
 

 

Experimental and numerical study of 
electrically driven 
magnetohydrodynamic flow in a 
modified cylindrical annulus. II. 
Instabilities 
Stelzer,Z., Miralles, S., Cébron, D., Noir, J., Vantieghem, S.,  
Jackson, S 
Published PDF deposited in Coventry University’s Repository 
 
Original citation:  
Stelzer, Z, Miralles, S, Cébron, D, Noir, J, Vantieghem, S & Jackson, A 2015, 
'Experimental and numerical study of electrically driven magnetohydrodynamic flow 
in a modified cylindrical annulus. II. Instabilities' Physics of Fluids, vol 27, no. 8, 
084108. Available at Publisher’s website: 
http://aip.scitation.org/doi/full/10.1063/1.4928897  
 
DOI 10.1063/1.4928897  
ISSN 1070-6631 ESSN 
ESSN 1089-7666 
 
Publisher: AIP Publishing  
 
 
Copyright © and Moral Rights are retained by the author(s) and/ or other 
copyright owners. A copy can be downloaded for personal non-commercial 
research or study, without prior permission or charge. This item cannot be 
reproduced or quoted extensively from without first obtaining permission in 
writing from the copyright holder(s). The content must not be changed in any way 
or sold commercially in any format or medium without the formal permission of 
the copyright holders. 

http://aip.scitation.org/doi/full/10.1063/1.4928897
http://dx.doi.org/10.1063/1.4928897


Experimental and numerical study of electrically driven
magnetohydrodynamic flow in a modified cylindrical annulus. II. Instabilities
Zacharias Stelzer, Sophie Miralles, David Cébron, Jérôme Noir, Stijn Vantieghem, and Andrew
Jackson

Citation: Physics of Fluids 27, 084108 (2015); doi: 10.1063/1.4928897
View online: http://dx.doi.org/10.1063/1.4928897
View Table of Contents: http://aip.scitation.org/toc/phf/27/8
Published by the American Institute of Physics

Articles you may be interested in
Experimental and numerical study of electrically driven magnetohydrodynamic flow in a modified
cylindrical annulus. I. Base flow
27, 077101077101 (2015); 10.1063/1.4923746

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/139806795/x01/AIP-PT/PoP_ArticleDL_051717/PTBG_orange_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Stelzer%2C+Zacharias
http://aip.scitation.org/author/Miralles%2C+Sophie
http://aip.scitation.org/author/C%C3%A9bron%2C+David
http://aip.scitation.org/author/Noir%2C+J%C3%A9r%C3%B4me
http://aip.scitation.org/author/Vantieghem%2C+Stijn
http://aip.scitation.org/author/Jackson%2C+Andrew
http://aip.scitation.org/author/Jackson%2C+Andrew
/loi/phf
http://dx.doi.org/10.1063/1.4928897
http://aip.scitation.org/toc/phf/27/8
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4923746
http://aip.scitation.org/doi/abs/10.1063/1.4923746


PHYSICS OF FLUIDS 27, 084108 (2015)
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1Institute of Geophysics, ETH Zürich, Zürich, Switzerland
2Université Grenoble Alpes, CNRS, ISTerre, Grenoble, France

(Received 26 February 2015; accepted 8 August 2015; published online 21 August 2015)

We present an investigation of the stability of liquid metal flow under the influence
of an imposed magnetic field by means of a laboratory experiment as well as a linear
stability analysis of the setup using the finite element method. The experimental
device ZUrich Cylindrical CHannel INstability Investigation is a modified cylindrical
annulus with electrically driven flow of liquid GaInSn operating at Hartmann and
Reynolds numbers up to M = 2022 and Re = 2.6 · 105, respectively. The magnetic
field gives rise to a free shear layer at the prominent inner electrode. We identify
several flow regimes characterized by the nature of the instabilities. Above a crit-
ical current Ic = O(0.1 A), the steady flow is destabilized by a Kelvin-Helmholtz
mechanism at the free shear layer. The instability consists of counterrotating vortices
traveling with the mean flow. For low forcing, the vortices are restricted to the free
shear layer. Their azimuthal wave number m grows with M and decreases with Re.
At Re/M ≈ 25, the instability becomes container-filling and energetically significant.
It enhances the radial momentum transport which manifests itself in a broadening
of the free shear layer width δS. We propose that this transition may be related to
an unstable Hartmann layer. At Re/M2 = O(1), an abrupt change is observed in the
mean azimuthal velocity ⟨uφ⟩ and the friction factor F, which we interpret as the
transition between an inertialess and an inertial regime. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4928897]

I. INTRODUCTION

In the context of geo- and astrophysics as well as engineering applications, it is of great interest
to study the interaction between electrically conducting fluids and magnetic fields. This research
area is called magnetohydrodynamics (MHD). Two MHD regimes can be distinguished by the
value of the magnetic Reynolds number Rm = µ0σeU0a, where µ0 is the permeability of free space,
σe the electrical conductivity, U0 a typical velocity, and a the length scale of the system. On the
one hand is the regime of large Rm where, e.g., planetary dynamos live.1 It is characterized by a
two-way interaction between flow and magnetic field. On the other hand is the regime of small
Rm . 1 and small Lundquist number S = (µ0/ρ)1/2σeaB0 . 1, with ρ the mass density and B0
the strength of the imposed magnetic field. This regime is characterized by the absence of the
reaction of the flow on the magnetic field which means that induced fields are negligible. Many
liquid-metal experiments and engineering applications fall into this so-called quasi-static limit;2 it is
also believed to govern the small-scale motions in the earth’s core.3

The experiment ZUCCHINI (ZUrich Cylindrical CHannel INstability Investigation) allows us
to study electrically driven MHD flow at low Rm in the modified cylindrical annulus shown in
Figure 1. All side walls are electrically insulating except the inner and outer ring electrodes. Forcing
a radial electrical current I through the tank filled with liquid GaInSn under an imposed magnetic
field B gives rise to a Lorentz force leading to a mainly azimuthal flow. The system is controlled by
two nondimensional parameters, namely, the Hartmann number M and the Reynolds number Re,
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FIG. 1. Sketch of the modified cylindrical annulus ZUCCHINI with dimensions. Forcing an axisymmetric electrical current
I through the liquid metal under an imposed magnetic field B gives rise to a Lorentz force which drives an azimuthal flow.
The electrodes are coloured in red, the remaining walls are insulating. The half-height a = 5 cm is used as length scale in the
non-dimensionalization.

