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A B S T R A C T   

Copper-doped Manganese Dioxide has been synthesised through a simple hydrothermal method at different 
doping levels. The synthesised materials have been characterized by X-ray diffraction (XRD), and scanning 
electron microscopy (SEM) to determine the composition, structure, and morphology. All the Cu doped MnO2 are 
found to be single phased. Their electrochemical properties as cathode for Zinc-ion batteries are studied by cyclic 
voltammetry (CV), galvano-static charge / discharge (GCD) and electrochemical impedance spectroscopy (EIS), 
using 3 M ZnSO4 + 0.3 MnSO4 solution as the electrolyte. 3.8% Cu doped MnO2 has shown the highest initial 
capacity of 379.5 mAh g− 1 at 0.02 A⋅g− 1, and 304.4 mA h g− 1 at 0.5 A g− 1, but experienced fast fading with a 
poor capacity retention of 56.8% after 100 cycles. 7.4% Cu doping gives lower capacity, while 5.9% doping 
shows a higher discharging capacity (320.0 mAh⋅g− 1 at 0.02 A⋅g− 1 and 269.3 mAh⋅g− 1 at 0.5 A⋅g− 1) and 
improved stability (85.8% capacity retention after 100 cycles), better than non-doped MnO2 electrode (284.4 
mAh g− 1 at 0.02 A g− 1 and 252.1 mAh⋅g− 1 at 0.5 A g− 1, capacity retention 76.7%). The samples show satis-
factory capacity and rate capability while the cycling stability is not ideal, which may relate to the needle like 
morphology and nanoscale particle size. CV tests revealed that the electrochemical process is mainly diffusion 
controlled. The zinc ion diffusion coefficient is tested to be in the range of 10− 12 cm2⋅s− 1 from both CV and EIS 
tests and showed the same trend in their electrochemical capacity. Doping of Copper in MnO2 reduced the 
polarization on electrode, improved the electrochemical reversibility, as evidenced by the reduction of the redox 
peak potential difference from 0.31 to 0.24 V at 1.1 mV⋅s− 1, and from 0.45 V to 0.31 V at 5 mV⋅s− 1. Whilst the 
cell resistance of non-doped MnO2 increased from 1.78 Ω to 7.39 Ω after cycling, the cell resistances of all Cu- 
doped cathodes reduced, indicating improved electronic conductivities after cycling. These results indicate that 
Cu-doping is effective to increase the conductivity of the materials, reduce the polarization during charge and 
discharge, and improve the cycling stability of MnO2 cathode.   

1. Introduction 

Aqueous batteries, or water-based batteries, offer several benefits 
compared to traditional non-aqueous (organic electrolyte) batteries, 
especially in safety, environmental benignity, and cost-effectiveness 
[1–3]. Among them, aqueous Zinc-ion batteries (ZIBs) are the most 
investigated [4–6]. ZIBs are promising for large-scale energy storage 
applications [1–4] e.g. grid-level energy storage systems, because their 
manufacturing processes are relatively simple with less constraints, and 
the materials used are widely available. While zinc-ion batteries have 
several advantages, they also face significant challenges to be addressed 
before their commercial implementation. Current ZIBs have a shorter 

cycle life compared to other battery technologies with the repeated 
insertion and extraction of zinc ions during charging and discharging 
cycles causing the electrodes to undergo structural changes and degrade 
over time, limiting the number of cycles the battery can withstand. ZIBs 
typically operate at a lower voltage compared to other battery chemis-
tries which limits their application in devices or systems that require 
higher voltage levels. While ZIBs can offer high energy density 
compared to other aqueous batteries, they generally have lower energy 
density compared to lithium-ion batteries (LIBs). ZIBs have slower ki-
netics, leading to limited charge/discharge rates and lower power ca-
pabilities. [7] 

