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A B S T R A C T

We propose a novel method for fast and accurate training of physics-informed neural networks
(PINNs) to find solutions to boundary value problems (BVPs) and initial boundary value
problems (IBVPs). By combining the methods of training deep neural networks (DNNs) and
Extreme Learning Machines (ELMs), we develop a model which has the expressivity of DNNs
with the fine-tuning ability of ELMs. We showcase the superiority of our proposed method
by solving several BVPs and IBVPs which include linear and non-linear ordinary differential
equations (ODEs), partial differential equations (PDEs) and coupled PDEs. The examples we
consider include a stiff coupled ODE system where traditional numerical methods fail, a
3+1D non-linear PDE, Kovasznay flow and Taylor–Green vortex solutions to incompressible
Navier–Stokes equations and pure advection solution of 1+1 D compressible Euler equation.

The Theory of Functional Connections (TFC) is used to exactly impose initial and boundary
conditions (IBCs) of (I)BVPs on PINNs. We propose a modification to the TFC framework
named Reduced TFC and show a significant improvement in the training and inference time of
PINNs compared to IBCs imposed using TFC. Furthermore, Reduced TFC is shown to be able
to generalize to more complex boundary geometries which is not possible with TFC. We also
introduce a method of applying boundary conditions at infinity for BVPs and numerically solve
the pure advection in 1+1 D Euler equations using these boundary conditions.

. Introduction

Differential equations are used to mathematically model various phenomena in the fields of engineering, physics, chemistry,
conomics and biology. A tiny fraction of such differential equations admit an analytic closed-form solution. Therefore the study of
olutions of differential equations requires the use of a variety of computational methods. There exist several numerical methods to
ind the solutions to ordinary differential equations (ODEs) and partial differential equations (PDEs). Traditionally, such methods
re based on discretization of geometric or frequency spatial and temporal domains. Also, some numerical approximation of the
erivatives involved in the differential equations is used on the grid defined by the discretization. Recently, however, a novel family
f numerical methods for ODE and PDE solution began to emerge based on utilization of artificial neural networks. These methods
xploit the universal function approximation capabilities of the neural networks and have several properties, unusual for numerical
ethods, such as differentiability of the provided solution.
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Physics-informed neural networks (PINNs) utilize physical laws written in the form of differential equations to facilitate the
earning process to find the network weights, which can then be combined with other information to achieve various objectives.
ne of the first uses of PINN can be traced to [1] where the authors used neural networks along with unsupervised learning to

olve boundary value problems (BVPs) of ODEs and PDEs. The term ‘physics informed neural network’ was coined much later in [2]
here a semi-supervised learning paradigm was introduced to find solutions to PDEs in a data-driven manner from sparse and noisy
xperimental data. The idea of PINN was later extended for data-driven discovery of PDEs [3]. For data-driven discovery of PDEs
nd PDE solutions, PINN outperforms traditional methods, which requires computing the solution of PDEs multiple times iteratively
o estimate the parameters.

In the case of solving IBVPs PINNs have some advantages over traditional methods like Finite Difference, Finite Volume or
inite Element Methods (FD, FVM and FEM). A PINN uses neural networks as an analytic approximation of the solution whereas
D/FVM/FEM discretize the spatial domain into elements, within which the solution is approximated using finite differences
nstead of derivatives, averaging and interpolation over a control volume, or fitting an arbitrary function within a control volume
nd minimizing the error. This generally works satisfactorily, however the problems represented by hyperbolic PDEs are often
umerically unstable and require some additional numerical stabilization techniques, inevitably leading to unphysically large and
ncontrollable numerical diffusion. Spatial discretization necessitates the need for a numerically stable interpolation scheme to
ompute the value of the solution between two elements, whereas it is straightforward to compute the values from the analytic
xpression of the neural network. Furthermore, the number of elements scales exponentially with the number of dimensions.

Nevertheless, for BVPs of low-dimensional PDEs PINN was still significantly slower and less accurate than an efficient spatial
rid-based solver in computing solutions. To address this problem in [4] the authors make use of the Extreme Learning Machine
ELM) [5] algorithm, which significantly reduces training time of PINNs. ELM used a shallow neural network to approximate the
olution and used Gauss–Newton Extremization (GNE) (Section 4.1) to train only the weights in the final layer of the neural network.
n [6] by combining ELM with domain decomposition, PINNs are shown to outperform FEM in terms of solution accuracy and
omputational time on a wide variety of BVPs.

Another drawback of PINNs was the approximate loss function based method of imposing initial conditions (ICs) and boundary
onditions (BCs). This required additional hyperparameter choice in determining the relative importance of loss functions. In [1] a
rial function was constructed from the neural network output which exactly satisfy the ICs and BCs. But this method was difficult
o generalize due to a lack of a general prescription to generate the trial functions for arbitrary ICs and BCs. Recently, based on the
heory of Functional Connections (TFC) [7,8] a neural network method of solving IBVPs while exactly imposing the ICs and BCs
as introduced [9]. This method was further developed to use ELM [10] producing solutions orders of magnitude more accurate

han grid-based methods in some instances. A fundamental limitation of shallow networks used in ELM is its lack of expressivity
ompared to a deep neural network (DNN) [11]. In [10] this results in DNN outperforming ELM in terms of solution accuracy in
he context of Burgers equation and Navier–Stokes equations. In [6] the authors could improve the expressivity by using multiple
LMs to represent the solution.

In this work, by combining the ideas of ELM and deep networks, we propose a framework wherein a DNN is initially trained
sing standard methods and then GNE is used to significantly improve the solution accuracy. By combining these methods we get
he expressive power of a DNN [11] combined with the fine tuning ability of shallow networks trained with ELMs. We also present a
odification to the TFC framework used in [9,10] to significantly reduce the computational time required for training and inference.

The rest of this manuscript is structured as follows: Section 2 provides a concise introduction to PINN and discusses the need
or TFC framework to impose constraints in BVPs. Section 3 introduces the TFC framework and demonstrates the application of
FC to impose constraints. In Section 3.3 a modification to the TFC framework is proposed to speed up computation. In Section 3.4
e discuss the drawbacks of TFC and how to generalize to complex boundary geometries. Section 4 details the neural network
rchitectures and the training methods used for the examples provided in the section that follows. Section 5 uses various known
nalytic solutions to linear and non-linear ODEs (Section 5.1), PDEs (Section 5.2) and Coupled PDEs (Section 5.3) to show the
uperiority of our proposed method and discuss its drawbacks. Section 6 contains discussion. Some supplementary information is
lso provided in Appendix A–Appendix C.

. Physics informed neural networks

Neural networks are considered as universal function approximators [12,13]. Let {𝜃} be an arbitrary function represented by a
neural network, where {𝜃} denotes the parameters of the neural network. The idea of PINN is to make this neural network ‘physics
informed’ by imposing {𝜃} to satisfy some given differential equation(s).

Let  (𝒙, 𝑓 (𝒙)) denote a general differential operator of an 𝑚-dimensional variable 𝒙 acting on function 𝑓 (𝒙). Any differential
equation can be written as  (𝒙, 𝑓 (𝒙)) = 0. In order to impose that {𝜃} satisfy this differential equation, the differential equation
itself can be used as a loss function while training. The derivatives in the differential equation can be accurately computed to
an arbitrary precision using auto-differentiation [14]. Note that since neural networks approximate a function, in practice this
differential equation is never exactly satisfied by {𝜃}. This deviation of the differential operator acting on {𝜃} from identically
being equal to zero is called residual, denoted by :

(𝑥; {𝜃}) = 
(

𝒙, (𝒙)
)

. (1)
2

{𝜃}
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For a neural network training batch with 𝑁 samples 𝒙1,… ,𝒙𝑛, the loss function can now be defined as a mean squared residual
(MSR) of the differential equation:

𝐷𝐸 ({𝜃}) =
1
𝑁

𝑁
∑

𝑖=1
‖(𝒙𝑖, {𝜃})‖2. (2)

Minimizing the value of 𝐷𝐸 results in {𝜃} more closely satisfying the differential equation  (𝒙, 𝑓 (𝒙)) = 0. Note that, in the
most general case we can have neural networks with multiple outputs 1,… ,𝑙 informed by a system of differential equations
 ≡ (1,… ,𝑘) = 0. Then the same Eq. (2) holds with  ≡ (1,… ,𝑘).

In literature [2–4,15–17] 𝐷𝐸 can be found paired with other loss functions during training to achieve mainly three objectives:

• Data Driven Solution Discovery
The objective of this framework is to find the solution of a differential equation based on sparse experimental data. Let 𝑣𝐸 (𝒚)
denote some noisy experimental measurement of the state of the system at point 𝒚. We can approximate this state using the
neural network  𝑣

{𝜃}. For M experimental data points 𝒚1,… , 𝒚𝑀 , the data driven loss can be defined as:

𝐷𝐷({𝜃}) =
1
𝑀

𝑀
∑

𝑖=1
‖ 𝑣

{𝜃}(𝒚𝑖) − 𝑣𝐸 (𝒚𝑖)‖2 (3)

The solution can be discovered by minimizing the combined loss function, which in this case will be a weighted sum of 𝐷𝐸
and 𝐷𝐷.

({𝜃}) = 𝜔𝐷𝐸𝐷𝐸 ({𝜃}) + 𝜔𝐷𝐷𝐷𝐷({𝜃}) (4)

Here 𝜔𝐷𝐸 and 𝜔𝐷𝐷 are weights which needs to be carefully chosen for the optimal training of the neural network.
• Data Driven Parameter Discovery

For a differential equation {𝛾} (𝒙, 𝑓 (𝒙)) = 0 parameterized by a set of parameters {𝛾}. Experimental measurement of the state
𝑣𝐸 (𝒚𝒊) at points {𝒚𝒊} can be used to find the parameters of the differential equation. The loss function to minimize in this case
will be the same as in Eq. (4) but with an additional set of parameters {𝛾} to optimize.

({𝜃}, {𝛾}) = 𝜔𝐷𝐸𝐷𝐸 ({𝜃}, {𝛾}) + 𝜔𝐷𝐷𝐷𝐷({𝜃}, {𝛾}) (5)

• Solving Boundary Value Problems
PINN framework can also be used to numerically solve the differential equation based on ICs and BCs. If 𝑓 (𝑥) denotes a solution
to the differential equation  (𝒙, 𝑓 (𝒙)) = 0, we can denote its 𝑛 ICs and BCs applied on the respective boundaries 𝜕𝛺1,… , 𝜕𝛺𝑛
as a set of constraints:

1(𝑓 (𝒙)) = 0, ∀𝒙 ∈ 𝜕𝛺1

⋯

𝑛(𝑓 (𝒙)) = 0, ∀𝒙 ∈ 𝜕𝛺𝑛

(6)

These constraints can be of any form including Dirichlet, Neumann and Robin BCs. The loss function for a single constraint
can be written as

𝐵𝐶,𝑘({𝜃}) =
1

|𝛺𝑘|

∑

𝒙𝑖∈𝛺𝑘

‖𝑖(𝑓 (𝒙𝑖))‖2 (7)

where |𝛺𝑘| denotes the number of datapoints used in the summation. The total loss for the ICs and BCs can then be the
weighted sum of the individual losses, where the weights 𝜔𝐵𝐶,𝑖,… , 𝜔𝐵𝐶,𝑛 need to be carefully chosen for optimal training.

𝐵𝐶 ({𝜃}) =
𝑛
∑

𝑖=1
𝜔𝐵𝐶,𝑖𝐵𝐶,𝑖({𝜃}) (8)

The solution of a BVP can then be found by minimizing the loss

({𝜃}) = 𝐵𝐶 ({𝜃}) + 𝜔𝐷𝐸𝐷𝐸 ({𝜃}) (9)

In this work we will focus our attention solely on BVP. Since this is a multi-objective optimization problem (Eqs. (8) & (9)), the
accuracy of the solutions will be sensitive to the hyperparameters 𝜔𝐷𝐸 , 𝜔𝐵𝐶,1,… , 𝜔𝐵𝐶,𝑛. Tuning of these hyperparameters becomes
challenging and time consuming especially if a large number of boundary conditions is given. In [9,10] this issue was overcome by
using a mathematical framework called Theory of Functional Connections (TFC) to exactly satisfy the ICs and BCs without using a
loss function. We provide a concise introduction to TFC in Section 3. Using TFC the neural network output  (𝑥) is converted to a
constrained function 𝑓 𝑐 (𝑥) which always satisfy the ICs and BCs. The training then becomes a single objective optimization problem
3

as shown in Fig. 1.
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Fig. 1. Structure of a fully connect neural network solving a BVP with 𝑘 coupled differential equations 1 ,… ,𝑘 and 𝑛 initial and boundary conditions 1 ,… ,𝑛
acting on 𝑙 functions dependent on 𝑚 variables 𝑥1 ,… , 𝑥𝑚.

3. Theory of functional connections

TFC is a mathematical framework for converting constrained problems into unconstrained problems. The idea of TFC is to write
down the most general function which satisfies the constraints of the problem. In the case of PINNs, the constraints are in the
form of initial conditions and boundary conditions of the differential equations. In the following subsections we will provide a brief
self-contained exposition of TFC. See [7,8] for a rigorous introduction.

