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Decreasing reflex activities [4] as well as structural and 
functional brain changes [5, 6] are stated as the underly-
ing mechanisms of these balance improvements.

Despite the positive findings, the question arises how 
to design BT effectively but also efficiently in youth. Due 
to restricted time resources in schools (P.E. lessons) and 
sports clubs, increasing the duration, frequency or vol-
ume of BT has low practical relevance. In contrast, an 
increase in BT difficulty (e.g., modified sensory demands), 
intensity (e.g., modified motor demands) or complexity 
(e.g., simultaneous execution of several motor tasks) does 
not require additional time resources [7]. Concerning BT 
difficulty, Schedler et al. [7] applied seven weeks of BT in 
male adolescents and observed greater improvements in 
the Functional-Reach test (FRT) distance, the YBT-LQ 
reach distance, and the One-Legged Stance test (OLS) 

Introduction
There is evidence that balance training (BT) is an effec-
tive method to improve static and dynamic balance in 
adolescents [1–3]. Schedler et al. [1] detected improved 
10-m gait velocity and reach distance for the Y-Balance-
Test-Lower-Quarter (YBT-LQ) test following five weeks 
of BT in adolescents. Pau et al. [2] found significantly 
reduced postural sway area for the bipedal stance test 
in adolescent volleyball players after six weeks of BT. 
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Abstract
Objective The current study aimed to determine the effects of low (i.e., balance task only) versus high (i.e., balance 
task combined with an additional motor task like dribbling a basketball) balance training complexity (6 weeks of 
training consisting of 2 × 30 min balance exercises per week) on measures of static and dynamic balance in 44 healthy 
male adolescents (mean age: 13.3 ± 1.6 years).

Results Irrespective of balance training complexity, significant medium- to large-sized pretest to posttest 
improvements were detected for static (i.e., One-Legged Stance test, stance time [s], 0.001 < p ≤ 0.008) and dynamic 
(i.e., 3-m Beam Walking Backward test, steps [n], 0.001 < p ≤ 0.002; Y-Balance-Test-Lower-Quarter, reach distance [cm], 
0.001 < p ≤ 0.003) balance performance. Further, in all but one comparison (i.e., stance time with eyes opened on foam 
ground) no group × test interactions were found. These results imply that balance training is effective to improve 
static and dynamic measures of balance in healthy male adolescents, but the effectiveness seems unaffected by the 
applied level of balance training complexity.
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time for the those practising with a high (e.g., bipedal, 
tandem, and unipedal stance exercises with eyes closed) 
compared to those with a low (e.g., bipedal, tandem, and 
unipedal stance with eyes opened)  task difficulty level. 
Regarding BT intensity, Blasco et al. [8] conducted BT 
(e.g., cross-over steps on stable versus unstable ground) 
over three weeks in young adults and observed simi-
lar improvement (i.e., YBT-LQ and FRT reach distance, 
OLS time), irrespective whether the groups trained on 
stable (means low intensity level) or unstable (means high 
intensity level) ground. Despite these gains in knowledge, 
it is unknown if the reported effects of BT intensity and 
difficulty on balance performance generalise to BT com-
plexity (i.e., dual tasking). In fact, there is evidence [9, 10] 
showing that dual- compared to single-task practice is 
suitable to free up central resources that can be used for a 
more effective processing of postural control resulting in 
larger improvements.

We aimed to compare the effect of a six-weeks BT pro-
gram with low (i.e., single-motor-tasking) versus high 
(i.e., dual-motor-tasking) level of complexity on static 
and dynamic balance in healthy male adolescents. Given 
the previous findings, we hypothesised that both training 
regimens would improve balance. Further, we expected 
that a high versus low complex BT program would lead 
to greater improvements. The investigation of male ado-
lescents is particularly relevant, as they show poorer bal-
ance performance than aged-matched females [11, 12]. 
This finding is explained by the delayed maturation of 
the postural control system [13, 14]. This can result in an 
increased risk of falls and associated injuries [15], which 
in turn can be very costly to treat medically [16].