Improvement in electrode materials (both anode [8–10] and cathode 
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[6,11–15]), electrolyte formulation [5,16–20] interface regulation and 
battery designs [21–23] are the key to addressing these limitations. 
Manganese dioxide (MnO2) is the most commonly used cathode material 
in ZIBs [24–28], with some favourable characteristics [29], but chal-
lenges remain including: (1) Low conductivity: MnO2 is inherently a 
poor electronic conductor, resulting in higher internal resistance, lower 
power output, and reduced columbic efficiency. (2) Large volume 
expansion: MnO2 experiences significant volume expansion and 
contraction during charging and discharging, leading to mechanical 
stress with cracking and self-pulverisation resulting ion loss of cycle life. 
(3) Irreversible side reactions: MnO2-based cathodes can experience 
irreversible reactions during cycling, resulting in a reduced reversible 
capacity and overall energy storage capability of the cell. (4) Formation 
of surface layers: the formation of insulating layers on the surface of the 
cathode material can occur during cycling, hampering the ion diffusion 
and electron transport. [30] (5) Limited voltage range: MnO2-based 
cathodes typically operate within a limited voltage range, which can 
restrict the energy storage capacity and application range of the battery, 
not suitable for high-voltage applications where higher energy densities 
are required. Strategies have been proposed to solve above problems 
[31], such as atomic engineering [32], nano-structuring the MnO2 ma-
terial[33], incorporating conductive additives[34], and optimizing 
electrolyte composition[35] to enhance the conductivity, stability, and 
cycling performance of the cathode. These efforts aim to improve the 
overall performance and viability of MnO2-based ZIBs for various ap-
plications.[36] 

Since 2021, doped MnO2 has been an area of active research and 
development in the field of energy storage. Various dopants, including 
transition metals (e.g., Fe, Co, Ni) [37–43], non-metals (e.g., N, F, S) 
[44–50], and carbon-based materials [51,52], have been studied for 
doping MnO2. Doping can enhance the electron transport, mitigate the 
low conductivity issue associated with pure MnO2, and improve the 
cycling stability [45,46,53,54]. It can also reduce the volume expansion 
and contraction of MnO2 during cycling, mitigating the mechanical 
stress and strain that lead to material degradation [45,46,48]. Doping 
strategies have been investigated to expand the voltage range of 
MnO2-based cathodes. By incorporating specific dopants, researchers 
aim to extend the operating voltage of MnO2 beyond its intrinsic limit. 
This expansion can enable higher energy densities and make doped 
MnO2 suitable for applications requiring increased voltage levels. The 
choice of dopant and doping method depends on the desired improve-
ments in conductivity, stability, and electrochemical performance. 
Doping methods include chemical synthesis routes [30,49], electro-
chemical deposition[55–58], and chemical / physical vapour deposition 
techniques[59,60]. The development and optimization of doped MnO2 
cathodes in energy storage applications are ongoing, with new research 
findings and progresses continually emerging. 

Copper-doped MnO2 refers to the incorporation of copper ions 
(Cu2+) into the crystal structure of MnO2 [61]. This doping process in-
volves substituting some of the Mn atoms with Cu atoms, altering the 
composition and properties of MnO2. Copper doping in MnO2 can in-
crease the overall conductivity by facilitating charge transport within 
the crystal lattice. Copper doping has the potential to enhance the 
electrochemical performance of MnO2, including the reversible capac-
ity, cycling stability, and rate capability, making it more suitable for 
energy storage applications. Doping with copper ions can influence the 
structural stability of MnO2 by mitigating the volume expansion and 
contraction issues, improving the cycling stability and prolonging the 
material’s lifespan. The extent of copper doping in MnO2 can vary 
depending on the desired properties and specific applications. The 
doping level needs to be carefully controlled to balance the conductivity 
enhancement and maintain the structural integrity of the material. 

Copper-doped MnO2 can be synthesized through various methods, 
such as solid-state reaction, hydrothermal synthesis, or sol-gel methods. 
The choice of synthesis method affects the homogeneity, purity, and 
overall properties of the doped material. Copper-doped MnO2 has 

potential applications in various electrochemical devices including fuel 
cells [62,63] and metal air batteries [64,65], including lithium-ion 
batteries [61,66–68], Zinc-ion batteries [38,69–74], supercapacitors 
[75–78], and hybrid capacitors. It is also explored for catalytic and 
electrochemical sensing applications due to its modified properties 
[79–83]. Cu doped MnO2 through a wet-chemical method was studied as 
the potential cathode materials for Lithium-ion batteries. [61] The 
doping effect was investigated on the improvement for the magnetic and 
electrical properties. Cu− intercalated δ− MnO2 was obtained through an 
ion exchange treatment by immersing δ− MnO2 powders in CuSO4 so-
lution, with MnO2 synthesised through hydrothermal reaction[69]. 
Copper doping at different levels is not studied. Binder-free Cu-doped 
ε-MnO2 has been synthesized through electrodeposition, when copper is 
co-deposited with MnO2. [56] The best performance from this research 
came from the sample deposited on Carbon Nano Tube (CNT) film. 
Sputtered Cu on MnO2 also showed a good performance in Zinc-ion 
batteries. From these previous research, Copper doped MnO2 is a 
promising cathode for Zinc-ion batteries. 