3.1. Univariate case

Let us consider an arbitrary univariate function 𝑓 (𝑥) subject to the constraints 1[𝑓 ] = 𝑐1,2[𝑓 ] = 𝑐2,… ,𝑛[𝑓 ] = 𝑐𝑛, where
1,… ,𝑛 are linear functionals. Functional in this context refers to a mapping from the space of all functions to the real/complex
numbers. The term linear implies that [𝛼 𝑓+𝛽 𝑔] = 𝛼 [𝑓 ]+𝛽 [𝑔] for any two functions 𝑓 and 𝑔, and any two real/complex numbers
𝛼 and 𝛽. Some examples of linear functionals are: [𝑓 ] = 𝑓 (𝑥1), [𝑓 ] = 𝑓 ′(𝑥1), [𝑓 ] = ∫ 𝑏

𝑎 𝑓 (𝑥)𝑑𝑥. The idea of TFC is to write down
a constrained expression 𝑓 𝑐 (𝑥) for 𝑓 (𝑥), such that 𝑓 𝑐 (𝑥) always satisfy the constraints:

𝑓 𝑐 (𝑥) =  (𝑥) +
𝑛
∑

𝑖=1
𝜂𝑖𝑠𝑖(𝑥). (10)

Here  (𝑥) is some arbitrary function known as the free function, which in the context of PINN will be represented by a neural
network. 𝜂1,… , 𝜂𝑛 are some unknown coefficients and {𝑠1(𝑥),… , 𝑠𝑛(𝑥)} is a set of linearly independent functions we choose, called
the support functions. An example of a set of support functions is the polynomial basis {1, 𝑥,… , 𝑥𝑛−1}. Since by definition 𝑓 𝑐 (𝑥)
satisfy all the constraints, Eq. (10) can be written as the following set of equations:

𝑐1 = 1[𝑓 ] = 1[ ] +
𝑛
∑

𝑖=1
𝜂𝑖1[𝑠𝑖],

⋮

𝑐𝑛 = 𝑛[𝑓 ] = 𝑛[ ] +
𝑛
∑

𝑖=1
𝜂𝑖𝑛[𝑠𝑖].

(11)

Once a set of support functions is chosen, we can solve for 𝜂𝑖 to get an exact expression for 𝑓 𝑐 (𝑥) in terms of the free function
 (𝑥):

⎡

⎢

⎢

⎣

𝜂1
⋮
𝜂𝑛

⎤

⎥

⎥

⎦

=
⎡

⎢

⎢

⎣

1[𝑠1] ⋯ 1[𝑠𝑛]
⋮ ⋱ ⋮

𝑛[𝑠1] ⋯ 𝑛[𝑠𝑛]

⎤

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

𝑐1 − 1[ ]
⋮

𝑐𝑛 − 𝑛[ ]

⎤

⎥

⎥

⎦

. (12)

The linearity of the functionals was used to split the RHS of Eq. (11) into multiple terms. Note that in some rare cases the support
functions will need to be carefully chosen to make the matrix in Eq. (12) invertible. For most commonly occurring ICs and BCs the
polynomial basis can be used as the support functions.

When solving a differential equation with PINN,  (𝑥) represents the neural network output, 1,… ,𝑛 the initial and boundary
conditions and 𝑓 𝑐 (𝑥) the solution of the differential equation which satisfy the initial and boundary conditions.

3.2. Multivariate case

For a multi-variate function 𝑓 (𝑥1, 𝑥2,… , 𝑥𝑚), this procedure of finding the constrained expression can be applied iteratively on
one variable at a time to get the general constrained expression. To do so we first define the operator 𝑖 which is a mapping
4

from the space of multivariate functions which depend on 𝑥1, 𝑥2,… , 𝑥𝑚, to a space of multivariate functions which depend on
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𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑚. In short the operator 𝑖 acts only on the ith variable of the multivariate function. Now we can represent 𝑛𝑖
constraints on each of the 𝑖th dimension as follows:

𝑖
1[𝑓 ] = 𝑐𝑖1(𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑚),

𝑖
2[𝑓 ] = 𝑐𝑖2(𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑚),

⋮

𝑖
𝑛𝑖
[𝑓 ] = 𝑐𝑖𝑛𝑖 (𝑥1,… , 𝑥𝑖−1, 𝑥𝑖+1,… , 𝑥𝑚),

(13)

here 𝑖
1,… ,𝑖

𝑛𝑖
are linear operators acting only on the variable 𝑥𝑖. For example the Dirichlet BC 𝑓 (𝑥1, 5, 𝑥3,… , 𝑥𝑛) = sin(𝑥1 + 𝑥3 +

𝑥4 +⋯ + 𝑥𝑛) has the form in Eq. (13) with 2 = 𝑓 (𝑥1, 5, 𝑥3,… , 𝑥𝑛) and 𝑐2(𝑥1, 𝑥3, 𝑥4,… , 𝑥𝑛) = sin(𝑥1 + 𝑥3 + 𝑥4 +⋯ + 𝑥𝑛). Similarly we
can represent Neumann and Robin BCs. Note that this form of constraints which are represented by linear operators which act on a
single variable limits the shape of domain boundaries on which BCs can be applied. BCs can only be applied on boundaries of the
form 𝑥𝑖 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. This is a fundamental limitation of the TFC framework. See Section 3.4 for further discussion and generalization.

Now starting with a free function  (𝑥1,… , 𝑥𝑛), represented by the neural network, we can iteratively apply the constraints to
derive the general constrained expression as follows:

𝑓 𝑐
1 (𝑥1,… , 𝑥𝑚) =  (𝑥1,… , 𝑥𝑛) +

𝑛1
∑

𝑖=1
𝜂1𝑖 𝑠𝑖(𝑥1)

𝑓 𝑐
2 (𝑥1,… , 𝑥𝑚) = 𝑓 𝑐

1 (𝑥1,… , 𝑥𝑛) +
𝑛2
∑

𝑖=1
𝜂2𝑖 𝑠𝑖(𝑥2)

⋮

𝑓 𝑐
𝑚(𝑥1,… , 𝑥𝑚) = 𝑓 𝑐

𝑚−1(𝑥1,… , 𝑥𝑛) +
𝑛𝑚
∑

𝑖=1
𝜂𝑚𝑖 𝑠𝑖(𝑥𝑚)

. (14)

Here 𝑓 𝑐
1 satisfies the 1 constraints, 𝑓 𝑐

2 satisfies the 1 and 2 constraints, and so on. Using the same method for the one-dimensional
case (Eq. (10) & Eq. (11)), at each iteration we can compute the 𝜂𝑗𝑖 . 𝑓

𝑐 ≡ 𝑓 𝑐
𝑚 now satisfy all the constraints. Note that at each step

of the iteration we can use different set of support functions. In this work we exclusively use polynomial basis functions as support
functions. For high-dimensional functions, the algebra of this iterative application of constraints becomes cumbersome, therefore
we make use of symbolic computation capabilities of Mathematica to get the constrained expression.

3.3. Reduced TFC

For the univariate case of TFC, in order to get the exact expression for 𝑓 𝑐 (𝑥) (Eq. (10)), we need to derive the expression for 𝜂𝑖
using Eq. (12). This solution contains the quantities 1[ ],… ,𝑛[ ]. In the case of PINN, since  (𝑥) is represented by a neural
etwork, computing these quantities requires additional evaluation of the neural network. The number of additional evaluations
epends on the type of constraints. If  is a value constraint like [ ] =  (𝑥̃) where 𝑥̃ is some constant, computing 𝑛[ ]
equires an evaluation of the neural network for the value 𝑥̃, a derivative constraint [ ] =  ′(𝑥̃) requires a more expensive
uto-differentiation to evaluate, and an integral constraint 𝑛[ ] = ∫  (𝑥)𝑑𝑥 requires multiple evaluations. For 𝑛 constraints,
omputing of 𝑓 𝑐 (𝑥) in the univariate case therefore requires at least 𝑛 + 1 evaluations of the neural network.

For the case of the multivariate functions, for the sake of simplicity we will assume all the constraints are value constraints. In
q. (14), following similar arguments for the univariate case, evaluation of 𝑓 𝑐

1 requires 𝑛1 +1 evaluation of the neural network. The
valuation of 𝑓 𝑐

2 requires 𝑛2 + 1 evaluations of 𝑓 𝑐
1 , hence (𝑛2 + 1) × (𝑛1 + 1) evaluations of the neural network. Using inductive logic

e get that evaluation of 𝑓 𝑐
𝑚 requires (𝑛1 + 1) ×⋯ × (𝑛𝑚 + 1) evaluations of the neural network.

In this work, we propose the idea of Reduced TFC to reduce the number of evaluations of the neural network, which can be
omputationally expensive. To achieve this we note that majority of the boundary value problems we encounter in practice have
alue or derivative constraints.

Suppose for the univariate case we have a 𝑘th derivative constraint [𝑓 ] ∶= 𝑓 (𝑘)(𝑥̃) = 𝑐 where 𝑥̃ and 𝑐 are some constants,
e can modify the free function in Eq. (10),  (𝑥) →  (𝑥)(𝑥 − 𝑥̃)𝑘+1, so that [ (𝑥)(𝑥 − 𝑥̃)𝑘+1] = 0. Therefore an additional
valuation of the  (𝑥) represented by the neural network is not required. To generalize this, if we have 𝑛 derivative constraints
(𝑘1)(𝑥̃1) = 𝑐1,… , 𝑓 (𝑘𝑛)(𝑥̃𝑛) = 𝑐𝑛, the Reduced TFC constraint expression can be written as

𝑓 𝑐 (𝑥) =  (𝑥)(𝑥 − 𝑥̃1)𝑘1+1 ⋯ (𝑥 − 𝑥̃𝑛)𝑘𝑛+1 +
𝑛
∑

𝑖=0
𝜂𝑖𝑠𝑖(𝑥). (15)

he solution for 𝜂𝑖 will then be given by a simplified version of Eq. (12):

⎡

⎢

⎢

⎣

𝜂1
⋮
𝜂𝑛

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝑠(𝑘1)1 (𝑥1) ⋯ 𝑠(𝑘1)𝑛 (𝑥1)
⋮ ⋱ ⋮

𝑠(𝑘𝑛)1 (𝑥𝑛) ⋯ 𝑠(𝑘𝑛)𝑛 (𝑥𝑛)

⎤

⎥

⎥

⎥

⎦

−1
⎡

⎢

⎢

⎣

𝑐1
⋮
𝑐𝑛

⎤

⎥

⎥

⎦

(16)

In the multivariate case, for the set of constraints

𝑖
𝑗 [𝑓 ] ∶= 𝜕

𝑘𝑗
𝑥 𝑓 (𝑥1,… , 𝑥𝑚)

|

| 𝑖 = 𝑐𝑖𝑗 (17)
5

𝑖
|𝑥𝑖=𝑥̃𝑗
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the following modification is required to the free function:

 (𝑥1,… , 𝑥𝑚) →  (𝑥1,… , 𝑥𝑚)
∏

𝑖,𝑗
(𝑥𝑖 − 𝑥̃𝑖𝑗 )

𝑘𝑗+1. (18)

This can then be substituted in Eq. (14) and all 𝜂𝑖𝑗 can be computed. The resulting 𝑓 𝑐 (𝑥1,… , 𝑥𝑚) requires only a single evaluation
of  (𝑥1,… , 𝑥𝑚) which is represented by the neural network. As we will see in Sections 5.2.3, 5.2.4 and 5.3.1, compared to TFC,
Reduced TFC will lead to a significant speedup in computing the solution of PDEs.

3.4. Remarks

For the multivariate TFC while deriving the expression for the constrained expression 𝑓 𝑐 (Eq. (14)), we assume that the
constraints are of the form 𝑖

𝑗 [𝑓 ] = 𝑐𝑖𝑗
(

𝑥1,… , 𝑥𝑗−1, 𝑥𝑗+1,… , 𝑥𝑚
)

, where 𝑖
𝑗 is an operator acting only on the variable 𝑥𝑗 . This

limits the geometry of the hypersurface on which ICs and BCs can be applied. The hypersurface should always be of the form
𝜕𝛺 = {𝒙 ∣ 𝑥𝑗 = const.} for some coordinate 𝑥𝑗 or some combination of it. The class of BVPs where ICs and BCs are applied to the
boundary of the domain [𝑎1, 𝑏1] × ⋯ × [𝑎𝑚, 𝑏𝑚] satisfy this condition. In real world applications a large class of BVPs are defined
with BCs defined on more complex geometries. The unit circle 𝜕𝛺 = {(𝑥, 𝑦) ∣ 𝑥2 + 𝑦2 = 1} is an example of a boundary on which
the TFC framework fails since it cannot be expressed in the form {𝒙 ∣ 𝑥𝑗 = const.}. While for this specific case we can still use TFC
after a coordinate change to the polar coordinates (𝑟, 𝜃) and the boundary can be represented by the equation 𝑟 = 1, such coordinate
changes are not possible in general.

