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Abstract: With remarkable advancements in the development of connected and autonomous vehicles
(CAVs), the integration of teleoperation has become crucial for improving safety and operational
efficiency. However, teleoperation faces substantial challenges, with network latency being a critical
factor influencing its performance. This survey paper explores the impact of network latency along
with state-of-the-art mitigation/compensation approaches. It examines cascading effects on teleoper-
ation communication links (i.e., uplink and downlink) and how delays in data transmission affect the
real-time perception and decision-making of operators. By elucidating the challenges and available
mitigation strategies, the paper offers valuable insights for researchers, engineers, and practitioners
working towards the seamless integration of teleoperation in the evolving landscape of CAVs.

Keywords: network latency; teleoperation; connected and autonomous vehicle (CAV); latency
mitigation strategies—perception and control

1. Introduction

CAVs are continuously developing to provide safer and more convenient transporta-
tion. These vehicles can prevent many road accidents due to human errors [1]. The Society
of Automotive Engineers (SAE) J3016 (2016) defines six levels of driving autonomy for
on-road CAVs, from level 0 to level 5 [1]. Higher levels have more automated driving
features, making them entirely driverless vehicles [1,2]. In levels 0 to 2, a human driver
is required to be present at all times. These levels have supporting/assisting features
(e.g., warning systems). In level 3, human drivers are also present. Still, these vehicles are
said to be conditionally automated, i.e., the vehicle can handle a few situations (such as lane
changing, autonomous emergency braking (AEB)), and the driver should be monitoring
and ready to take over the vehicle at any instant. Level 4, which includes higher automation
features, has an automated driving system (ADS) that can handle most dynamic driving
tasks without human intervention [1,3]. Ultimately, the vehicles are expected to handle
all situations and become fully autonomous in SAE level 5. Today, level 2–4 vehicles are
being tested and deployed in the market [3,4]. For example, Tesla’s level 2 with autopilot
system [5] and level 3 with the fully self-driving mode [6] are commercially available [1,3].

Even with remarkable advancements in CAV development, it would be unrealistic to
anticipate zero system failures. It is widely acknowledged that CAVs may not handle all road
incidents and will depend on human decisions [7], as the real world can be very uncertain. In
this case, a human operator is required to take over the vehicle. It may not be through physical
access but by remotely assisting/operating the vehicles in challenging situations [1]. This
remote access is known as teleoperation. The word ‘tele’ comes from a Greek word meaning
“at a distance” [8]. It involves a remote human operator to monitor, assist, and control a vehicle
from a distant location for some manoeuvres or edge situations [7]. For CAVs, it is also known
as remote driving or tele-driving.
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One particular use case of remote driving to enhance vehicle safety is by bringing
the vehicle to the minimal risk condition (MRC), a stable and safe stopped state when a
problem occurs [1]. Additionally, integrating human teleoperators in the over-the-network
control loop can improve the vehicle’s operational efficiency by broadening the vehicle’s
operational design domain (ODD) allowing it to cope with challenging environmental
conditions such as weather, visibility, speed limits, types of roadway, and motorways [3].

The communication system is an essential aspect of teleoperation. Maintaining the
safety and security of the teleoperation communication systems is important, as these
systems should be uninterrupted and transmit data in real time [9]. The British Standards
Institution (BSI) Flex 1886 recommends that ADS have appropriate autonomous capabilities
to perform a minimal risk manoeuvre (MRM) safely (as a fallback solution to achieve an
MRC) when connectivity is compromised or lost. The communication system can be
compromised by system malfunction/failure, cyber-attack, or simply network issues (e.g.,
latency or bandwidth constraints). The communication capabilities of fourth-generation
(4G), fifth-generation (5G), and future generations of wireless networks can facilitate the
remote driving of CAVs [3]. A few companies have already demonstrated that 5G networks
are reliable for the teleoperation of remote vehicles, and they expect promising results in
future experiments [10]. Various networking technologies, including Ethernet, wireless
fidelity (WiFi), General Packet Radio Service (GPRS), third generation (3G), long-term
evolution (LTE), 4G, and 5G [10], have been considered in the literature through real-world
implementations, simulations, and emulations. However, ensuring the availability of 5G
and newer technologies on every road at all times might not be realistically achievable [10].
Similarly, the availability of remote operators 24/7 might be an issue. Moreover, the
CAVs are expected to generate approximately 10 gigabytes (GB) of data every minute [11],
suggesting that even advanced networks such as 5G will require optimisation [10].

