel intriguing finding is that irreversible, hysteretic behavior and the associated604

energy dissipation can emerge from the interaction of weak defects—objects which are in-605

trinsically (when isolated) non-dissipative and non-hysteretic. This is demonstrated for a606

simple system: a pair of identical weak defects, varying their separation distance. While far607

enough apart, the pair of defects behaves as weak. Once the defect distance falls below a608

threshold—dictated by surface tension and the system parameters (defect width and slope609

of pc), it becomes strong, producing hysteresis and dissipation. We compute this threshold610

and the energy dissipated analytically, for the approximation of narrow defects (width much611

smaller than the capillary length), and numerically (for arbitrary width) using two methods:612

(i) numerical simulations of the sequence of equilibrium configurations and (ii) numerical613

computation of the equilibrium conditions. A proof-of-concept experiment using 3-D printed614

cells demonstrates the emergence of irreversible, hysteretic behavior due to the interaction615

between non-hysteretic, reversible defects, validating our theoretical findings.616

The cooperative mechanism exposed here is uniquely highlighted by our model. In con-617

trast, classical models for hysteresis such as compartment models [26] rely on the existence of618

a basic hysteretic unit (“hysteron”), and the overall hysteretic response is simply the sum of619

the responses of these units. In the zero-temperature RFIM isolated spin flips are reversible620
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[16], and thus individual spins play a role equivalent to our weak defects. Similarly to the621

present case, hysteresis and dissipation in the RFIM emerge from the collective response622

of the system, in the form of spin-flip avalanches triggered by the local spin-spin interac-623

tions. A crucial difference, however, is that spin-spin interactions in RFIM are present in the624

whole system, and thus irreversible events can occur anywhere. In contrast, the interaction625

between defects in our system is mediated by the two-phase interface, so that irreversible626

jumps and dissipation are localized at the interface. Interestingly, the emergence of hystere-627

sis as a collective response of a system of individually non-hysteretic agents with continuum628

responses, interacting at each step through the memory of the predecessors, was applied to629

explain irreversibility in climate events [32].630

To the best of our knowledge, our model is the first to describe how hysteresis of pressure-631

saturation curves during cyclic flows in disordered media emerges from the interactions632

among defects, in a physical, non-phenomenological manner. Specifically in the context of633

fluid displacement, both (i) the “ink bottle effect”—the canonical conceptual model for the634

pore-scale mechanism underlying pressure-saturation hysteresis [3], as well as (ii) the “Lev-635

erett model”—a compartment model predicting macroscopic hysteresis [26], do not include636

the key concept of spatial distance among the basic units (pores or defects). An oversimplifi-637

cation of the interactions between basic model units is also inherent to the classical capillary638

bundle model used in soil physics to predict the pressure-saturation relationship [33]. We639

argue that the cooperative mechanism unveiled here is the dominant mechanism responsible640

for hysteresis in multiphase fluid systems, noting that other mechanisms such as contact641

angle hysteresis in surface wetting [34, 35], changes in interfacial connectivity (snap-off) and642

fluid trapping [2] also contribute to hysteresis.643

In conclusion, we present a detailed, rigorous investigation of the fundamental process644

of energy dissipation between consecutive metastable configurations in the passage of an645

interface through topographical defects. In the quasi-static limit considered here, viscous646

dissipation due to finite velocity of the interface displacement is disregarded. The sim-647

plicity of this conceptual model allows systematic theoretical examination of the origins of648

energy dissipation and hysteresis. The insights gained here considering individual defects649

are of immediate relevance to disordered media containing multiple interacting defects [12].650

Interesting directions for further studies are the introduction of mechanisms that are not651

considered in the current model system, to gain understanding of two-phase flow in more652
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complex disordered systems such as porous and fractured materials [8]. One is dynamic653

effects associated with viscous dissipation in rate-driven systems and at high flow rates, con-654

necting insights gained from detailed investigation of single isolated defects [23]. Another655

is the nonlinear, 3-D effects that were evident even in the simple experiments presented656

here. Finally, links between our novel modelling approach and the RFIM and other lattice657

models open the way to gain fundamental understanding of how cooperative interactions658

among non-hysteretic, non-dissipative entities could lead to the emergence of hysteresis and659

dissipation in a wide variety of driven disordered systems [36–38].660

Appendix A: Evaluating the critical slope661

Here, we derive the critical pressure slope for a pair of identical defects, from which we662

obtain the result for a single defect by putting the two defects next to each other (equivalent663

to a single defect of twice the width), or infinitely far apart (equivalent to a single defect of664

the same width). To analyze defects of an arbitrary width, we use the original differential665

equation for the interface shape, Eq. (1), instead of the Green’s function-based approach.666

