
Digital Communications and Networks 10 (2024) 461–471
Contents lists available at ScienceDirect

Digital Communications and Networks

journal homepage: www.keaipublishing.com/dcan
Interworking between Modbus and internet of things platform for
industrial services

Sherzod Elamanov a,b, Hyeonseo Son a, Bob Flynn c, Seong Ki Yoo d, Naqqash Dilshad a,
JaeSeung Song a,*

a Department of Convergence Engineering for Intelligent Drone, Sejong University, South Korea
b SyncTechno Inc, South Korea
c Exacta Global Smart Solutions, USA
d Coventry University, UK
A R T I C L E I N F O

Keywords:
Internet of things
Interoperability
Interworking
Modbus
oneM2M
* Corresponding author.
E-mail addresses: elamanov@synctechno.com (S

(S.K. Yoo), dilshadnaqqash@sju.ac.kr (N. Dilshad),

https://doi.org/10.1016/j.dcan.2022.09.013
Received 19 March 2021; Received in revised form
Available online 6 October 2022
2352-8648/© 2022 Chongqing University of Posts a
open access article under the CC BY-NC-ND license
A B S T R A C T

In the era of rapid development of Internet of Things (IoT), numerous machine-to-machine technologies have
been applied to the industrial domain. Due to the divergence of IoT solutions, the industry is faced with a need to
apply various technologies for automation and control. This fact leads to a demand for an establishing inter-
working mechanism which would allow smooth interoperability between heterogeneous devices. One of the
major protocols widely used today in industrial electronic devices is Modbus. However, data generated by
Modbus devices cannot be understood by IoT applications using different protocols, so it should be applied in a
couple with an IoT service layer platform. oneM2M, a global IoT standard, can play the role of interconnecting
various protocols, as it provides flexible tools suitable for building an interworking framework for industrial
services. Therefore, in this paper, we propose an interworking architecture between devices working on the
Modbus protocol and an IoT platform implemented based on oneM2M standards. In the proposed architecture, we
introduce the way to model Modbus data as oneM2M resources, rules to map them to each other, procedures
required to establish interoperable communication, and optimization methods for this architecture. We analyze
our solution and provide an evaluation by implementing it based on a solar power management use case. The
results demonstrate that our model is feasible and can be applied to real case scenarios.
1. Introduction

With the growth of the Internet of Things (IoT), many organizations
are working on the development of new and existing IoT standards,
platforms, and communication protocols that would satisfy requirements
of emerging Industry 4.0 [1]. The goal of Industry 4.0 is to reach higher
levels of efficiency and productivity by applying digitalization and
optimization of operational processes. Industry 4.0 presumes broad usage
of digital technologies to support factory automation, real-time control
and management [2–5]. Therefore, a decent digital infrastructure based
on industrial IoT networks should be built. However, the range of
existing IoT solutions is so large that the variety of IoT technologies leads
to the divergence of the IoT market and increases the complexity of
establishing interworking among them [6]. Moreover, the number of
diverse connected devices is projected to increase, thus making it more
. Elamanov), hyeonseo0128@sju
jssong@sejong.ac.kr (J. Song).

5 August 2022; Accepted 19 Sep

nd Telecommunications. Publishi
(http://creativecommons.org/lic
complicated for an IoT service layer platform to establish interworking
with them.

In addition, in recent years, various R&D studies have been conducted
to provide more intelligent and secure IoT services through interworking
with IoT platforms with new technologies such as blockchain, edge
computing, and artificial intelligence. Some research results show that
the performance and reliability of the IoT service can be improved
through interworking between these technologies and the IoT platform,
which indicates that the convergence of the IoT platform and inter-
working with other technologies is essential for the success of IoT tech-
nologies [7–10].

Devices in the industrial domain often operate on different protocols
that are not supported by a conventional IoT system. One example of such
protocols used to interact with connected devices is Modbus. Modbus has
been widely used in industrial distributed applications [11]. The fact that
.ac.kr (H. Son), bob.flynn@exactagss.com (B. Flynn), ad3869@coventry.ac.uk

tember 2022

ng Services by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an
enses/by-nc-nd/4.0/).

mailto:elamanov@synctechno.com
mailto:hyeonseo0128@sju.ac.kr
mailto:bob.flynn@exactagss.com
mailto:ad3869@coventry.ac.uk
mailto:dilshadnaqqash@sju.ac.kr
mailto:jssong@sejong.ac.kr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dcan.2022.09.013&domain=pdf
www.sciencedirect.com/science/journal/23528648
http://www.keaipublishing.com/dcan
https://doi.org/10.1016/j.dcan.2022.09.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.dcan.2022.09.013
https://doi.org/10.1016/j.dcan.2022.09.013


Table 1
Modbus register types.

Register name Type Size

Coil Read-write 1 bit
Discrete input Read-only 1 bit
Holding register Read-write 16 bits
Input register Read-only 16 bits

S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
it is lightweight and simple makes it easy for industry organizations and
device manufacturers to adopt. However, as the number of connected
devices operating on Modbus and other protocols increases, there is a
need among industry organizations to connect them within an IoT
network. Therefore, there is a high need for integrating Modbus devices
to IoT service platforms that can provide device management, network
services, data storage, etc.

In this paper, we propose a solution for interoperability between
electronic devices operating over Modbus protocol and an IoT service
platform. More specifically, a Modbus device connected to an IoT service
platform shall be available for reading data from it and writing data to it
through the IoT platform without exposing internal Modbus protocol
related information to the IoT application. This interworking stack is
highly requested in numerous industrial applications where different
devices and sensors should be connected to a single IoT network to
provide real-time monitoring and management.

For our solution, we used a method in which interworking of Modbus
devices with an IoT platform is established via abstracting the Modbus
devices on the IoT service layer. We introduce an interworking proxy
enitiy (IPE), which plays the role of the linking entity between Modbus
devices and the IoT service layer. This architecture can be applied in
industrial applications where user needs to have an access to Modbus
devices via an IoT network.