M = aB0


σe

ρν
, Re =

U0a
ν

, (1)

where ν is the kinematic viscosity of the fluid.
In the first part of this work,4 hereafter referred to as “Paper I,” we investigated the steady base

flow experimentally as well as numerically. Also, a detailed description of the setup and previous
experiments is found there. In the current study, we focus on the instabilities of the flow which will
be shown to originate from the free shear layer near the inner electrode.

Most earlier experiments in similar geometries operated in the unstable regime and used global
potential difference measurements to diagnose the flow.5–7 Transitions in flow regimes were diag-
nosed by the friction factor F, defined in Equation (18) or similar quantities describing the dissi-
pation in the system. Some experiments probed the flow structure locally by potential difference
probes (PDPs)8,9 or ultrasonic Doppler velocimetry (UDV).10 We employ both local and global
measurements.

The most significant difference between ZUCCHINI and most other experiments is the pres-
ence of the inner electrode which protrudes into the flow. Since the magnetic field suppresses
gradients along its direction, a free shear layer develops at the edge of the electrode. In addition,
the Hartmann layers at walls perpendicular to the field with thickness δH ∼ M−1 and Shercliff (side)
layers at parallel walls scaling as δS ∼ M−1/2 are important features of confined low-Rm MHD flow.

Experimental investigations naturally incorporate the whole physics of a system. Due to the
sparsity of experimental measurements, it is instructive to complement the experiment by numerical
simulations which, however, do not reach the same parameter values. The famous Moresco and Al-
boussière7 experiment (MA04) studying the instability of the Hartmann layer as well as the original
Hartmann and Lazarus11 duct experiment has been the topic of intense numerical investigations.
Krasnov et al.12 explained the discrepancy in the value for the threshold of instability between
results of MA04 (Rec/M ≈ 380) and the linear stability analysis which is two orders of magnitude
larger by finite-amplitude perturbations. Vantieghem and Knaepen13 found that the magnetic field
suppresses turbulence in the core and the Hartmann layers and that unstable side layers can coexist
with stable Hartmann layers. Zhao and Zikanov14 studied the MA04 setup below the threshold of
Hartmann layer instability for a Hartmann number of M = 260. They found that a first instability
limited to the outer side layer does not change the friction factor F much which is dominated by
stresses at the Hartmann walls. This picture of subsequent relaminarization of the core flow, the
Hartmann layers, and finally the side layers with increasing magnetic field was confirmed by the
straight duct simulations of Krasnov et al.15 at Re = 105 and M ∈ [0,400]. Not only the critical
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parameters for the laminar-turbulent transition but also friction coefficients were in agreement with
Hartmann’s original data.16

Another approach for the numerical simulation of MHD flow at large Hartmann numbers M
and interaction parameters N = M2/Re is the effective two-dimensional model of Pothérat et al.17,18

It is based on the assumption of a quasi-2D core flow and includes 3D effects due to the Hartmann
layers in the averaged equations. It has been validated against experimental results, e.g., the free
shear layer study of Alboussière et al.8 A similar concept underlies the geostrophic-like model by
Alboussière19,20 for large-M flows.

Free MHD shear layers have been studied theoretically,21,22 experimentally,8,9,23,24 and numeri-
cally.18,24 Lieutaud and Neel22 studied the stability of electrically driven shear flow in a straight duct
against two-dimensional perturbations and found the limit of unconditional stability below which
any arbitrary 2D perturbation decays. The MATUR experiment examined the structure as well as
momentum transport of a quasi-2D MHD turbulent shear layer at M = 42 and up to 1800 in Refs. 7
and 8, respectively. It was found that the shear layer thickness is significantly increased and scales
as δS ∼ (M/Re)−1/2.3, the laminar prediction being δS ∼ M−1/2. The velocity field is dominated by
a small number of large coherent structures moving with a transit velocity of slightly above uφ,max.
In the Princeton MRI experiment,23,24 a free Shercliff layer was studied in the presence of rotation
and magnetic field in a cylindrical Taylor-Couette apparatus. Finally, the Taylor-Couette experiment
DTS (Derviche Tourneur Sodium) observed magneto-inertial waves in spherical geometry.25,26

The present paper focuses on the instabilities in ZUCCHINI. Section II summarizes the phys-
ical model which can be found in more detail in Paper I, as well as the numerical and experimental
methods. Section III describes our findings for the mean flow, the instability of the free shear layer,
and further transitions in the friction factor. A discussion in Section IV concludes the work.

II. MODEL AND METHODS

The configuration is a cylindrical annulus filled with an electrically conducting fluid. The basic
setup is shown in Figure 1. The half-height of the container is a = 5 cm. The radii of the inner and
outer cylinders are ri = 4.5 cm and ro = 20.5 cm, respectively. The disk electrode protruding from
the inner cylinder has a radius of rd = 7.5 cm, its axial width is 1 cm. Container and fluid are subject
to an imposed axial magnetic field B = B0ez with a strength of up to 1 T. We force an electrical
current I of up to 300 A between the edge of the disk electrode at the center and the ring electrode
at the outer cylinder. The remaining walls of the container are electrically insulating. The mainly
radial current density j in an axial magnetic field gives rise to a Lorentz force fL = j × B in the
azimuthal direction resulting in an azimuthal fluid flow.

With Rm . O(10−1) as an indicator of the ratio of induced to imposed magnetic fields, induced
fields are largely negligible in ZUCCHINI. For this so-called quasi-static approximation (Rm ≪ 1),
the dimensional governing equations are the Navier-Stokes equation, the incompressible continuity
equation, Ohm’s law, and the equation of charge conservation,

ρ

(
∂u
∂t
+ u · ∇u

)
= −∇p + ρν∇2u + j × B, (2)

∇ · u = 0, (3)
j = σe (E + u × B) , (4)
∇ · j = 0, (5)

where u is the velocity vector, E is the electric field, and p is the pressure. The nondimensional
equations are

Re
M2

(
∂u
∂t
+ u · ∇u

)
= −∇p +

1
M2∇

2u + (−∇Φ + u × B) × B, (6)

∇ · u = 0, (7)

∇2
Φ = ∇ · (u × B) , (8)
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as derived in Paper I. The nondimensional parameters governing the system are the Hartmann num-
ber M and the Reynolds number Re defined in Equation (1). The square of the Hartmann number
M2 gives the ratio of Lorentz to viscous forces. The Reynolds number Re is the ratio of inertial
to viscous forces. Alternatively, the interaction parameter N = M2/Re can be used which gives the
ratio of Lorentz to inertial forces.