Different doping levels, synthesis techniques, and characterizing the 
performance of copper doped MnO2 in battery systems and other energy 
storage applications still need to be investigated. In this paper, copper 
doped MnO2 was synthesised through a simple hydrothermal process, 
and was investigated as the cathode material for ZIB, aiming to optimize 
the doping level for better properties and performance of MnO2 for 
practical and efficient use in aqueous ZIBs. 

2. Experiments 

2.1. Materials 

KMnO4 (99%, Thermo Scientific Chemicals), MnSO4 (99+%, Thermo 
Scientific Chemicals), CuSO4 (>99.0%, Acros Organics, UK), 1-Methyl- 
2-pyrrolidinone (NMP, 99+%, Thermo Scientific Chemicals) Zinc foil 
(99.98%, thickness 1 mm, Alfa Aesar), glass fibre (GF6, Whatman), are 
purchased from Fisher Scientific, UK. Poly (vinylidene fluoride) (PVDF), 
and carbon black were purchased from GELON LIB GROUP, China. 

2.2. Preparation of MnO2 

0.227 g MnSO4 were dissolved in a beaker containing 10 ml de- 
ionised (DI) water under magnetic stirring for 10 minutes at 400 rpm. 
Calculated amount of CuSO4 according to the molar ration to the final 
MnO2 at 10%, 20%, and 30% was added and was kept stirring until fully 
dissolved. 10 ml KMnO4 (0.1 M) was added to the above solutions slowly 
under stirring. The mixture was kept in ultrasonic bath for 0.5 h before 
being moved to an autoclave with a 30 ml Teflon liner, then reacted at 
120 ℃ for 12 hours. After cooling the product to room temperature, it 
was then centrifugally washed with deionized water, and dried under 
vacuum at 60 ℃ for 12 hours. The collected powder was then calcined at 
400 ℃ for 2 hours. The obtained samples are referred to as MC0 for non- 
doped MnO2, and MC1 MC2 and MC3 for Cu doped MnO2 from low to 
high doping level, individually. 

2.3. Characterization 

2.3.1. Morphology and chemical phase analysis 
X-ray diffraction (XRD) tests were performed on a Bruker D8 

Advance Diffractometer in Bragg-Brentano geometry with Cu Kα radi-
ation λ = 1.5404 Å and a diffracted beam graphite monochromator. 
Powder X ray diffraction data is recorded for the 2θ angle range between 
20◦ and 90◦ at room temperature with step size 0.0495◦ at 15 s per step. 
The observed XRD data is indexed with powder X software[84] and then 
subjected to Rietveld refinement with GSAS II [85]. Morphology and 
elemental composition of the materials were characterised using scan-
ning electron microscopy (SEM) (1530 VP Field Emission Gun Scanning 
Electron Microscope (FEG-SEM), Carl Zeiss, Germany) and energy 
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dispersive X-ray spectroscopy (EDS) (X-MAX EDX, Oxford Instruments, 
UK). 

2.3.2. Electrochemical analysis 
The electrochemical performances of MC0, MC1, MC2, MC3 cath-

odes for aqueous ZIBs were investigated in CR2032 coin cells. The as- 
prepared MnO2 samples were used as electrode active material. They 
were mixed with carbon black and poly (vinylidene difluoride) in an 
8:1:1 wt ratio and dispersed in N− methyl− 2− pyrrolidone solvent. The 
obtained ink was transferred onto stainless steel mesh substrate and then 
dried at 80 ◦C for 10 hours. The casted electrode was then cut into disks 
of a diameter of 1.6 mm, with a final mass loading of 1.4 1.5 mg cm− 2. 
CR2032 coin cells are assembled using the as prepared MnO2 cathode, 
polished zinc foil anode (99.98%, thickness 1 mm, Alfa Aesar), glass 
fibre as separators (GF6, Whatman), and 3 M ZnSO4 + 0.3 M MnSO4 
solution as electrolyte. 