Main text
Methods
Participants
Previous research [17] has reported medium- to large-
sized effect sizes that were used for sample size estima-
tion. Precisely, a G*power analysis (effect size f = 0.25, α 
error probability = 0.05, 1-β error probability = 0.80, cor-
relations among repeated measures r = 0.40, 2 groups, 

2 assessments, drop-out rate of 10% due to reasons not 
attributable to treatment) revealed that a total sample 
size of N = 40 participants (i.e., n = 20 per group) would 
be sufficient to detect significant treatment effects [18]. 
Thus, 44 healthy, male, physically active adolescents par-
ticipated in this study and were randomly assigned to 
the BT-low-complex group (i.e., single-motor-tasking) 
or the BT-high-complex group (i.e., dual-motor-tasking) 
(Table  1). The participants were recruited via an infor-
mation event from public secondary schools in the Ruhr 
area of North Rhine-Westphalia, Germany. All individu-
als participated were free of any neurological or musculo-
skeletal impairment.

Study design and experimental protocol
This randomized-parallel trial consisted of a pretest and 
a posttest that were separated by a six-weeks treatment 
period. Upon entering the laboratory, all participants 
received standardised verbal instructions and visual dem-
onstrations regarding the balance assessment.

Assessment of static balance performance
The same skilled assessors conducted the assessment 
of balance before and after the training period. Static 
balance was assessed using the timed OLS test. Partici-
pants were asked to stand without shoes on their non-
dominant leg (determined by self-report) for as long as 
possible but for a maximum of 60 s. The OLS was con-
ducted in four different conditions: (1) eyes opened on 
firm ground (EO-FI), (2) eyes closed on firm ground 
(EC-FI = supressed vision/proprioception dominant), (3) 
eyes opened on foam (i.e., AIREX balance pad) ground 
(EO-FO = modified proprioception/vision dominant), (4) 
eyes closed on foam ground (EC-FO = supressed vision 
and modified proprioception/vestibular dominant). After 
a practice trial, one data-collection trial was executed, 
and the maximal stance time (s) during each condition 
was used for further analysis. The timed OLS test is valid 
(concurrent and discriminative) and reliable (moderate to 
excellent) in youth [19, 20].

Assessment of dynamic balance performance
Dynamic balance was determined using the 3-m Beam 
Walking Backward test [21] that consists of wooden 
beams (length: 3 m; height: 5 cm) that differed in width 
(i.e., 6.0, 4.5, 3.0 cm). The participants wore sports shoes 
and were asked to walk backward at a self-selected speed 
from the beginning to the end of each beam but for a 
minimum of eight steps. One practice trial followed by 
two data-collection trials per beam width were per-
formed. The step number for the data-collection trials 
was added up resulting in a maximum of 16 steps per 
beam width and 48 steps in total. Dynamic balance was 
further assessed using the YBT-LQ. While maintaining 

Table 1 Means ± standard deviations for the demographic 
characteristics of the sample by group
Characteristic BT-low-com-

plex (n = 22)
BT-high-com-
plex (n = 22)

p-
val-
ue

Chronological age [years] 13.2 ± 1.6 13.5 ± 1.6 0.512
Biological age [years from PHV] 0.09 ± 1.44 0.28 ± 1.37 0.660
Body height [cm] 169.0 ± 11.9 169.1 ± 11.9 0.980
Body mass [kg] 56.5 ± 11.4 59.6 ± 14.8 0.436
Body mass index [kg/m²] 19.6 ± 2.2 20.6 ± 3.2 0.238
Leg length [cm] 90.6 ± 6.1 91.2 ± 6.2 0.734
BT Balance training; PHV peak height velocity
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a one-legged stance with the non-dominant limb on the 
central footplate, participants were asked to reach with 
their dominant leg as far as possible in the anterior (AT), 
posteromedial (PM), and posterolateral (PL) directions. 
For each direction, one practice trial followed by three 
data-collection trials were performed and the greatest 
reach distance (cm) per direction was used for subse-
quent analysis. Specifically, these values were normalized 
(% leg length [LL]) by dividing maximal reach distance 
by LL and then multiplying by 100. Further, the compos-
ite score (CS in % LL) was calculated as the sum of the 
maximal reach distance per direction divided by three 
times LL and then multiplied by 100. The LL of each par-
ticipant was determined from the anterior superior iliac 
spine to the most distal aspect of the medial malleolus 
[22]. The YBT-LQ test is valid (concurrent, discrimina-
tive, and predictive) and reliable (moderate to excellent) 
in youth [23–25].