To sum up, the main contributions of this research work are as
follows:

� It introduces a standardized interworking mechanism using IPE based
on an abstraction of Modbus devices and mapping them to an IoT
service platform resources and interfaces. Our approach enhances the
existing interworking mechanism in oneM2M global IoT standard
specifications to allow it to support flexible protocol interworking: by
modelling Modbus device and its data into a common device template
in oneM2M, it is possible to expose Modbus device information to
various IoT applications.

� It shows an implementation of our approach based on a solar power
management system deployed in the university laboratory and an
evaluation of this approach that demonstrates the feasibility of the
interworking. The results showed that the proposed mechanism
improved the performance of the retrieval time by 33% under the test
conditions.

This paper discusses technologies that are going to consider for
interworking in Section 2. Section III provides information on general
interworking architecture and use case configuration. Section IV de-
scribes detailed interworking procedures to enable read and write func-
tion. In Section V, we describe the implementation of the proposed
architecture and provide our evaluation results. Section VI concludes the
papers and highlights the main points of our proposed architecture.

2. Background

In this section, the brief description of technologies we are going to
use and motivation to use them for our approach will be provided. In
particular, along with the Modbus protocol, we selected oneM2M for the
IoT service platform and Smart Device Template (SDT) as a tool for de-
vice abstraction.

2.1. Modbus protocol

Modbus is a communications protocol derived from the Master/Slave
architecture originally developed by Modicon (now Schneider Electric)
[11]. Modbus is considered as the most commonly used protocol in in-
dustrial domain applications [12].

Modbus has several variants depending on communications medium.
Modbus in Remote Terminal Unit (RTU) mode and Modbus over Trans-
mission Control Protocol (TCP) are the most commonly used variants
462
today. Modbus RTU is used to transfer data over wired serial interfaces
such as RS-232 or RS-485, and Modbus TCP is designed for use in
Ethernet and the Internet. In this paper, we consider the RTU variant as it
is simple and can be generalized into the TCP variant as well.

In the Modbus protocol configuration, the Modbus Master typically is
a software component running on a computer and serves as a host to
access Modbus Slaves. Data exchange is always initiated by the Master,
meaning only a Master can send requests and a slave responds to it.
According to the Modbus protocol, one Master can handle up to 247
Slaves connected to it. The internal data structure of a Slave device is
made of registers of different size and access rights. Table 1 shows a
summary of register types used in Modbus.

The frame format is comprised of Slave ID (1 byte), function code (1
byte), data (n x 1 byte), and Cyclic redundancy check (CRC) (2 bytes).
Slave ID is a unique numerical address that identifies a Slave device.
Function code tells the Slave device what action should be performed, for
example, read or write. Data field contains extra information depending
on the function code. For example, for function code 03, which is read
multiple holding registers, the data field should contain the address of
starting register and number of registers to be read. CRC is a checksum
field used to validate the integrity of the request message.

2.2. OneM2M global IoT standards

OneM2M is a global initiative that develops standard specifications
for a service layer platform to enable IoT in various domains such as
industry, smart cities, and home automation. The reference architecture
of oneM2M depicted in Fig. 1 is designed as a 3-layer model comprising
application layer, common services layer, and network services layer [6,
13]. Each layer holds its own type of entities which are responsible to
provide corresponding services [14]. For example, Application Entity
(AE) is responsible for application logic, Common Service Entity (CSE)
provides M2M services, and Network service Entity (NSE) establishes
connectivity between underlying networks and CSEs.

In oneM2M the hierarchical structure of entities is realized through
the use resources. Examples of common resources that are used in
oneM2M are CSE-Base, AE, FlexContainer, Subscription and
others. The CSE-Base represents a CSE and it is the parent node of all
resources that reside in the CSE. The AE resource type represents AE
entity. The flexContainer resource is a customizable container for
storing information that allows the definition of a schema with custom-
Attributes that are not opaque for the storage of custom data models. A
flexContainer resource with defined resource schema is called a
flexContainer resource specialization.

AEs can use services provided by CSE over Mca which supports
Create, Read, Update, and Delete (CRUD) operations and subscription-
based notifications. If AE subscribes to resource, it receives notifica-
tions from CSE whenever the resource is changed (e.g., update and delete
operations)

The variety of resources in oneM2M and possible functionalities they
provide allow us to build a flexible IoT platform that can support inter-
working with different technologies, including Modbus. Furthermore, as
a horizontal service layer, oneM2M facilitates adding new interworking
technologies to an IoT platform. All these properties of oneM2M are very
important when it comes to building an IoT solution for industrial
operations.



Fig. 1. OneM2M reference architecture.

S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
2.3. Smart device template

The Smart Device Template (SDT) introduced by the Home Gateway
Initiative is a modelling template that is intended to provide a standard
way to design the capabilities of connected devices [15]. SDT helps to
abstract functionalities of devices, such as data points, actions, and
events, from the devices’ underlying network technologies. By providing
a convenient unified Application Programming Interface (API), SDT
simplifies interworking between an IoT platform and heterogeneous
protocols by using UML diagrams. Fig. 2 shows an overview of how SDT
components relate to each other. The SDT architecture is based on
separating device services into ModuleClasses, where each ModuleClass
can have various DataPoints, Actions, Events, and Properties.
Fig. 2. Device abstraction using SDT components.

463
SDT, with its modular component structure, can be easily applied to
describe Modbus devices and their services. This kind of modelling of
Modbus devices helps to separate the definition of functional services,
which are used to define the API and internal structure of an IoT plat-
form, from the protocol-specific information (e.g., register types,
addresses).

2.4. Motivation for interworking

Because of the rapid growth of the IoT market, there exist many
different protocols and various types of connected devices. As a result of
the evolution of technologies at some points, IoT systems can face a sit-
uation when existing technologies and devices become outdated and
should be replaced by new ones, or a new feature based on a new tech-
nology need to be added. In such situation, it becomes complicated to
manage an IoT system as it grows and needs to be scaled horizontally [14,
16]. Moreover, typically, the development of an IoT application involves
several stakeholders system, such as different organizations, device
manufacturers, government; this increases integration complexity as all
activities shall be controlled and coordinated among the stakeholders.
Therefore, the cost and effort of adding new technologies to an existing
system can be very high. For these reasons and in order to avoid the
additional burden of developing interworking mechanisms to establish
smooth interoperability between different platforms and protocols in the
IoT, the proper integration procedure shall be researched and conformed
across all stakeholders.

