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Internal temperature estimation for lithium-ion batteries through 
distributed equivalent circuit network model 

Shen Li a,c,1, Anisha N. Patel a, Cheng Zhang b, Tazdin Amietszajew b, Niall Kirkaldy a,c, 
Gregory J. Offer a,c, Monica Marinescu a,c,* 

a Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, United Kingdom 
b Institute for Clean Growth & Future Mobility, Coventry University, Coventry, CV1 5FB, United Kingdom 
c The Faraday Institution, Harwell Science and Innovation Campus, Didcot, OX11 0RA, United Kingdom   

H I G H L I G H T S  

• Developed 3D distributed electro-thermal model for internal temperature estimation. 
• Model parameterized and validated experimentally for 21700 cylindrical cells LGM50T. 
• Direct core temperature is used for validation of internal cell temperature. 
• Estimation of core temperature based on surface temperature measurement succeeds. 
• Prior methods are inaccurate at high discharge due to high internal thermal gradients.  
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A B S T R A C T   

Lithium-ion cells experience significant internal thermal gradients during operation, with a direct impact on their 
safety, performance, cost and lifetime. The estimation of the internal temperature of cells is therefore particularly 
important. In this work, a 3D distributed electro-thermal model for internal temperature estimation is developed 
for a cylindrical cell (LG M50T, NMC811). The model is parameterized and comprehensively validated against 
experimental data for 21700 cells, including direct core temperature measurements. Multiple types of electrical 
load are considered, including constant current discharge, pulse discharge, drive cycle and instant discharge/ 
charge switching. The developed model is used to estimate core temperature based on surface temperature 
measurement. The predictions are shown to have good accuracy at relatively low computational cost. We show 
that the widely adopted two-node lumped thermal estimation model is increasingly inaccurate for more 
aggressive discharges, when thermal gradients become higher. Compared to the standard two-node model, the 
distributed equivalent circuit network model predicts the effects of detailed internal cell structure (electrode, 
current collector, metal can and tab) and distributed internal heat generation. The results are of immediate 
interest to cell manufacturers and battery pack designers, while the modelling and parameterization framework 
is a useful tool for energy storage systems design.   

1. Introduction 

Energy storage technologies have a significant contribution to 
reaching the global Net-zero emission target [1]. Lithium-ion batteries 
(LIBs) are among the most popular energy storage solutions for mobility, 
power tools and personal devices due to their energy and power den
sities. To further reduce both the economic and environmental costs 

associated with LIBs, there is a strong need to improve the efficiency and 
electrical/thermal performance of LIBs. 

The temperature profile inside cells has a direct effect on the 
discharge capacity performance and battery lifetime for electric vehicle 
(EV) and battery energy storage system (BESS) industry [2–6]. Battery 
safety issues such as thermal runaway can be caused by high internal 
temperatures [7] or penetration [8]. The internal temperature can also 
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be an indicator in early detection of internal short circuits [9]. Thermal 
gradients are easily generated inside LIB and the temperature in
homogeneity can be detrimental to battery health. Experimental studies 
have shown that the thermal gradient inside a pouch cell can accelerate 
the degradation by 3 times [10]. In comparison to pouch cells, cylin
drical cells have a poorer ability to dissipate heat, making thermal 
gradients more probable [11]. Under galvanostatic impedance spec
troscopy with 10C peak to peak current (30C maximum rated discharge 
current for the particular cell used) and convection boundary condi
tions, the temperature difference across the cell surface can become 
higher than 5 ◦C [12]. This indicates that the core of the cell could be at 
significantly different temperatures than a point on the cell surface, and 
that there may be significant temperature gradients within the jellyroll. 
Therefore, estimating internal temperature in real-time during opera
tion adds significant value to improving performance, lifetime and 
safety in battery systems. 

Surface temperature can be directly measured relatively easily, 
however, it is far less practical to insert a temperature sensor inside a cell 
for commercial purposes. Although an in-cell thermocouple technique 
[13] has proven useful for research purposes, it is still not suitable for 
massive battery production, due to chemical stability of the thermo
couple and the added cost. Distributed thermal models have been 
developed to simulate and predict the battery’s internal temperature 
distribution, but this prognostic method type suffers from error accu
mulation, especially during long-time simulation. Data-driven method 
has proven successful for battery internal temperature estimation with 
high accuracy [14], however, its significant drawback is the extremely 
large amount of training data required. 

The virtual thermal sensor (VTS) method has proven useful in 
detecting the real-time internal temperature [15–18]. Variations of 
Kalman Filters (KF) were implemented within the thermal model to 
perform internal temperature estimation. There are majorly three cat
egories of VTS temperature estimation methods, differentiated by the 
type of model they are based on: two/three-node thermal model, 
reduced-order model and fundamental continuum model. The two-node 
model for cylindrical cell [16] and prismatic cell [17] were proposed for 
internal temperature estimation. Only two nodes are placed along the 
electrode thickness direction. These two-node thermal models have low 
computational cost but limited accuracy, so that the C rate is restricted 
to below 1C, if the model predictions are to be trusted. The accuracy of 
the two-node thermal model was improved by considering 
electrical-thermal coupling [15,18], but still the models were limited to 
mild electrical loads only. In the second VTS category, the reduced-order 
thermal model has proven effective in the estimation of 
volume-averaged temperature and temperature differences within the 
cell [19]. Core temperature can be estimated based on straightforward 
impedance measurement [20]. However, these efficient reduced-order 
modelling approaches are limited to mild discharge current conditions 
and 2D simplification. The latter constraint renders these methods un
suitable for realistic, application-relevant thermal boundary conditions, 
such as side and bottom cooling. In the third VTS category, temperature 
estimation is performed on physics-based continuum models [21]. The 
bulk cell average temperature is successfully estimated by applying 
Extended Kalman Filter (EKF) on a lumped electrochemical-thermal 
model [21]. However, such continuum models are not suitable for 
spatially-distributed temperature estimation due to their relatively high 
computational cost [17]. Until now, there has been a lack of tools for 
efficient estimation of the internal temperature distribution under a 
wide range of electrical loads and application-relevant thermal bound
ary conditions. 