Electrochemical performances of the as-assembled CR2032 full cells 
were assessed through Electrochemical Impedance Spectroscopy (EIS), 

Cyclic Voltammetry (CV), and Galvanostatic Charge / Discharge (GCD) 
cycling using a VMP3 multi-potentiostat (Bio-Logic Science Instruments 
SAS, France, EC-Lab software). All the electrochemical performance was 
tested at 25 ℃. The voltage window of GCD and CV tests were 1–1.8 V. 
CV scanning tests were carried out at 0.1–5 mV s− 1, respectively, with 
GCD at current densities between 0.02 and 0.5 A g− 1, and EIS at a fre-
quency range from 10− 2 to 106 Hz, at a perturbation amplitude of 
10 mV. 

3. Results and discussions 

3.1. SEM tests of the non-doped and copper doped MnO2 

Fig. 1 shows the morphology of the synthesised MnO2 materials from 
scanning electron microscopy (SEM), presenting needle-like primary 
particles with width of 20–50 nm and length of 400–800 nm. The size of 
the nano-needles seems to be reducing slightly with the doping of copper 
increases. Energy dispersive X-ray spectroscopy (EDS) analysis shows 

Fig. 1. SEM image of the synthesised MnO2 at different copper doping: a), b), c) MC0; d), e), f) MC1; g), h), i) MC2; j), k), l) MC3.  
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even distribution of the elements and indicates that the copper doping 
level is significantly lower than expected, which turns out to be 3.82% of 
Cu for MC1, 5.89% of Cu for MC2 and 7.43% of Cu for MC3, in molar 
percentage. 

3.2. XRD characterisation of the cathode materials 

Powder X-Ray diffraction was used to examine the phase and crys-
tallinity of the prepared samples. All samples exhibit identical sharp 
diffraction peaks, which can be indexed to the pure tetragonal phase of 
α-MnO2 (JCPDS No. 00–44–0141.), space group I4/m. The XRD results 
indicate that all the samples are single phase as shown in Fig. 2, which 
has been further confirmed by retrieved refinement. The refined XRD 
pattern is shown in Fig. 3. 

The refined lattice constants are listed in Table 1 and shown in 
Figure S1. As compared with the reported lattice parameters of α-MnO2, 
a = b = 0.9785 nm and c = 0.2863 nm (ICSD: 44–141), in general the 
lattice parameters a / b increased with increasing level of copper doping. 
While c decreased slightly in MC1, it increased in MC2 and MC3. Since 
the valance state of Cu is lower than Mn, doping of copper will introduce 
oxygen vacancies into the lattice, which causes the lattice constant to 
reduce slightly. With higher doping, the oxygen vacancies increase, and 
the metal – oxygen bonding become weaker, which leads to the increase 
of the lattice constants. The lattice expansion due to doping indicates 
loosened lattice constraints in the nanostructures. 

The particle size of the samples was also calculated from Sherrer’s 
equation [86,87]. 

D =
K × λ
βcosθ

(1)  

Where D is the particle size, K is a dimensionless shape factor, here we 
use K = 0.9. λ is the wavelength of CuKα1, which is 1.5406 Å. β is the 
line broadening at half the maximum intensity (FWHM), after sub-
tracting the instrumental line broadening, in radians. θ is the Bragg 
angle. The particle size listed in Table 1 is based on the data at the 
strongest (211) peak at 2θ ≈ 37.5◦. The calculated particle size is in the 
range of 80–110 nm, which is fairly closed to the value observed by SEM 
(Fig. 1). 

The theoretical density is calculated using the following equation, 

ρ =
1.66 × Z × MW

V
(2)  

Where ρ is the theoretical density, Z is the number of molecules in each 
unit cell, MW is the molecular weight in g mol− 1, V is the lattice volume 

in Å3. For α-MnO2 with spece group I4/m (87), Z = 8. The calculated 
theoretical density of the four samples are listed in Table 1. With the 
increased doping level of copper, the theoretical density gradually in-
creases from sample MC0 to MC3. 