For complex boundary geometries in 2D an extension of TFC using bijective mapping can be used [18]. For more complicated
geometries in arbitrary dimensions, a method based on approximate distance functions has been proposed in [19]. The form of
Reduced TFC expression (Eq. (15)) can also be generalized to complex geometries. Note that the form of Eq. (15) is such that
the 1st term in the RHS is identically zero on the boundaries and the 2nd term satisfies the values at the boundary. This can
in principle be extended to more complex boundaries where Dirichlet, Neumann or mixed boundary conditions are imposed. Let
𝑏1(𝒙) = 0, 𝑏2(𝒙) = 0,… , 𝑏𝑛(𝒙) = 0 be the 𝑛 boundaries where BCs are applied and 𝑘1, 𝑘2,… , 𝑘𝑛 be the order of the derivative constraint
applied at the boundary. Note that 𝑘 = 0 denotes a Dirichlet BC. Then the constrained expression can be written as

𝑓 𝑐 (𝒙) =  (𝒙)𝑏1(𝒙)𝑘1+1 ⋯ 𝑏𝑛(𝒙)𝑘𝑛+1 + (𝒙). (19)

Here the 1st term in the RHS is identically zero at the boundaries after applying the appropriate number of derivative operations
and the 2nd term (𝒙) satisfies the values at the boundaries. For a combination of boundary conditions it is not straightforward to
derive a function (𝒙) to satisfy the values at the boundaries for all boundary conditions. For rectangular boundaries this is solved
using TFC. For more complicated BCs a neural network can be used to represent (𝒙) and the neural network can be trained to learn
the values at the boundaries using the loss function in Eq. (8). Once trained, the neural network (𝒙) can be used to impose the
boundary conditions and only the neural network  (𝒙) needs to be trained to solve the differential equation. Further investigation
is needed in this direction to find better ways to derive (𝒙) for the case of multiple BCs with complex boundary geometries.

For the sake of simplicity, in this work we mostly use ICs and BCs on rectangular boundaries where TFC is applicable. Note
that TFC and Reduced TFC cannot be used to impose periodic BCs. For PINNs periodic BCs can be imposed by changing the neural
network architecture [20]. This is explored in Section 5.3.2. Also see Section 5.3.3 for a case where BCs are imposed at infinity.

4. Neural network & training

In this work, we use a fully connected neural network (FCNN) to represent the function(s) which are solution(s) of differential
equation(s). FCNNs have been previously used in the context of PINNs [1,6,9,20]. In this work, we mainly use two different network
architectures: a single hidden layer (shallow) FCNN [5] and a multi-layer (deep) FCNN. Based on previous studies [4,10], a shallow
FCNN, trained with extreme learning machine (ELM) [5] algorithm is found to outperform DNNs in terms of solution accuracy and
training speed in different scenarios. The ELM algorithm uses Gauss–Newton Extremization (GNE) to train the weights in the final
layer of the neural network.

4.1. Gauss–Newton extremization

GNE is a popular algorithm for non-linear least squares optimization. Let {𝜆}(𝒙) be a non-linear fitting function parameterized
by a set of parameters {𝜆}. If  represents a neural network {𝜆} can be a subset of parameters of the neural network. Now for an
input variable 𝑥𝑖 and its corresponding output 𝑦𝑖, the residual of the fitting function 𝑖({𝜆}) is defined as

𝑖({𝜆}) ∶= 𝑦𝑖 −{𝜆}(𝒙) (20)

Note that for solving BVPs using PINNs the residual  will be given by Eq. (1). The Gauss–Newton algorithm is then used to
iteratively minimize the sum of squares of the residual, ∑𝑖 𝑖({𝜆})2. Starting from an initial guess 𝝀0 for the parameter vector, GNE
prescribes the following iteration to minimize the sum of squares of 𝑖 :

( ⊤ )−1 ⊤
6

𝝀𝑡+1 − 𝝀𝑡 = − 𝐉𝑡 𝐉𝑡 𝐉𝑡 (𝝀𝑡). (21)
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g

Here  ≡ (𝑖,…) is the residual vector and 𝐉 is the Jacobian matrix defined as

(

𝐉𝑡
)

𝑖𝑗 ∶=
𝜕𝑖

(

𝝀𝑡
)

𝜕
(

𝝀𝑡
)

𝑗

. (22)

Note that Eq. (21) involves a matrix inversion, which is numerically unstable. An alternate way to compute the quantity on the RHS
of Eq. (21) is to note that for the linear least squares (LLS) problem of minimizing ‖𝐉𝑡 −(𝝀𝑡)𝜷‖2 w.r.t. 𝜷, the analytic solution is
iven by 𝜷 =

(

𝐉⊤𝑡 𝐉𝑡
)−1 𝐉⊤𝑡 (𝝀𝑡). Therefore the RHS of Eq. (21) can be computed in a numerically stable way using LLS. In this work

we use the PyTorch function torch.linalg.lstsq for LLS which utilizes the standard implementation in LAPACK library [21]. LAPACK
provides several different algorithms for computing the LLS solution. Out of these methods, singular value decomposition (SVD) is
found to provide consistent results throughout different problems we have considered in this work. See Appendix A for details.

4.2. Neural network architecture

The ELM architecture consists of a single hidden layer FCNN, with randomly initialized constant input weights and biases, and
trainable weights and no bias in the final output layer. The ELM architecture with 𝑚 inputs (𝑥1,… , 𝑥𝑚), 𝑙 outputs (1,… ,𝑙) and
𝐻 nodes in the hidden layer can be written as

𝑘 =
𝐻
∑

𝑗=1
𝛽𝑘𝑗𝜎

( 𝑚
∑

𝑖=1
𝑤𝑗𝑖𝑥𝑖 + 𝑏𝑗

)

, 1 ≤ 𝑘 ≤ 𝑙. (23)

Here 𝑤𝑗𝑖 and 𝑏𝑗 are the untrainable weights and biases respectively, and 𝛽𝑘𝑗 are the trainable weights. 𝜎 is a non-linear function
known as the activation function. We use tanh activation throughout this work. The values of 𝛽𝑘𝑗 are computed using GNE during
training.

The deep FCNN architecture we use in this study consists of 𝑀 hidden layers. All hidden layers except the last has 𝐻 nodes
with biases and the last hidden layer has 𝐻𝐸 nodes without bias. This choice was made to replicate the structure of ELM for the
last layer. The mathematical description of the neural network can be written as:

ℎ(1)𝑗 = 𝜎

( 𝑚
∑

𝑖=1
𝑤(1)

𝑗𝑖 𝑥𝑖 + 𝑏(1)𝑗

)

,

ℎ(2)𝑗 = 𝜎

( 𝐻
∑

𝑖=1
𝑤(2)

𝑗𝑖 ℎ
(1)
𝑖 + 𝑏(2)𝑗

)

,

⋮

𝑘 =
𝐻𝐸
∑

𝑗=1
𝛽𝑘𝑗ℎ

(𝑀)
𝑗 , 1 ≤ 𝑘 ≤ 𝑙.

(24)

Here ℎ(𝑘)𝑗 are the values of nodes in the 𝑘th hidden layer and 𝑤(𝑘)
𝑗𝑖 and 𝑏(1)𝑗 the corresponding weights and biases respectively. 𝛽𝑘𝑗

are the weights of the final output layer. If we choose 𝑀 = 1 we get the ELM architecture.
See Fig. 1 for the complete layout of the PINN.

4.3. Training

The deep FCNN used in the context of PINNs are typically trained with stochastic gradient descent method like Adam [22] or
quasi-Newton method like BFGS [23]. In most cases BFGS optimizer is found to provide the best solution accuracy for PINN. An
exception can be found in Section 5.1.1, where we used Adam. In all other examples considered in this work a limited memory
variant of the BFGS algorithm (L-BFGS) [24] is used for optimizing the parameters of the deep network. The specific implementation
of the optimizers we use are from the PyTorch library [25]. In this work we propose that after training the deep FCNN with the
desired optimizer, the 𝛽𝑘𝑗 parameters be further optimized using GNE. In Section 5 we show that combining optimizers in this
manner results in orders of magnitude improvement in the solution accuracy.

Note that any linear differential equation  (𝒙, 𝑓 (𝒙)) can be written as ̃ (𝒙, 𝑓 (𝒙)) + 𝑔(𝒙), where ̃ is the linear homogeneous
part. If one of the outputs 𝑘 of the neural network satisfies a linear differential equation, using Eq. (24) we can write


(

𝒙,𝑘(𝒙)
)

=
𝐻𝐸
∑

𝑗=1
𝛽𝑘𝑗̃

(

𝒙, ℎ(𝑀)
𝑗 (𝒙)

)

+ 𝑔(𝒙). (25)

Finding the minimum of the residual of 
(

𝒙,𝑘(𝒙)
)

w.r.t. 𝛽𝑘𝑗 now becomes a LLS problem which can be minimized with a single
GNE iteration. The same argument applies to a coupled linear system of differential equations and the weights 𝛽𝑘𝑗 can be computed
using a single GNE iteration. The arguments still hold when using TFC constrained expression, since TFC and Reduced TFC use
linear transformations to generate the constrained expressions. For a non-linear differential equation, we need to perform multiple
iterations in GNE and the iteration is stopped when the MSR (Eq. (2)) stops decreasing.

We train the neural network by uniformly sampling points from the domain and compute the loss function (Eq. (2)). For ELM the
loss function is minimized w.r.t. 𝛽 using GNE. For the deep network, the loss function is first minimized w.r.t. all the parameters
7
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Table 1
A summary of different problems considered in the Results section. The Remarks column outlines important observations for each of the
considered problems.

Section Problem Remarks

ODE

5.1.1 𝑦′(𝑡) = − sin 𝑡 Showcase limitation of ELM when learning complex solutions and
necessity of deep networks. GNE solution is demonstrated to
improve with increase in number of neurons in the final layer.
Adam used since L-BFGS fails to converge.

5.1.2 Non-linear coupled ODEs An example where traditional numerical methods fail. Incremental
training method introduced. PINN fails without incremental training.

PDE

5.2.1 2D linear & non-linear
PDEs with same solution

ELM & L-BFGS + GNE give similar solution accuracy for linear
PDE. L-BFGS + GNE outperforms ELM for non-linear PDE.

5.2.2 1+1 D Burgers Equation GNE fails if large gradients are present. L-BFGS + GNE shown to
work over a wider range of gradients compared to ELM. Drawback
of TFC discussed.

5.2.3 2+1 D Heat Equation Smaller solution error with L-BFGS compared to ELM but
significantly slower. L-BFGS + GNE improves upon L-BFGS by more
than 2 orders of magnitude with a small increase in computation
time over ELM. 4x speedup with Reduced TFC compared to TFC.

5.2.4 3+1 D Non-linear PDE 20x - 40x speedup with Reduced TFC compared to TFC.

Coupled PDEs

5.3.1 Kovasznay flow Steady state solution to 2D incompressible stationary Navier–Stokes
equations. L-BFGS + GNE significantly outperforms traditional as
well as other neural network based methods.

5.3.2 Taylor–Green vortex Unsteady solution to 2D incompressible Navier–Stokes equations.
Periodic BCs applied by changing the neural network architecture
and using sinusoidal activation function. Showcase benefits of
domain decomposition on large domains.

5.3.3 Pure advection in 1+1 D
Euler Equation

ELM fails to solve. Incremental training method used. Imposing
vanishing BCs at infinity.

using Adam or L-BFGS. Then after the desired number of iterations is reached, the loss function is minimized w.r.t. 𝛽𝑘𝑗 using GNE.
New random samples are generated for each iteration of Adam or L-BFGS. This prevents overfitting even if the number of samples is
small. For GNE we use a larger number of sample points to prevent overfitting. Throughout this study the number of sample points
for Adam or L-BFGS and GNE is chosen after a crude manual hyperparameter search.

Performing GNE requires computing the Jacobian. In this work for the ease of implementation, Jacobian is computed using
forward mode auto-differentiation implemented in PyTorch as torch.autograd.functional.jacobian(). The specific vectorized imple-
mentation of Jacobian in PyTorch is memory intensive and while performing GNE using a given set of sample points, the Jacobian
needs to be computed in batches and the batch size depends on the neural network architecture and the operations performed to
compute the residual. Note that it is possible to significantly speed up the computation of Jacobian by deriving an analytic expression
for it. A drawback is that it needs to be done on a case by case basis. This process can be automated using symbolic computation
packages like Mathematica but is not pursued in this work.

During training, the progress is quantified using the root mean squared residual (RMSR) of the differential equation or the system
of differential equations. Since the actual training curves of the neural network will have significant fluctuations, the training curves
shown in Section 5 represent the values of the best model which has the lowest RMSR obtained until that particular training step.
Therefore the training curves will be monotonically decreasing. Throughout this work, unless stated otherwise, all the parameters
of the neural networks are initialized using Xavier uniform initialization [26]. We use tanh activation function in this study for
simplicity. See [27,28] for trainable activation functions.

5. Results

In this section by solving different BVPs we show the superiority of the proposed extremization method for DNNs. The ICs and
BCs are applied using TFC or Reduced TFC. The exact expressions can be found in Appendix C. Some examples considered in this
section are taken from [1,10]. Note that ELMs and DNNs trained after applying boundary conditions using TFC is referred to as
X-TFC and Deep-TFC respectively in [10]. All computations in this section were performed using double-precision arithmetic on a
workstation with AMD EPYC 7552 CPU, Nvidia Titan RTX GPU and 64 GB of RAM. The general outline of this section is given in
8
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Fig. 2. Root mean square of the residual of the ODE for neural networks with (left) 1 hidden layer with 400 neurons and (right) 4 hidden layers with (32,
32, 32, 400) neurons, trained on the interval 𝑡 ∈ [0, 𝑡𝑚𝑎𝑥].