Network latency or delay is one of the major challenges that can cause disruptions in
communication systems [1,3,7–10,12]. Latency can affect the quality of sensory data from
the vehicle to the remote station and control command data from the station to the vehicle,
in turn degrading the operator’s and teleoperation performance. It can also cause over-
and under-steering of the remote vehicle. Moreover, longer and variable (time-varying)
latency is an even more significant problem, making the control problem very challenging.
The remote operators can tolerate latency up to a threshold beyond which it becomes
unmanageable. For example, during vehicle teleoperation, Zhang [3] states that a constant
latency of less than 170 milliseconds (ms) has a minor impact and is easily manageable
whilst the operator can adapt to latency below 300 ms. However, latencies (with less
variance) between 300 ms to 500 ms become challenging and significant for the operator to
handle the vehicle (at slow speeds). Latencies above 700 ms make it nearly impossible for
the teleoperator to interact with the vehicle in a timely manner.

1.1. Comparison with Existing Surveys

A summary comparison with relevant survey papers is provided in Table 1. Several
related survey papers have contributed to the realm of teleoperation, focusing on aspects
such as teleoperation research scope, architectures, taxonomies, advanced communication
links, and challenges of mobile robots [8,12,13] and CAVs [1,3,7,10,14,15].

Opiyo et al. [13] emphasise architecture, communication links, and situational aware-
ness in teleoperation. While some studies present teleoperation methods and enhancement
techniques, Farajiparvar et al. [12] review approaches for time delay mitigation, focusing
on control theory, user interface designs, and time-series prediction models. Similarly,
Moniruzzaman et al. [8] comprehensively review teleoperation challenges and examine
existing teleoperation methods and enhancement techniques (with limited coverage of
latency compensation techniques). However, these survey papers revolve around mobile
robots, which may not be valid for CAVs.

Other recent survey studies focus on CAV teleoperation. For instance, Bogdoll et al. [14]
provide a taxonomy for the teleoperation systems, outlining recent terminology in the field.
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Likewise, Mutzenich et al. [1] stress integrating remote operator roles into industry-standard
taxonomies and use cases for regulatory frameworks. They also highlight the importance
of designing control interfaces to maximise operator situational awareness. Additionally,
Zhang [3] presents a vision of intelligent teleoperation systems powered by artificial intelli-
gence and advanced networks (e.g., 5G), discussing their potential benefits and challenges.
Tener and Lanir [7] analyse significant challenges in CAV teleoperation and provide design
guidelines for future teleoperation interfaces. Amador et al. [10] compile works on the remote
operation of road vehicles, categorising them based on the level of human intervention and
identifying challenges in deployment across technological, regulatory, and commercial do-
mains. Zhao et al. [15] survey remote driving challenges and solutions of latency, driving
feedback, support control, and initiatives. They briefly provide the impacts of latency on
remote drivers and review a few mitigation strategies. Although the existing surveys acknowl-
edge the significance and challenges in the context of CAV teleoperation, extensive research
focusing on network latency as a challenge and mitigation strategies specific to this domain
remains scarce. Many of these surveys have insufficiently covered the network latency aspects
of CAV teleoperation.

Table 1. Comparison with other survey papers.

Other Surveys Our Approach

Architecture Teleoperation system [8,13] Sources of latency in teleoperation system
model (Sections 4.1 and 4.4)

Challenges Main teleoperation challenges [7,8]
Brief discussion of challenges of

teleoperation, with a focus on CAVs and
latency as a key challenge (Section 3)

Communication
Network

A few wireless
technologies [13]

Little about network
requirements [10]

Impact of latency on
operators [1,15]

Most wireless technologies used in
teleoperation including cellular and

non-cellular (Section 4.2)

Domain Robotics [8,12,13] CAVs [1,3,7,10,14,15]
Latency impact on various teleoperation

domains, and then, focusing on CAVs
(Sections 4.7 and 4.8)

Mitigation
Strategies

Control and time-series prediction
models [12]

A few latency mitigation strategies
[8,15]

Detailed analysis of mitigation strategies
for control and perception, with a brief

discussion of network optimisation
(Section 5, Sections 5.1–5.3 and 5.5)

Initiatives and
Standards

Real use cases (specific to situation awareness) [1]; standardisation for road
vehicles [10]; cover standards and technical reports [14]; a few industry

applications [15]

Brief discussion of initiatives and
standards (Section 5.4)

Auxiliary Situational
awareness [1,13]

Interface
enhancement [7]

Driving
feedback and

support
control [15]

Other enhancement
techniques for different

challenges [8]

Modelling delay for teleoperation, QoS
parameters interdependency with latency

(Sections 4.5 and 4.6)

1.2. Contributions

To the best of our knowledge, the current literature lacks comprehensive studies on
the impact of network latency and mitigation methods during teleoperation, particularly in
the CAV domain. this paper proposes a comprehensive and systematic review that explores
the trends, impact, and state-of-the-art latency mitigation strategies that apply to CAV
teleoperation, further offering valuable insights for researchers and practitioners in this
field. The contributions of this paper are as follows:

• It thoroughly examines the various network quality-of-service (QoS) parameters and
their relation with latency, outlining their significance in the context of teleoperation,
further indicating the sources of latency in system aspects of CAV teleoperation.