The surface area was calculated using the following equation,[86, 
88–92] 

S =
6000
D × ρ (3)  

Where S is the surface area, m2/g, D is the particle size, ρ is the theo-
retical density. The calculated surface area for the four samples are also 
listed in Table 1. The copper doped samples have slightly higher surface 
area than undoped MnO2. 

The crystallinity percentage of the samples is calculated by the 
following equation[86]. 

%Crystallinity =
Acp

Ata
× 100 (4) 

Here, Acp is the area under crystalline peaks, Ata is the total area of 
the XRD peaks. 

3.3. Cyclic Voltammetry tests of the zinc-ion batteries 

To investigate the kinetics, cyclic voltammetry (CV) method [93] 
was applied at different sweep rates of 0.1–5 mV/s with a voltage range 
of 1.0–1.8 V versus Zn2+/Zn in assembled CR2032 coin cells. Fig. 4 
shows the CV tests before and after the cell cycling. Fig. 4a) shows the 
CV tests at 0.1 mV/s. In the reduction scan from 1.8 V to 0.8 V, two 
peaks appear at around 1.4 V and 1.3 V vs. Zn/Zn2+, which can be 
attributed to Zn2+ or H+ ions insertion into the MnO2 host structure. 
[94] The oxidation scan towards 1.8 V also presented a peak at 
approximately 1.55 V vs. Zn / Zn2+, corresponding to the oxidation of 
Mn3+ back to Mn4+ and the de-insertion of Zn2+ ions. The CVs at a scan 
rate of 0.1 mV s− 1 appeared to be stable and consistent. CV curves are 
well overlapped, indicating good reversibility of cathode, except for the 
slight reduction of the peak current at 1.3 V, which reveals a decreased 
contribution to the capacity from H+ ions. This could be caused by the 
high pH value of the electrolyte that limited the supply of H+ ions. In the 
cathodic/anodic scans, the redox peaks appeared at the same location 
for all the cathodes, evidencing that Cu doped cathodes possess similar 
redox reactions to MnO2 cathode, and does not significantly affect the 
electrochemical process or storage mechanism of MnO2.[21] 

The CV results at 0.1 mV of the samples showed that doping reduced 
the redox peak potential differences. With copper doping, the oxidation 
peaks shifted to the left while the reduction peaks shifted to the right, 
which brings down the redox peak potential difference from 0.19 to 
0.16 V at 0.1 mV⋅s− 1 scanning speed, from 0.29 V to 0.26 V at 1.1 mV⋅s 
− 1 scanning speed, and from 0.41 V to 0.30 V at 5 mV⋅s − 1 scanning 
speed (Fig. 5). After cycling, the reduction in redox peak potential dif-
ference became more significant. As shown in Fig. 5, the peak potential 
difference is smaller at low scan rate and became even bigger at higher 
scanning rate, compared to the trend of the results from the fresh cells. It 
comes down from 0.20 V to 0.18 V at 0.1 mV⋅s− 1 scanning speed, from 
0.31 V to 0.23 V at 1.1 mV⋅s− 1 scanning speed, and from 0.45 V to 
0.30 V at 5 mV⋅s− 1 scanning speed. All the copper doped samples 
showed similar reduction in the redox peak potential difference despite 
that their doping levels are different. After cycling, the redox peak po-
tential difference for MC0 (non-doped) increased from 0.19 V to 0.20 V 
at 0.1 mV⋅s− 1, from 0.29 V to 0.31 V at 1.1 mV⋅s − 1, and from 0.41 V to 
0.45 V at 5 mV⋅s − 1; whilst for the doped samples, the redox peak po-
tential difference increased from 0.16 V to 0.18 V only at 0.1 mV⋅s− 1, 
but reduced from 0.26 V to 0.23 V at 1.1 mV⋅s − 1, and from 0.45 V to 
0.41 V at 5 mV⋅s − 1, after cycling. These results indicate that copper 
doping has effectively reduced the polarization on the electrode. 