OneM2M has proved itself as a decent service layer IoT standard and
is being used vastly in the industry domain [17] as well, whereas Modbus
became a de facto standard protocol to communicate with industrial
electronic devices [12]. Therefore, in order to integrate oneM2M appli-
cations and devices working on Modbus protocol, these two technologies
need to be interoperable. For example, consider a dashboard application
that accesses Modbus device data (e.g., temperature sensor data) through
oneM2M service layer. The application is defined at a functional level
using SDT, which models device functionalities (e.g., read data, turn
on/off device) without regard for the technology of the devices. Initial
deployment may use all Modbus devices or multiple technologies like
ZigBee [18] and Modbus. The development of the dashboard application
is not complicated by the need to communicate with each device tech-
nology. This allows the dashboard application to work only with func-
tional information provided by the oneM2M service layer API, whereas
technical aspects of device technologies are handled by the service layer



S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
and the interworking mechanism.
The challenge of creating a communication flow between oneM2M

and Modbus is a Modbus device does not provide any semantic infor-
mation for its registers, and the same register address can be interpreted
differently in different Modbus devices. For this reason, Modbus devices
should be abstracted andmapped to oneM2M resources without exposing
protocol details to oneM2M applications. In order to provide inter-
working, the so-called Interworking Proxy Entity (IPE) [19] can be used
as a medium entity between oneM2M platform and Modbus devices.

In the following section, we explain the role of the IPE and how it is
used in our architecture to achieve interworking between an IoT platform
and Modbus devices.

3. Interworking architecture

In this section, we describe an overall interworking architecture
design, including the key entities involved and communication mecha-
nisms between them.

In our proposed architecture, we consider an industrial environment
in which there is one Modbus master application and all Modbus devices
communicate with it. This implies that all the communications between
the devices and an IoT platform occur over a single gateway IPE. How-
ever, in the actual environment, there could exist several gateways
composing a bigger IoT network, and the architecture can be scaled
horizontally by adding additional IPEs. In the case of multiple IPE de-
ployments, all the IPEs shall communicate with a single oneM2M IoT
cloud platform, so the management of all connected devices remain user-
centric.

Fig. 3 shows the high-level architecture for the interworking between
oneM2M based platform and devices working through Modbus protocol.
The architecture consists of Field and Infrastructure domain entities. The
entities in the field domain are those that are deployed on-site and
infrastructure domain entities are deployed in the cloud.

The MN-CSE is a Registrar CSE for the Modbus IPE and manages all
the data related to connected Modbus devices and provides the connec-
tivity with the Infrastructure domain entities. The Modbus IPE is posi-
tioned in the middle between the Modbus devices and the MN-CSE. It
consists of three main parts: the Modbus master, the ADN-AE, and the
Data Cache. The Modbus master provides an interface to access the
Modbus devices (slaves according to master-slave model). The ADN-AE is
a oneM2M entity that is used to communicate with the oneM2M system
and manage the protocol translation mechanisms.The Data cache is an
optional entity that is applied to speed up the communication between
the Modbus devices and the oneM2M system. The Data Cache replicates
the data of Modbus devices, so the oneM2M applications can fetch data
from it in a shorter period of time.

In the infrastructure domain, the IN-CSE is a cloud-based oneM2M
IoT platform which provides services for IoT applications to consume the
data generated by the Modbus devices through Mca. Mca supports such
protocols as HTTP and MQTT. In this paper, a dashboard web application
Fig. 3. High-level interworking architect

464
is used as an application to interact with the IoT system. The dashboard
application can support functionalities like visualizing the current state
of devices, generating data, and sending some control commands to the
devices as well.

The architecture supports two generic functionalities. First, moni-
toring of Modbus devices through a dashboard application. In this case,
IPE reads the data fromModbus devices, uploads the data to the oneM2M
server, and the data is displayed on the dashboard (AE) application.
Second, writing data to a Modbus device from the dashboard (AE)
application through IoT network. If this is the case, the IN-CSE is
responsible for registering commands from the dashboard application
and sending them to the IPE, whereas IPE performs the write requests to
the device.

The authors of the paper have defined mapping rules for representing
Modbus model as oneM2M resources and how to convert Modbus re-
quests into oneM2M-compliant requests, and vice versa. Particularly,
mapping rules define how to represent oneM2M resources based on
Modbus register types and describe the exact steps of executing inter-
working procedures, including defining possible interworking scenarios,
how to interpret incoming oneM2M and Modbus messages, and how to
convert messages using mapping rules.

4. Interworking technologies

In this section, based on the high-level architecture and the use cases
to be presented, we will describe detailed interworking mechanisms
between oneM2M and devices communicating using the Modbus
protocol.

4.1. Use case configuration

For the use case setup, we are going to consider a solar power man-
agement system. The purpose of this system is to monitor and manage
solar power generation and consumption with the help of a solar charge
controller device. Solar panels, a battery, and a load (a light bulb) are
connected to the controller, which can manage the charging and dis-
charging of the battery, and provide real-time data and some statistical
information. The controller acts as a Modbus slave device and commu-
nicates with the Modbus master application running as a part of the IPE.

In this paper, we consider two scenarios to demonstrate interoperable
communication:

1. The IPE continuously reads real-time data from the solar charge
controller by sending Modbus messages, transforming the responses
into oneM2M compliant resources, and uploading the data to the
added MN-CSE. The MN-CSE then sends data to the dashboard
application, where it is displayed to a user.

2. The dashboard ADN-AE application sends control commands to up-
date some values in the solar charge controller. The MN-CSE sends
ure between oneM2M and Modbus.



Table 3
Register type to function code mapping for Modbus read requests.

Register type Function code

Coil 0x01
Discrete Input 0x02
Holding register 0x03
Input register 0x04

Table 4
Register type and length to function code mapping for Modbus write requests.

Register type Length >1 Function code

Coil false 0x05
Coil true 0x0F
Holding register false 0x06
Holding register true 0x10

S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
this request to the IPE, which transforms the oneM2Mmessage into a
Modbus message and sends it to the device.