• It reviews various approaches to model network delays for teleoperation experiments.
• It identifies and delves into various wireless technologies relevant to teleoperation,

further analysing their suitability and implications for CAVs.
• It provides insights into various teleoperation practices across different domains,

highlighting the unique requirements of remote driving.
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• It critically analyses state-of-the-art latency mitigation methods for control and per-
ception latency, discussing their advantages and disadvantages for compensating
time-varying delays during CAV teleoperation. Additionally, it presents up-to-date
initiatives and standardisation efforts that have contributed to remote driving.

1.3. Paper Structure

The organisation and structure of the paper is shown in Figure 1. Section 2 covers
the systematic review process. Section 3 discusses the challenges of teleoperation with a
focus on network latency. Section 4 provides the nature of network latency and its impact
on various teleoperation domains and finally on CAVs. Section 5 discusses the trends and
limitations of strategies for mitigating latency, case studies, and industry initiatives. Finally,
Section 6 discusses the key findings of this survey, potential emerging technologies, and
methods that can be used as mitigation strategies for CAVs.

Paper Structure

1. Introduction

Introduction to CAV, teleoperation 
and network latency

1.1. Comparison with Existing 
Surveys 

1.2. Contributions

1.3. Paper Structure

2. Systematic Review 
Process

2.1. Search Process

2.2 Data Analysis

3. Teleoperation 
Challenges

Overview of challenges of 
teleoperation

Unique challenges of CAV 
teleoperation

Network latency as a challenge

4. Impact of Network 
Latency on Teleoperation 

4.1. Teleoperation System Model

4.2. Wireless Technologies used 
in Teleoperation

4.3. Network Latency 
Characteristics 

4.4. End-to-End Delay 

4.5. Modelling Network Delay 

4.6. Interdependency between 
Network Parameters and Latency 

4.7. Network Delay Impact on 
various Teleoperation Domains 

4.8. CAV Teleoperation 
Requirements 

5. Latency Mitigation 
Strategies

5.1. Control Latency Approaches

5.2. Perception Latency 
Approaches 

5.3. Network Optimisation 
Approaches 

5.4. Initiatives, Standardisation 
Efforts and Guidelines 

5.5. Methods Correlation with 
CAVs

6. Conclusion and Future 
Directions

Key findings of the review

Importance of addressing network 
latency in teleoperation

Potential future research 
directions

Figure 1. Summary diagram showing the structure of this paper.

2. Systematic Review Process
2.1. Search Process

The literature for this survey was selected based on various inclusion and exclusion
criteria. The papers were searched and classified mainly on relevance to the topic, focus-
ing on keywords such as network latency, teleoperation, and CAVs. The search process
included alternate keywords (in different combinations) as shown in Figure 2. However,
in this process, it became apparent that a limited number of papers focused on address-
ing the requirements of the teleoperation of CAVs. To cover this literature gap, papers
on teleoperation from diverse domains have been considered and compared with the
CAV requirements.

The selection process for this review was performed according to the PRISMA guide-
lines [16] and is depicted in Figure 3. Most of the screened papers are from secondary
sources that are peer-reviewed and published articles, surveys, journals, and conference
papers, including a few from the non-academic literature from the policy landscape, such
as technical reports and white papers. The papers include studies with diverse research
methodologies such as frameworks, simulation-based, theoretical analysis, experimental
and empirical studies to provide a comprehensive overview. Another criterion was to
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include literature published within a specified time frame to maintain timeliness. This
survey covers literature within the last ten years.

Figure 2. Keywords for search criteria.

The literature was gathered and acquired from publicly available research databases
and search engines such as Google Scholar, BASE, CORE, Science Gov, refseek, ACM
library, ScienceDirect Elsevier, Springer, Semantic Scholar, MDPI library, ResearchGate,
IEEE Xplore digital library, Wiley library, and Frontiers.

Figure 3. Systematic review selection process flowchart.