Here we introduce an innovative internal temperature estimation 
tool with practical computational cost and accuracy, valid under a wide 
range of electrical loads for application: e.g., under the aggressive 2C 
constant current discharge, the core temperature and voltage are esti
mated with a root-mean-square error (RMSE) of 0.89 ◦C and 11.13 mV. 
The efficiency of the tool is enabled by inheriting the efficiency 

properties from the improved equivalent circuit network (ECN) frame
work [22]. The equivalent circuit network (ECN) [23–26] was widely 
used for modelling internal temperature gradients owing to its relative 
ease of parametrization and low computational cost. Recently, the 
improved ECN framework [22] was created for cylindrical cells and has 
proven effective in capturing flexible thermal boundary conditions and 
thermal effects due its detailed account of the cell’s internal structure 
(tab location, jellyroll, metal can, etc.). In the current work, an internal 
temperature estimation tool using the ECN framework is proposed and 
validated against experimental data from instrumented cylindrical cells 
with inserted thermocouples. 

The rest of the paper is organized as follows: Section 2 presents the 
internal temperature estimation model. Section 3 describes the in-cell 
thermocouple instrumentation and experimental setup for model 
parametrization and model validation. Section 4 presents the validation 
of thermal estimation under a wide range of application scenarios, 
including constant current discharge, pulse discharge, drive cycle and 
discharge/charge instant switching. The established estimation model is 
compared with a conventional two-node thermal estimation model. 

2. Model description 

2.1. Distributed Equivalent Circuit Network (dECN) model 

The cell-level distributed model is composed of coupled electrical 
and thermal domains and is implemented using an ECN framework [22]. 
Given the initial conditions and boundary conditions, it creates a tem
poral and spatial description of various quantities of interest such as the 
current density and temperature within the cylindrical cell geometry. 

Fig. 1(a) shows a schematic description of the dECN model for cy
lindrical cell. A cylindrical jellyroll consisting of interleaved realistic 
arrangements of electrodes and separators forms the computational 
domain, and is encapsulated by elements representing the thermal 
properties of the metal can. The connections to the external current- 
conducting tabs are also included. It was found that the jellyroll core 
area is mostly filled with separator for LG M50T cell [22], which is re
flected by the core area elements in the model. The geometry of the 
computational domain is such that the angular direction of the jellyroll 
corresponds to the x axis in the proposed co-ordinate system and is 
represented by the Archimedes spiral equation. The axial and radial 
directions of the jellyroll correspond to the y and z axes, respectively. 
The computational domain is discretized into multiple elements, 
wherein within each element, all the constituent components (anodes, 
cathodes, separators and the two current collectors) are arranged in a 
stacked configuration. Each distributed element is described by an 
elementary ECN, which captures the electrical and thermal behavior 
within that element. The coupling between the electrical and thermal 
model is as follows: for current collectors, the irreversible heat genera
tion caused by their electrical resistance contributes to the heat source in 
the thermal model; for electrodes, both irreversible heat generation by 
electrical resistance and reversible heat generation by entropy 
contribute to the heat source. 

The fundamental heat transfer equations [27] are modified for the 
electrode, separator and current collector materials given by: 

ρc
∂T
∂t

=∇⋅(λ∇T) + q = λx
∂2T
∂x2 + λy

∂2T
∂y2 + λz

∂2T
∂z2 + q, (1)  

where ρ, c, λ are the specific mass density, specific heat capacity, heat 
transfer coefficient with values for all materials given in Table I. T is the 
temperature of the material. λx, λy and λz are the heat transfer co
efficients in the three directions, and q is the heat source. 

The finite difference method is adopted to discretize the heat transfer 
equation i.e., Eq. (1). The discretized equation under the Crank-Nicolson 
(CN) method is given by: 
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A ⋅ Tk = B⋅Tk− 1 + uk− 1, (2)  

where Tk is the calculated temperature for each node at time step k and 
Tk− 1 is the node temperature calculated at the last time step. uk− 1 is the 
vector containing the heat generated within one time-step. A and B are 
the thermal conductivity matrices generated by the finite difference 
discretization in implicit CN method. 

In the model presented here, a distributed model of 1020 electrical/ 
thermal ECN elements is used. The number of elements is decided by the 
minimum value that still passes the convergence check. The elements 
are distributed in configuration of 4 elements along the angular direc
tion (x axis), 15 elements along axial direction (y axis) and 19 elements 
(1 for the hollow separator area, 17 for the electrodes and 1 for the metal 
can) along the radial direction (z axis), as shown in Fig. 1(a). 