Fig. 3. Comparison of the exact solution with the neural network approximation computed using a different training method on the domain 𝑡 ∈ [0, 100]. The
neural network had 4 hidden layers with (32, 32, 32, 400) neurons. Note that the error in the Adam solution is apparent when we zoom into a small section
of the domain (right panel).

5.1. ODE

5.1.1. 𝑦′(𝑡) = − sin 𝑡
In this subsection we will use a simple example 𝑦′(𝑡) = − sin 𝑡 to show the limitation of ELM in learning complicated functions.

Since this is a linear ODE, a single Gauss–Newton iteration is required to find the solution using ELM. In this example we adjust
the complexity of the solution by changing the size of the solution domain [0, 𝑡𝑚𝑎𝑥]. Throughout this example neural networks are
trained using 1000 random uniformly sampled points from the domain for Adam and 2000 random uniformly sampled points for
GNE. For uniformity all networks using Adam were trained for 100,000 steps. Note that this training method is extremely slow and
the incremental training introduced in Section 5.1.2 will significantly speed up the process, but is not used here for simplicity.

In Fig. 2 (left) it can be seen that the single hidden layer neural network fails to learn the solution irrespective of the training
algorithm, when the domain size becomes large. Up to 1200 neurons in the hidden layer was tried but yielded similar results. For the
deep network in Fig. 2 (right), Adam starts performing better than ELM at around 𝑡𝑚𝑎𝑥 = 20. This is because ELM is only optimizing
the weights of the final layer of the neural network whereas with Adam we are optimizing the entire network. Now by combining
Adam with GNE we create a training method which can efficiently search the large parameter space of the DNN and extremize w.r.t.
the final layer to fine-tune the solution. This results in orders of magnitude improvement in the RMSR of the ODE as seen in Fig. 2
(right). This improvement in RMSR is reflected in the error of the solution as can be seen in Fig. 3 and Fig. 4.

The learning curve in Fig. 5 shows the benefit of using Adam before extremization w.r.t. the final layer. The plot was generated
from the same training process where a copy of the current best model from Adam training was made at regular intervals and GNE
was done on this copy. Note that the sudden drop in RMSR value for Adam at around 35,000 steps corresponds to a similar but more
significant drop in RMSR for the case of Adam + GNE. The error in the numerical solution before and after using GNE is shown in
Fig. 4. Adam in this case helped us to efficiently search the parameter space of the DNN. After Adam learned the essential features
of the solution, using GNE we were able to fine-tune the solution to significantly improve the accuracy. There is nothing special
about Adam in this training process. Any optimizing algorithm that can efficiently search a high dimensional parameter space can
be paired with the GNE.

Fig. 6 shows the effect of the configuration of the neural network on its ability to learn the solution of the ODE. A single hidden
layer network is unable to learn the solution of the ODE irrespective of the number of neurons in the hidden layer. However, adding
9
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Fig. 4. The absolute error in the solution after training a 4 hidden layer neural network with (32, 32, 32, 400) neurons for 100,000 steps on the domain
𝑡 ∈ [0, 100].

Fig. 5. Learning curve of a DNN with 4 hidden layers with (32, 32, 32, 400) neurons trained on the domain 𝑡 ∈ [0, 100].

an extra hidden layer Adam is more capable to learn the solution and GNE further refines and improves this solution. Beyond a
threshold of around 100 neurons, the number of neurons in the final layer had no significant effect on the accuracy of the solution
when Adam was used. As for GNE an increase in the number of neurons was associated with an increase in the accuracy of the
solution. This is mainly due to the fact that with an increase in the number of neurons the extremization step has more degrees of
freedom to fine-tune the solution.

Note that for PINNs, L-BFGS optimizer is generally found to be faster. It also leads to the lower RMSR compared to Adam.
However, for this example L-BFGS fails to converge when the domain size becomes too large. Even though incremental training
described in the next subsection can be used to mitigate this, we use Adam in this example for simplicity. Throughout the rest of
this study we will exclusively use L-BFGS.

5.1.2. Stiff coupled non-linear ODEs
A system of ODEs

𝑑
𝑑𝑡

𝑢 = cos(𝑡) + 𝑢2 + 𝑣 −
(

1 + 𝑡2 + sin2(𝑡)
)

, (26)
𝑑
𝑑𝑡

𝑣 = 2𝑡 −
(

1 + 𝑡2
)

sin(𝑡) + 𝑢𝑣 (27)

has an analytical solution for the initial conditions 𝑢(0) = 0 and 𝑣(0) = 1, given by

𝑢(𝑡) = sin(𝑡) (28)
10
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Fig. 6. Root mean square of residual of ODE trained in the interval 𝑡 ∈ [0, 100] with different neural networks using (left) Adam and (right) Adam + GNE. All
hidden layers of neural network except the last had 32 neurons.

Fig. 7. Comparison of exact solution with numerical solution found using BDF method for the coupled ODEs Eqs. (26) and (27). The relative and absolute
tolerance for BDF was set at 10−15.

𝑣(𝑡) =1 + 𝑡2. (29)

This system of ODEs was numerically solved in [1] using a neural network on the domain [0, 3]. On a larger domain this system
exhibits stiffness and numerical instability. We tried solving this system of ODEs on the domain [0, 10] using several standard and
commonly used ODE solvers like LSODA [29], RK45 [30], DOP853 [31] and BDF [32] implemented in solve_ivp function of scipy
package. All these solvers failed to solve the system of ODEs in different ways. For instance in the case of LSODA the step size became
too small irrespective of the prescribed tolerance values. RK45 finds an incorrect solution when absolute and relative tolerances are
greater than 10−10. For smaller tolerance values RK45 step size effectively becomes 0 and integration fails. A similar effect, although
with smaller tolerance values, is observed with DOP853 method. BDF, which is capable of providing numerical solutions for some
stiff problems, with relative and absolute tolerance set at 10−15 gave an incorrect solution as shown in Fig. 7.

Different training algorithms for PINNs also failed to converge when directly trained on the full domain [0, 10]. Instead we start
with a smaller domain [0, 0.5] and increase the domain size during training when certain conditions are met. For ELM, since the
equation under consideration is non-linear, GNE iterations are repeated until the RMSR stops decreasing, then we increase the
domain size by 0.5. As for L-BFGS we start with [0, 0.5] domain and increase the domain size by 0.5 when the RMSR becomes
smaller than 5 × 10−2. This process is repeated until the full domain size [0, 10] is reached. Then the training continues without any
domain size increments. We call this incremental training. 1000 random uniformly sampled points were chosen from the domain
for each L-BFGS training step irrespective of the domain size. 4000 random uniformly sampled points were used for GNE in ELM
and after L-BFGS.

Fig. 8 shows the training curve for incremental training with different training methods. The initial fluctuation in the RMSR values
are due to change in domain size. The L-BFGS method reaches full domain size faster than ELM, but ELM solution has significantly
lower RMSR. The L-BFGS + GNE method takes about twice the amount of time as compared to ELM to achieve marginally lower
RMSR value. The corresponding absolute errors in the solutions are shown in Fig. 9. Note that the increase in error towards the end
11
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Fig. 8. Evolution of RMSR with incremental training for different training algorithms. The black vertical dotted lines denote the point when L-BFGS reaches
full domain size [0, 10] with incremental training. This line appears at different locations on the I-LBFGS and I-LBFGS + GNE curves since the latter requires
additional time to perform GNE after I-LBFGS reaches full domain size. ELM had a single hidden layer with 400 neurons. L-BFGS optimized a neural network
with 2 hidden layers with (32,400) neurons.

Fig. 9. The absolute error in the solution found using different incremental training methods on the domain 𝑡 ∈ [0, 10]. ELM had a single hidden layer with 400
neurons. L-BFGS optimized a neural network with 2 hidden layers with (32, 400) neurons.

of the domain is not a trend that would extrapolate if we increase the domain size. For this specific system of ODEs this trend of
increasing error towards the end of the domain is seen irrespective of the domain [0, 𝑡𝑚𝑎𝑥], where 𝑡𝑚𝑎𝑥 ≳ 8. Fig. 10 shows the error
in the solution for neural networks trained on a larger domain [0, 20].

Similar to the example given in Section 5.1.1, the advantage of deep network trained with incremental L-BFGS + GNE is seen
when we further increase the domain size to [0, 20] as shown in Fig. 10. Using more neurons in the hidden layer resulted in higher
RMSR for incremental ELM.

5.2. PDE

5.2.1. 2D linear and non-linear PDE
The linear PDE we use in this subsection is given by

∇2𝑢(𝑥, 𝑦) =
(

2 − 𝜋2𝑦2
)

sin(𝜋𝑥) (30)

and the non-linear PDE is

∇2𝑢(𝑥, 𝑦) + 𝑢(𝑥, 𝑦) 𝜕
𝜕𝑦

𝑢(𝑥, 𝑦) = sin(𝜋𝑥)
(

2 − 𝜋2𝑦2 + 2𝑦3 sin(𝜋𝑥)
)

(31)

We use the same set of mixed boundary conditions on both equations

𝑢(0, 𝑦) = 0 (32)
12
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Fig. 10. The absolute error in the solution found using different incremental training methods on the domain 𝑡 ∈ [0, 20]. ELM had a single hidden layer with
400 neurons. L-BFGS optimized a neural network with 3 hidden layers with (32, 32, 400) neurons.

Table 2
Statistics of numerical solution for linear and non-linear PDE found using ELM and L-BFGS + GNE. ELM had a single hidden layer with 200 neurons. L-BFGS
optimized a neural network with 3 hidden layers with (32, 32, 400) neurons.

ELM L-BFGS + GNE

RMSR Mean Abs. Err. Max. Abs. Err. RMSR Mean Abs. Err. Max. Abs. Err.

Linear 9.2 × 10−10 2.1 × 10−12 1.2 × 10−11 1.0 × 10−9 1.6 × 10−12 8.1 × 10−12

Non-Linear 3.7 × 10−7 6.0 × 10−10 4.2 × 10−9 1.5 × 10−9 4.2 × 10−12 2.3 × 10−11

𝑢(1, 𝑦) = 0 (33)

𝑢(𝑥, 0) = 0 (34)
𝜕
𝜕𝑦

𝑢(𝑥, 1) = 2 sin(𝜋𝑥) (35)

nd both PDEs have the same analytic solution

𝑢(𝑥, 𝑦) = 𝑦2 sin(𝜋𝑥). (36)

For ELM we use a single hidden layer with 200 neurons and for the deep network we use 2 hidden layers with (32, 200) neurons.
ecreasing the number of neurons in the last hidden layer decreased the RMSR value while increasing only leads to marginal

mprovement in RMSR. Increasing the number of hidden layers seemed not to affect the RMSR but increased the computational
ime. We use 1000 random uniformly sampled points from the domain for each L-BFGS training step and 2000 random uniformly
ampled points for the GNE in ELM and after L-BFGS training.

For the linear equation ELM required a single iteration of GNE and the solution took 1.5 s to compute. In the case of L-BFGS +
NE, 2 steps of L-BFGS took around 2 s and an additional 1.5 s for GNE taking a total of 3.5 s to compute the solution. In the case
f non-linear equation GNE involves multiple iterations. The ELM solution took around 8 s. For the hybrid training 3 L-BFGS steps
ook around 3.5 s and the GNE took 19 s taking a total of 22.5 s to compute. For both these cases pure L-BFGS RMSR and mean
bsolute error were around 10−1. We need to train for significantly longer duration with pure L-BFGS to attain an absolute error
hich is orders of magnitude worse than ELM and L-BFGS + GNE.

Even though the analytic solution which the neural network has to learn is the same for both the PDEs, ELM performed worse
ith the non-linear PDE compared to the linear PDE according to Table 2. In comparison, for L-BFGS + GNE the solution of linear
nd non-linear PDEs had similar statistics. In the case of the linear PDE, a LLS problem w.r.t. weights in the last layer of the neural
etwork can be extremized in a single iteration of GNE. However for the non-linear PDE a more complicated optimization landscape
s found where combining L-BFGS with GNE is advantageous compared to just using GNE in the case of ELM. Note that in the case
f the non-linear PDE solved with ELM the LLS algorithm used to perform the Gauss–Newton iteration is seen to significantly affect
he numerical solution. This is discussed further in Appendix A.

.2.2. 1+1 D Burgers’ equation
The (viscous) Burgers’ equation is a non-linear PDE given by the following equation:

𝜕𝑢
𝜕𝑡

+ 𝛼𝑢 𝜕𝑢
𝜕𝑥

= 𝜈 𝜕
2𝑢

𝜕𝑥2
. (37)

A previous study [10] addressed solving Burgers’ equation using ELM and DNN. In order to compare with their results, we solve
he PDE on the same domain (𝑥, 𝑡) ∈ [−3, 3] × [0, 1] using the same boundary conditions:

𝑢(−3, 𝑡) = 𝑐 − 𝑐 tanh
( 𝑐 (−3 − 𝑐𝑡)

)

(38)
13
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Fig. 11. Plot of analytic solution (Eq. (41)) of Burgers’ equation for (left) 𝜈 = 1, (center) 𝜈 = 0.1 and (right) 𝜈 = 0.01.