2.2. Data Analysis

The total number of papers collected was approximately 230. Among these, about 25%
were excluded/screened out, considering their relevance to the inclusion and exclusion
criteria. The remaining papers were reviewed and included in this survey paper.

Using different combinations of the keywords mentioned above, the included papers
were further categorised into broad topics, including survey papers in relevant fields,
papers from networking and communications, papers that focus on network latency and
teleoperation, papers on latency mitigation methods, and industry initiatives and standard
reports, as shown in Figure 4. Each category was again divided based on its application
domains, namely, CAV and other (non-CAV) domains. As inferred from the chart, the
majority of screened papers focus on the CAV domain across various categories. However,
a divergence is observed in the latency teleoperation and mitigation methods categories. In
these areas, the proportion of papers from other domains surpasses those directly related
to CAVs, as fewer papers have addressed these topics in the literature. This disparity and
scarcity of studies reflect the importance of further research in this direction.
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Figure 4. Paper taxonomy classified for CAVs and other domains.

3. Teleoperation Challenges

CAV teleoperation or remote driving has a distinctive set of challenges. CAVs heavily
rely on multiple sensors and communication networks, unlike mobile robots or other
vehicles. Since CAVs are connected to networks, they face increased cyber threats. Further,
as CAVs are expected to operate in the real world, they can be dynamically operated, over
long distances and with a full range of speed environments [3,7]. They are also expected
to make safe and ethical decisions. Hence, they require a robust, reliable and seamless
communication system.

Communication systems can be compromised by network latency during CAV teleop-
eration. It is widely acknowledged in the literature that network latency is one of the major
challenges of teleoperation, which can cause significant disruptions in communication
systems and performance [1,3,7–10,12]. Long and variable latency poses an even more
significant challenge, making it nearly impossible to operate effectively. Even today, it is an
unsolved problem.

Latency can affect the quality of feedback from sensory data (visual, audio, and haptic)
of the vehicle to the teleoperation station, making it difficult for the operator to acquire
the current state and environment of the vehicle. Simultaneously, it affects the control
command data from the station to the vehicle, in turn degrading the overall teleoperation
performance in the control loop. Certain studies have indicated that latency can influence
the decision making, behaviour, and mental workload of remote drivers, causing over-
and under-steering of the remote vehicle and leading them to irregularly adjust their
pressure on the acceleration and brake pedals [7,8,15], which thereby increases the driver’s
anger and frustration [17]. Latency simultaneously impacts the vehicle in terms of energy
consumption, motion sickness, and degrading the comfort of passengers [15].

It has been hypothesised in the literature that latency would have detrimental effects
on the performance of both teleoperation and operator perception [18]. The performance
will only decrease with increasing latency. Different types of latency (from various sources)
can distinctly impact performance and adaptation strategies based on individuals [18].
For example, the effect of latency will be larger on complex system tasks than on simple
ones [19]. Further, the level of automation can improve the system’s ability to tackle latency,
thereby increasing the trust in the system.

Another major challenge of teleoperation is situational awareness limitations [7,8].
Remote operators may need added data to improve their perception, including view-
point shifting and adjustment, map merging, depth, spatial awareness, and multi-sensory
feedback. All these data need a good system design and interface to avoid a cognitive
workload for remote operators, as it can trigger confusion and distractions that can lead
to accidents.
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There are also other teleoperation challenges, such as lack of physical sensing
(e.g., force, sound), requiring improvement in the user interface with sensor fusion, band-
width constraints, control issues such as lack of model estimation, uncertainties, and reliable
local autonomy, and other issues related to human factors and workload requirements [7,8].

4. Impact of Network Latency on Teleoperation
4.1. Teleoperation System Model

An overview of the CAV teleoperation system architecture is shown in Figure 5. The
system architecture for the teleoperation of CAVs includes (1) a teleoperation station with
a suitable human–machine interface (HMI) or control interface, (2) a remote CAV, and
(3) a wireless communication network [10]. The communication network is responsible for
seamless data transmission and operational efficiency between the vehicle and the station.
The operated CAV transmits perception data streams obtained from sensors (e.g., video
data from the cameras) to the teleoperation station via onboard communication networks
for “uplink” transmission to a remote operator. The remote operator receives the visual
and other perception data, and then, sends back the control data (e.g., steering and braking
commands) using a teleoperation controller/interface through the “downlink” of the same
communication network.

Figure 5. System architecture of CAV teleoperation control loop.