Consider a pair of defects of width w, with distance d between their symmetry axes, as667

introduced in Section V. The capillary pressure profile is given by Eqs. (71), (72) and (23).668

For the interface profile with h0 = yd, if the interface solution crosses the defects entirely669

within the ramp regions, the equation for η(x) = h(x)− yd is670

γη′′ =

(ρge − Π)η, ||x| − d/2| < w/2 (inside the defects),

ρgeη, ||x| − d/2| > w/2 (outside the defects).
(A1)

For Π > ρge the solutions are given by671

η(x) =


C1 cosh(x/`c), |x| < (d− w)/2,

C2 cos[
√

Π/γ − 1/`2
cx] + C3 sin[

√
Π/γ − 1/`2

c |x|], (d− w)/2 < |x| < (d+ w)/2,

C4 exp(−|x|/`c), |x| > (d+ w)/2.

(A2)

The top line in (A2) corresponds to the space between the defects, the middle to the part of672

the interface inside the defects, and the bottom to the outer regions. Matching conditions,673
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requiring that the values of η(x) and its first derivative η′(x) match at |x| = (d− w)/2 and674

|x| = (d + w)/2, provide a system of four linear homogeneous equations for four unknowns675

C1–C4, which has nontrivial solutions when its determinant is zero. Given the parameters676

w, d, `c and γ, this can only be satisfied for a single value of Π = Π
(2)
c . For this value, a677

continuum of nontrivial solutions exist, differing by the value of the prefactor from zero to678

the maximum value for which the solution still crosses the defects entirely within the ramps.679

The interpretation of this result is as follows. (i) For Π < Π
(2)
c , only the trivial solution680

η(x) = 0 of the original equation (1) with h0 = yd exists; as h0 increases, this solution evolves681

continuously, thus, the defect is weak. (ii) As Π increases, the rate of deformation, dηm/dh0682

grows, approaching infinity as Π → Π
(2)
c from below, so that at Π = Π

(2)
c an infinitesimal683

change in h0 gives rise to a finite deformation. This is consistent with the existence of a684

continuum of solutions with h0 = yd at Π = Π
(2)
c . (iii) for Π > Π

(2)
c there are no nontrivial685

solutions that cross the defects within the ramps, but there is one at least partially within686

the plateaus and thus a jump occurs at h0 = yd and the defect is strong. Then Π
(2)
c is the687

critical value separating weak and strong defect pairs.688

By equating the determinant of the above-mentioned system of four equations to zero,689

an equation for Π
(2)
c can be obtained. We define a quantity ζ such that690

Π(2)
c = γ[1/`2

c + (ζ/w)2]. (A3)

Then, the following equation691

tan ζ =
1 + tanh[(d− w)/(2`c)]

(`cζ/w)2 − tanh[(d− w)/(2`c)]

`cζ

w
(A4)

has one solution in the interval 0 < ζ < π, which, generally, needs to be found numerically,692

and then Π
(2)
c is given by Eq. (A3). If Π, w, `c and γ are given, a fully analytical solution693

for the critical value of the distance d is possible.694

Next, we verify that for narrow defects (w/`c � 1), the result of Eq. (76) is recovered.695

Assuming (to be confirmed by the calculation) that w/`c � ζ � 1, we can approximate696

Eq. (A4) as697

ζ = {1 + tanh[d/(2`c)]}
w

`cζ
, (A5)
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the solution of which is698

ζ =

[
w

`c

(
1 + tanh

d

2`c

)]1/2

. (A6)

This indeed satisfies the above inequality for ζ. Then, we write Eq. (A3),699

Π(2)
c = γ

[
1

`2
c

+
1 + tanh(d/2`c)

w`c

]
≈ γ[1 + tanh(d/2`c)]

w`c
, (A7)

which, after a simple transformation, coincides with Eq. (76). On the other hand, for w � `c,700

since ζ is finite, Eq. (A3) gives Π
(2)
c = γ/`2

c for any d.701

Finally, we obtain the critical slope for a single defect by noting that for d = w (two702

defects put together with no gap), we get703

tan ζ =
w

`cζ
. (A8)

This corresponds to a single defect of width 2w; then, for a single defect of width w,704

tanu =
w

2`cu
, (A9)

and705

Π(1)
c = γ[1/`2

c + (2u/w)2]. (A10)