The dECN model assumptions are listed below. For the electrical 
model, the voltage response is represented by an equivalent circuit 
model of one series resistance and three RC pairs for each ECN element. 
For the thermal model, the heat transfer processes inside the jellyroll 

and between jellyroll and metal can are assumed to follow Fourier’s law. 
Perfect interfacial thermal connection between current collector and 
electrodes is assumed. Advection and radiation heat transfer are 
ignored. 

In comparison to the fundamental battery modelling approaches [29, 
30], dECN is an empirical model that captures the voltage, current and 
heat generation with 3D spatial resolution. The high accuracy of the ECN 
model for the same cell (LG M50T) has been confirmed in our previous 
work [22]. The dECN model does not directly model the complex elec
trochemical processes such as lithium diffusion, charge transfer and 
chemical reactions. Therefore, dECN is a lightweight model suitable for 
real-time core temperature estimation. The model, however, can be 
easily modified to reflect other cylindrical cell geometries and other cell 
form factors, e.g., the dECN model was modified for a 4680 tabless cell 
[31], and validated for a pouch cell [32] and a prismatic cell [33]. 

2.2. Kalman Filter for temperature estimation 

The temperature estimation was performed by the implementation of 
a Kalman Filter (KF) algorithm [34] for internal temperature estimation 
in conjunction with the dECN model described in Section 2.1, for which 
the thermal model is converted to state-space representation. The tem
peratures of all nodes are chosen as the states to be estimated. In the 
process model, the predicted state estimate x̂k is given as: 

x̂k = Fxk− 1 + uk− 1 + wk− 1, (3)  

where F is the state transition matrix. Following Eq. (2), the state 
transition matrix here is calculated as: 

F=A− 1B. (4)  

xk− 1 is the previous state vector, here the given temperature of all nodes 

Fig. 1. Schematic representation of the cell-level model. (a) Cylindrical cell geometry containing jellyroll, tab and can. The electrical/thermal model element 
containing electrode and current collector components is magnified. (b) Cross section representation of the internal structure of the cylindrical cell. The temperature 
locations for core temperature Tcore, side surface temperature Tsurface and positive tab temperature Ttop are indicated. 

Table 1 
Thickness and thermal properties of cell components [23,28].  

Component Thickness 
(μm) 

Thermal 
conductivity 
λ (W⋅m− 1⋅K− 1) 

Heat capacity c 
(J⋅kg− 1⋅K− 1) 

Mass 
density 
ρ 
(kg⋅m− 3) 

Aluminum 
foil 

16.33 238.00 903.00 2702.00 

Copper foil 27.00 398.00 385.00 8933.00 
Anode 86.15 1.58 1437.00 1555.00 
Cathode 77.03 1.04 1270.00 2895.00 
Separator 14.00 0.34 1978.00 1017.00 
Can 160.00 238.00 903.00 2702.00  
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at the previous time step, i.e., xk− 1 =
[
T1,T2,…TN]T

k− 1. uk− 1 is the 
control vector, which contains the heat generation and applied thermal 
boundary condition. wk− 1 is the applied process noise vector that is 
assumed to follow zero-mean Gaussian distribution with covariance Q. 

For the measurement model, the relationship between the state and 
measurement is given as: 

zk =Hxk + νk, (5)  

where zk is the measurement vector. For example, in Fig. 1(b)–if the 
internal temperature Tcore in the cell core and the side surface temper
ature Tsurface are measured in the experiments, then the measurement 

vector is zk =
[
Tcore,Tsurface

]T . H is the measurement matrix and is 
calculated as: 

H=
∂zk

∂xk
. (6)  

νk is the measurement temperature noise that is assumed to follow zero- 
mean Gaussian distribution with covariance R. 

The prediction and update procedures are described as follows. The 
predicted error covariance Pk for the new time step is given as: 

Pk = FPk− 1FT + Q. (7)  

The measurement residual yk at the new time step k is the difference 
between the measurement value and the predicted value: 

yk = zk − Hx̂k. (8)  

The Kalman gain Kk at the new time step is calculated by the predicted 
error covariance Pk and measurement matrix H as: 

Kk =PkHT ( R + HPkHT)− 1
. (9)  

With the KF gain and predicted value, the estimated state (corrected 
temperature) is updated as: 

x̂k = x̂k + Kkyk. (10)  

Finally the error covariance is updated by: 

Pk =(I − KkH)Pk− 1. (11)  

3. Experimental 

Experiments were performed on LG M50T (LG INR21700-M50T) 
cylindrical lithium-ion cells. These cells utilise a SiOx-doped graphite 
negative electrode alongside a LiNi0.8Mn0.1Co0.1O2 (NMC 811) positive 
electrode, with a nominal capacity of 18.2 Wh (5 Ah). Cells were stored 
at 10 ◦C when not in use. All electrochemical experiments were per
formed on 3 separate cells simultaneously under the same conditions. 

3.1. Cell instrumentation with in-cell thermocouple 

Internal cell temperature measurements were made possible by 
inserting K-type thermocouples into the cell core. The thermocouples 
were coated in micron-thin conformal layer of chemically neutral 
polymer prior to insertion, to prevent corrosion and to avoid interfer
ence with the cell chemistry. The measurements obtained are repre
sentative of the temperature at the central axis mid-height of the 
jellyroll. Measurements were also taken by thermocouples attached to 
the surface of the cell, as shown in Fig. 2. 