A. Numerical simulation

We assume that the base flow in ZUCCHINI is steady and axisymmetric as established in
Paper I. In reality, such a flow occurs only at very low forcing. For a given Hartmann number M ,
the flow may be unstable to infinitesimally small perturbations in the velocity field above a critical
value Rec of the Reynolds number, called the linear onset of instability. These perturbations initially
grow like eσt, where σ is the growth rate. The flow could also be unstable to finite-amplitude
perturbations potentially already below the linear onset of instability, Re < Rec, called a subcritical
instability. With the linear instability analysis, we hence find an upper bound for the onset of
instability.

As for the base flow, we perform numerical simulations using the commercial finite element
(FE) code Comsol Multiphysics, version 4.3b. The brute force approach of recovering the unstable
flow by 3D simulations is too costly since very thin boundary layers δH ∼ M−1 have to be resolved.
Hence, we choose to study the linear onset of instability by simulating modes with different
azimuthal wave numbers m separately. The separation is possible since modes with different m
are not coupled in the linear problem. In this way, the problem reduces to 2D3C (2 dimensions, 3
components) simulations.

1. First-order perturbation equations

For the study of the linear onset of instability, the velocity field is expressed as a sum of
the steady and axisymmetric base flow ub and a harmonic perturbation u′ with an explicit φ-
dependence using the azimuthal wave number m,

u = ub(r, z) + u′(r, z, t) eimφ. (9)

The perturbation is assumed to be small compared to the base flow, |u′| = ϵ |ub |, with ϵ ≪ 1.
The same procedure is applied to the remaining variables pressure p and the electric potential Φ.
Inserting these expressions into governing Equations (6)-(8) yields terms of order ϵ0, ϵ1, and ϵ2.
Terms of order zero that constitute the base flow (equivalent to Eqs. (6)-(8)) were solved in Paper I,
second-order terms are negligible. The remaining terms of order one in ϵ make up the linearized
perturbation equations. They are given in cylindrical coordinates in Appendix A.

2. Numerical model

The linearized perturbation equations (Eqs. (A1)-(A5)) as well as the equations for the axisym-
metric base flow (Eqs. (6)-(8)) are solved with the FE method. The 2D geometry corresponds to
a (r, z)-plane section through the experimental setup of ZUCCHINI. Details of the implementation
are found in Paper I. In the present study, we use quadratic and linear Lagrange elements for the
discretization of velocity and pressure fields, respectively; the discretization of the electric potential
is quadratic. In order to further reduce computation time, the mesh is adapted for every M . The
differences in global and local measurements of velocity and electrical current density compared
with highly resolved simulations from Paper I are negligible (.0.1%).

Velocity boundary conditions are no slip, u = 0. For the base flow, electrical boundary condi-
tions are insulating, −n · ∇Φ = 0, at all boundaries apart from the electrodes; at the inner electrode,
a radial current is forced, −∇Φ = er , the outer electrode is set to ground, Φ = 0 (Paper I, Ap-
pendix A). For the linearized perturbation equations, the boundary conditions are the same as for
the base flow apart from the electrical boundary condition for the inner electrode which is also
insulating.
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In order to have a perturbation in the linearized equations to begin with (which also satisfies
the continuity equation), a flow is driven by the injection of a radial electrical current at the inner
electrode which is shut off after some time. For our study, we applied −∇Φ = f (t)er , with

f (t) =



c
2
(1 + cos(πt/t0)) for t < t0,

0 for t ≥ t0,
(10)

which is smooth at t0 for which we used t0 = 0.1. The constant c is adjusted in the range from 10
for M = 10 to 0.5 for M = 200 such that the kinetic energy in the perturbation of the flow is small
(∼10−3) compared to the base flow.

In the linear instability study, first the base flow model at (M,Re) is run until it converges.
Then, the flow for every azimuthal wave number m is simulated separately. The number of degrees
of freedom ranges from roughly 1.6 · 105 at M = 10 to 3.1 · 105 at M = 200. Calculations were
performed on a single processor with every run (M,Re,m) taking the order of 4 h of CPU time.

3. Parameters and processing

We perform a systematic parameter study of the first-order perturbation equations in order
to calculate growth rates σ for the different modes and discover the threshold of linear stability.
Moreover, we study the spatial structure and behaviour of the unstable modes.

The parameter study of the base flow in Paper I contained models with M ∈ [1 . . . 200]. An
asymptotic behaviour in terms of velocity scalings was found for M & 30. In this parameter regime,
the axisymmetric base flow (m = 0) is stable up to the highest forcing. We restrict our linear
stability analysis to Hartmann numbers M ∈ [10,200]. The imposed electrical current I, which
defines the input Re in the numerical study, is chosen between 1 mA and 4.3 A. For 48 parameter
combinations (M, I), we run models with azimuthal wave number m ∈ [1 . . . 10]. To check the
behaviour of the growth rates at higher m, we perform simulations with m up to 50 for the case
(M = 20, I = 0.43 A). We measure the temporal evolution of the spatial components of the kinetic
energy of the perturbation,

E ′i = 0.5


u′2i dS, (11)

where i ∈ {r, φ, z} denotes the radial, azimuthal, or axial component.
Figure 2 shows the temporal evolution of the kinetic energies for M = 100, I = 0.22 A, and

m = 4 and 6. After the shutdown of the initial excitation, the kinetic energies in the 2D section are

FIG. 2. Temporal evolution of nondimensional kinetic energies of perturbation E′i, where i ∈ {r, φ, z}. The data are taken
from runs with M = 100, I = 0.22 A, and m = 4 (blue) and m = 6 (red), respectively. Continuous lines are E′φ, dashed lines
are E′r , and dotted lines are E′z.
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oscillating around a curve of exponential decay (m = 4) or growth (m = 6). We fit an exponential
function Aeσt to the azimuthal kinetic energy of perturbation E ′φ using linear regression. Extract-
ing σ from E ′r or E ′z yields the same result. Positive growth rates σ > 0 mean that infinitesimal
perturbations grow and the flow is unstable. Since the frequency of the instability is experimentally
observable, we also measure the oscillation frequency 2 f of the azimuthal kinetic energy which
is two times the frequency f with which the azimuthal velocity u′φ oscillates. This is done using
the Lomb-Scargle periodogram27 due to the uneven sampling of the data in time (adaptive time
stepping). The oscillation frequencies of radial and axial velocity components are the same as the
azimuthal one.