Equation (A9) is a transcendental equation for u that needs to be solved numerically. How-706

ever, a fully analytic solution is possible for the critical value of w given Π, `c and γ. We707

can also check that for two defects very far apart (d − w � `c) this single-defect result is708

recovered. Indeed, in this case Eq. (A4) becomes709

tan ζ =
2`cζ/w

(`cζ/w)2 − 1
=

2(w/`cζ)

1− (w/`cζ)2
. (A11)

Using the trigonometric identity tan 2X = 2 tanX/(1− tan2X), we get710

tan(ζ/2) =
w

`cζ
, (A12)

which coincides with Eq. (A9) if u = ζ/2; Eq. (A10) then coincides with Eq. (A3).711
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Appendix B: Mixed numerical-analytical computation of the interface profile712

Here, we describe the mixed numerical-analytical method we have used to calculate the713

interface configuration h(x), in particular, (i) after the jump during imbibition and (ii) before714

the jump during drainage. As similar approaches have been used for a single and a pair of715

defects, we describe both cases at the same time, indicating differences where applicable.716

We consider capillary pressure profiles given by Eqs. (21)–(23) for a single defect, and717

Eqs. (71), (72), (23) for a pair. Thus, the defect consists of a ramp (slope) of length `s,718

followed by a plateau. We only consider cases where in the range(s) of x where the defect(s)719

is (are) located, the interface is entirely within the defect(s), i.e. for |x| < w/2 (single720

defect) or ||x| − d/2| < w/2 (pair), yd < h(x) < yd + `. The interface then obeys the721

following equation for a single defect,722

γh′′ =


ρge(h− h0), |x| > w/2,

ρge(h− h0)− Π(h−yd), |x| < w/2 and h < yd + `s,

ρge(h− h0)− Π(`s−yd), |x| < w/2 and h > yd + `s

(B1)

and for a defect pair,723

γh′′ =


ρge(h− h0), |x| > (d+ w)/2, |x| < (d− w)/2

ρge(h− h0)− Π(h−yd), ||x| − d/2| < w/2 and h < yd + `s,

ρge(h− h0)− Π(`s−yd), ||x| − d/2| < w/2 and h > yd + `s.

(B2)

In the outer region (|x| > w/2 for a single defect and |x| > (d + w)/2 for a pair), the724

solution is725

h = h0 + ηb exp(−∆x/`c), (B3)

where ∆x = |x| − w/2 for a single defect or ∆x = |x| − (d+ w)/2 for a pair. The constant726

ηb, the value of h at the (outer) boundary of the defect, needs to be found based on the727

requirement that the solution is symmetric, thus, h′(0) = 0, by matching to other parts of728

the solution, as discussed below; the solution for ηb may or may not exist depending on h0729

and the parameters of the defect(s).730

Inside the defect(s) (|x| < w/2 for a single defect or ||x| − d/2| < w/2 for a pair), the731
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solution, in general, consists of pieces of functions that can be found analytically. As the732

matching between these pieces is cumbersome, that part of the solution is obtained here733

by numerical integration. Assuming that h0 and ηb are known, the values of h and its first734

derivative are provided from the outer solution at the x = w/2 [or x = (d+w)/2] boundary735

of the defect, and can serve as the initial conditions for numerical integration. For a single736

defect, integration can be carried out down to x = 0 to find out if the h′(0) = 0 condition737

is satisfied. Thus, we can find ηb by solving the h′(0) = 0 equation using the bisection738

root-finding scheme [39, Chapter 9.1]. For a pair of defects, x = 0 is in the middle between739

the defects; in that region between the defects, the analytical solution with h′(0) = 0 is740

h(x) = h0 + C cosh(x/`c), (B4)

where C is an unknown constant. This gives the condition on the values of h and its first741

derivative on the inner boundary of the defect,742

h′([d− w]/2)

h([d− w]/2)− h0

=
1

`c
tanh

d− w
2`c

. (B5)

By integrating numerically down to (d − w)/2 within the defect, we find if this condition743

is satisfied, which, as before provides an equation for the bisection scheme to find ηb. We744

note that for Π > ρge the solution for |x| < w/2 (or ||x| − d/2| < w/2) can be oscillatory745

and it is possible that several roots ηb and associated solutions exist. However, apart from746

the solution with a single maximum inside (each) defect, these solutions go below yd and as747

such violate the conditions outlined above.748

During imbibition, the interface jump happens once the interface touches the defect.749