4.2. Mapping of modbus devices to oneM2M resources

As was mentioned in Section 2, SDT is used as an intermediary tool to
map the Modbus data model to oneM2M resources. The mapping pro-
cedure consists of 2 steps: map the Modbus device data model to the SDT
schema and then map the derived SDT schema to oneM2M resources. The
second step, mapping SDT schema to oneM2M resources, is defined in the
oneM2M specification [15]. This subsection gives details for the first
step: explains how to derive SDT schemas from the Modbus device data
model. We use a solar charge controller device from the use case to
demonstrate how a Modbus device is mapped into SDT schemas.

First, SDT ModuleClasses are defined according to the existing
capabilities of the device. By analyzing the solar charger controller de-
vice functionalities, the authors come up with the following Mod-

uleClasses that best describe the capabilities of the device: battery,
powerGeneration, powerConsumtion. The data variables in Mod-
bus devices are stored in registers of different types and can occupy
several registers depending on the variable data type. In the proposed
mapping rule, the data variables in Modbus devices are mapped to SDT
DataPoints, and the attributes of DataPoints (DataType, writable and
readable) are assigned based on the register type and length (number
of registers occupied). The rules for performing the mapping are shown
in Table 2. For example, assuming the solar charge controller has “battery
level” register, which is a holding register with a length of 2 that stores
integer value. Then, this register is mapped into a DataPoint with
DataType¼xs:integer, readable¼True, and writable¼False.
The SDT read Action is defined so that AEs could make explicit Read
requests targeting either a Modbus device or the Data Cache.

Once the SDT schemas are composed, they are mapped into oneM2M
resources. According to the oneM2M specifications [15], a flexCon-

tainer resource is used as a base resource for mapping the SDT sche-
mas. Thus, according to the rules of mapping SDT schemas into oneM2M
resources, ModuleClass component is mapped to the flexContainer

resource specialization, and its DataPoints are mapped to the flexCon-

tainer customAttributes. Device components are mapped to a flex-

Container resource specialization with its Module components
mapped into child flexContainer resource specialization. An example
of mapping of SDT Device and ModuleClass components is shown in
Fig. 4 solarChargeController device is mapped to a flexContainer

resource specialization named deviceSolarChargeController, and Mod-
ules are mapped to corresponding child flexContainer resource
specializations.

4.3. dataCacheProperties and nodnProperties

In addition to the above described mapping, the resources repre-
senting device entities are extended with 2 additional customAttributes -
Table 2
Mapping between Modbus register types and SDT Data points.

Modbus variable

Modbus register type Length

Coil (1 bit, Read-Write) 1 (1 bit)
Discrete Input (1 bit, Read-Only) 1 (1 bit)
Holding Register (16 bit, Read-Write) 2 (4 bytes)
Input Register (16 bit, Read-Only) 2 (4 bytes)
Holding Register (16 bit, Read-Write) 1 (2 bytes)
Input Register (16 bit, Read-Only) 1 (2 bytes)
Holding Register (16 bit, Read-Write) 4 (8 bytes)
Input Register (16 bit, Read-Only) 4 (8 bytes)

465
dataCacheProperties and nodnProperties.
DataCacheProperties is a customAttribute added to the flex-

Container resource specialization derived from SDT Device. This
attribute is used by IoT application to configure the optional Data Cache
unit, if present. dataCacheProperties can be used to configure the
following Data Cache properties: status (on/off), refresh rate - how
frequently IPE updates the Data Cache to replicate data from Modbus
devices, monitoring attributes - the list of Data Points that need to be
regularly updated.

NodnProperties (non-oneM2M Device Node Properties) custom-
Attribute is added to the flexContainer resource specialization repre-
senting an SDT ModuleClass with the purpose of supporting Modbus and
oneM2Mmapping consistency. Since the data structure of the Data Cache
is capable of keeping this information internally, nodnProperties is
only applied when the Data Cache is not applied. The nodnProperties
attribute is is used by the IPE to identify the mapping relationship be-
tween the Modbus registers supported by the device and oneM2M re-
sources. The IPE sets the value of the nodnProperties attribute when
the flexContainer resource is created. The nodnProperties stores
one-to-onemapping in serialized string format (e.g., JSON) between each
DataPoint and a Modbus register from which it is created. For Modbus
interworking, the nodnProperties attribute contains slave id, register
type, address, and length attributes for each DataPoint. For example, a
valid content of the nodnProperties attribute for a Modbus battery is
shown in Fig. 5.
4.4. Interworking proxy entity

The IPE is a key entity for keeping interoperability between oneM2M
and Modbus. There are several oneM2M specifications describing inter-
working with IoT protocols [20, 21]. The responsibilities of the Modbus
Data Points

DataType Readable Writable

xs:boolean True True
xs:boolean True False
xs:integer/xs:float True True
xs:integer/xs:float True False
xs:integer True True
xs:integer True False
xs:double True True
xs:double True False



(a) (b)

Fig. 4. (a) Mapping of the SDT solarChargeController device to oneM2M flexContainer resource specialization named deviceSolarChargeController (b) Mapping of
the SDT Battery module to oneM2M flexContainer resource specialization named Battery.

S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
IPE can be summarized as following:

� Device registration. The IPE discovers or is provisioned with Modbus
devices and builds mapping schemas to transform Modbus devices'
registers information to oneM2M resources and creates resources in
CSE over Mca.

� Message translation. The IPE performs translation of Modbus mes-
sages to oneM2M messages and conversely from oneM2M to Modbus
messages.

� Interacting with devices. The IPE sends read or write requests to the
Modbus devices according to the action received from the dashboard
application.

As mentioned in Section 3, the interworking model can use the
optional Data Cache, which uses an IPE for setting interworking with
Modbus devices. The Data Cache is an optional element that, if present,
may be used to speed up the access to oneM2M resources by the Modbus
IPE. The dynamic adding/deletion of oneM2M exposed resources must
also be reflected in the Data cache and subsequently in Modbus devices.
The entity-relationship diagram of the Data cache schema is shown in
Fig. 5. Example content of nodnProperties in JSON format.