Fig. 12. Learning curve of neural networks using L-BFGS (dashed curves) and L-BFGS + GNE (solid curves) for the Burgers’ equation with different values of
𝜈. All the neural networks were trained for 15,000 L-BFGS steps. ELM took between 15 s to 25 s depending on the value of 𝜈.

𝑢(3, 𝑡) = 𝑐
𝛼
− 𝑐

𝛼
tanh

( 𝑐
2𝜈

(3 − 𝑐𝑡)
)

(39)

𝑢(𝑥, 0) = 𝑐
𝛼
− 𝑐

𝛼
tanh

( 𝑐
2𝜈

𝑥
)

. (40)

The exact analytic solution for this boundary value problem is given by

𝑢(𝑥, 𝑡) = 𝑐
𝛼
− 𝑐

𝛼
tanh

( 𝑐
2𝜈

(𝑥 − 𝑐𝑡)
)

. (41)

In this case the viscosity parameter 𝜈 plays a role in determining the sharpness of the gradients in the exact solution:

∇𝑢(𝑥, 𝑡) =

⎛

⎜

⎜

⎜

⎝

𝑐2

𝛼𝜈 + 𝛼𝜈 cosh
(

𝑐
2𝜈 (𝑥 − 𝑐𝑡)

) ,− 𝑐3

𝛼𝜈 + 𝛼𝜈 cosh
(

𝑐
2𝜈 (𝑥 − 𝑐𝑡)

)

⎞

⎟

⎟

⎟

⎠

(42)

⟹ ∇𝑢(𝑥, 𝑡)|𝑥=𝑐𝑡 =
(

𝑐2

2𝛼𝜈
,− 𝑐3

2𝛼𝜈

)

. (43)

The magnitude of the gradient at 𝑥 = 𝑐𝑡 is inversely proportional to 𝜈 and as 𝜈 → 0 the analytic solution becomes discontinuous.
This can be readily seen in Fig. 11. Since all the optimization methods we use in this work rely on computing the gradient terms
in Eq. (37) and further computing gradients of the residual of Eq. (37) w.r.t. the weights in the neural network, we expect PINN to
perform worse as 𝜈 becomes small. In this subsection we will look at how robust the proposed method is to large gradients when
training.

We use similar architecture as used in [10] and set 𝛼 = 𝑐 = 1. ELM had a single hidden layer with 601 neurons. The deep network
had 4 hidden layers with (32, 32, 32, 200) neurons. Each L-BFGS step was trained on 1000 random uniformly sampled points from
the domain and GNE in ELM and after L-BFGS was done with 2000 random uniformly sampled points from the domain. All L-BFGS
training in this subsection with and without GNE was done for 15,000 steps for consistency. Most of the neural networks converged
to the lowest RMSR well before this, as shown in Fig. 12.
14
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Fig. 13. (left) Mean absolute error and (right) maximum absolute error for Burgers’ equation solved with different training algorithms.

Fig. 14. Absolute value of residual of Burgers’ equation for (left) 𝜈 = 1, (center) 𝜈 = 0.1 and (right) 𝜈 = 0.01 after training with L-BFGS for 15,000 steps.

From Fig. 13 it can be seen that for 𝜈 ≲ 0.2 ELM starts performing worse than DNN trained with L-BFGS. In comparison L-BFGS
+ GNE consistently performs better than both ELM and L-BFGS. For 𝜈 ≲ 0.01 it was observed that applying GNE on a model trained
with L-BFGS led to similar or worse solution error. This is likely due to GNE being sensitive to large gradients.

Fig. 14 shows the residual of the Burgers equation for DNNs trained with L-BFGS for different values of 𝜈. For large values of 𝜈
the residuals are small and the values are evenly distributed throughout the domain. As 𝜈 gets smaller the residuals start to assume
large values around the lines 𝑥 = 0 and 𝑥 = 𝑐𝑡. Here 𝑥 = 𝑐𝑡 is the location of the discontinuity when 𝜈 → 0 and the large value of
residual at 𝑥 = 0 line is due to the presence of tanh

(

𝑐
2𝜈 𝑥

)

term in the TFC constrained expression Eq. (C.6). This is a fundamental
limitation of TFC when imposing discontinuous boundary conditions or boundary conditions with sharp gradients. In this case, if
we impose the boundary condition as a loss function (Eq. (9)), we can get rid of the large residual values along the 𝑥 = 0 line, but
we will still be left with large residual value along 𝑥 = 𝑐𝑡. During GNE, these larger residuals localized to a small area of the domain
will result in a Jacobian matrix mostly populated by small values with sparsely occurring large values. This in turn will result in
large updates (Eq. (21)) for the weights. This can be seen in Fig. 15. All the statistics of the proposed updates scales approximately
as 𝜈−1. For very small values of 𝜈 (𝜈 < 0.01), these large updates result in the solution becoming worse after GNE. For small enough
values of 𝜈 all gradient based methods will fail due to exploding gradients, but GNE fails before methods like Adam and L-BFGS
since it is more sensitive to large gradients.

The method described in [33] was found to be helpful for extremely small values of 𝜈, even up to 𝜈 = 0. Nevertheless, the results
were not always consistent, occasionally producing solutions with the discontinuity on a line other than 𝑥 = 𝑐𝑡.

5.2.3. 2+1 D heat equation
In this subsection we will solve the 2D heat equation

𝜕2

𝜕𝑥2
𝑢(𝑥, 𝑦, 𝑡) + 𝜕2

𝜕𝑦2
𝑢(𝑥, 𝑦, 𝑡) = 𝜅 𝜕

𝜕𝑡
𝑢(𝑥, 𝑦, 𝑡) (44)

subject to the following Dirichlet boundary conditions:

𝑢(0, 𝑦, 𝑡) = 0 (45)

𝑢(𝐿, 𝑦, 𝑡) = 0 (46)

𝑢(𝑥, 0, 𝑡) = 0 (47)

𝑢(𝑥,𝐻, 𝑡) = 0 (48)
15
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Fig. 15. Statistics of the updates proposed to the weights in the last layer of the DNN after the first iteration of GNE. Note that the statistics scales approximately
as 𝜈−1.

Fig. 16. Statistics of the solution to heat equation computed with different methods and using Reduced TFC to impose constraints. Solid lines denote L-BFGS +
GNE, dotted lines denote L-BFGS and 𝑥 marks ELM. The time taken by L-BFGS is not shown in the figure since it takes significantly longer than other methods.
See Table 3 for exact values.

𝑢(𝑥, 𝑦, 0) = sin
(𝜋𝑥
𝐿

)

sin
(𝜋𝑦
𝐻

)

(49)

The analytic solution is given by:

𝑢(𝑥, 𝑦, 𝑡) = sin
(𝜋𝑥
𝐿

)

sin
(𝜋𝑦
𝐻

)

𝑒
−
(

𝜋2

𝐿2
+ 𝜋2

𝐻2

)

𝑡
(50)

The equation is solved in the domain 𝑥, 𝑦, 𝑡 ∈ [0, 𝐿] × [0,𝐻] × [0, 1]. In this study we use the values 𝐿 = 2, 𝐻 = 1, 𝜅 = 1. The
ELM network had a single hidden layer with 400 neurons. Further increase in the number of neurons did not improve the numerical
solution. The deep network had 3 hidden layers with (32, 32, 400) neurons. At each L-BFGS step the network was trained on 2000
random uniformly sampled points from the domain and GNE in ELM and after L-BFGS was done with 2000 random uniformly
sampled points from the domain.

Fig. 16 shows that the solution error from L-BFGS is slightly better than ELM but L-BFGS takes significantly longer to compute.
L-BFGS + GNE on the other hand takes slightly longer than ELM to compute the solution but achieves lower error by more than
2 orders of magnitude. From Table 3 it can be seen that using Reduced TFC we are able to compute solutions around 4 times
16
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f

Table 3
Statistics for different training algorithms. The shallow ELM had a single hidden layer with 400 neurons.
The deep network had 3 hidden layers with (32, 32, 400) neurons. The number of L-BFGS training steps
used were 400 for pure L-BFGS and 30 for L-BFGS + GNE.

RMSR Mean Abs. Err. Max. Abs. Err. Time

Reduced TFC

ELM 4.0 × 10−3 4.6 × 10−5 3.1 × 10−4 4.9 s
L-BFGS 2.9 × 10−3 2.8 × 10−5 2.0 × 10−4 264 s
L-BFGS + GNE 1.1 × 10−5 6.2 × 10−8 5.9 × 10−7 32 s

TFC

ELM 4.4 × 10−3 6.0 × 10−5 3.6 × 10−4 19.5 s
L-BFGS 4.2 × 10−3 3.8 × 10−5 2.5 × 10−4 955 s
L-BFGS + GNE 3.2 × 10−5 1.3 × 10−7 1.6 × 10−6 136 s

faster with also a marginal improvement in error. This improvement is due to fact that with Reduced TFC we require only a single
evaluation of the neural network compared to multiple evaluations in the case of TFC.

5.2.4. 3+1 D non-linear PDE
In this subsection we will showcase an example where Reduced TFC provides significant advantage over TFC. We will solve the

ollowing 3+1 dimensional non-linear PDE.

𝜕𝑥𝑢(𝑥, 𝑦, 𝑧, 𝑡) 𝜕𝑦𝑢(𝑥, 𝑦, 𝑧, 𝑡) 𝜕𝑧𝑢(𝑥, 𝑦, 𝑧, 𝑡)+𝜕2𝑡 𝑢(𝑥, 𝑦, 𝑧, 𝑡)

=
(

(𝑡 − 1)𝑡𝑥(𝑧 − 1) + 𝑥2 cos
(

𝑥2𝑦
)

+ 3
2
𝑥
√

𝑦𝑧
)

(

(𝑡 − 1)𝑡𝑦(𝑧 − 1) + 2𝑥𝑦 cos
(

𝑥2𝑦
)

+ 𝑦3∕2𝑧
)

(

2𝜋𝑡2 cos(2𝜋𝑧) + (𝑡 − 1)𝑡𝑥𝑦 + 𝑥𝑦3∕2
)

+ 2𝑥𝑦(𝑧 − 1) + 2 sin(2𝜋𝑧)

(51)

subject to the following Dirichlet boundary conditions:

𝑢(0, 𝑦, 𝑧, 𝑡) = 𝑡2 sin(2𝜋𝑧) (52)

𝑢(𝑥, 0, 𝑧, 𝑡) = 𝑡2 sin(2𝜋𝑧) (53)

𝑢(𝑥, 𝑦, 1, 𝑡) = sin
(

𝑥2𝑦
)

+ 𝑥𝑦3∕2 (54)

𝑢(𝑥, 𝑦, 𝑧, 0) = sin
(

𝑥2𝑦
)

+ 𝑥𝑦3∕2𝑧 (55)

𝑢(𝑥, 𝑦, 𝑧, 1) = sin
(

𝑥2𝑦
)

+ 𝑥𝑦3∕2𝑧 + sin(2𝜋𝑧). (56)

The exact analytic solution for this boundary value problem is given by:

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑡2 sin(2𝜋𝑧) + sin
(

𝑥2𝑦
)

+ 𝑥𝑦3∕2𝑧 + 𝑥𝑦𝑡(𝑧 − 1)(𝑡 − 1). (57)

The PDE was solved in the domain (𝑥, 𝑦, 𝑧, 𝑡) ∈ [0, 1] × [0, 1] × [0, 1] × [0, 1]. The ELM used in this case had 1 single hidden layer with
400 neurons. The deep network had 3 hidden layers with (32, 32, 400) neurons. At each L-BFGS step the network was trained on
2000 random uniformly sampled points from the domain and GNE in ELM and after L-BFGS was done with 2000 random uniformly
sampled points from the domain.

Table 4 shows that L-BFGS + GNE provides only a marginal improvement in accuracy over ELM. The important thing to note
here is that, using Reduced TFC we are able to achieve more than 20 times speedup in the case of ELM and L-BFGS + GNE, and
more than 40 times speedup for L-BFGS.

5.3. Coupled PDE

5.3.1. Kovasznay flow solution
The 2D incompressible stationary Navier–Stokes equation given by

𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= −1
𝜌
𝜕𝑝
𝜕𝑥

+ 𝜈
(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

(58)

𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= −1
𝜌
𝜕𝑝
𝜕𝑦

+ 𝜈
(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

)

(59)

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0, (60)
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Table 4
Statistics for different training algorithms. The ELM had 1 single hidden layer with 400 neurons. The
deep network had 3 hidden layers with (32,32,400) neurons. The number of training steps used were
800 for pure L-BFGS and 10 for L-BFGS + GNE.