B. Laboratory experiment

In the ZUCCHINI experiment, we study the instabilities of electrically driven MHD flow, espe-
cially the ones occurring in the free Shercliff layer at the inner electrode. We also find indications
for instability in the Hartmann layer.

1. Setup

The experimental setup consists of three main parts: the tank filled with liquid GaInSn in the
form of a modified cylindrical annulus, coils that create the imposed magnetic field B, and power
supplies generating the current I (Fig. 1). The setup is described in detail in Paper I. The tank
is equipped with UDV and PDP to diagnose the flow. The working fluid is MCP 11 alloy from
5N Plus UK Ltd. consisting of 65.9% gallium, 20.8% indium, and 13.3% tin. It is liquid at room
temperature; its relevant physical properties are given in Table I. Since it is easily oxidized, we keep
the whole system under an argon overpressure of 0.2 bars at all times.

The data of this work come from two different realizations of this setup. The first one is the
“Caylar” setup which consists of three resistive magnetic coils in a modified Helmholtz arrange-
ment reaching a maximum field strength of B = 0.1 T. The three SM 18-50 power supplies from
Delta Elektronika provide a total forcing current up to I = 150 A. In the second setup, called
“Cryo,” a single thick superconducting coil set from Cryomagnetics, Inc. provides a magnetic field
up to Bmax = 1 T. The electrical current between the electrodes is driven by six SM 18-50 power
supplies and reaches a total forcing current of Imax = 300 A. More detailed information on magnetic
field geometry, current distribution, and GaInSn handling is given in Paper I.

2. Measurements

The flow in ZUCCHINI is measured by UDV and PDP. Since the two methods rely on
different physical principles, they provide independent measurements allowing to mutually check
the results. Here we describe the measurement methods, the data processing, and present a data
example.

We use the UDV system DOP3010 from Signal Processing S.A. with three multiplexed chan-
nels connected.29 The UDV probes have an emission frequency of fe = 8 MHz. UDV is based
on measuring shifts in the position of particles, in our case oxides of Ga, suspended in the fluid
between two consecutive ultrasonic pulses. It gives a profile of the velocity component along the
ultrasonic beam. For technical details and procedures, see Paper I.

TABLE I. Physical properties of GaInSn from the work of Morley et al.28

The presented data resemble the MCP11 alloy from 5N Plus.

Kinematic viscosity ν 2.98 ·10−7 m2/s
Electrical conductivity σe 3.1 ·106 (Ω m)−1

Density ρ 6360 kg/m3

Melting point Tm 10.5 ◦C
Sound speed c 2730 m/s
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FIG. 3. Top view of tank with orientation of UDV probes R (radial) and X (chordwise) in red and the location of the potential
difference probes A and B in yellow.

Two of the three UDV probes are mounted in the inner cylinder of the tank as shown in
Figure 3. Probe R measures the radial velocity ur along a radial profile to the outer wall. Probe X
records the chordwise velocity uχ which contains uφ as well as ur . UDV probe Z is mounted flush in
the bottom plate of the tank slightly outside the inner disk electrode. It records a profile of the axial
velocity uz over the entire height of the container.

PDP measurements have not been used in Paper I. Hence, we give here a more detailed over-
view of the method. We employ PDPs which make use of the externally imposed magnetic field.
The PDP measures the voltage drop ∆Φ across the distance between the wires ∆l induced by the
flow of an electrically conducting fluid in a magnetic field. In the absence of electric currents j,
Ohm’s law (Eq. (4)) relates the electric field E ≈ ∆Φ/∆l linearly to the velocity.30 In specific cases,
it is necessary to take thermoelectric effects into account due to the different materials of PDP and
fluid when measuring ∆Φ.31,32 Also, it is known that PDPs perturb liquid metal flow.33 We consider
these effects to be negligible in our experiment.

We use an array of wires mounted flush in the top lid of the container to measure ∆Φ in the
r- and φ-directions in a similar way to that of the work of Kljukin and Thess34 and Messadek and
Moreau.9 Our PDP arrays consist of squares of 2 × 2 brass pins with a width of a few tenths of a
mm and a spacing of 10.16 mm, thus yielding two radial and two azimuthal measurements per PDP
array. The PDP arrays A and B are located on a radial ray above the radial UDV beam at r = 75 mm
and 140 mm, respectively. Since B ≈ B0ez, azimuthal and radial velocity are given by

u{φ,r} =
∆Φ{r,φ}

B0∆l
. (12)

In the limit of high Hartmann numbers, M ≫ 1, the electric potential is uniform along the direc-
tion of the magnetic field and does not significantly change over the Hartmann layer. Hence, our
measurements of ∆Φ in the Hartmann layer do not only give local velocities but carry information
about the core velocity. We have verified that the velocities calculated from PDPs agree qualitatively
with the ones measured by UDV. Nevertheless, we report PDP measurements as voltages only in
this study.

The PDPs are connected to an NI PXI-2501 multiplexer and an NI PXI-4070 data acquisition
system through a LAN cable of category 5e or similar shielded cables. In the 0.1 V (respec-
tively, 1 V) range, the measurements have a resolution of 0.1 µV (respectively, 1 µV). Sampling



084108-8 Stelzer et al. Phys. Fluids 27, 084108 (2015)

with roughly 50 Hz (respectively, 750 Hz) leads to a noise level of less than ∼1 µV (respec-
tively, ∼10 µV). Potential differences are measured against the inner electrode as common reference
and later combined to yield local measurements.

UDV and PDP provide time series of velocity and potential, respectively. The sampling rate of
the UDV is adjusted according to signal quality and the ability to resolve the observed oscillations.
In general, it increases from ∼1 Hz at low currents (steady flow) to ∼30 Hz at 150-300 A. The
recording time is set such that the frequency resolution is sufficient (∼0.01 Hz). In general, it
decreases from ∼150 s to ∼60 s with increasing current. The sampling rate of the PDPs is 5.2 Hz per
channel for low forcing currents and 83.3 Hz for high currents.

3. Processing

UDV and PDP time series are treated similarly. In both cases, we calculate the temporal mean
value (·) and the standard deviation σu. After detrending with a linear function and applying a Hann
window to the time series, we perform a fast Fourier transform (FFT) to find the two dominant
frequency components f i and their respective amplitudes Ai with i ∈ {1,2}. Only spectral peaks
with Ai > 10 ⟨A⟩ are considered as significant frequency components, where ⟨A⟩ is the average
value of the radially stacked amplitudes.