Balance training
Both groups received BT for six weeks (i.e., 2 × 30  min/
week) that was supervised by graduated students. Each 
session included three balance exercises (i.e., unipedal 
stance, 3-m balancing walk, and unipedal jump-landings) 
and each of them was performed four times (Table  2). 
The BT-low-complex group performed the exercises 
as single-task (i.e., balance task only) and the BT-high-
complex group as dual-task (i.e., balance task combined 
with dribbling a basketball/handball or throwing/catch-
ing/heading a ball) [26, 27]. Training progression was 
achieved by minimising the base of support diameter of 
a balance board (Wobblesmart©, Artzt GmbH, Dorn-
burg, Germany) from level 1 (week 1) to level 6 (week 6), 
reducing the balance beam width from 6.0 cm (week 1–2) 
over 4.5 cm (week 3–4) to 3.0 cm (week 5–6), alternating 
the walking direction, and changing the landing surface 
from firm to foam.

Statistical analyses
Data were reported as group means ± standard devia-
tions. After normal distribution was confirmed (i.e., 
Shapiro-Wilk tests), a two-way (group: BT-low-com-
plex, BT-high-complex × test: pretest, posttest) repeated 

measures analysis of variance (ANOVA) was conducted 
to detect training-related group differences. Where 
significant interactions were detected, post-hoc analy-
ses using Bonferroni-adjusted α determined the loca-
tion of any differences. Additionally, effect size (ηp

2) 
was calculated and reported as small (0.02 ≤ ηp

2 ≤ 0.12), 
medium (0.13 ≤ ηp

2 ≤ 0.25), or large (ηp
2 ≥ 0.26) [28]. 

For the post-hoc analyses, the effect size Cohen’s d was 
determined and interpreted as trivial (0 ≤ d ≤ 0.19), small 
(0.20 ≤ d ≤ 0.49), moderate (0.50 ≤ d ≤ 0.79), or large 
(d ≥ 0.80). The α-value was a priori set at p < 0.05.

Results
Static balance performance
For all but one (i.e., EC-FO) stance condition, the 
ANOVA showed significant medium- to large-sized main 
effects of test (Table  3). A group × test interaction was 
only detected for the EO-FO stance condition (p = 0.009, 
ηp

2 = 0.15). Post-hoc tests revealed significant large-sized 
improvement for the BT-low-complex group (t=-4.685, 
p < 0.001, d = 1.09) but not for the BT-high-complex 
group (t=-1.151, p = 0.131, d = 0.20). The main effect of 
group did not reach significance.

Dynamic balance performance
Irrespective of beam width, the ANOVA showed signifi-
cant medium- to large-sized main effects of test (Table 3). 
This indicates that improvements in step number were 
independent of the applied BT complexity. Neither the 
main effect of group nor the group × test interaction 
reached significance. Further, the ANOVA yielded sig-
nificant medium- to large-sized main effects of test for 
all YBT-LQ reach parameters (Table  3). This implies 
that enhancements in reach distance were also indepen-
dent of the used level of BT complexity. The main effect 
of group and the group × test interaction did not reach 
significance.

Discussion
Consistent with our first hypothesis stating that both 
training regimen would be result in balance improve-
ments, both groups significantly increased their static 
(OLS time) and dynamic (3-m Beam Walking Backward 

Table 2 Description of the balance training program by complexity level
Exercise Week 1 Week 2 Week 3 Week 4 Week 5 Week 6
Unipedal stance1 4 × 60 s per leg; 