Before instrumentation, fresh cells were discharged to their mini
mum operating voltage and transferred to an argon-filled glovebox with 
O2 and H20 traces below 1 ppm. The cells were opened at the positive/ 
cathode cap. Any interference with the cell structure can affect the cell 
performance. To avoid this, the thermocouple was located in the space 
in the core of the cell, a space free of electrodes and current collectors 
left by the manufacturing process of creating the jellyroll. The instru
mentation methodology was designed in such a way so as to least 
interfere with the current path (i.e. current collectors, tabs, weld point 
and connector points), as schematically shown in Fig. 2(a). The cells 
were re-sealed after sensor insertion. The impact of this cell modification 
on the cell performance has been evaluated previously and found 
negligible [35]. More details on the cell modification procedure are 
available in Fleming et al. [35] and Li et al. [22]. 

Fig. 2(b) shows an example of a modified cell used in this study. The 
electrochemical performance of the instrumented cells was compared to 
that of the fresh cell for a 0.3C constant current discharge at 25 ◦C in a 
thermal chamber. The corresponding terminal voltages of the three 
modified cells and the unaltered cell are shown in Fig. 2(c). The capacity 
of the modified cell appears slightly higher than that of the unaltered 
cell, possibly due to degassing [36]. 

3.2. Parametrization of the electrical network model 

The experimental data used for model parameterization/validation 
in this study was limited to discharge loads. Prior to any discharge 
experiment, the cells were first charged to 100 % SoC using the standard 
charging procedure outlined in the cell specification sheet. This con
sisted of a constant current (CC) charge at a C-rate (current divided by 
nominal capacity) of 0.3C (1.5 A) until the upper voltage limit of 4.2 V 
was reached, with a subsequent constant voltage (CV) charge at 4.2 V 
until the current dropped below 0.01C (50 mA). This standard charge 
was always performed at a temperature of 25 ◦C in a thermal chamber 
for both parameterization tests here and validation tests in the next 
section. The cell was then rested for 2 h at 25 ◦C under open circuit 
conditions to allow the open circuit voltage (OCV) to equilibrate. We 
used this starting point to define 100 % SoC for subsequent discharge 
experiments, thus ensuring a consistent starting point between tests. 

Fig. 2. In-cell thermocouple instrumentation. (a) Schematic concept of the sensor insertion (Reproduced from Ref. [22]). (b) Cylindrical LG M50T cell with inserted 
thermal probe for core temperature monitoring. (c) Terminal voltage during a 0.3C constant current discharge at 25 ◦C in a thermal chamber. 
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After performing this standard charge at 25 ◦C, the temperature of the 
thermal chamber was adjusted to the set-point required for the subse
quent discharge experiment, and the cell was held under open circuit 
conditions until thermal equilibrium under the new ambient tempera
ture was reached. 

The values for the circuit components of the electrical model (re
sistances and capacitances) are formulated as lookup tables. They are 
obtained via the experimental parameterization procedure described in 
this section, from pulse discharge tests. All the test data used for model 
parameterization is shown in the Supplementary material A, along with 
the details of the parameter identification procedure and mathematical 
equations used. 

From pseudo-OCV data for this cell recorded at a discharge current of 
0.01C at 25 ◦C, a voltage vs SoC curve was produced. This data was then 
used to tailor a set of pulsed discharge, i.e., Galvanostatic Intermittent 
Titration Technique (GITT) experiment for this specific cell. Varying the 
charge passed in each current pulse enabled a high density of data points 
(every 1 % SoC) in areas of high rapid change of the pseudo-OCV vs SoC 
curve, and a lower density of points (every 4–6% SoC) in areas where a 
relatively linear relationship between pseudo-OCV and SoC was 
observed. This approach optimized the resolution of data points across 
the SoC range, whilst keeping the test duration manageable. The current 
during discharge pulses was 1C (5 A). The low voltage cut-off was 2.5 V 
as specified in the cell datasheet. Due to the slower relaxation of the cell 
at lower SoC values, the rest periods between current pulses were 
extended for the lower SoC regions. This pulsed-current experiment was 
performed at 5 different temperatures (15 ◦C, 25 ◦C, 35 ◦C, 45 ◦C, and 
55 ◦C) in a thermal chamber. 

In addition to the 1C pulse test, the batteries were also tested using 
2C pulses, starting from 100 % SoC until end of discharge, defined by the 
cell reaching 2.5 V. A rest period of 1 h was used between pulses. Two 
tests were conducted, each with a different pulse width, i.e., corre
sponding to 4 % SoC and 20 % SoC. These 2C pulse tests were repeated at 
3 different temperatures (25 ◦C, 35 ◦C, and 45 ◦C) in a thermal chamber. 

Further, the batteries were also tested under CC discharge at 1C and 
2C, from 100 % SoC until the terminal voltage reached 2.5 V. These CC 
tests were conducted at 3 different temperatures (25 ◦C, 35 ◦C, and 
45 ◦C) in a Binder thermal chamber. 

The novel features of the proposed parameter identification algo
rithm are summarized as follows. First, both pulse discharge tests and CC 
discharge test data were used for identifying the values of the electrical 
circuit components, which increases model accuracy under a wide range 
of load conditions [37]. Second, the nonlinear and linear model pa
rameters are optimized separately. This reduces the optimization 
complexity and ensures the global optimum of the linear parameters. 
Third, all the resistor parameters for the full SoC operating range and the 
5 temperature levels and 2 C-rate levels (i.e., 1C and 2C) are 

simultaneously identified, and constraints imposed on parameter values 
are used to ensure their smooth transitions across the full temperature 
range, i.e., the resistance value increases smoothly as the temperature 
drops. The Root Mean Square Error (RMSE) of the parameterization is 
11.7 mV over the whole GITT parametrization process. 