PDP measurements are processed in a similar way. In general, they confirm the results from the
UDV recordings. Hence, we focus on the UDV data in this work. A PDP data example is given in
Appendix B.

Profiles of mean azimuthal velocity uφ(r) are derived as

uφ(r) = r
e

uχ(r), (13)

where e = 25 mm is the distance of the UDV chord (probe X) to the origin. For a discussion on the
reconstruction of uφ, see Section V B in Paper I. We define the spatial averaging along a profile in a
cylindrical coordinate system as

⟨·⟩ =

· rdr
rdr

. (14)

The radial range of averaging in the case of ⟨uφ⟩ is r ∈ [100,150] mm. The Reynolds number is
defined as

Re =
⟨uφ⟩a
ν

, (15)

where ⟨uφ⟩ is averaged both in time and space.

III. RESULTS

In this section, we present the results of the numerical and experimental investigations which
do not overlap in parameter space but give complementary insights into the system. The first part
is dedicated to the mean (time-averaged) flow which has been studied in terms of the base flow in
Paper I for the cases with low forcing up to I = 9 A only. Then, we study the instability of the free
shear layer as well as its structure and the shear layer width. The section is concluded by the friction
factor which shows indication of a turbulent Hartmann layer at medium M and large forcing.

A. Mean flow

The mean flow u is the basis on which possible instabilities develop. In Paper I, we have shown
that u is dominated by its azimuthal component uφ due to the Lorentz forcing in our model. At large
M and low forcing I, the numerical results of the base flow followed well the theoretical expression

uBH
φ (r) = I

4πr
√
σeρν

(16)
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FIG. 4. (a) Profiles of mean azimuthal flow uφ(r ) in the experiment at M = 1769 (B = 875 mT). The color indicates the
forcing current I . The vertical line shows the location of the inner electrode, r = 75 mm; the grey window, r ∈ [100,150] mm,
is used to calculate the average value ⟨uφ⟩. (b) Radial average ⟨uφ⟩ of the mean azimuthal flow in the experiment plotted
versus forcing current I . The color indicates the Hartmann number M .

of Baylis and Hunt.6 The experimental profiles in Paper I exhibited the same proportionality
uφ(r) ∼ I/r , however, with 20% smaller absolute values.

Figure 4(a) shows profiles of the time-averaged azimuthal flow uφ(r) in the experiment at
M = 1769 (B = 875 mT) for varying forcing currents. The general shape of the profiles is similar
as in Paper I up to the highest forcing of I = 300 A: a shear layer forms on the cylinder tangent
to the inner electrode, separating the flow into an electrically forced outer domain and an inner
domain where the flow is only viscously entrained from the forced region. This momentum diffu-
sion appears to be enhanced at large forcing, broadening the free shear layer which we will study in
Section III C.

Figure 4(b) shows the average value ⟨uφ⟩ of the mean azimuthal flow as a function of the
current I and the Hartmann number M . For large M & 500, we observe a collapse of all data onto
a linear scaling ⟨uφ⟩ ∼ I with the current up to the largest forcing. At lower M < 500, we observe a
transition in the base flow. A low-forcing regime follows the same linear trend as for the highest M .
Above a critical value of the injected current, the mean flow tends to be less energetic, the amplitude
increasing less rapidly with the current. The smaller M , the sooner this transition occurs. Although
we do not have evidence from the present data, it is not excluded that this change of behaviour
continues at the largest M but for currents that are out of reach with our setup. In the range of
parameters accessible with this experiment, it is not possible to differentiate between a second linear
behaviour and another mathematical form, which may lead to saturation at larger I. We will come
back to this transition when looking at the friction factor in Section III E, especially Figure 14.

B. Instability of the free shear layer

For our understanding of the general dynamics in the modified cylindrical annulus, it is impor-
tant to determine the onset of the first instabilities that develop on top of the stationary base flow.
Experimentally, the instabilities are, however, only unambiguously observed when they reach a
certain amplitude and become significant in terms of energy compared to the base flow. Hence, we
start our study of the instabilities in the system by the numerical linear stability analysis described in
Section II A.

Figure 5(a) displays the growth rate σ of modes with different azimuthal wave numbers m for
three selected cases (M, I). At M = 100, all modes are stable for I = 0.13 A. For I = 0.22 A, the
modes with m ∈ {5,6,7,8} are unstable, whereas larger m are stable again. As seen in the case
(M = 20, I = 0.43 A), the growth rate σ decreases almost monotonically towards large m. In a
3D setup with all wave numbers present, all modes with σ > 0 might grow. After sufficient time,
however, only the mode with largest σ is observed.

Through an interpolation, we find the critical current Ic for which σ = 0 at every (M,m). These
curves of neutral stability are shown in Figure 5(b). The lowest curve corresponds to the mode
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FIG. 5. Numerical linear stability study. (a) Growth rates σ versus azimuthal wave number m of the modes for (M = 100, I =
0.13 A and 0.22 A) as well as (M = 20, I = 0.43 A). Modes with σ > 0 are linearly unstable. (b) Curves of neutral stability
(σ = 0) for different azimuthal wave numbers m in parameter space (M, I ). The data points are derived from the measured
growth rates by linear interpolation, the connecting lines are piecewise cubic Hermite interpolating polynomials.

which becomes first unstable when increasing the current. The onset of linear instability is given
by the lower envelope of all these curves. Its critical current Ic has a minimum of roughly 0.13 A
at M ≈ 30. For larger M , it increases to 0.28 A at M = 200; the scaling follows Ic ∼ M0.5. We
observe that the wave number m of the most unstable mode increases from 3 at M = 10 to 8 at
M = 200. Since we are dealing with a linear stability study, we cannot predict the wave number of
the dominant mode for I ≫ Ic. In the saturated regime, it is possible to find different modes, as we
will see in the experimental data.

In the experimental UDV recordings, we use the standard deviation σuφ of the azimuthal veloc-
ity as a tracer of the instability, i.e., the fluctuating part of uφ. Figure 6(a) shows radial profiles of
σuφ/⟨uφ⟩ at M = 1769 and varying current. Neglecting measurement noise, the quantity σuφ/⟨uφ⟩
can be interpreted as the square root of the ratio of energy in the instability to the energy in the
base flow. We observe that σuφ/⟨uφ⟩ has a significant peak inside the edge of the inner electrode
(r = 75 mm) already at the lowest forcing. This peak shifts to a slightly larger radius with higher
forcing but stays near to the inner electrode. It indicates an instability localized at the free shear
layer, which we will call regime 1 in Figure 6(b). At this point, the instability is energetically not
significant compared to the base flow.