RMSR Mean Abs. Err. Max. Abs. Err. Time

Reduced TFC

ELM 2.8 × 10−9 5.9 × 10−11 5.4 × 10−9 7 s
L-BFGS 1.5 × 10−4 3.9 × 10−6 6.2 × 10−5 47 s
L-BFGS + GNE 6.6 × 10−10 1.8 × 10−11 2.0 × 10−9 10 s

TFC

ELM 3.3 × 10−6 1.0 × 10−7 1.2 × 10−5 150 s
L-BFGS 3.4 × 10−4 7.3 × 10−6 2.0 × 10−4 1899 s
L-BFGS + GNE 9.0 × 10−7 2.2 × 10−8 1.9 × 10−6 245 s

Fig. 17. Plot of analytic Kovasznay flow solution with 𝜈 = 0.025, 𝜌 = 1 and 𝑝0 = 1.

where 𝑢 and 𝑣 are 𝑥 and 𝑦 components of the velocity respectively, 𝑝 the pressure, 𝜈 the viscosity and 𝜌 the density. The Kovasznay
flow [34] is an exact solution to the above coupled system of PDEs given as:

𝑢(𝑥, 𝑦) = 1 − 𝑒𝜆𝑥 cos(2𝜋𝑦) (61)

𝑣(𝑥, 𝑦) = 𝜆
2𝜋

𝑒𝜆𝑥 sin(2𝜋𝑦) (62)

𝑝(𝑥, 𝑦) = 𝑝0 −
1
2
𝑒2𝜆𝑥, where 𝑝0 is an arbitrary constant (63)

𝜆 = 1
2𝜈

−
√

1
4𝜈2

+ 4𝜋2. (64)

The Kovasznay flow solution shown in Fig. 17 is often used to benchmark traditional [35,36] as well as neural network-
based [37,38] numerical solvers. Compared to these methods, in this subsection we show that using L-BFGS + GNE we are able to
achieve orders of magnitude more accurate numerical solutions in a fraction of the time. For this test we set the values 𝜈 = 0.025,
𝜌 = 1 and 𝑝0 = 1. The domain is chosen as (𝑥, 𝑦) ∈ [0, 2]×[0, 2] and we apply Dirichlet boundary conditions on 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦) at all
4 boundaries of the domain based on the analytic solution. In principle without applying any boundary condition on 𝑝(𝑥, 𝑦), we can
still solve for 𝑢(𝑥, 𝑦) and 𝑣(𝑥, 𝑦). In practice when no boundary condition is applied on 𝑝(𝑥, 𝑦) we have an extra degree of freedom,
related to the pressure 𝑝0 which is found to become extremely large (∼ 107) when solved using neural networks. This in turn leads to
a loss in precision as the computations are limited by double precision arithmetic. Therefore we apply Dirichlet boundary condition
for the pressure 𝑝(𝑥, 𝑦) on any one of the boundaries.

The shallow network used for ELM had 400 neurons in the single hidden layer. Increasing the number of neurons further did
not decrease the error. The deep network had 3 hidden layers with (32, 32, 400) neurons. At each L-BFGS step the network was
trained on 2000 random uniformly sampled points from the domain and GNE in ELM and after L-BFGS was done with 3000 random
uniformly sampled points from the domain.

As illustrated in Fig. 18, even though L-BFGS + GNE takes longer to compute the solution compared to ELM, the LBGS + GNE
solution has several orders of magnitude lower error. L-BFGS, even after running for 600 training steps, still lagged behind ELM in
terms of accuracy while taking significantly longer to compute. Table 5 shows the advantage of Reduced TFC over TFC. Reduced
TFC provided a 50% improvement in runtime. This pales in comparison to Sections 5.2.3 and 5.2.4 where we achieved a speedup
of 4 times and 20 times respectively. This is mostly due to the fact that for this boundary value problem, the computational time
18



Communications in Nonlinear Science and Numerical Simulation 137 (2024) 108129A.A. Thiruthummal et al.

i
m

a
f
t
w
o
b
d

5

b

m
𝑝

Fig. 18. Statistics of the Kovasznay flow solution computed with different methods using Reduced TFC to impose constraints for (left) 𝑢(𝑥, 𝑦), (center) 𝑣(𝑥, 𝑦)
and (right) 𝑝(𝑥, 𝑦). Solid lines denote L-BFGS + GNE, dotted lines denote L-BFGS and 𝑥 marks ELM. The time taken by L-BFGS is not shown in the figure since
it takes significantly longer than other methods. See Table 5 for exact values.

Table 5
Statistics of the Kovasznay flow solution computed with different training methods using TFC and Reduced TFC. The number of L-BFGS training steps used were
600 for pure L-BFGS and 40 for L-BFGS + GNE.

RMSR Mean Abs. Err. Max. Abs. Err. Time

Eq. (58) Eq. (59) Eq. (60) 𝑢(𝑥, 𝑦) 𝑣(𝑥, 𝑦) 𝑝(𝑥, 𝑦) 𝑢(𝑥, 𝑦) 𝑣(𝑥, 𝑦) 𝑝(𝑥, 𝑦)

Reduced TFC

ELM 2.8 × 10−4 2.6 × 10−4 2.4 × 10−4 1.8 × 10−5 1.3 × 10−5 1.9 × 10−5 6.4 × 10−5 7.3 × 10−5 1.1 × 10−4 95 s
L-BFGS 1.4 × 10−3 7.9 × 10−4 6.9 × 10−4 7.5 × 10−5 5.3 × 10−5 1.5 × 10−4 3.2 × 10−4 2.6 × 10−4 8.9 × 10−4 857 s
L-BFGS + GNE 2.9 × 10−8 1.9 × 10−8 2.1 × 10−8 9.0 × 10−10 6.0 × 10−10 1.2 × 10−9 5.3 × 10−9 3.2 × 10−9 1.1 × 10−8 182 s

TFC

ELM 1.4 × 10−4 1.3 × 10−4 1.2 × 10−4 7.0 × 10−6 5.1 × 10−6 1.5 × 10−5 3.7 × 10−5 2.8 × 10−5 1.0 × 10−4 147 s
L-BFGS 1.3 × 10−3 9.3 × 10−4 1.0 × 10−3 8.8 × 10−5 8.2 × 10−5 1.1 × 10−4 3.1 × 10−4 4.7 × 10−4 5.9 × 10−4 1307 s
L-BFGS + GNE 6.4 × 10−8 2.5 × 10−8 3.8 × 10−8 2.4 × 10−9 1.4 × 10−9 5.2 × 10−9 1.6 × 10−8 7.2 × 10−9 4.5 × 10−8 318 s

s dominated by computing the various derivatives in the PDE using auto-differentiation rather than evaluating the neural network
ultiple times to impose constraints using TFC.

Note that the slowest step in the GNE process is the computation of the Jacobian matrix. Since GPUs are equipped with a limited
mount of VRAM, this computation is often done in batches. For instance in the case of the neural network used in this subsection,
or each Gauss–Newton iteration, Jacobian matrix of 3000 sample outputs w.r.t. 1200 weights was computed in batches of 100 and
ook around 25 s. Once the Jacobian matrix was computed, the LLS took on average 560 ms per Gauss–Newton iteration. Since
e use random sampling from the domain to train, multiple GPUs can readily be used to parallelize the batch-wise computation
f the Jacobian. For multi-dimensional PDEs the synchronization time between all the GPUs and time for computing the LLS will
e negligible compared to the time it takes to compute the Jacobian matrix, resulting in an almost linear speedup. Another option
iscussed in Section 4.3 is to derive an analytic expression for Jacobian.

.3.2. Taylor–Green vortex solution
The 2D incompressible Navier–Stokes equations are written as

𝜕𝑢
𝜕𝑡

+ 𝑢 𝜕𝑢
𝜕𝑥

+ 𝑣 𝜕𝑢
𝜕𝑦

= −1
𝜌
𝜕𝑝
𝜕𝑥

+ 𝜈
(

𝜕2𝑢
𝜕𝑥2

+ 𝜕2𝑢
𝜕𝑦2

)

(65)

𝜕𝑣
𝜕𝑡

+ 𝑢 𝜕𝑣
𝜕𝑥

+ 𝑣 𝜕𝑣
𝜕𝑦

= −1
𝜌
𝜕𝑝
𝜕𝑦

+ 𝜈
(

𝜕2𝑣
𝜕𝑥2

+ 𝜕2𝑣
𝜕𝑦2

)

(66)

𝜕𝑢
𝜕𝑥

+ 𝜕𝑣
𝜕𝑦

= 0 (67)

The Taylor–Green vortex solution [39] to the Navier–Stokes equations describes an unsteady flow with decaying vortex and can
e written as follows:

𝑢(𝑥, 𝑦, 𝑡) = sin 𝑥 cos 𝑦𝑒−2𝜈𝑡 (68)

𝑣(𝑥, 𝑦, 𝑡) = − cos 𝑥 sin 𝑦𝑒−2𝜈𝑡 (69)

𝑝(𝑥, 𝑦, 𝑡) =
𝜌
4
(cos 2𝑥 + sin 2𝑦)𝑒−4𝜈𝑡. (70)

In this case we will solve the Navier–Stokes equations by applying periodic boundary conditions and initial conditions which
atch the analytic solution for 𝑢(𝑥, 𝑦, 𝑡), 𝑣(𝑥, 𝑦, 𝑡) and 𝑝(𝑥, 𝑦, 𝑡) at 𝑡 = 0. As we discussed in Section 5.3.1, the initial condition on
(𝑥, 𝑦, 𝑡) is not required in principle but necessary in practice.
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Fig. 19. Structure of the neural network imposing periodic boundary conditions along the 𝑥 and 𝑦 axes. Raw outputs are the neural network outputs before
applying TFC constraints.

Based on [20], the periodic boundary conditions were exactly imposed using an additional layer with a periodic activation
function right after the input layer as shown in Fig. 19. The other constraints are imposed using Reduced TFC. The variables 𝑥 and
𝑦 of the periodic dimensions are first passed to a set of 𝑚 periodic activation functions defined as follows:

𝑆1𝑖(𝑥) =𝐴1𝑖 sin
(

2𝜋
𝐿𝑥

𝑥 + 𝜙1𝑖

)

, 1 ≤ 𝑖 ≤ 𝑚, (71)

𝑆2𝑖(𝑦) =𝐴2𝑖 sin
(

2𝜋
𝐿𝑦

𝑦 + 𝜙2𝑖

)

, 1 ≤ 𝑖 ≤ 𝑚. (72)

Here 𝐿𝑥 and 𝐿𝑦 are the periods of the 𝑥 and 𝑦 variables respectively, which have the values 𝐿𝑥 = 𝐿𝑦 = 2𝜋 in this example.
𝐴1𝑖, 𝐴2𝑖, 𝜙1𝑖 and 𝜙2𝑖 are weights which are initialized randomly with Xavier normal initialization [26] and remain constant for ELM
but are trainable parameters in the case of DNN trained with L-BFGS. 𝑆1𝑖(𝑥), 𝑆2𝑖(𝑦) and the non-periodic variable 𝑡 now form the new
input variables which are then passed to a FCNN. Note here that Eqs. (71) and (72) do not exactly follow the prescription in [20].
The current form of Eqs. (71) and (72) was found to be optimal for ELM. L-BFGS and L-BFGS + GNE was found to be agnostic to
the specific form, as long as the periodic activation was present, since they have the additional freedom to train the parameters.

The shallow network used for ELM has 15 neurons (𝑚 = 15) each for 𝑥 and 𝑦 variables in the periodic activation layer and
400 neurons in the single hidden layer. Increasing the number of neurons in the hidden layer was found to decrease the RMSR but
took significantly longer to train due to computational constraints. The deep network had the same configuration for the periodic
activation layer and had 3 hidden layers with (32, 32, 400) neurons. At each L-BFGS step the network was trained on 2000 random
uniformly sampled points from the domain and GNE in ELM and after L-BFGS was done with 3000 random uniformly sampled
points from the domain.

Fig. 20 shows the learning curve for the various training methods used. ELM and L-BFGS + GNE outperform pure L-BFGS. L-BFGS
+ GNE can achieve the same RMSR value as ELM slightly faster, and being trained for a longer duration is able to achieve a better
RMSR. This corresponds to decreased error in the L-BFGS + GNE solution compared to ELM as shown in Fig. 21. Note that in Fig. 21,
the absolute error in 𝑝(𝑥, 𝑦, 𝑡) is extremely large for all the training methods, even though we applied boundary conditions as we did
in Section 5.3.1. This is because 𝑝(𝑥, 𝑦, 𝑡) in this section has an additional gauge freedom where 𝑝(𝑥, 𝑦, 𝑡) → 𝑝(𝑥, 𝑦, 𝑡) + 𝑔(𝑡) will also
atisfy the Navier–Stokes equations since 𝑝(𝑥, 𝑦, 𝑡) only appears as a gradient w.r.t. 𝑥 and 𝑦 variables in the equation. Imposing any
ind of boundary condition at 𝑡 = 0 will only constrain the value of 𝑔(𝑡) at 𝑡 = 0. Even though it is not possible to unambiguously
earn the function 𝑝(𝑥, 𝑦, 𝑡), the value of its derivatives can be determined. This is evident in Fig. 21 where the errors in 𝜕𝑥𝑝(𝑥, 𝑦, 𝑡)
𝑦𝑝(𝑥, 𝑦, 𝑡) are small.

An important thing to consider here is that the error in 𝑢, 𝑣 and ∇𝑝 are almost a constant with a slight increase towards the
20
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Fig. 20. Learning curve of the different training algorithms used for solution of the Taylor–Green vortex problem. For L-BFGS with and without GNE 700
training steps were used.

Fig. 21. Mean absolute error at different time slices 𝑡 for the Taylor–Green vortex solution computed using different training methods.