3.3. Cell validation testing 

Instrumented cells were tested in a Binder thermal chamber that 
maintains the ambient air at the set temperature of 25 ◦C. Cells were 
electrically connected by welding nickel tabs to the positive and nega
tive terminals then clamping the tabs down to a Perspex plate using 
brass busbars to which current and sense pins can be inserted. Seven K- 
type thermocouples were used to measure the temperature gradients 
with accuracy of ca. ±0.5 ◦C by positioning them as shown in Fig. 3 
using Kapton tape. One K-type thermocouple was positioned above the 
cells to measure the ambient air temperature. Temperature measure
ments were recorded using a Pico TC-08 data logger (sampling fre
quency of 0.2 Hz). Measurements from the in-cell thermocouple was 
recorded by the Biologic (BCS-815) battery tester and used as a safety 
control. 

Each set of experiments was carried out on three instrumented cells. 
Preconditioning tests were also carried out on one unmodified cell from 
the same manufacturing batch as the instrumented cells for a perfor
mance check. 

Tests were initiated with preconditioning cycles by charging and 
discharging under constant current, constant voltage (CC-CV) control at 
a C-rate of 0.2C between the voltage limits of 4.2 V and 2.5 V. Cells then 
underwent a series of validation tests as detailed below. The following 
load scenarios were performed:  

• Constant current discharge tests at both 1C and 2C until the lower 
voltage limit was reached.  

• Pulsed discharge tests were performed at 2C, with 5 current pulses 
each passing 1000 mA h of charge until the lower voltage limit was 
reached. The cell was rested for 1 h between each pulse.  

• A drive cycle based on the Worldwide Harmonised Light Vehicle Test 
Procedure (WLTP) [38] was applied to the cells. This procedure was 
scaled into a C-rate vs time profile with a maximum charging C-rate 
of 0.5C. The procedure was repeated until the lower voltage limit of 
2.5 V was reached.  

• Discharge/charge switching condition. Finally, discharge-charge 
swapping tests at 1C were performed. The cell was discharged 
from 100 % SoC down to 10 % SoC, charged up to 90 % SoC, dis
charged down to 10 % SoC, and finally charged up to near 30 % SoC. 
There is no rest during the test. The voltage limits (as stated above) as 
well as Coulomb counted capacity limits on discharge (initial >4500 

Fig. 3. Schematic of the experimental setup.  
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mA h, subsequent cycles >4000 mA h) and each charge step (<4000 
mA h) were applied as additional criteria for ending the charge and 
discharge. 

4. Results and discussion 

4.1. Model validation 

The distributed electro-thermal model was validated against 
different discharge/charge scenarios: constant current discharge, drive 
cycle, pulse discharge and current switching. These scenarios were 
designed to cover a wide range of the working conditions for the cell in 
the engineering application. For those validation experiments, the 
instrumented cell with internal thermocouple was used. In the simula
tion setup, convective boundary condition of h = 30 W/

(
m2K

)
(typical 

values range in-between 0 – 60 W/
(
m2K

)
under forced air convection 

condition [27]) is applied on side surface with the ambient temperature 
of 25 ◦C. The positive and negative tab (top and base of the cell) 

temperature is set as Dirichlet boundary condition, i.e., the experi
mentally measured temperature at welding nickel tabs (position B and G 
in Fig. 3) is set as the temperature in the model. Here the tab tempera
ture measurement is used only for the purpose of correction, to account 
for the small heat loss through welding nickel tabs. The tab temperature 
measurement is not necessary in real application when heat loss through 
the cell connection is mostly negligible. 

4.1.1. Constant current discharges 
The 1C (5 A) and 2C (10 A) currents were used for the constant 

current discharge scenarios. The 2C discharge corresponds to the 
maximum C rate allowed according to the specification sheet of the LG 
M50T cell, and thus forms an extreme condition test while within 
permissible boundaries of operation. Fig. 4(a, c and e) show model 
predictions and experimental results for the 1C discharge. In Fig. 4(a), 
during the 1C discharge process, the simulated terminal voltage (orange 
dotted curve) matches the experimental results (grey solid curve) with 
an RMSE of 14.32 mV. The cell SoC (blue dash-dotted curve) decreases 