A dominating pair of redox peaks exhibits increasing currents when 
Fig. 2. XRD patterns of the synthesised MnO2 samples with different level of 
copper doping. 
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the sweep rates increase. The electrodes do not present a capacitive 
behaviour of the electrode. The capacitive effect is characterized by 
analysing the cyclic voltammetry data at different sweep rates as in Eq. 
(5) [93]: 

i = avb (5) 

In which i is the specific peak current, ν is the potential sweep rate, 
and a, b are parameters that can be fitted from the experimental data. 
Eq. (1) can be taken with logarithm and can be expressed according to 
Eq. (2): 

lni = lna+ blnv (6) 

The b value is the slope of the linear fitting of lni versus lnν. When b 
value is close to 1, the system is mainly capacitance controlled; when b 
value is close to 0.5, the Zn2+ ion insertion process dominates with the 
redox reaction limited by the diffusion-controlled behaviour. Figure S5 
shows the ln i versus ln ν plots at oxidation and reduction process of the 
cyclic voltammogram. 

The bo (oxidation process) and br-Zn (reduction process of Zn2+

peak) br-H (reduction process with H+ de-escalation) of the cathodes, 
obtained from the above fitting (plotted in Figure S5) are listed in the  
Table 2. 

The average b values are close to 0.5, which implies that the redox 
reactions on cathodes are controlled by the diffusion process. MnO2 is a 
transition metal oxide that typically displays the pseudo-capacitance 
behaviour [95]. The capacitive-controlled process occurs only on the 
surface. However, our MnO2 samples turned out to be mainly 
diffusion-controlled processes. This means, the insertion/extraction of 
ions occur not only on the surface but also the bulk. The result suggested 
a fast Zn2+ ion insertion/extraction or high-rate property for the battery. 

When the process is diffusion controlled, the diffusion coefficient can 
be estimated from CV through Randles-Sevcik (Eq. (7)) to calculate the 
peak current (ip) using scan rate (ν) in an observed voltammogram. For 
redox reaction cycles, peak current (ip) depends on the concentration C, 
the diffusion coefficient (D), the scan rate (ν), and the electrode surface 
area (A) of redox-active species. [96,97] 

Fig. 3. XRD Rietveld refinement (GSAS II) patterns of the non-doped and copper doped MnO2 samples: a) MC0; b) MC1; c) MC2; d) MC3.  

Table 1 
Key crystallographic parameters and grain properties of the samples.  

Sample Composition Lattice parameters Particle size (nm) Theoretical density (g cm− 3) Sur-face area (m2/g) Crystallinity (%) 

a (Å) C (Å) V (Å3) 

MC0 MnO2  9.8232(3)  2.8624(5)  276.21(5)  111.06(2)  4.1798(4)  12.92(4)  88.1 
MC1 Mn0.962Cu0.038O2-δ  9.8310(4)  2.8647(2)  276.87(3)  86.89(8)  4.1855(1)  16.49(6)  83.3 
MC2 Mn0.941Cu0.059O2-δ  9.8330(2)  2.8642(9)  276.94(3)  79.17(7)  4.1931(1)  18.07(2)  84.0 
MC3 Mn0.926Cu0.074O2-δ  9.8338(8)  2.8653(8)  277.09(7)  81.23(7)  4.1969(7)  17.59(7)  86.3  
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ip = 0.4463(
n3FF3

RT
)

1/2A • C • (D • v)1/2 (7)  

Where ip is the Peak current (amperes), n is the Number of electrons 
transferred in a redox cycle, F is Faraday’s constant (96485 C⋅mol− 1), R 
is the Universal gas constant (8.3145 J⋅K− 1 ⋅mol− 1), T is Absolute tem-
perature, A is the electrode surface area in working (cm2), C is the Molar 
concentration of redox-active species (mol⋅cm− 3), D is the diffusion 
coefficient (cm2 s− 1), ν is the scan rate in V⋅s− 1. The calculated diffusion 
efficiencies (D) are in good agreement with their electrochemical 

performance in coin cells, with MC1 exhibits the highest D before 
cycling. The diffusion coefficient data are presented in Fig. 11 together 
with those data deduced from EIS tests. 