At larger forcing current I, σuφ/⟨uφ⟩ increases while the peak broadens over a larger radial
range. The instabilities grow in amplitude and are not restricted to the free shear layer anymore but
become container-filling. We will call this regime 2 in Figure 6(b) and take as a criterion for the
transition that the radial average is ⟨σuφ⟩/⟨uφ⟩ > 0.1 (dashed line). In regime 2, the instability alters
the base flow as we will see when looking at the shear layer width in Section III C.

Figure 6(c) is a synopsis of the results from the numerical linear stability study and the tran-
sition between regimes 1 and 2 in the experimental data. This stability diagram in (M,Re)-space
shows the linear onset Rec as connected squares, experimental data points in regime 1 as open
circles, and the ones in regime 2 as filled diamonds.

All our experimental UDV measurements exhibit a localized peak of σuφ at the location of the
free shear layer. This result is well understood from the very threshold obtained in the numerical
simulations. We tried to perform experiments at very low current to capture the onset of regime 1.
However, the resolution of the UDV does not allow us to resolve both the large amplitude mean flow
and the small amplitude fluctuations simultaneously.

The transition between regimes 1 and 2 in the UDV data is well described by Re/M ≈ 25 for
large M in Figure 6(c). Hence, we use this combined parameter to collapse the σuφ/⟨uφ⟩ data.
Figure 6(d) displays ⟨σuφ⟩/⟨uφ⟩, where σuφ was averaged over r ∈ [60,120] mm versus Re/M for
large M & 500. The data appear to be well collapsed onto one curve that exhibits a clear transition,
increasing by roughly an order of magnitude around Re/M ≈ 25.
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FIG. 6. Standard deviation and stability in the experimental data. (a) Profiles of the ratio of standard deviation σuφ to mean
azimuthal velocity ⟨uφ⟩ at M = 1769 (B = 875 mT). The color indicates the electrical current I . The vertical line indicates the
location of the inner electrode, r = 75 mm. (b) Example profiles from (a) showing (1) an instability localized at the free shear
layer and (2) a broad tank-filling instability with ⟨σuφ⟩/⟨uφ⟩ > 0.1. (c) Measured data in (M , Re)-space with open circles
corresponding to regime (1) and filled diamonds falling into regime (2). The red line with slope 1 appears to separate the two
regimes well for M & 100. The filled squares denote the critical Re for linear instability in the numerical study. (d) Averaged
ratio ⟨σuφ⟩/⟨uφ⟩ for large M & 500 versus Re/M showing a clear transition from regime (1) to (2) at Re/M ≈ 25.

C. Shear layer width

As the instabilities appear to develop at the free shear layer for low forcing, it is instructive
to have a closer look at the properties of this layer. A measure that is accessible from profiles of
azimuthal velocity uφ(r) (Fig. 4(a)) is the width δS of the free shear layer. We define it as the radial
distance between the point of maximum azimuthal velocity and the edge of the inner electrode,
δS = r(uφ

max) − rd.
Figure 7(a) shows δS versus the current I for experimental runs at large M & 500. The

different-M data behave similarly with δS first dropping from 10 to 5 mm when increasing I and

FIG. 7. Width δS of the free shear layer versus (a) the current I and (b) the parameter Re/M in large M & 500 models; color
indicates the Hartmann number M . We observe transitions in δS to 13 mm at Re/M ≈ 25 and to 19 mm at Re/M ≈ 70.



084108-12 Stelzer et al. Phys. Fluids 27, 084108 (2015)

then exhibiting two jumps to rather constant plateaus of 13 mm and 19 mm. Only the data points at
1 A do not follow this behaviour and show a clear M-dependence with smaller δS at larger M .

Also, the δS-data are collapsed onto a single line when using the parameter Re/M instead of I
as seen in Figure 7(b). The two transitions in δS from 5 mm to 13 mm and subsequently to 19 mm
occur at roughly Re/M ≈ 25 and 70, respectively. Hence, the first increase in the shear layer width
corresponds to the transition from regime 1 to 2. At the value of Re/M ≈ 25, the instabilities start
to fill the entire container as discussed in Sec. III B. This appears to enhance the radial transport of
momentum and flatten the velocity gradient, thereby broadening δS.

D. Structure of the instability

After determining the threshold of the instability and its location, we turn to its structure. The
numerical linear stability analysis allows to conveniently plot the perturbation velocity field u′.
Figure 8 displays four snapshots of u′ for the most unstable, slightly supercritical mode m = 8 at
M = 200. The perturbation flow (as the base flow) is largely axially invariant due to the magnetic
field. The radial and azimuthal velocity components, u′r and u′φ, are of the same order and oscillate
as seen in Figure 2. The four snapshots of Figure 8 are taken with equal time intervals over one
period of oscillation. The perturbation flow corresponds to alternating vortices at the free shear layer
that are swept with the mean flow.

The shear rate γ in the axisymmetric base flow is shown in Figure 9. It is defined as the
magnitude γ = |γ| of the strain-rate tensor γ =

�
∇u + (∇u)T�. By far, the largest shear occurs in

the Hartmann boundary layers at the top and bottom lids. But also the free shear layer at the edge
of the inner electrode and the outer-wall boundary layer contain a significant amount of shearing.

FIG. 8. Temporal evolution of the perturbation velocity u′ over one period for the slightly supercritical case (M = 200, I =
0.34 A,m = 8). Colours indicate the azimuthal velocity u′φ, arrows show u′r and u′z. The four snapshots are taken with equal
time intervals over one oscillation period T . Originating from the Shercliff layer at the inner electrode, the perturbation flow
appears to meander with all velocity components changing sign over one period. The structure consists of alternating vortices
being swept with the mean flow and thus is attributed to a Kelvin-Helmholtz-type instability.
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FIG. 9. Shear rate γ of the axisymmetric base flow for the slightly supercritical case (M = 200, I = 0.34 A,m = 8). Most
shearing occurs in the very thin Hartmann layers at the top and bottom walls, followed by the free Shercliff layer at the inner
disk electrode and the outer side layer. Note the cropped color scale.

The first instabilities hence appear to be an instability of the free shear layer itself, similar to a
Kelvin-Helmholtz instability.