Fig. 4. Model validation: experimental and simulation results for 1C and 2C constant current discharges. Terminal voltage and corresponding SoC (as calculated by 
Coulomb counting) for (a) 1C and (b) 2C discharge. Temperature at different locations within the cell: core, side surface at middle height and positive tab for (c) 1C 
and (d) 2C discharge. Model-predicted temperature distribution throughout the cell at the end of the (e) 1C and (f) 2C discharge. The experimental tests were 
repeated twice on two instrumented cells and the experimental measurements are highly reproducible. For visual simplicity, only the first test result is shown in 
(a–d). The difference between experimental measurements and simulation is RMSE of 7.73 mV, 0.66 ◦C and 0.3 ◦C for the terminal voltage, core and surface 
temperature of 1C discharge in (a) and (c), RMSE of 11.13 mV, 0.89 ◦C and 0.66 ◦C for the terminal voltage, core and surface temperature of 2C discharge in (b) 
and (d). 
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from 100 % down to close to 0 % (Coulomb counted) as the cut-off 
voltage of 2.5 V is reached earlier than 0 % SoC. Fig. 4(c) shows the 
model-predicted core temperature (red dotted curve) and the experi
mentally measured internal temperature (red solid curve), as detected 
by the in-cell thermocouple. The simulated surface temperature (green 
dotted curve) and measured surface temperature (green solid curve) are 
shown in Fig. 4(c). The measured positive tab temperature (black solid 
curve) is set as the known temperature boundary condition in the 
simulation (black dotted curve), and thus the model predictions are 
overlapping with the data in Fig. 4(c). It is seen that the modelling re
sults closely track the measured values for both core and surface tem
peratures. The RMSEs between the predicted and the experimentally 
measured values are 0.25 ◦C and 0.35 ◦C for core temperature and 
surface temperature, respectively. Fig. 4(e) shows the predicted tem
perature distribution at the end of discharge. The internal thermal 
gradient is significant in this 1C discharge process, as the temperature 
difference between the core and the surface reaches 4 ◦C at the end of 
discharge. Temperature differences of this magnitude were 

experimentally shown to significantly accelerate the rate of degradation 
a cycling test [10]. 

Fig. 4(b, d and f) show model predictions and experimental results 
for the 2C discharge. In Fig. 4(b) the model-predicted terminal voltage 
matches the measured value with an RMSE of 48.13 mV. As shown in 
Fig. 4(d), the measured core temperature (red dotted curve) is predicted 
by the simulated core temperature (red solid curve) with an RMSE of 
0.79 ◦C. The measured surface temperature (green dotted curve) is also 
close to the simulated surface temperature (green solid curve) with an 
RMSE of 0.58 ◦C. The model-predicted internal temperature distribution 
is shown in Fig. 4(f). The temperature difference between the core and 
surface reaches 13 ◦C. The large thermal gradient along the radial di
rection of the cell can be explained by considering the equivalent ther
mal conductivities of the cell in the radial vs the axial directions: 1.17 W 
m− 1K− 1 (along radial direction) vs. 37.91 W m− 1K− 1 (along axial di
rection), as calculated in the previous work [22]. 

Fig. 5. Model validation: experimental and simulation results for different current profiles: pulse discharge, drive cycle and current-switching. (a) Terminal voltage 
and (b) temperature for pulse discharge at 2C. (c) Terminal voltage and (d) temperature for drive cycle load. (e) Terminal voltage and (f) temperature for discharge- 
charge current switching load. The experimental tests were repeated twice on two instrumented cells and the experimental measurements are highly reproducible. 
For visual simplicity, only the first test result is shown in (a–f). The difference between experimental measurements and simulation is RMSE of 8.30 mV, 0.57 ◦C and 
0.51 ◦C for the terminal voltage, core and surface temperature of pulse discharge in (a) and (b), RMSE of 1.93 mV, 0.45 ◦C and 1.20 ◦C for the terminal voltage, core 
and surface temperature of drive cycle load in (c) and (d), RMSE of 18.53 mV, 0.72 ◦C and 0.39 ◦C for the terminal voltage, core and surface temperature of drive 
cycle load in (e) and (f). 
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4.1.2. Pulse discharge 
In the pulse discharge experimental test, the cell was discharged at 

2C from 100 % SoC to 0 % SoC in 5 discharge/relaxation periods. As 
shown in Fig. 5(a), the model-predicted terminal voltage matches the 
experimental results with an RMSE of 28.60 mV. The thermal gradient, 
taken as the difference between the experimentally measured core and 
surface temperatures reaches its highest value (approximately 2.5 ◦C) at 
the end of each discharge pulse, as seen in Fig. 5(b). The model- 
predicted temperature agrees with the experimental results with 
RMSE of 0.52 ◦C and 0.99 ◦C for core and surface temperatures, 
respectively. 

4.1.3. Drive cycle 
The drive cycle scenario resembles more closely common practical 

use of a cell, compared to full constant current discharges. The noisy 
current load contains both discharge current and charge current, with a 
range between − 0.4C (for charge) and 3C (for discharge). Fig. 5(c) 
shows the terminal voltage results. The model-predicted terminal 
voltage matches the measured value with an RMSE of 26.79 mV. The 
temperature results are shown in Fig. 5(d). The simulated temperature 
matches the experimentally measured temperature with RMSE of 
0.20 ◦C for core temperature and RMSE of 0.20 ◦C for surface 
temperature. 

4.1.4. Current switching 
The rapid switching between charging and discharging modes for the 

cell is common during the practical use. Here the dECN model is vali
dated in this extreme condition as an assessment of model capability. 
The cell SoC curve (blue dash-dotted curve) is W-shaped as shown in 
Fig. 5(e). The predicted terminal voltage results (orange dotted curve) 
against the experimental results (grey solid curve) are shown in Fig. 5 
(e). The RMSE between the modelled voltage and measurement value is 
39.12 mV. Fig. 5(f) shows the thermal model validation results. Again, 
the simulated core temperature (red dotted curve) and surface temper
ature (green dotted curve) match the measurement values (red solid 
curve for core temperature, green solid curve for surface temperature) 
well, with an RMSE of 0.58 ◦C and 0.74 ◦C for core and surface tem
peratures, respectively. The larger model error during charge is prob
ably due to the fact that the electrical parameters in the ECN are 
obtained from discharge conditions. 