Fig. 22. Heat map of numerical solution 𝑢(𝑥, 𝑦, 𝑡) to Taylor–Green vortex problem at 𝑡 = 10 found using (left) ELM and (right) L-BFGS + GNE.

relative error in the solution will be exponentially increasing. This increase in relative error translates to visible artifacts in the ELM
solution at 𝑡 = 10 as shown in Fig. 22. L-BFGS + GNE on the other hand yields a solution which is visibly indistinguishable from
the true solution. This is even more evident in Fig. 23 which shows that the maximum relative error in the ELM solution is around
30% whereas for L-BFGS + GNE the maximum relative error is around 3%.
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Fig. 23. Heat map of relative error of numerical solution 𝑢(𝑥, 𝑦, 𝑡) to Taylor–Green vortex problem at 𝑡 = 10 found using (left) ELM and (right) L-BFGS + GNE.

Fig. 24. Heat map of relative error of numerical solution 𝑢(𝑥, 𝑦, 𝑡) to Taylor–Green vortex problem at 𝑡 = 10 found using a combination of BTM with(left) ELM
and (right) L-BFGS + GNE.

In order to better learn long-time solutions to time-dependent differential equations, a method, named block time marching
(BTM), was introduced in [6]. With BTM, the time domain is decomposed into sub-domains represented by independent neural
networks. Starting from the sub-domain containing the initial condition, the neural networks are trained one at a time and
successively, with value from the previous neural network being used as the initial condition for the current network. For this
example we decompose the domain into two sub-domains [0, 5.25] and [5, 10.25]. The 5% extension of the domain was to take into
account the slight increase in error towards the end of the domain boundary. The first neural network is trained with the initial
condition at 𝑡 = 0 and the second network is trained with initial condition at 𝑡 = 5, the values of which are evaluated from the
previously trained neural network.

Fig. 24 shows the relative error in the solution found using BTM. The accuracy of both ELM and L-BFGS + GNE improved with
BTM, resulting in a 0.8% maximum relative error in the case of ELM and 0.06% in the case of L-BFGS + GNE at 𝑡 = 10. Note
that it is in principle possible to further improve the solution accuracy by decomposing the domain into smaller sub-domains and
applying BTM. BTM is but an example of a general class of domain decomposition PINN methods [6,17] which may be necessary
to find accurate solutions on large domains due to computational hardware limitations. This example serves as an illustration of
the applicability of extremization applied on top of domain decomposition to improve solution accuracy. Further in-depth study is
required into this topic and is not undertaken at this point.

5.3.3. Pure advection in compressible flow
The compressible 1-dimensional Euler equations are given as

𝜕𝜌
𝜕𝑡

+ 𝜕
𝜕𝑥

(𝜌𝑢) = 0 (73)
𝜕 (𝜌𝑢) + 𝜕 (

𝜌𝑢2 + 𝑝
)

= 0 (74)
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Fig. 25. Learning curves of incremental L-BFGS and incremental L-BFGS + GNE. The incremental training reached the full domain size in 27 steps. The curves
are not plotted against training time to show the overlap in RMSR values. The 200 L-BFGS steps took 152 s. The GNE took on average 50 s.

𝜕𝐸
𝜕𝑡

+ 𝜕
𝜕𝑥

((𝐸 + 𝑝) 𝑢) = 0, (75)

where the total (kinetic + internal) energy 𝐸 is defined as:

𝐸 = 1
2
𝜌𝑢2 +

𝑝
𝛾 − 1

. (76)

We also assume 𝛾 = 1.4. For this system of PDEs, if we start with a constant pressure 𝑝(𝑥, 0) = 𝑝0 and constant velocity 𝑢(𝑥, 0) = 𝑢0,
the result is pure advection in density, where we have 𝜌(𝑥, 𝑡) = 𝜌(𝑥 − 𝑢0𝑡, 0). The pressure and velocity remain constant in time. In
this example we start with the ICs

𝑝(𝑥, 0) = 1, (77)

𝑢(𝑥, 0) = 1, (78)

𝜌(𝑥, 0) = exp
(

−
(𝑥 − 𝜇)2

2𝜎2

)

, 𝜇 = 0.5, 𝜎 = 0.1. (79)

We solve this system of PDEs on the domain (𝑥, 𝑡) ∈ [0, 1] × [0, 1]. We use the BC that the density vanishes at infinity,
lim𝑥→±∞ 𝜌(𝑥, 𝑡) = 0. The ICs on 𝑝 and 𝑢 are imposed using Reduced TFC. In order to impose the BCs on 𝜌 we modify the Reduced
TFC constrained expression as follows:

𝑓 𝑐
𝑝 (𝑥, 𝑡) = 𝑝(𝑥, 𝑡) 𝑡 + 1 (80)

𝑓 𝑐
𝑢 (𝑥, 𝑡) = 𝑢(𝑥, 𝑡) 𝑡 + 1 (81)

𝑓 𝑐
𝜌 (𝑥, 𝑡) = exp

(

𝜌(𝑥, 𝑡) 𝑡 −
(𝑥 − 𝜇)2

2𝜎2

)

. (82)

Here 𝑝, 𝑢, 𝜌 are the neural network outputs before applying constraints. The proof that Eq. (82) satisfies the BC at infinity
is given in Appendix B.

In order to train the neural network we use the incremental training approach we used in Section 5.1.2. The neural network was
first trained on the [0, 0.01] time domain. After a threshold RMSR of 10−3 was reached, the domain size was increased by 50%. This
process was repeated until the full time domain size of [0, 1.0] was reached. Then the training is continued till the desired RMSR
value is reached. For this example it is possible to train the neural network without incremental training, but it was found to be
significantly slower. Note that the PyTorch implementation of L-BFGS while training, occasionally encountered large gradients and
resulted in 𝑁𝑎𝑁 values in the neural network parameters. When this happens the neural network is reverted back to the previous
best parameters (lowest RMSR) and training was resumed.

We tried different number of output neurons {100, 200, 300, 400, 500, 600} for the ELM, with and without incremental training.
Directly training on the full domain always resulted in 𝑁𝑎𝑁 values of the parameters. With incremental training ELM initially learns
well when domain size is small but later fails and network parameters become 𝑁𝑎𝑁 when the domain size is increased. A similar
behavior can be seen in Fig. 25 when GNE initially yields better RMSR, but as the domain size increases, it fails and overlaps the
learning curve of pure L-BFGS. After reaching the full domain size, it takes further L-BFGS training for GNE to start improving the
RMSR. The DNN we used in this example had 3 hidden layers with (32, 32, 400) neurons.
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Fig. 26. Errors in the solution of pure advection computed using (top) incremental L-BFGS and (bottom) incremental L-BFGS + GNE.

Fig. 26 shows the errors for the solutions of 𝑢, 𝑝 and 𝜌. The use of GNE has resulted in a 5 orders of magnitude improvement in
the solution accuracy. However it is to be noted that similar to the case of the Burgers’ equation in Section 5.2.2, the improvement
with GNE decreases with sharper gradients, which in this case means smaller 𝜎 in Eq. (79). This results in difficulties in solving
shockx solutions to the Euler equations [40]. Even though crude solutions can be computed using PINN trained with Adam and
L-BFGS [33,41,42], GNE always fails due to exploding gradients as discussed in Section 5.2.2.

6. Discussion

In this work we proposed a novel extremization method for fast and accurate training of PINNs for solving (I)BVPs by combining
SGD or L-BFGS method for training DNNs, with GNE. By combining the ideas from training DNNs and ELMs, our proposed method
could retain the expressive power of DNNs while benefiting from the fine tuning ability of ELMs. Using TFC to exactly satisfy
ICs and BCs, in Section 5 we showed the superiority of our proposed method compared to traditional training methods for DNNs
and ELMs in solving BVPs of various ODEs, PDEs and coupled PDEs. In all cases the extremization method was found to produce
solutions which are orders of magnitude better than DNNs trained with SGD or L-BFGS method alone. It also performed better
than ELMs and depending on the complexity of the solution resulted in marginal to significant improvement in solution accuracy.
The extremization method was shown to work in cases where ELM failed (Section 5.1.1, Section 5.2.2, Section 5.3.3) and further
improve the accuracy of solutions computed using domain decomposition methods (Section 5.3.2). The utility of this method is yet
to be investigated in the case of data-driven solutions and data-driven parameter discovery of PDEs. The simplicity of this algorithm
and the ease of implementation suggest that this method can be readily used in other contexts where overfitting is not a concern
or adequate measures can be taken to prevent overfitting.

The extremization method is in general significantly faster than SGD or L-BFGS training methods since a lesser number of SGD or
L-BFGS training iterations need to be performed before applying GNE, compared to using SGD or L-BFGS alone, to achieve similar
or better solution accuracy. Our proposed method is slower than ELM since it requires additional SGD or L-BFGS training iterations
before performing GNE, whereas ELM only uses GNE.

We also proposed a modification to the TFC framework called Reduced TFC (Section 3.3). Compared to TFC, Reduced TFC
was shown in Sections 5.2.3, 5.2.4 & 5.3.1 to provide up to 40x speed-up in computational time. In Section 3.4 we discussed the
limitation of TFC in imposing boundary conditions on complex boundary geometries and how Reduced TFC can be used to solve
this in principle. More work is needed in this direction to derive analytic expression for (𝒙) in Eq. (19).

In Section 5.3.1 a significant amount of computational time was spend on GNE and we suggested a multi-GPU implementation
of GNE to speed up this computation. Such an implementation is expected to provide an almost linear speed-up of GNE computation
with the number of GPUs used. Another problem-specific method of speeding up the computation is to derive an analytic expression
for the Jacobian. This can in principle be done by first deriving a TFC or Reduced TFC-constrained expression 𝑓 𝑐 of Eq. (24), plugging
it into the differential equation to get the expression for the residual  and then using Eq. (22) to compute the analytic expression
for the Jacobian. The expression for the Jacobian will often be complicated and the use of a symbolic computation package like
Mathematica is recommended. The analytic expression for the Jacobian will enable us to compute the Jacobian in a single forward
pass with little memory overhead to evaluate the analytic expression.
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Table A.6
LAPACK [21] algorithm names and the specific operation it performs.
Algorithm name Operation

gels solve LLS using QR or LQ factorization
gelsd solve LLS using divide-and-conquer SVD
gelsy solve LLS using complete orthogonal factorization
gelss solve LLS using SVD

In Section 5.2.2 through the example of Burgers’ equation we showed the failure of GNE when large gradients are present in
he solution. GNE is not a unique choice in performing extremization, and other methods like the Levenberg–Marquardt [43] and
obust Gauss–Newton [44] need to be investigated. For large enough gradients, since all gradient-based methods fail, there is a
eed to explore non-gradient-based optimization methods [45–47] for PINN training. Even with non-gradient-based optimization,
he residuals of the differential equations still contain derivatives which can lead to convergence failure of the optimization algorithm
hen large enough gradients or discontinuities are present. Some training algorithms have been proposed [16,48] that partly

olve this problem by using residuals of the differential equations while training the neural network. Such methods require careful
reatment of the problem on a case-by-case basis. Another fundamental limitation of commonly used neural network architectures
s that they can only represent continuous functions and approximating discontinuous solutions leads to exploding gradients during
raining. This issue is addressed in [49] where a neural network architecture with trainable discontinuous activation functions is
roposed, which can represent arbitrary discontinuous functions in solutions. Even though such a network can represent an arbitrary
iscontinuous function, new training methods need to be developed to train it in the context of PINNs.
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Appendix A. Least squares

In this section we look at the effect of specific LLS algorithm on the solution accuracy achieved from GNE. We use the non-linear
equation (Eq. (31)) in Section 5.2.1 as a case study. We use the same neural network architecture and sample size as in Section 5.2.1.
ELM was trained with GNE. L-BFGS + GNE was trained with 3 steps of L-BFGS and then used GNE. The training process was repeated
100 times for each network architecture with each LLS algorithm to generate the statistics shown in Fig. A.27.

In Fig. A.27, it can be seen that gelsd and gelss which use SVD decomposition (Table A.6) consistently perform better than the
other methods. An anomalous behavior can be seen when using gels to perform GNE after L-BFGS. In this case, even though the
RMSR value was better than for the other algorithms, the mean and maximum absolute errors were in line with the other algorithms.
The explanation for these trends is beyond the scope of this work and requires further investigation. Throughout this work we use
gelsd to perform LLS.
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𝑔

Fig. A.27. Statistics of the solution to the non-linear PDE given by Eq. (31) computed by (Top) ELM and (bottom) L-BFGS + GNE using different LLS algorithms
provided in the LAPACK library [21]. See Table A.6 for details on the algorithms.

Appendix B. Boundary condition at infinity

Consider a neural network with multiple inputs 𝒙 and a bounded activation function in at least one of the layers, say, layer 𝑘.
Then the outputs from the layer 𝑘, represented by ℎ(𝑘)𝑗 (𝒙) will be bounded:

|

|

|

ℎ(𝑘)𝑗 (𝒙)||
|

< 𝐶1 ∀𝒙, 0 < 𝐶1 < ∞. (B.1)

Now let 𝛷 denote the output(s) of the neural network after the forward pass through the rest of the layers. Then the output(s) will
also be bounded if there are no singularities in the activation functions in the rest of the layers:

|

|

|

|

𝛷
(

ℎ(𝑘)𝑗 (𝒙)
)

|

|

|

|

< 𝐶2 ∀𝒙, 0 < 𝐶2 < ∞. (B.2)

In order to apply the BC at infinity consider a function 𝑔(𝑥) which vanishes at infinity, lim
|𝑥|→∞ 𝑔(𝑥) = 0. Then the constrained

expression for vanishing BC at infinity can be written as:

𝑓 𝑐 = 𝑔̃(𝛷)𝑔(𝑥) or (B.3)

𝑓 𝑐 = 𝑔 (𝑔̃(𝛷) + 𝑥) , (B.4)

where 𝑔̃(𝑥) represents any function without singularities in the domain |𝛷| < 𝐶2. By considering the asymptotic behavior of 𝑔 and
̃ similar expressions can be derived for the case of unbounded activation functions. A BC with finite value at infinity can also be
imposed by adding constants to the constrained expression Eq. (B.3) or Eq. (B.4).