466
Fig. 6. The schema composed of 3 entities (Device, ModuleClass, and
DataPoint) inherits its structure from the SDT components used in the
mapping procedure. However, the attributes of entities in the DataCache
are different from those of SDT entities. The attributes in the DataCache
unify both Modbus data and oneM2M resources information to maintain
resource mapping.
4.5. Requests optimization

In many cases, the IoT application may require reading multiple vari-
ables from a Modbus device. As a result, it may lead to a higher response
time. For the faster data access to Modbus devices, the IPE implements an
algorithm to make Modbus requests more efficient. The Modbus protocol
supports the reading or writing of several registers if they are allocated in
contiguous register memory. This protocol feature can be used to optimize
the requests by grouping the Modbus registers with adjacent memory ad-
dresses into batches. Then, each batch of registers can be accessed in a
single Modbus request. For example, IPE needs to update 4 Holding reg-
isters representing 4 different DataPoints with data addresses 0x0100,
0x0101, 0x0200, 0x0201. Then, the algorithm creates 2 groups
(0x0100, 0x0101) and (0x0200, 0x0201) and assigns for each of them a
function code 0x10 (update multiple Holding registers).
Fig. 6. Entity-relationship diagram of data cache.



S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
Fig. 7. Modbus device m

467
The steps to organizing the requested DataPoints into batches are
shown in Algorithm 1. The algorithm outputs an execution plan of
Modbus requests with assigned function code, starting address, and
length based on the operation to be performed (read or write) and the list
of involved DataPoints. Table 3 and Table 4 show the mapping rules
applied by the algorithm to identify the appropriate function code for
Read andWrite operations respectively. It is assumed that the DataPoints
are sorted by their address in increasing order when they are fed into the
algorithm.

5. Interworking procedures

5.1. Continuous monitoring scenario

Consider a scenario where the dashboard application shows (near)
real-time data from a Modbus device. The IPE needs to continuously
monitor the device and upload the data from the device to the CSE
hosting server. The dashboard application ADN-AE should be subscribed
to the flexContainer device representation in the CSE to receive
notification of changes to the device.

Let us consider that the CSE has a flexContainer resource regis-
tered for a ModuleClass of a Modbus device. The steps described in Fig. 7
show how to achieve interworking for monitoring of DataPoints of the
flexContainer resource. For this scenario, we assume the ADN-AE has
initially subscribed to the flexContainer resource. First, if the Data
Cache is not intended to be applied, the Modbus IPE sends a retrieve
flexContainer resource request to the Hosting CSE to get the nodn-

Properties attribute required for constructing the Modbus message.
The CSE verifies the access privileges and responds to the retrieve request
with the resource representation that includes nodnProperties attri-
bute (Step 2). The Modbus IPE uses information stored in nodnPro-

perties and constructs an execution plan for Modbus requests (Step 3).
After the Modbus messages are constructed, the IPE sends these messages
to the Modbus device (Step 4). If the messages are valid, the Modbus
device responds with data for each received read request (Step 5). The
Modbus IPE processes the Modbus response messages by mapping its
content to a oneM2M message and sends a request to the CSE to update
the flexContainer resource with the read latest values (Step 6). The
CSE updates the flexContainer resource internally (Step 7) and re-
sponds to the IPE with a successful update message (Step 8). The update
triggers a notification to the dashboard (ADN-AE) application (Step 9).
onitoring call flow.



S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
Finally, the dashboard application updates its UI accordingly and re-
sponds with a confirmation message for receiving the notification (Step
10).

The above routine is very simple and efficient at the same time. As
Modbus and oneM2M resources are related with one-to-one mapping, the
translation from one to another can be performed quickly by the IPE with
minimum computational resources spent, which is a very important
factor for lightweight gateway setups.

5.2. Data writing scenario

Consider a scenario where it is required to write some data to a
Modbus device through a dashboard (AE) application, for example, to
trigger some actuator function or set some configuration parameter in the
device. In this case, the Modbus IPE subscribes to the flexContainer

resource by blocking update configuration. The blocking type of sub-
scription ensures that the resources in the CSE and the corresponding
data in Modbus device registers are synchronized. This prevents cases
when the resources in the CSE are updated successfully, but there is an
error updating a Modbus device, resulting in the data in two places being
different.

The steps described in Fig. 8 show how to implement this scenario.
First, the dashboard (AE) application sends a request to the CSE to update
customAttribute(s) of the flexContainer resource, which corresponds
to the register that should be updated in the device (e.g., batteryThres-
hold attribute of Battery). The hosting CSE sends a notification for the
received update request to the Modbus IPE (notification includes
nodnProperties) and temporarily blocks the updated flexCon-

tainer resource for any Update or Delete operations (Step 2). The
Modbus IPE uses information stored in the nodnProperties attribute
(if the Data Cache is not applied) or fetches the interworking information
from the Data Cache to construct the execution plan from Modbus Write
requests (Step 3). The Modus IPE sends the message(s) to the Modbus
device (Step 4). The Modbus device updates the register(s) in the re-
quest(s), actuates according to the new value of the register, and re-
sponds with the written data to the Modbus IPE (Step 5). If the IPE
supports the Data Cache, it is updated according to the updates made in
the Modbus device to keep data consistency (Step 6). If there was no
error, the IPE responds to the notification request from the hosting CSE
with a successful update message (Step 7). If the device was updated
successfully, the hosting CSE updates the flexContainer resource
internally, otherwise discards the changes. The resource is unlocked for
Update operations (Step 8). The hosting CSE responds to the dashboard
AE application with the result of the Update request (Step 9).
Fig. 8. Writing to the Mo

468
5.3. Data cache access

When an IoT application does not require a continuous monitoring
functionality but needs to make occasional Read requests to retrieve
current data from Modbus devices, it shall perform the procedures
defined in Fig. 9. For this procedure, ADN-AE - for ModuleClass must be
subscribed for flexContainer resource and the Modbus IPE - for the
child read resource. In this procedure, the Modbus IPE can use the Data
Cache for faster data access. The IPE periodically reads data from the
device to keep the Data Cache synchronized with the device data. The
Data Cache refresh rate and the DataPoints monitored can be configured
through the dataCacheProperties attribute of Device
flexContainer.