4.2. Internal temperature estimation 

In this section, the internal temperature for the LG M50T cylindrical 
cell was estimated by using the ECN model validated in Section 4.1, 
coupled with a Kalman filter algorithm. During the operation of the cell, 
the internal temperature of the cell core is usually unknown while the 
surface temperature can be monitored relatively easily. Through the 
Kalman filter, the temperature experimentally measured by the ther
mocouple placed on the cell surface mid-height is used as feedback to 
correct all internal temperature estimations, and in particular the core 
temperature. The core temperature measured by the inserted thermo
couple is used to evaluate the accuracy of the temperature estimation. 

Firstly, the internal temperature was estimated for passive condi
tions: zero current load and thus zero heat generation in the model. In 
the experiments, the instrumented cells with internal thermocouples 
were subjected to rapid temperature changes between 25 ◦C and 45 ◦C. 
The cells were submerged in a vat of thermally conductive, electrically 
insulating base oil (Etro 4+). The experiments were repeated twice. The 
measured core temperature is shown in Fig. 6(a–c) (solid black line). As 
shown in Fig. 6(a), the estimated core temperatures are successfully 
corrected to the experimentally measured values, for all initial guesses 
(0 ◦C, 10 ◦C and 30 ◦C). The ultimate core temperature estimation is 
independent of the initial temperature guess. 

For cells within a battery system in a real application, measurement 
error of the surface thermocouple may be inevitable. The robustness of 

the temperature estimation method with respect to this error is evalu
ated by introducing random measurement noise, with normal distribu
tion N

(
μ,σ2). A disturbance noise error with mean μ = 0◦C and standard 

deviation σ = 5◦C is added to the measured surface temperature as 
measurement input (light grey line in Fig. 6(b)). The estimated core 
temperature (grey dotted line in Fig. 6(b)) converges to the correct value 
(black solid curve in Fig. 6(b)). Another test of shift error (mean μ =

2◦C, standard deviation σ = 0 ◦C) was performed, which also found the 
estimation is effective (Fig. 6(c)). The established estimation method is 
effective when the measurement error exists. 

Secondly, temperature estimation was performed under electrical 
loads. In the 1C (5 A) constant current discharge tests, the initial tem
perature guess was set as 0 ◦C. As seen in Fig. 7(a)–as discharge 

Fig. 6. Temperature estimation results for the check of robustness against er
rors of the input surface temperature measurement. (a) Estimation results for 
different initial guesses of the core temperature: 0 ◦C, 10 ◦C and 30 ◦C. Esti
mation results with measurement input noise error N(μ,σ): (b) disturbance error 
case with μ = 0 ◦C, σ = 5 ◦C and (c) shift error case with μ = 2 ◦C, σ = 0 ◦C. The 
core temperature measurement tests were repeated twice with RMSE of 0.15 ◦C. 
The experimental tests were repeated twice on two instrumented cells and the 
measurements are highly reproducible. For visual simplicity, only the first test 
result is shown. 
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progresses, the core temperature is corrected to the measured core 
temperature, respectively. After 600 s of discharge, the estimated core 
temperature tracks the experimental core temperature with an RMSE of 
0.5 ◦C. Fig. 7(b) shows the model-predicted terminal voltage during the 
1C discharge is close to the measured value. The inset in Fig. 7(b) shows 
the terminal voltage at the beginning of discharge, where there is a 
higher mismatch between the simulated and the measured values. This 
mismatch is the effect of the incorrect initial temperature guess of 0 ◦C, a 
much lower value than the real temperature, and leading to significantly 
higher internal resistances predicted in the model compared to in the 
experiment. The experimental data used here is the same as that used in 
Fig. 4(a, c). 

Thirdly, the internal temperature was estimated under a wider va
riety of electrical loads: 2C (10 A) constant current discharge, pulse 
discharge, drive cycle and current-switching scenarios. The measured 
surface temperature and core temperature data for the internal tem
perature estimation are the same as displayed in Figs. 4(d) and Fig. 5(b, 
d and f) for those scenarios, respectively. The internal temperature 
estimation results are shown in Fig. 7(c–f). The initial temperature guess 
is set to 0 ◦C in all four load scenarios. The estimated core temperature 
converges to the measured core temperature, within the first 600 s of the 
estimation process. Therefore, the established thermal estimation model 
can perform hotspot detection with high precision under a wide range of 

electrical loads. 
It is worth noting that the model validation and internal temperature 

estimation were performed based on model parametrization with 
beginning-of-life (BoL) experimental data. As a cell degrades, the dECN 
model would need to be updated to reflect the new states, such as 
increased resistance and decreased OCV capacity. While this is feasible, 
it falls out of the scope of this work. 

4.3. Estimation from a two-node model 

Two-node models [17,18] are frequently adopted for temperature 
estimation due to their low computational cost. However, the accuracy 
of these models cannot be guaranteed since those models are based on 
simple assumptions. In this section, the capability of the thermal esti
mation model proposed is compared with the two-node thermal esti
mation model [15] that is among the most advanced ones with 
electro-thermal coupling. 