level 1
4 × 60 s per leg; 
level 2

4 × 60 s per leg; 
level 3

4 × 60 s per leg; 
level 4

4 × 60 s per leg; 
level 5

4 × 60 s per leg; 
level 6

3-m balancing walk1 4 × 60 s fw; 6 cm 
width

4 × 60 s bw; 6 cm 
width

4 × 60 s fw; 4.5 cm 
width

4 × 60 s bw; 4.5 cm 
width

4 × 60 s fw; 3 cm 
width

4 × 60 s bw; 
3 cm width

Unipedal jump-landings 4 × 60 s per leg; 
firm, throw2

4 × 60 s per leg; 
foam, throw2

4 × 60 s per leg; 
firm, catch3

4 × 60 s per leg; 
foam, catch3

4 × 60 s per leg; 
firm, header4

4 × 60 s per leg; 
foam, header4

Level 1–6 refers to a balance board (Wobblesmart©, Artzt GmbH, Dornburg, Germany) with a mechanically adjustable pivot to increase task difficulty from level 1 
(low) to 6 (high) by reducing the base of support diameter. 1Dribbling a basketball/handball; 2Throwing a ball; 3Catching a ball; 4Heading a ball. bw backward; fw 
forward
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step number, YBT-LQ reach distance) balance perfor-
mance. These findings are in line with those from previ-
ous studies [1, 2, 7, 29] that investigated the effect of BT 
in healthy male adolescents and indicate that BT is an 
effective method to enhance static and dynamic balance 
in youth. Adaptations at the spinal and supraspinal level 
are thought to be the underlying mechanisms [30].

Further, we hypothesised that a high versus low com-
plex BT would lead to greater balance improvements. 
Contrary to that expectation, no significant group by 
test interactions were detected neither for static (except 
for the BT-low-complex group during the OLS test, 
EO-FO) nor for dynamic balance performance. This indi-
cates that a low (i.e., single-motor-tasking) versus high 
(i.e., dual-motor-tasking) complex BT did not result in 
group-specific balance improvements. This result is con-
sistent with the findings from a previous study [31] that 
conducted eight weeks of single- or dual-task BT in ado-
lescents and reported no significant group by test inter-
actions in measures of static (postural sway in the OLS 
test) and dynamic (gait parameters in the 10-m-walk 
test) balance. However, for the most difficult stance con-
dition (OLS test; EC–FO) we did not detect significant 
enhancements indicating a ‘floor’ effect, i.e., the com-
bination of supressed vision and modified propriocep-
tion was too challenging, which limited the potential for 
improvements.

What is the likely reason that the effectiveness of BT 
was not affected by differences in BT complexity? There 
is evidence [32, 33] that high versus low training com-
plexity increases the capacity to perform multiple tasks 
simultaneously by reducing cognitive overload, i.e., free-
ing up central processing resources [9, 10]. Therefore, it 
seems likely that the applied configuration of high-com-
plex BT was not sufficient to achieve concurrent task 
processing with reduced resources. Thus, subsequent 
studies should investigate whether a greater volume and/
or different configuration of task complexity (e.g., triple-
motor-tasking) will cause superior effects compared to 
the present version. Furthermore, it is known that dual-
tasking is associated with interference (i.e., performance 
decrements in one or both of the executed tasks due to 
the concurrent use of processing resources) [34], which 
may have caused the lower improvements (see percent 
change in Table 3) in the BT-high complex group in some 
cases. In addition, balance assessments were only con-
ducted under single-task conditions. For the group with 
the low complex BT, but not for the group with the high 
complex BT, this was identical to the training condition, 
which represents an advantage for the former in terms of 
task/training specificity [9]. Future studies should there-
fore perform assessment under both single- and dual-
task conditions to confirm the task specific nature of BT 
induced adaptations.

Table 3 Effects of a 6-weeks balance training program with different levels of complexity
Test/outcome BT-low-complex (n = 22) Δ% BT-high-complex 

(n = 22)
Δ% p-value (ηp

2)

Pretest Posttest Pretest Posttest Test Group × Test Group
OLS
 OLS time; EO-FI [s] 48.5 ± 16.5 57.1 ± 8.9 15.1 53.4 ± 12.8 57.1 ± 8.0 6.5 0.008 (0.16) 0.277 (0.03) 0.392 (0.02)
 OLS time; EC-FI [s] 15.5 ± 15.9 30.5 ± 18.6 49.2 19.9 ± 19.2 29.4 ± 19.2 32.3 < 0.001 (0.42) 0.220 (0.04) 0.740 (0.01)
 OLS time; EO-FO [s] 31.8 ± 19.1 51.1 ± 15.5* 37.8 40.5 ± 20.7 44.6 ± 19.9 9.2 < 0.001 (0.30) 0.009 (0.15) 0.825 (0.01)
 OLS time; EC-FO [s] 5.2 ± 2.2 6.4 ± 3.1 18.8 6.5 ± 4.8 6.2 ± 1.9 -4.8 0.405 (0.02) 0.160 (0.05) 0.467 (0.01)
3-m beam walk
 6.0-cm beam width 
[steps]