Thus, h−imb = yd and h+
imb is the solution of Eq. (B1) or (B2) with h0 = yd. This solution can750

be found as described above. For drainage, the situation is more complicated, because h0 is751

unknown. Its value is a bifurcation point such that for lower values there are no solutions752

crossing the defect. In other words, for lower h0, regardless of the value of ηb, the defect753

will not sufficiently deform the interface. For a single defect this means that the maximum754

possible value of h′(0) is below zero; for a pair, the maximum possible value of the ratio on755

the left-hand side of Eq. (B5) is smaller than its right-hand side. We then carry out a nested756

procedure, where in the inner cycle, for a particular h0 we find the maximum value of h′(0)757
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FIG. 8. Interface profiles before and after jumps for an intermediate-width (w/`c = 2) regular

defect, for different capillary pressure slopes. The ramp part of the defect is shown as gradient

shading and the plateau part in uniform gray. The boundary between these two regions at h/`c = 1

is marked with a green dotted line. Dashed and solid lines represent the undeformed (flat) and

deformed configurations, i.e. before and after the jump in imbibition, and the opposite in drainage.

These results are complementary to those shown in Fig. 3.

(for a single defect) or of the left-hand side of Eq. (B5) (for a pair), using the golden-section758

algorithm [39, Chapter 10.2], and then, via bisection, find the value of h0 for which this759

maximum value is zero (for a single defect) or the right-hand side of Eq. (B5) (for a pair).760

This eventually provides both h−dra and h+
dra (the latter equal to the value of h0 resulting761

from the procedure).762

The above procedure was used to find the interface shapes for narrow and wide single763

defects in Fig. 3. For clarity, we add a similar plot for the general case of a defect of an764

intermediate width (w/`c = 2; Fig. 8). Overall, qualitatively, the results are intermediate765

between the limits of wide and narrow defects. However, notably, for imbibition, while in766

both limits η(0)/`s = Π/Π
(1)
c , here the value of η(0) is slightly higher, thus, the dependence767

of η(0) on the defect width is non-monotonic.768

Once the interface profiles before and after the jump are found, the dissipated energy769

can be calculated using Eqs. (50) and (52), where the integration is carried out numerically770

inside the defect(s) and analytically outside. Note that if one fixes ηb (for imbibition) or771

h0 (for drainage), the corresponding value of d for which Eq. (B5) is satisfied can be found772

directly, avoiding bisection. This can be used to speed up computations when obtaining Ψ773

vs d data (Fig. 6), by varying ηb (or h0) and producing a table of [Ψ, d] values.774
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Appendix C: Numerical details775

For the results shown in Fig. 6 (and Videos S2–S4 in SI), we use the following parameters:776

ge = 0.2 m/s2, ρ = 998 kg/m3, γ = 20.7 mN/m (such that `c ≈ 10.2 mm). The defect width777

is w = 0.8 mm, which means that it is relatively narrow (w/`c ≈ 0.08), and we expect the778

narrow defect theory to yield a good approximation. The defect profile is such that δpc779

changes linearly between zero and ≈7.39 Pa along a slope of length `s = 2 mm. For these780

values, an isolated single defect is weak, as the pressure slope, Π ≈ 3.70 × 103 Pa/m, is781

smaller than the critical value for a single defect, computed using both (i) the narrow-defect782

approximation, with Eq. (34) giving Π
(1)
n ≈ 5.08 × 103 Pa/m; and (ii) the exact arbitrary-783

width result of Appendix A, with Eqs. (A9)–(A10), such that Π
(1)
c ≈ 5.22× 103 Pa/m.784

Appendix D: Experimental details785

An imperfect Hele-Shaw cell was manufactured using stereolithography 3-D printing. The786

cell was produced with three sets of defects: a single defect and two sets of defect pairs with787

varying inter-defect gaps, see Fig. 9 (a). This efficient design allows us to run three separate788

experiments on the same cell in sequence.789790

To experimentally produce variations in the capillary pressure δpc, we introduce modula-791

tions of the Hele-Shaw cell gap space b(x, y) = b0−δb(x, y). This introduces a local variation792

of the out-of-plane capillary pressure pc(x, y) = p0
c + δpc(x, y), where p0

c = 2γ cos(θ)/b0 (θ793

being the contact angle) and δpc = p0
cδb/(b0 − δb) [15]. We design the functional form of794