When observing the vortices travelling with the mean flow from a fixed point in the laboratory
frame, we measure the oscillation frequency f of the velocity components. Figure 10 shows f from
the numerical study as a function of the current I for different M . For a given electrical current,
frequencies are higher for larger M . Note that only perturbations above the threshold of instability
which is between 0.13 and 0.28 A depending on M (cf. Fig. 5(b)) are growing and potentially
observable. Frequencies near the onset of linear instability range from roughly 4 mHz at M = 10 to
25 mHz at M = 200.

Oscillation frequencies in the experiment are determined by FFT from the UDV and PDP
recordings as described in Section II B 3. Figure 11 displays the two dominant frequencies versus
the current I for M = 1769. We observe a clustering of the frequencies on straight lines, f in general
increasing with I. The largest dominant frequency observed at 300 A exceeds 7 Hz. UDV and PDP
measurements both contain the same frequencies and hence confirm each other. The various lines
correspond to different modes present in the flow.

Adopting the picture of vortices being swept with the mean flow, we plot the dominant frequen-
cies f versus the radial average value of mean azimuthal velocity ⟨uφ⟩ in Figure 12. Again, we see

FIG. 10. Frequencies f of the oscillations of the azimuthal velocity u′φ in the numerical linear stability study as a function
of the forcing current. Colours indicate the value of the Hartmann number M ; note the different scales compared to the
experimental data. Empty symbols denote decaying modes and filled symbols denote the fastest growing modes.
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FIG. 11. Frequencies f1 (filled) and f2 (open) of significant spectral peaks from UDV measurements of uχ (black squares)
and PDP recordings of ∆ΦA

φ (red diamonds). The selected data were taken at M = 1769 and have an energy larger than 10
times the noise level.

a clustering of the data on straight lines through the origin which is the expected picture for the
travelling Kelvin-Helmholtz instability. The wave number m of the instability is determined as

m = 2πr
f

ut
. (17)

Assuming the transit velocity ut to be slightly above uφ
max/2 as found by Messadek and Moreau9

and uφ
max ≈ 1.2⟨uφ⟩ in our data, we find m = 2 for the lowest mode. The second distinct line would

correspond to m = 6, the steepest cluster at small velocities (small currents) to a mode with m > 20.
Hence, we observe a tendency towards larger-scale (low-m) structures with higher forcing. We
propose that it can be interpreted as the inverse energy transfer leading to a merging of spatial
structures in forced quasi-2D flows.8,9

In the numerical linear stability analysis, we found that the azimuthal wave number of the most
unstable mode grows from m = 3 at M = 10 to m = 8 at M = 200 (Fig. 5). In the experiment, there
appears to be a trend towards larger m (steeper lines) with increasing M at low forcing in agree-
ment with the numerical prediction. The steepest cluster line which includes data with M & 500
in Figure 12 corresponds to m > 20 in accordance with the extrapolation of the m present in the
numerics. The decrease in m with Re and the increase with M are features also known from hydro-
and magnetohydrodynamic spherical Couette flow.35,36

FIG. 12. Plot of dominant frequencies f1 and f2 in uχ versus the radial average value of mean azimuthal velocity ⟨uφ⟩. The
data points cluster on straight lines through the origin. This suggests that the instabilities are traveling with the mean flow at
a transit speed ut . Under this assumption, the lowermost line corresponds to an azimuthal wave number of m = 2.
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A difference between the linear stability analysis and the experiment is that in the first, all
values of m appear, whereas the experiment is fully nonlinear and only a few distinct m are
observed. A possible mechanism how this occurs was described by Kaplan.37 Using nonlinear 3D
simulations, the author revealed the energy pumping between modes with different m and formu-
lated it as a network. This leads to saturation and to suppression of all modes but one. Experimen-
tally, we hardly ever measure directly at the onset of instability and hence only observe the final
saturated state.

We compare the wave numbers m found in the numerical analysis and the experiment with
the prediction of a theoretical stability analysis for 2D instabilities in electrically driven shear flow
by Lieutaud and Neel.22 At onset, similar wave numbers m as in our linear stability analysis are
predicted, m increasing with M . Following,22 we would expect m ≈ 24 for the onset of instability at
M = 2022. Experimentally, we observe wave numbers of this order at large M and low forcing.

E. Friction factor

The friction factor F quantifies the dissipation in the system. Hence, it is well suited to study
processes that significantly affect the total amount of dissipation. In their study of the stability of the
Hartmann layer, Moresco and Alboussière7 (hereafter referred to as MA04) used measurements of
the friction factor and defined it as

F =
IB

u2
mρ2πr

, (18)

where the mean azimuthal velocity um was determined from measurements of the potential drop
between inner and outer cylinder. We use um = ⟨uφ⟩, the mean azimuthal velocity derived from
UDV measurements. Figure 13 shows the relation between friction factor F and the parameter
Re/M for our experimental and numerical data. As in MA04, the data with different M are pretty
well collapsed in this plot. The dashed line shows the friction factor Flam = 2(Re/M)−1 for laminar
flow. The numerical data from the base flow study obey Flam well with the small difference coming
from the definition of our local average. For the experimental data, we observe that the measured
F follows Flam up to Re/M ≈ 100. For larger Re/M , the measured data transit to larger values
of F. For lower M , this transition is gradual. For moderate M , the observed transition is more
pronounced.

For a closer examination, Figure 14(a) shows the friction factor from the experimental data
normalized by its laminar value, F/Flam. Up to Re/M ≈ 4, F does not exceed Flam by more than
20%. For large M , we observe a gradual transition to F/Flam ≈ 1.5 at Re/M ≈ 70. Above this value,

FIG. 13. Friction factor F versus Re/M as in Ref. 7; colour indicates M . The crosses are the experimental data and
the squares are the numerical data from the base flow study with M ∈ [50,200]. The dashed line gives the laminar value
Flam= 2(Re/M )−1 from theory.
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FIG. 14. First row: Friction factor F normalized by its laminar value Flam. Second row: Average azimuthal velocity ⟨uφ⟩
normalized by its theoretical value ⟨uφ

BH⟩. Colors indicate M as in Figure 13. Plotting the data versus Re/M ((a) and
(c)) collapses well the large-M runs in red and yellow, whereas the parameter Re/M2 ((b) and (d)) appears to govern the
significant transition at Re/M2= O(1).

depending on M , we observe a plateau followed by an abrupt increase of F/Flam. This second
transition is not well captured by a universal critical Re/M . In Figure 14(b), the same quantity
F/Flam is plotted against Re/M2 showing a clear transition around Re/M2 = O(1) for all accessible
M . This contrasts with earlier studies that found a transition in the Hartmann layer occurring at a
critical Re/M ≈ 380. The increase in F/Flam above Re/M2 = O(1) exhibits a power-law scaling of
the form F/Flam ∼ (Re/M2)α, with α increasing with M .