The first step is to send a request by Updating (Read) resource and
indicating the desired DataPoints in the body of the request. The Hosting
CSE forwards this request through a notification to the Modbus IPE (Step
3). The IPE retrieves the request from its Data Cache (Step 5) and updates
the flexContainer resource for ModuleClass (Step 7). The Hosting CSE
updates the flexContainer resource and sends a notification to the
ADN-AE with the requested DataPoints (Step 9). The ADN-AE sends a
response message to the CSE to confirm receiving the notification (Step
10).

6. Implementation and evaluation

In this section, we are going to evaluate and verify the feasibility of
the proposed architecture by implementing and testing it based on the
use case presented in the previous section.

6.1. Experiments

Table 5 shows the summary of hardware specifications used in the
solar power management system for demonstrating interworking.
oneM2M platform was executed on a computer with an Intel Core-i7-
8700 3.20 GHz processor, 16-GB of RAM, and a 64 bit Ubuntu 18.04
operating system. As an implementation of CSE, we used OM2M product,
an open-source project developed by the Eclipse foundation [22]. CSE is
configured to run over HTTP for CRUD requests and MQTT for
notifications.

For the solar charge controller, we used an EPSolar VS4548BNmodel,
which provides a Modbus RTU interface. IPE is executed on Raspberry Pi
3, which acts as a gateway for Modbus devices to be available for the IoT
platform. As a power input, we used a solar panel with maximum power
of 12W. The solar charge controller is connected to the Raspberry Pi 3
dbus device call flow.



Fig. 9. Reading from the IPE Data Cache associated with a Modbus device.

Table 5
Use case configuration list.

EPSolar VS4548BN for solar charge controller

Max input voltage 30 V
Rated battery current 45 A
Raspberry Pi 3 for IPE gateway
CPU 4x ARM Cortex-A53, 1.2 GHz
RAM 1 GB LPDDR2
OS Raspbian Buster
Computer for oneM2M CSE
CPU Intel Core i7 8700, 3.2 GHz
RAM 16 GB DDR4
OS Ubuntu 18.04
Computer for dashboard AE application
CPU Intel Core i5 8500, 2.8 GHz
RAM 8 GB DDR4
OS Ubuntu 18.04

S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
gateway over USB RS485 serial interface.
In this experiment, our goal is to demonstrate the feasibility of

interworking between the IoT platform and Modbus devices in terms of
the following criteria:

� Data integrity. The data that is read from a Modbus device by the IPE
should always be represented in the dashboard (AE) application.

� Latency. The elapsed time between the time when the IPE reads from
a Modbus device and the time when it is finally delivered to the
dashboard AE application should be reasonably low to keep real-time
support.

� High load support. The architecture should be able to process requests
at high frequency and maintain latency within a reasonable amount
of time.

� Execution plan algorithm. Check if the algorithms allows to make
Modbus requests in a shorter period of time compared when requests
each DataPoint is accessed separately.

� Data Cache. Check that the Data Cache works properly and allows to
reduce travel time for explicit Read requests.

For data integrity and latency, we were continuously reading the real-
time power of solar power generation and uploading the data to the
oneM2M server according to the procedure described in Section 5.1. We
took measurements every 10 s from 13:30 to 15:40 during one day. As a
result, we collected 960 data points of the solar power generation level.
Once each data measurement is collected by the IPE, the IPE performs
469
mapping to oneM2M message and sends it to the CSE. When the CSE
updates its resources, it triggers a notification for the new data to the
dashboard AE application, where the application registers the received
time and measures elapsed time. Fig. 10a shows a sample of measured
data points and the time when it was registered at the IPE and the
dashboard AE application within a 90 s time interval. The figure justifies
that all data points were successfully mapped and sent from the IPE to the
dashboard and the elapsed time is not significant for this use case. The
average latency was 244 ms (standard deviation ¼ 51 ms) where on
average 104 ms (standard deviation ¼ 39 ms) was spent on serial
communication between the solar charge controller and IPE. Fig. 10b
shows the result of the load test. For rates up to 60 measurements per
minute, the system showed similar result. At the rate of 80 and 100
measurements/min, the average time gradually increased, but the system
still performed in acceptable amount of time, less than 300 ms.

To evaluate the efficiency of execution planning algorithm, 30 vari-
ables (19 input registers, 7 holding registers, 2 discrete inputs, and 2
coils) were selected to be retrieved from the Modbus device, and the total
time of retrieving all variables was measured. The algorithm outputs an
execution plan consisting of 18 requests based on the selected variables.
Fig. 10c shows that the average time to retrieve 30 variables using the
algorithm execution plan is 1.95 s compared to 2.88 s when each variable
was retrieved one by one, i.e., 30 requests in total. This experiment
showed that the algorithm increases the performance of the retrieval
time by 33% under the test conditions.

The Data Cache was implemented using SQLite in-memory database.
When Data Cache was storing information on all variables of the tested
Modbus device (about 110 variables), the retrieve time for one DataPoint
was made in less than 1 μ s. This implies that the time to retrieve from the
Data Cache is really negligible compared to the time spent on retrieving
the same variable from the Modbus device (104 ms on average).
6.2. Insights, possible applications and standards

The experiment results showed that our interworking solution is
feasible in practice and has reasonable performance results considering
that we used a device working on the serial Modbus RTU variant. The
interworking times stayed steady and low, including during load test.
Supposedly, faster times could be obtained on devices that use the
Modbus TCP variant. The execution planning in couple with the Data
Cache can increase the performance of the IPE significantly in certain
cases.

The Modbus protocol has been implemented in a wide range of



Fig. 10. Measured solar generation power at an instance of time collected by IPE and sent to Dashboard AE over oneM2M IoT platform: (a) 2 h period, (b) 1 min 30 s
period. (c) Average latency under different measurement frequency.

S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
industrial devices, from sensors to multi-purpose process automation
controllers. Therefore, the proposed interworking solution can be
generalized and used in various industrial IoT applications where the
Modbus protocol is used together with other industrial IoT proto-
cols.SCADA systems: Supervisory Control And Data Acquisition (SCADA)
system [23] is a hardware-software complex for collecting real-time in-
formation from remote objects for processing, analysis and possible
management. The main goal of the SCADA systems is to provide complete
information about a technological process and themeans for managing it.
However, SCADA systems are outdated due to the technological
advancement, and our proposed IoT platform supporting the inter-
working feature can replace them and provide extra features.