δb(y) such that the the capillary pressure pc(x, y) within the defect is a linear function of y,795

i.e., δpc(x, y) = Π(y − yd) for yd < y ≤ yd + `s, and δpc(x, y) = Π`s for yd + `s < y < yd + `.796

The length of the sloping part of the defect is `s = 10 mm and `p = ` − `s = 5 mm is797

the length of the constant capillary pressure zone (plateau) after the slope. The defect798

width is w = 10 mm. The value for the pressure slope Π = dpc/dy was chosen through a799

series of experiments as Π = 6 × 103 Pa/m. This value was chosen as it provides interface800

deformations that are large enough to be easily captured by image analysis, while not too801

large to avoid highly nonlinear deformations and snap-off events during drainage. Under802

these conditions, the defect profile is: δb(y) = b0 −
(

Π(y−yd)
2γ

+ 1
b0

)−1

for yd < y ≤ yd + `s,803

and δb(y) = δb(`s) for yd + `s < y < yd + `s + `p (here we made the assumption that the804
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FIG. 9. (a) A 3-D printed including the 3 sets of defects (left), with a typical image of the interface

during an experiment (right), showing the interface deformation due to its interaction with the

top defects (dark green rectangles). Silicone oil enters from the bottom to displace the air initially

filling the cell. The oil-air interface advances (imbibition) and recedes (drainage) in response to an

increase or decrease in the oil pressure at the bottom of the cell, respectively. The cell is tilted by

an angle α = 38◦ with respect to the horizontal. (b) Imbibition-drainage cycle for the single defect.

For each frame analyzed, we track the unperturbed position of the interface far from the defect

hf and the maximum perturbation ηm of the interface with regards to the unperturbed position.

The presented cycle is reversible, namely the defect is weak. In panel (b), the gray shaded area

corresponds to the data shown in Fig. 7 (a), where the arrows point to interesting physical effects

not considered in our theoretical analysis (see text).

liquid perfectly wets the medium, θ ≈ 0◦). The cell’s area is 6 cm × 6 cm, with a depth805

of b0 = 3.6 mm. The non-wetting fluid is ambient air at atmospheric pressure. For wetting806

fluid we used silicone oil, with kinematic viscosity ν = 10 cSt = 10 mm2/s, surface tension807

against air γ = 20 mN/m and density ρ = 0.93 g/mL. Silicone oils are highly wetting;808

to ensure nearly-perfect wetting conditions (a contact angle θ ≈ 0), we pre-wet all solid809

surfaces of the model with the same silicone oil used in the experiment. This is obtained810

by doing an imbibition-drainage cycle in the cell prior to the actual experiment; as the air811

drains the oil, it leaves a thin film of oil on the solid surfaces.812

The experiment is driven by changing the height of a reservoir of silicone oil connected813
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to the inlet (bottom) of the model. As the reservoir height increases by δh, the oil pressure814

at the bottom of the model increases by δp = ρg sin(α)δh thus causing the interface to move815

upwards (imbibe), and vice versa in drainage. A moving average filter is applied to the hf816

and ηm data (in Figs. 7 and 9) to remove spurious high-frequency noise (a consequence of817

image analysis inaccuracies).818

The experiments in Fig. 7 qualitatively demonstrate that (1) the imbibition-drainage cy-819

cle around a single defect can be reversible, thus characterizing a weak defect, and (2) the820

interaction between weak defects can trigger irreversibility (hysteresis). The experiments821

also reveal further intriguing physics not considered in our model. This is evident in the822

reversible case shown in Fig. 9b: Examining the entire curve in Fig. 9b, outside the gray823

shaded area which corresponds to the region in Fig. 7 where potential hysteresis and dis-824

sipation may occur according to our model (see Fig. 2), exposes other interesting features.825

The blue arrow in Fig. 9b points to a perturbation in the curve even before the baseline826

position reaches the defect. This can be explained through the 3-D nature of the liquid-air827

interface. As the silicone oil wets both the top and bottom surfaces of the cell, there is a828

thin film of liquid ahead of the 2-D projected interface. Once this film touches the defect,829

the perturbation starts to grow even before its 2-D projection touches the defect. Similarly,830

the red arrow in Fig. 9b points to a small bump in the drainage cycle, which might be caused831

by pinning of the contact line as it touches the defect in drainage. These 3-D effects are not832

included in our 2-D model. The plateau region included after the sloping part of the defect833

ensures that artifacts such as those related to contact line pinning (red arrow in Fig. 9b)834

occur far from the area of interest in our model (gray shading in Fig. 9b).835
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