13.9 ± 2.8 15.9 ± 0.4 12.6 14.0 ± 3.3 15.3 ± 1.8 8.5 < 0.001 (0.24) 0.446 (0.01) 0.657 (0.01)

 4.5-cm beam width 
[steps]

12.4 ± 2.8 14.1 ± 2.6 12.1 12.8 ± 3.1 14.6 ± 2.4 12.3 0.002 (0.21) 0.930 (0.01) 0.485 (0.01)

 3.0-cm beam width 
[steps]

10.5 ± 3.9 11.9 ± 3.0 11.8 10.6 ± 3.2 13.6 ± 2.4 22.1 < 0.001 (0.28) 0.149 (0.05) 0.264 (0.03)

 Total [steps] 36.8 ± 7.5 41.8 ± 5.0 12.0 37.4 ± 6.9 43.4 ± 4.2 13.8 < 0.001 (0.44) 0.605 (0.01) 0.488 (0.01)
YBT-LQ
 AT [% LL] 75.2 ± 7.6 78.1 ± 6.5 3.7 74.5 ± 6.2 76.6 ± 6.6 2.7 0.003 (0.19) 0.632 (0.01) 0.541 (0.01)
 PM [% LL] 112.3 ± 10.2 116.4 ± 8.2 3.5 108.4 ± 9.0 115.6 ± 6.6 6.2 < 0.001 (0.32) 0.239 (0.03) 0.311 (0.02)
 PL [% LL] 109.5 ± 9.0 113.7 ± 6.4 3.7 104.8 ± 8.9 110.6 ± 7.9 5.2 < 0.001 (0.32) 0.489 (0.01) 0.080 (0.07)
 CS [% LL] 99.0 ± 8.0 102.7 ± 5.7 3.6 95.9 ± 7.3 100.9 ± 6.1 5.0 < 0.001 (0.42) 0.431 (0.02) 0.204 (0.04)
Data are presented as group mean values ± standard deviations. Values are p-values and effect sizes (ηp

2) in brackets with 0.02 ≤ ηp
2 ≤ 0.12 indicating small, 

0.13 ≤ ηp
2 ≤ 0.25 indicating medium, and ηp

2 ≥ 0.26 indicating large effects. Bold values indicate statistically significant differences. *Indicates a significant differences 
between pretest and posttest

AT Anterior; BT Balance training; CS Composite score; EC Eyes closed; EO Eyes opened; FI Firm ground; FO Foam ground; LL Leg length; OLS One-Legged Stance test; PL 
posterolateral; PM Posteromedial; YBT-LQ Y- Balance-Test-Lower-Quarter
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Conclusion
This study compared the effects of low (i.e., single-motor-
tasking) versus high (i.e., dual-motor-tasking) BT com-
plexity on measures of balance in youth. We observed 
significant improvements in static (i.e., OLS time) and 
dynamic (i.e., 3-m Beam Walking Backward step num-
ber and YBT-LQ reach distance) balance. However, the 
enhancements were not differentially affected by the 
applied BT complexity. These results imply that BT is an 
effective training regimen in healthy male adolescents 
but the applied high versus low complex BT exercises do 
not seem to provide additional effects.

Limitations

  • Only male adolescents were investigated, which 
limits the generalisation of findings to female 
adolescents.

  • Field- but no laboratory-based testing (e.g., postural 
sway via force-plate) was used, which limits the 
internal validity.

  • Effects of a mid-term BT regimen (6 weeks) were 
investigated, that cannot be transferred to long-term 
BT programs (i.e., lasting several months).

  • Training-related changes were determined on a 
behavioural but not on a neuromuscular level (i.e., 
brain/muscle activity).
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