In Section 5.3.3 the constrained expression we used (Eq. (79)) can be derived using both Eqs. (B.3) and (B.4). In terms of Eq. (B.3),
𝑔(𝑥) is the initial condition 𝜌(𝑥, 0) and 𝑔̃(𝑥) = exp(𝑡 𝑥). The specific form of 𝑔̃ was chosen so that the density 𝜌 >= 0 and 𝑔̃ → 1 when
𝑡 → 0 to satisfy the initial condition.

Appendix C. Constrained expressions

The explicit form of the TFC and Reduced TFC constrained expressions we use in this work are as follows:

• Section 5.1.1

𝑓 𝑐
𝑦 (𝑡) = 𝑦(𝑡) −𝑦(0) + 1 (C.1)

• Section 5.1.2

𝑓 𝑐
𝑢 (𝑡) = 𝑢(𝑡) −𝑢(0) (C.2)

𝑓 𝑐 (𝑡) =  (𝑡) − (0) + 1 (C.3)
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• Section 5.2.1

𝑓 𝑐
𝑢 1(𝑥, 𝑦) = 𝑢(𝑥, 𝑦) − (1 − 𝑥)𝑢(0, 𝑦) + 𝑥𝑢(1, 𝑦) (C.4)

𝑓 𝑐
𝑢 (𝑥, 𝑦) = 𝑓 𝑐

𝑢 1(𝑥, 𝑦) − 𝑓 𝑐
𝑢 1(𝑥, 0) + 𝑦

(

2 sin(𝜋𝑥) − 𝜕𝑦𝑓
𝑐
𝑢 1(𝑥, 𝑦)

|

|

|𝑦=1

)

(C.5)

• Section 5.2.2

𝑓 𝑐
𝑢 1(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) −𝑢(𝑥, 0) +

𝑐
𝛼
− 𝑐

𝛼
tanh

( 𝑐
2𝜈

𝑥
)

(C.6)

𝑓 𝑐
𝑢 (𝑥, 𝑦) =𝑓

𝑐
𝑢 1(𝑥, 𝑡) +3 + 𝑥

6

( 𝑐
𝛼
− 𝑐

𝛼
tanh

( 𝑐
2𝜈

(3 − 𝑐𝑡)
)

− 𝑓 𝑐
𝑢 1(3, 𝑡)

)

+ 3 − 𝑥
6

( 𝑐
𝛼
− 𝑐

𝛼
tanh

( 𝑐
2𝜈

(−3 − 𝑐𝑡)
)

− 𝑓 𝑐
𝑢 1(−3, 𝑡)

)

(C.7)

• Section 5.2.3 TFC constraints:

𝑓 𝑐
𝑢 1(𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) −

1
𝐿

(

(𝐿 − 𝑥)𝑢(0, 𝑦, 𝑡) + 𝑥𝑢(𝐿, 𝑦, 𝑡)
)

(C.8)

𝑓 𝑐
𝑢 2(𝑥, 𝑦, 𝑡) = 𝑓 𝑐

𝑢 1(𝑥, 𝑦, 𝑡) −
1
𝐻

(

(𝐻 − 𝑦)𝑓 𝑐
𝑢 1(𝑥, 0, 𝑡) + 𝑦𝑓 𝑐

𝑢 1(𝑥,𝐻, 𝑡)
)

(C.9)

𝑓 𝑐
𝑢 (𝑥, 𝑦, 𝑡) = 𝑓 𝑐

𝑢 2(𝑥, 𝑦, 𝑡) − 𝑓 𝑐
𝑢 2(𝑥, 𝑦, 0) + sin

(𝜋𝑥
𝐿

)

sin
(𝜋𝑦
𝐻

)

(C.10)

Reduced TFC constraints:

𝑓 𝑐
𝑢 (𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) (𝑥 − 𝐿) 𝑥 (𝑦 −𝐻) 𝑦 𝑡 + sin

(𝜋𝑥
𝐿

)

sin
(𝜋𝑦
𝐻

)

(C.11)

• Section 5.2.4 TFC constraints:

𝑓 𝑐
𝑢 1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) −𝑢(0, 𝑦, 𝑧, 𝑡)𝑡2 + sin(2𝜋𝑧) (C.12)

𝑓 𝑐
𝑢 2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓 𝑐

𝑢 1(𝑥, 𝑦, 𝑧, 𝑡) − 𝑓 𝑐
𝑢 1(𝑥, 0, 𝑧, 𝑡)𝑡

2 + sin(2𝜋𝑧) (C.13)

𝑓 𝑐
𝑢 3(𝑥, 𝑦, 𝑧, 𝑡) = 𝑓 𝑐

𝑢 2(𝑥, 𝑦, 𝑧, 𝑡) − 𝑓 𝑐
𝑢 2(𝑥, 𝑦, 1, 𝑡) + sin

(

𝑥2𝑦
)

+ 𝑥𝑦3∕2 (C.14)
𝑓 𝑐
𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑓 𝑐

𝑢 3(𝑥, 𝑦, 𝑧, 𝑡) +(1 − 𝑡)
(

sin
(

𝑥2𝑦
)

+ 𝑥𝑦3∕2𝑧 − 𝑓 𝑐
𝑢 3(𝑥, 𝑦, 𝑧, 0)

)

+ 𝑡
(

sin
(

𝑥2𝑦
)

+ 𝑥𝑦3∕2𝑧 + sin(2𝜋𝑧) − 𝑓 𝑐
𝑢 3(𝑥, 𝑦, 𝑧, 0)

)

(C.15)

Reduced TFC constraints:

𝑓 𝑐
𝑢 (𝑥, 𝑦, 𝑧, 𝑡) = 𝑢(𝑥, 𝑦, 𝑧, 𝑡) 𝑥 𝑦 (𝑧 − 1) 𝑡 (𝑡 − 1) + 𝑥𝑦3∕2𝑧 + sin

(

𝑥2𝑦
)

+ 𝑡2 sin (2𝜋𝑧) (C.16)

• Section 5.3.1 TFC constraints:

𝑓 𝑐
𝑢 1(𝑥, 𝑦) =𝑢(𝑥, 𝑦) +

𝑥2 − 𝑥
𝑥2 − 𝑥1

(

1 − 𝑒𝜆𝑥1 cos(2𝜋𝑦) −𝑢(𝑥1, 𝑦)
)

+
𝑥 − 𝑥1
𝑥2 − 𝑥1

(

1 − 𝑒𝜆𝑥2 cos(2𝜋𝑦) −𝑢(𝑥2, 𝑦)
)

(C.17)

𝑓 𝑐
𝑢 (𝑥, 𝑦) =𝑓

𝑐
𝑢 1(𝑥, 𝑦) +

𝑦2 − 𝑦
𝑦2 − 𝑦1

(

1 − 𝑒𝜆𝑥 cos(2𝜋𝑦1) − 𝑓 𝑐
𝑢 1(𝑥, 𝑦1)

)

+
𝑦 − 𝑦1
𝑦2 − 𝑦1

(

1 − 𝑒𝜆𝑥 cos(2𝜋𝑦2) − 𝑓 𝑐
𝑢 1(𝑥, 𝑦2)

)

(C.18)

𝑓 𝑐
𝑣 1(𝑥, 𝑦) =𝑣(𝑥, 𝑦) +

𝑥2 − 𝑥
𝑥2 − 𝑥1

( 𝜆
2𝜋

𝑒𝜆𝑥1 sin(2𝜋𝑦) −𝑣(𝑥1, 𝑦)
)

+
𝑥 − 𝑥1
𝑥2 − 𝑥1

( 𝜆
2𝜋

𝑒𝜆𝑥2 sin(2𝜋𝑦) −𝑣(𝑥2, 𝑦)
)

(C.19)

𝑓 𝑐
𝑣 (𝑥, 𝑦) =𝑓

𝑐
𝑣 1(𝑥, 𝑦) +

𝑦2 − 𝑦
𝑦2 − 𝑦1

( 𝜆
2𝜋

𝑒𝜆𝑥 sin(2𝜋𝑦1) − 𝑓 𝑐
𝑣 1(𝑥, 𝑦1)

)

+
𝑦 − 𝑦1
𝑦2 − 𝑦1

( 𝜆
2𝜋

𝑒𝜆𝑥 sin(2𝜋𝑦2) − 𝑓 𝑐
𝑣 1(𝑥, 𝑦2)

)

(C.20)

𝑓 𝑐
𝑝 (𝑥, 𝑦) =𝑝(𝑥, 𝑦) −𝑝(𝑥1, 𝑦1) + 𝑝0 −

1
2
𝑒2𝜆𝑥1 (C.21)

Reduced TFC constraints:

𝑓 𝑐
𝑢 1(𝑥, 𝑦) =

𝑥2 − 𝑥
𝑥2 − 𝑥1

(

1 − 𝑒𝜆𝑥1 cos(2𝜋𝑦)
)

+
𝑥 − 𝑥1
𝑥2 − 𝑥1

(

1 − 𝑒𝜆𝑥2 cos(2𝜋𝑦)
)

(C.22)

𝑓 𝑐
𝑢 (𝑥, 𝑦) =𝑢(𝑥, 𝑦) (𝑥 − 𝑥1) (𝑥 − 𝑥2) (𝑦 − 𝑦1) (𝑦 − 𝑦2) + 𝑓 𝑐

𝑢 1(𝑥, 𝑦)

+
𝑦2 − 𝑦 (

1 − 𝑒𝜆𝑥 cos(2𝜋𝑦1) − 𝑓 𝑐 (𝑥, 𝑦1)
)
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R

+
𝑦 − 𝑦1
𝑦2 − 𝑦1

(

1 − 𝑒𝜆𝑥 cos(2𝜋𝑦2) − 𝑓 𝑐
𝑢 1(𝑥, 𝑦2)

)

(C.23)

𝑓 𝑐
𝑣 1(𝑥, 𝑦) = +

𝑥2 − 𝑥
𝑥2 − 𝑥1

( 𝜆
2𝜋

𝑒𝜆𝑥1 sin(2𝜋𝑦)
)

+
𝑥 − 𝑥1
𝑥2 − 𝑥1

( 𝜆
2𝜋

𝑒𝜆𝑥2 sin(2𝜋𝑦)
)

(C.24)

𝑓 𝑐
𝑣 (𝑥, 𝑦) =𝑣(𝑥, 𝑦) (𝑥 − 𝑥1) (𝑥 − 𝑥2) (𝑦 − 𝑦1) (𝑦 − 𝑦2) + 𝑓 𝑐

𝑣 1(𝑥, 𝑦)

+
𝑦2 − 𝑦
𝑦2 − 𝑦1

( 𝜆
2𝜋

𝑒𝜆𝑥 sin(2𝜋𝑦1) − 𝑓 𝑐
𝑣 1(𝑥, 𝑦1)

)

+
𝑦 − 𝑦1
𝑦2 − 𝑦1

( 𝜆
2𝜋

𝑒𝜆𝑥 sin(2𝜋𝑦2) − 𝑓 𝑐
𝑣 1(𝑥, 𝑦2)

)

(C.25)

𝑓 𝑐
𝑝 (𝑥, 𝑦) =𝑝(𝑥, 𝑦) (𝑥 − 𝑥1) (𝑦 − 𝑦1) + 𝑝0 −

1
2
𝑒2𝜆𝑥1 (C.26)

• Section 5.3.2 Reduced TFC constraints:

𝑓 𝑐
𝑢 (𝑥, 𝑦, 𝑡) = 𝑢(𝑥, 𝑦, 𝑡) 𝑡 + sin 𝑥 cos 𝑦 (C.27)

𝑓 𝑐
𝑣 (𝑥, 𝑦, 𝑡) = 𝑣(𝑥, 𝑦, 𝑡) 𝑡 − cos 𝑥 sin 𝑦 (C.28)

𝑓 𝑐
𝑝 (𝑥, 𝑦, 𝑡) = 𝑝(𝑥, 𝑦, 𝑡) 𝑡 +

𝜌
4
(cos 2𝑥 + sin 2𝑦) (C.29)

• Section 5.3.3 Reduced TFC constraints:

𝑓 𝑐
𝑝 (𝑥, 𝑡) = 𝑝(𝑥, 𝑡) 𝑡 + 1 (C.30)

𝑓 𝑐
𝑢 (𝑥, 𝑡) = 𝑢(𝑥, 𝑡) 𝑡 + 1 (C.31)

𝑓 𝑐
𝜌 (𝑥, 𝑡) = exp

(

𝜌(𝑥, 𝑡) 𝑡 −
(𝑥 − 𝜇)2

2𝜎2

)

(C.32)

Note that the form of 𝑓 𝑐
𝜌 (𝑥, 𝑡) is not based on TFC. It imposes boundary condition at infinity as shown in Appendix B.
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