Due to its definition (Eq. (18)), the friction factor F is linked to the average velocity ⟨uφ⟩.
Studying the friction factor in our case is equivalent to looking more closely at the behaviour of ⟨uφ⟩
in Figure 4(b). Figures 14(c) and 14(d) illustrate this correspondence.

IV. DISCUSSION AND CONCLUDING REMARKS

In this study, we report several transitions. The first one is well captured in our numerical linear
stability analysis and scales roughly as Re ∼ M1/2. In the accessible range of parameters of our
experiment, we always operate in the unstable regime. The numerics suggest a Kelvin-Helmholtz-
like instability mechanism emanating from the free shear layer.

At larger values of M and Re, unaccessible numerically, we observe further transitions. The
first one occurring at Re/M ≈ 25, which can be interpreted as a Reynolds number based on
the thickness of the Hartmann layer, is associated with a significant increase in the amplitude
of the fluctuating component (Fig. 6) and a pronounced change in the free shear layer thickness
(Fig. 7(b)). Above this transition, the instability is no longer localized in the vicinity of the free
shear layer but fills the entire fluid volume. These observations suggest a Hartmann layer desta-
bilization mechanism. Furthermore, the critical value Re/M ≈ 25 is consistent with the criterion
for absolute stability derived by Lingwood and Alboussière38 for an isolated Hartmann layer,
Re/M ≈ 26. In addition, the observed transition coincides with a mild increase in the friction factor
deduced from the steady azimuthal velocity ⟨uφ⟩ as seen in Figure 14(a). The mechanism underly-
ing the feedback effect of the fluctuating component onto the mean flow has yet to be established.

Yet another transition occurs at Re/M2 = O(1) and is observed in the friction factor and the
mean velocity (Figs. 14(b) and 14(d)). The transition is characterized by an abrupt increase in
the dissipation and thereby a decrease of ⟨uφ⟩. Meanwhile, we do not see any significant changes in
the frequency content at this parameter value (Fig. 12).
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A similar sudden increase in F as at this third observed transition has been reported by MA04.
In contrast with the present study, they proposed that the critical parameter governing their transi-
tion was Re/M ≈ 380 rather than Re/M2 = O(1). MA04 argued that the abrupt change in F results
from the onset of turbulence in the Hartmann layer, which is commonly associated with a critical
value of Re/M , the Reynolds number based on the Hartmann layer thickness.

It should be noted that there are three major differences between the MA04 experiment and the
present one. First, their configuration did not give rise to a free shear layer. Second, the two experi-
ments do not operate in the same parameter regime except for the cases M = 169 and 253. Although
our setup can reach Hartmann numbers of order 2000, our limitations in injected electrical power
do not allow us to achieve sufficiently high values of Re/M or Re/M2 to observe this transition for
M > 253. Third, the curvature ratio λ = d/2rm of channel half-width d/2 to mean radius rm of the
two experiments is very different. In the MA04 experiment, it was O(0.1), whereas it is O(1) in the
present setup.

The last point has implications for the strength of the secondary (radial and axial) flow. Follow-
ing the work of Baylis and Hunt,6 secondary flows and associated inertial effects are negligible in
the large-M limit, if

�
K/M2�2λ ≪ 1, with the Dean number K = λ1/2Re measuring curvature ef-

fects. For λ = O(1) as in the present study, this criterion is equivalent to N2 ≫ 1 with the interaction
parameter N = (Re/M2)−1. Hence, the observed transition at N = O(1) can be interpreted as the
point where inertial effects become negligible.

The MA04 experiment on the other hand is operated in the inertialess regime even for N .
O(1) due to the smaller curvature ratio. This could explain why they were able to observe transition
to turbulence in the Hartmann layer with a scaling of Re/M ≈ 380, while the present experiment de-
tects a different transition, Re/M2 = O(1), in the range of moderate Hartmann numbers, M . 250.
Further investigations at higher current will be necessary to test whether the criterion for transition
to turbulence in the Hartmann layer is also observed in our setup at asymptotically large M .

In conclusion, the ZUCCHINI study has been able to characterize different regimes of confined
low-Rm MHD flow with increasing forcing: stable flow, an unstable free shear layer, unstable core
flow, and an unstable Hartmann layer. The numerical linear stability analysis and the experimental
measurements with UDV and PDP provide complementary information and yield a consistent
picture of the dynamics.

For the future, it would be interesting to study how the flow in our modified cylindrical annulus
is affected by a global rotation of the tank introducing a strong Coriolis force. Also, it would be
instructive to perform similar experiments with transparent electrolytes facilitating flow visualiza-
tion. We are looking forward to see how the experience from ZUCCHINI is applied to study the
magnetostrophic regime, i.e., a balance between Lorentz and Coriolis forces, in the rapidly rotating
spherical SpiNaCH (Spinning Natrium in Confoederatio Helvetica) experiment proposed by Ref. 39
which uses a similar electrical driving for a flow of liquid sodium.
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APPENDIX A: FIRST-ORDER PERTURBATION EQUATIONS
IN CYLINDRICAL COORDINATES

We give here the first-order perturbation equations in cylindrical coordinates for the numer-
ical study of the linear onset of instability. Quantities describing the base flow are written with a
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superscript b, first-order perturbations are denoted by a prime,
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APPENDIX B: PDP DATA EXAMPLE

PDP measurements are processed in the same way as UDV recordings in Section II B 3.
Figure 15 shows example recordings of the eight PDPs in inserts A and B at M = 1769 and
I = 150 A; both inserts provide time series corresponding to radial and azimuthal flows. The largest

FIG. 15. Example time series of PDP: potential differences ∆Φr and ∆Φφ measured at the two inserts A and B indicating
azimuthal and radial velocities, respectively, for M = 1769 and I = 150 A. Detail of the time series of all eight probes.
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potential differences are the ones measured at the outer azimuthal PDPs, ∆ΦB
r,1 and ∆ΦB

r,2, because
of the large uφ at this location. As ∆ΦA

r,1 and ∆ΦA
r,2 show the largest-amplitude oscillations, they

record the same signal. Potential differences connected to radial flow, ∆Φφ, are oscillating around
zero. The PDP measurements confirm our findings from the UDV recordings as, e.g., seen from the
coinciding frequencies in Figure 10.
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