A two-node electro-thermal model of the LG M50T cylindrical cell is 
established by simplifying the dECN model along the radial direction. As 
shown in Fig. 8(a), in this simplified model there are only three nodes 
along the radial direction (one for the hollow core surrounded by 
separator, one for the electrode jellyroll and one for the metal can, 
respectively). For comparison, the fully discretized model validated in 

Fig. 7. Temperature estimation results for different current loads: (a) temperature and (b) terminal voltage for the 1C constant current discharge, with inset for the 
beginning of discharge. Temperature results for: (c) 2C constant current discharge, (d) pulse discharge, (e) drive cycle and (f) current-switching load. The experi
mental tests were repeated twice on two instrumented cells and the measurements are highly reproducible. For visual simplicity, only the first test result is shown. 
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Section 4.1 and used here in Section 4.3 includes 19 nodes along the 
radial direction. 

Experimental voltage and temperature data from the 1C (5 A) con
stant current discharge (Fig. 4(a) and (c)) were used for validation of the 
two-node model. As shown in Fig. 8(b), the simulated terminal voltage is 
in good agreement with the experimentally measured voltage, with an 
RMSE of 10.09 mV. However, as shown in Fig. 8(c), the model-predicted 
temperatures deviate from the experimental temperatures significantly, 
with maximum errors at the end of discharge of 4.65 ◦C and 2.34 ◦C for 
the core and surface temperature, respectively. Using the same electrical 
and thermal parameters, it is clearly visible that the two-node model 
cannot capture the thermal behaviours in this 1C discharge test. The 
two-node model cannot capture the temperature inhomogeneity along 
the radial direction. Temperature estimation with the initial tempera
ture guess of 0 ◦C was performed using the two-node model. As shown in 
Fig. 8(d), the core temperature estimation is unsuccessful - the estimated 
temperature does not converge to the experimentally measured value. 

4.4. Open loop thermal estimation 

In applications where battery packs are used, it is usually the case 

that only a limited number of cells, if any, have surface temperature 
sensing. The robustness and accuracy of the established temperature 
estimation model is studied for such cases in open loop, i.e., without 
surface temperature measurement input to the Kalman filter. The ther
mal estimation was performed in open loop for 1C constant current 
discharge test. The temperature results are shown in Fig. 8(e). The re
sults of the 1C close loop thermal estimation are taken from Fig. 7(a). As 
shown in Fig. 8(e), the estimated core temperature performed in open 
loop can still converge to the experimentally measured value, albeit 
much slower than in the closed loop situation: roughly after 2000 s 
compared to 600 s. In applications where discharge, charge and relax
ation mixed mode happen quickly, the internal temperature is expected 
to change significantly within a short time, such that the open loop 
estimation method may be inefficient for internal temperature 
estimation. 

4.5. Application to industry 

The internal temperature estimation tool established here is not 
restricted to the LG M50T cell used in this work, nor to a 21700 cell. It 
can be used, with adequate modification, for any lithium-ion battery, 

Fig. 8. Temperature estimation in simplified conditions: the two-node model and the fully discretized model in open loop. (a) Schematic representation of the two- 
node electro-thermal model. Validation results of the two-node model during a 1C (5 A) constant current discharge, for (b) terminal voltage and (c) temperature. (d) 
Temperature estimation results using the two-node model. (e) Temperature estimation results of fully discretized model in open loop mode. 
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provided information on its structure and parametrization data is 
available. Indeed, the dECN model has already been developed and used 
to study the effects of cooling and internal structure of a 4680 tabless 
cylindrical cell [31], the inhomogeneous degradation of a pouch cell 
[32] and the cooling of a prismatic cell [33]. 

In order to test its capabilities on-line, the presented lightweight 
dECN model remains to be implemented into the TMS or BMS for real- 
time internal temperature estimation via the measured surface tem
perature. Apropriate testing of controller hardware and software should 
be performed regarding the system measurement requirement and 
safety operation issues. The dECN model should next be implemented 
into hardware-in-the-loop (HIL) simulator for the cost and time effective 
development of BMS. This is beyond the scope of the current work, and 
thus left for future development. 

5. Conclusions 

In this paper, a 3D distributed electro-thermal equivalent circuit 
network (dECN) model is developed for the temperature estimation on a 
cylindrical lithium-ion battery at its beginning of life. Compared with 
previous thermal estimation models, the model developed here exhibits 
higher accuracy even under aggressive discharge conditions and a 
relatively straightforward 3D electro-thermal framework, compared to a 
full electrochemical model. This allows the model to be used for a wide 
range of inhomogeneous thermal boundary conditions, with no limita
tion on their symmetry. The established model for core temperature 
estimation was validated against an instrumented LG M50T cell with 
direct monitoring of the core temperature. The model was validated 
under a wide range of discharge/charge scenarios including realistic 
drive cycles and extreme condition of constant current discharge at 2C, 
corresponding to the maximum C rate allowed from the specification 
sheet for this cell. 

The established distributed model was compared to the widely used 
two-node lumped model, highlighting that the simplified model is un
able of predicting cell internal temperature well, despite predicting the 
cell voltage with little error. The failure to take inhomogeneity into 
account therefore has a substantial impact on the temperature estima
tion accuracy. Without the surface temperature measurement as feed
back, the core temperature estimation can still converge to the measured 
value in open loop mode under simple discharge condition. However, 
the estimation in close loop is significantly more efficient with surface 
measurement as feedback. 

The model and results presented here should be of immediate in
terest to both cell manufacturers, module and pack designers. 
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