3.4. Rate and cycling tests of the zinc-ion batteries 

Fig. 7 shows the rate performances of MnO2 cathodes, at various 
specific current densities of 20, 50, 100, 200, and 500 mA⋅g− 1. The ca-
pacities of MC1 and MC2 are much higher than non-doped MnO2. At a 
higher doping level, the electrochemical performance of MC3 is lower 

Fig. 4. CV test of the coin cells before and after cycling: a) at 0.1 mV⋅S− 1; b) at 1.1 mV⋅S− 1; a) at 5 mV⋅S− 1 a) at 0.1 mV⋅S− 1 after cycling; a) at 1.1 mV⋅S− 1 after 
cycling; a) at 5 mV⋅S− 1after cycling. 
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than the non-doped MnO2 sample. When cycled at a specific current 
density of 200 mA⋅g− 1, MC2 delivered a discharge capacity of 276 and 
charge capacity of 298 mAh⋅g− 1. The rate capability and capacity are 
satisfactory when compared to other reports [69,72,74]. 

The cycling tests are carried out at 200 mA⋅g− 1. The columbic effi-
ciencies are around 99%. MC2 performed the best among all the sam-
ples. The capacity retention is 76.7% for MC0. MC1 experienced fast 
fading with a poor capacity retention of 56.8% after 100 cycles. It was 

Fig. 5. Redox peak potential difference from CV tests of the coin cells before and after cycling: a) the potential difference between anodic peak and the cathodic peak 
of Zn2+; b) the potential difference between anodic peak and the cathodic peak of H+; c) the potential difference after cycling between anodic peak and the cathodic 
peak of Zn2+; d) the potential difference between anodic peak and the cathodic peak of H+. 

Fig. 6. a) CV tests of the coin cells at 5 mV rate before and after cycling; b) Redox peaks potential difference of the coin cells after cycling, under varied scan rate of 1 
~ 5 mV/s. 
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85.8% for MC2 and 74.7% for MC3. This behaviour indicates that the Cu 
doped MnO2 are promising candidates for the Zn2+ ion storage material. 
This suggests that optimized level of Cu doping could improve both the 
cycling and rate performance as well as the stability for ZIBs. The 
cyclability is not ideal, which could be related to their needle-like 
morphology and nanoscale particle size as shown in Fig. 1. Further 
investigation on Cu doped MnO2 with different particle morphology 
could be helpful. 

Table 2 
The slope of the linear fitting of lni versus lnν, from the CV tests on coin cells.    

MC0 MC1 MC2 MC3 

Fresh cells bo  0.589  0.466  0.459  0.491 
br-Zn

2+ 0.771  0.768  0.718  0.705 
br-H
+ 0.505  0.468  0.416  0.425 

Cycled cells bo  0.523  0.502  0.491  0.494 
br-Zn

2+ 0.620  0.565  0.594  0.597 
br-H
+ 0.647  0.612  0.562  0.590  

Fig. 7. The rate and cycling performances of full zinc-ion coin cells using different MnO2 cathodes (non-doped and different level of copper doping): a) initial rate 
performance; b) rate tests of MC0; c) rate tests of MC1; d) rate tests of MC2; e) rate tests of MC3; f) cycling tests. 

R. Lan et al.                                                                                                                                                                                                                                      



Journal of Alloys and Compounds 992 (2024) 174528

9

3.5. EIS tests of the zinc-ion batteries before and after cycling 

Fig. 8 displaces EIS results. The curves consist of depressed semi-
circles and diffusion drift which can be fitted using the equivalent circuit 
as shown in Fig. 9, where Rs, Ri, Rct, CPE, and Zw represent series 
resistance, interfacial resistance between the electrolyte and electrode, 
charge transfer resistance, constant phase element, and Warburg diffu-
sion process, respectively.  

The Rct value from EIS fitting are shown in Table 2. MC1 showed the 
lowest Rct before cycling, and MC2 gave the lowest Rct after cycling, 
which is in good agreement with the electrochemical performance 
before and after cycling. It is noted that, the charge transfer resistances 
are high, which agrees with the low diffusion coefficients as calculated, 
which is also believed to be the main reason of the not very satisfying 
cycling performance in this research. It can be solved by improving the 
electrical conductivity of the samples through constructing a conductive 
support using the graphite, while preparing the cathode active mate-
rials. If as synthesized α-MnO2 are dispersed on graphite, it will increase 
the contact area between the electrode and the electrolyte and provides 
more electrochemically active sites for ion-insertion, which can hope-
fully also enable higher rate performance. 