The basic components of an SCADA system are a supervisory system,
a Human-Machine Interface (HMI), and Remote Terminal Units (RTU).
These components can be represented by the units presented in the
interworking architecture. The supervisory system gathers data from the
field connected devices, sends control commands to them, and interacts
with HMI software. The oneM2M CSE can perform all the supervisory
system functions and, as a cloud platform, it can be utilized by other
applications (oneM2M AEs) for advanced data analysis (e.g., complex
event processing) or reports generation. The HMI provides a schematic
graphical representation of the deployed system and allows operating
personnel to control the connected devices. In our case, the HMI software
can be implemented using oneM2M AE that can use modern IoT pro-
tocols, such as MQTT and CoAP. The presented Modbus IPE can perform
the role of RTU for communicating with connectedModbus devices. Both
PLCs (programmable) and RTUs (non-programmable) are connected to
sensors and actuators and used for transmitting data to the supervisory
system. The presented Modbus IPE can perform the role of PLC/RTU
which connects Modbus devices.

Global standards: We have reported the proposed Modbus inter-
working mechanism to oneM2M that agreed on its standard specifica-
tion. Initially, the proposed mechanism was studied in oneM2M as its
technical report, TR-0043, “Study on Modbus Interworking”, to see the
feasibility of the interworkingmechanism [20]. Then, the standard group
agreed to proceed the development of Technical Specification (TS) for
the proposed mechanism. The latest release of oneM2M, i.e., Release 4,
contains TS-0040, “Modbus Interworking”, which presents the stan-
dardized interworking mechanism using IPE described in this paper [24].

ITU-T standards are referenced by many countries, government states
and corporations. For IoT technologies, it is vital to build common and
easy access standards that benefit the widest community of users
worldwide, as in the case of mobile communications. Therefore, oneM2M
and ITU-T collaborate with each other to develop great standards and
achieve deployment on a wider scale with conforming interoperability
between different IoT technologies. At present, the relevant group for IoT
standardization in ITU-T is Study Group 20 (ITU-T SG20). Over the past
year, oneM2M and ITU-T SG20 have been working on transposing from
470
published oneM2M standards, including 18 technical specifications and
six technical reports into ITU-T SG20 under the Y.4500 series (see https
://www.itu.int/rec/T-REC-Y/en). At the moment, both organizations
collaborate to get oneM2M Rel-2 and 3 are transposed by ITU-T SG20. As
the proposed technical report and specification are developed as part of
oneM2M Rel-4, we expect the proposed mechanism to be transposed by
ITU-T SG20 in the coming years.

Scalability: OneM2M standards have been widely used in IoT and
vertical areas, e.g., smart cities, smart factories, smart homes and smart
buildings. For example, the South Korean Government invested in three
large scale Smart City trials based on the oneM2M standard. All three
trials generated outstanding results and showcased the feasibility of
using IoT technologies in Smart City situations. The proposed inter-
working solution allows various Modbus devices to be connected to the
oneM2M IoT platform. This means that IoT services utilizing Modbus
devices can be delivered to service consumers in various industrial do-
mains by the consistent oneM2M interface. Therefore, we believe that the
proposed solution is scalable because it allows IoT applications to
manage various IoT devices using different network protocols, such as
ZigBee, Modbus, Wi-Fi, and LoRa, via the standardized Mca interface.

7. Conclusions

In this paper, we presented an interworking model between Modbus
protocol and IoT service layer platform that can be applied in the in-
dustrial domain. The oneM2M standard based IoT platform has been
selected for our interworking architecture as it is being developed by
many organizations worldwide and applied in different fields. First, we
described the interworking architecture where we have used an oneM2M
IPE as an intermediate unit between Modbus devices and the IoT plat-
form, which provides continuous interworking between them. Further-
more, we have used SDT to abstract Modbus devices and register them in
oneM2M server in a structured and convenient representation. We have
defined the mapping rules to convert Modbus register data into oneM2M
resources and the detailed procedures how to interact with Modbus de-
vices through a oneM2M dashboard application. To improve the per-
formance of the architecture, we introduced the algorithm that optimizes
the requests execution plan and the Data Cache that decreases response
time for retrieving requests.

For the validation of our model, we have provided an implementation
based on the solar power management system. Our evaluation results
have shown the feasibility of using oneM2M and the IPE for integration
of Modbus devices to the oneM2M IoT platform.

For future work, we intend to enhance the IPE capabilities, including
dynamic device registration and semantics support using ontologies. We
also consider adding support of the industrial protocols such as Profibus
and CIP, so that a wider range of devices could be connected to IoT
network though a single IPE.

https://www.itu.int/rec/T-REC-Y/en
https://www.itu.int/rec/T-REC-Y/en


S. Elamanov et al. Digital Communications and Networks 10 (2024) 461–471
Acknowledgements

This research was conducted with the support of the Korea Research
Foundation with the funding of the Ministry of Science and Information
and Communication Technology (No.2018-0-88457, development of
translucent solar cells and Internet of Things technology for Solar
Signage).

References

[1] N. Wu, Z. Li, K. Barkaoui, X. Li, T. Murata, M. Zhou, Iot-based smart and complex
systems: a guest editorial report, IEEE/CAA.J. Autom. Sin. 5 (1) (2018) 69–73.

[2] Y. Lu, Industry 4.0: a survey on technologies, applications and open research issues,
J.Ind.Inf.Integration 6 (2017) 1–10.

[3] M. Liyanage, P. Porambage, A.Y. Ding, A. Kalla, Driving forces for multi-access edge
computing (mec) iot integration in 5g, ICT Express 7 (2) (2021) 127–137.

[4] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, M. Hoffmann, Industry 4.0, Business &
Information Systems Engineering 6 (4) (2014) 239–242.

[5] S. Park, J. Park, J. Oh, Design and implementation of trusted sensing framework for
iot environment, J. Commun. Network. 23 (1) (2021) 43–52.

[6] J. Swetina, G. Lu, P. Jacobs, F. Ennesser, J. Song, Toward a standardized common
m2m service layer platform: introduction to oneM2M, IEEE Wireless Commun. 21
(3) (2014) 20–26.

[7] B. Cao, Y. Li, L. Zhang, L. Zhang, S. Mumtaz, Z. Zhou, M. Peng, When internet of
things meets blockchain: challenges in distributed consensus, IEEE Network 33 (6)
(2019) 133–139.

[8] L. Zhang, B. Cao, Y. Li, M. Peng, G. Feng, A multi-stage stochastic programming-
based offloading policy for fog enabled iot-ehealth, IEEE J. Sel. Area. Commun. 39
(2) (2021) 411–425.

[9] B. Cao, Y. Li, L. Zhang, L. Zhang, S. Mumtaz, Z. Zhou, M. Peng, When internet of
things meets blockchain: challenges in distributed consensus, IEEE Network 33 (6)
(2019) 133–139.

[10] Y. Li, B. Cao, M. Peng, L. Zhang, L. Zhang, D. Feng, J. Yu, Direct acyclic graph-based
ledger for internet of things: performance and security analysis, IEEE/ACM Trans.
Netw. 28 (4) (2020) 1643–1656.
471
[11] A. Polianytsia, O. Starkova, K. Herasymenko, Survey of the iot data transmission
protocols, in: 2017 4th International Scientific-Practical Conference Problems of
Infocommunications, Science and Technology (PIC S T), 2017, pp. 369–371.

[12] D. Peng, H. Zhang, L. Yang, H. Li, Design and realization of modbus protocol based
on embedded linux system, in: 2008 International Conference on Embedded
Software and Systems Symposia, 2008, pp. 275–280.

[13] H. Park, H. Kim, H. Joo, J. Song, Recent advancements in the internet-of-things
related standards: a onem2m perspective, ICT Express 2 (3) (2016) 126–129.

[14] J. Kim, J. Yun, S. Choi, D.N. Seed, G. Lu, M. Bauer, A. Al-Hezmi, K. Campowsky,
J. Song, Standard-based iot platforms interworking: implementation, experiences,
and lessons learned, IEEE Commun. Mag. 54 (7) (2016) 48–54.

[15] OneM2M, TS-0023: Home appliances information model and mapping, oneM2M
Tech. specification V3.9.0, 2021. http://refhub.elsevier.com/S2352-8648(22)
00188-2/sref15. (Accessed 8 November 2019).

[16] Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran, S. Guizani, Internet-of-
things-based smart cities: recent advances and challenges, IEEE Commun. Mag. 55
(9) (2017) 16–24.

[17] Z. Fan, R.J. Haines, P. Kulkarni, M2m communications for e-health and smart grid:
an industry and standard perspective, IEEE Wireless Commun. 21 (1) (2014) 62–69.

[18] S. Safaric, K. Malaric, Zigbee wireless standard, in: Proceedings ELMAR 2006, 2006,
pp. 259–262.

[19] J. Yun, S.-C. Choi, N.-M. Sung, J. Kim, Demo, Towards global interworking of iot
systems – oneM2M interworking proxy entities, in: Proceedings of the 13th ACM
Conference on Embedded Networked Sensor Systems, SenSys ’15, ACM, New York,
NY, USA, 2015, pp. 473–474.

[20] OneM2M, TR-0043: Modbus Interworking, oneM2M Tech. rep. V0.2.0, 2019.
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref20. (Accessed 15 October
2020).

[21] OneM2M, TS-0014: LWM2M Interworking, oneM2M Tech. specification V3.2.0,
2020. http://refhub.elsevier.com/S2352-8648(22)00188-2/sref21. (Accessed 13
March 2020).

[22] Eclipse OM2M. https://www.eclipse.org/om2m/(2015–2020). (Accessed 13
December 2020).

[23] A. Daneels, W. Sater, What is scada?, in: Proceedings of the International
Conference on Accelerator and Large Experimental Physics Control Systems Italy,
1999, pp. 339–343.

[24] OneM2M, TS-0040: Modbus interworking, oneM2M Tech. specification V0.1.0,
2020. http://refhub.elsevier.com/S2352-8648(22)00188-2/sref24. (Accessed 8
May 2021).

http://refhub.elsevier.com/S2352-8648(22)00188-2/sref1
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref1
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref1
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref2
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref2
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref2
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref3
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref3
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref3
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref4
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref4
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref4
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref5
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref5
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref5
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref6
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref6
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref6
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref6
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref7
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref7
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref7
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref7
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref8
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref8
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref8
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref8
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref9
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref9
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref9
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref9
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref10
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref10
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref10
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref10
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref11
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref11
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref11
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref11
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref12
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref12
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref12
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref12
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref13
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref13
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref13
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref14
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref14
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref14
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref14
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref15
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref15
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref16
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref16
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref16
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref16
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref17
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref17
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref17
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref18
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref18
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref18
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref19
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref19
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref19
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref19
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref19
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref19
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref20
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref21
https://www.eclipse.org/om2m/(2015%2d2020)
https://www.eclipse.org/om2m/(2015%2d2020)
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref23
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref23
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref23
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref23
http://refhub.elsevier.com/S2352-8648(22)00188-2/sref24

	Interworking between Modbus and internet of things platform for industrial services
	1. Introduction
	2. Background
	2.1. Modbus protocol
	2.2. OneM2M global IoT standards
	2.3. Smart device template
	2.4. Motivation for interworking

	3. Interworking architecture
	4. Interworking technologies
	4.1. Use case configuration
	4.2. Mapping of modbus devices to oneM2M resources
	4.3. dataCacheProperties and nodnProperties
	4.4. Interworking proxy entity
	4.5. Requests optimization

	5. Interworking procedures
	5.1. Continuous monitoring scenario
	5.2. Data writing scenario
	5.3. Data cache access

	6. Implementation and evaluation
	6.1. Experiments
	6.2. Insights, possible applications and standards

	7. Conclusions
	Acknowledgements
	References