The relationship between real impedance (Z′) and angular frequency 
(ω) in the low frequency region can be expressed accordingly as follows 
[97]: 

Z′ = Rs+Ri+Rct+ σω− 1/2 (8) 

σ is the Warburg factor which is relative to Z′- ω− 1/2 obtained from 
the slope of the lines as shown in Fig. 10. 

The diffusion coefficient of zinc ion can be calculated as in the 
following equation [98–101]: 

D = R2T2/2A2n4F4C2σ2 (5) 

R is the gas constant, T is the absolute temperature, n is the number 
of electrons per molecule oxidized (2 for Zinc ions), A is the surface area, 
F is Faraday’s constant, C is the concentration and D is the diffusion 
coefficient. 

The calculated diffusion coefficients of Zinc ions from EIs are in good 
agreement with the results from CV tests, although slightly lower, due to 
the testing technique. The diffusion coefficient of samples with higher 
copper doping - MC2 and MC3 both increased after cycling. Among them 
MC1 showed highest diffusion before cycling, which is consistent with 
the cell performance at the beginning of cycling tests. After cycling MC2 
gives the highest diffusion coefficient which also matches the results 
from cycling tests. 

4. Conclusions 

Homogenous Copper-doped Manganese Dioxide has been syn-
thesised and investigated as cathode materials for ZIBs with different 
doping levels. All the Cu doped MnO2 are found to be single phase 
α-MnO2. Their electrochemical properties as cathode for Zinc-ion bat-
teries are studied. Their pseudo-capacitive behaviour has been investi-
gated, which reveals that charging/discharging processes after cycling 
are diffusion controlled, while the discharging in fresh cells is a com-
bined process with both capacitive and diffusion contributions. MC2 is 
found to be the optimum doping level, gives improved performance and 
better stability, when compared to non-doped MnO2 samples. MC1 has 
shown the highest initial capacity of 379.5 mAh⋅g− 1 at 0.02 mAh⋅g− 1 

rate, but it experienced fast fading with a capacity retention of 56.8% 
after 100 cycles. MC3 showed the lowest capacity among all the sam-
ples, suggesting higher level of does not give more benefits. The MC 
samples showed satisfactory electrochemical properties such as higher 
capacity and better rate capability, while the non-ideal cyclability could 
be related to their needle-like morphology and nanoscale particle size. 
The zinc ion diffusion coefficient of all samples before and after cycling 
are tested to be in the range of 10− 12 cm⋅s− 1 with a good consistency 
with their according cell performances, using both cyclic voltammetry 
and electrochemical impedance spectroscopy. The redox peak difference 
has been notably reduced, at a similar level for all copper doped sam-
ples, compared to non-doped MnO2. It was noticed that the cell 

Fig. 8. EIS test of the coin cells a) before and b) after cycling.  

Fig. 9. Equivalent circuit.  

Table 3 
Rct value from EIS fitting.   

MC0 MC1 MC2 MC3 

Rs (Ω)-Fresh  1.742  1.976  2.646  7.39 
Rs (Ω)-Cycled  6.637  1.172  2.392  1.779 
Ri (Ω)-Fresh  0.699  0.803  0.946  1.118 
Ri (Ω)-Cycled  1.921  3.252  1.342  1.305 
Rct (Ω)-Fresh  344.5  267.2  359.6  526.5 
Rct (Ω)-Cycled  871.6  782.6  529.1  812.6  
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resistance of non-doped MnO2 increased from 1.78 Ω to 7.39 Ω, while 
the cell resistance of Cu-doped cathode all experienced slight reduction 
during cycling. The results from this paper suggested that Cu-doping is 
effective to reduce the polarization during charge-discharge, to reduce 
the resistance, and improve the cycling stability of MnO2. In this report, 
the doping level of copper in MnO2 from hydrothermal process is 
significantly lower than that in the prepared precursor. Further effort is 
required to investigate copper doping at higher levels for further 
investigation. Suitable supporting conductive materials with imple-
mentation of nanomaterials such as carbon nanotubes or graphene, 
could be helpful to improve the Zn2+ diffusion. New processes of ma-
terials synthesis, supporting conductive materials or second doping 
could be considered to improve the capacitive behaviour of the cathode 
materials. 
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