4.2. Wireless Technologies Used in Teleoperation

Wireless technologies play a pivotal role in teleoperation systems by enabling seamless
control and communication between the operator and the teleoperation station. It is
crucial to maintain the safety and security of the teleoperation communication systems,
as these systems should be uninterrupted and transmit data in real-time [9]. The wireless
technologies used in teleoperation with their performance and latency requirements are
listed in Table 2. These are technologies that have been used across various domains.
The technology performance is determined by various network parameters, including
frequency, bandwidth, coverage, data rate, throughput, and latency. The most influential
factors for a general teleoperation use case include latency, throughput (user data rate),
data rate (maximum capacity), and coverage. Hence, only these parameters are mentioned
in the table.

There has been a drastic evolution in network technologies over time, with each itera-
tion achieving improved performance and unlocking new applications, in turn, decreasing
the effects of latency. A standout example is the evolution of cellular networks, which
have revolutionised the way we communicate and access data. They have evolved from
first-generation 1G (from 1980) to fifth-generation 5G (from 2020 onwards) networks, where
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each generation is an improvement on the previous one [20], providing better coverage,
higher frequencies, faster data transfers, lower latency, higher reliability, and mobility,
among other improvements.

The main factors for network data traffic growth are increasing populations with smart
devices, applications, and sensors, leading to the Internet of Everything (IoE) [20]. The
statistics of the International Telecommunication Union (ITU) state that just global cellular
traffic will rise to 607 exabytes (EBs) per month by 2025 and 5016 EB by 2030 [20]. With the
continuous demand for network traffic and emerging applications (e.g., CAVs), the current
technologies will have difficulty sustaining the requirements.

Latency can cause disruptions to applications relying on communication technologies.
Different technologies for teleoperation exhibit various levels of latency based on their
QoS factors. For example, experimental results have shown that 3G networks have a
mean latency of 217 ms and 205 ms for vehicle control and video streaming, respectively.
Whereas the next generation showed a slight improvement, with 4G networks having a
mean latency of 183 ms for video streaming and 107.2 to 110.3 ms for vehicle controls [21].
The present and future generations of networks, including 5G and sixth generation, are
expected to have much lower latency and better network quality (e.g., high frequencies,
fast data transfers, high reliability, mobility) [20], satisfying the requirements and leading
to efficient teleoperations. For example, teleoperation using 5G networks can have latency
as low as 60 ms but as high as 260 ms in some cases [22].

As inferred from the table, the wireless technologies used in teleoperation can be
broadly classified as cellular and non-cellular. Cellular technologies, especially the recent
advances, provide reliable and high-speed connectivity over large geographical areas.
Many studies that have used 3G, 4G, and 5G networks for teleoperation have demonstrated
that latency and bandwidth requirements could be met for teleoperation applications,
particularly for CAVs and remote scenarios requiring long-distance operations. In such
scenarios, wired connections are infeasible. However, they have limitations in extremely
remote areas such as rural areas or due to heavy traffic and congestion in urban areas,
which can lead to potential latency or signal degradation. Some studies have revealed that
there is an evident difference between 4G and 5G networks for teleoperation [23].

The 4G networks are just able to support the necessary infrastructure for basic remote
driving capabilities [10]. The relatively high data rates and improved reliability over 3G
allow sufficient quality of video and control transmission, which is essential for this use
case. However, as seen in the table, latency of 100 ms can pose challenges for real-time
responsiveness, leading to potential difficulty in vehicle control. Moreover, the bandwidth
limitations can restrict the parallel processing and amount of sensor data. Despite these
constraints, 4G serves as a standard for demonstrating the feasibility of remote driving.

Going one step further, 5G networks significantly enhance remote driving capabilities
with their ultra-low latency (on the order of 10 ms), high data rates (up to 10 Gbps), and
significantly improved reliability [10,24]. They offer large volumes of data that can be
quickly and reliably transmitted. These features are satisfactory for various autonomous
applications, including multiple high-resolution sensor data, responsive control, logistics,
and emergency services [3]. They can even ensure reliable management of fleets of remotely
operated vehicles.

The non-cellular classification includes diverse technologies that are more suitable
for applications other than CAV teleoperation. Technologies such as WiFi, Bluetooth, and
Zigbee are commonly used for short-range communications with overall good network
performance. These are well suited for applications in controlled and confined environ-
ments, as in robotics. Satellite communication performs excellently in areas where other
traditional terrestrial networks are impractical, with high latency given its large coverage
area. However, it is expensive and is sensitive to environmental factors.
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Table 2. Wireless technologies used for teleoperation.

Category Technology Latency during
Teleoperation (ms)

User Data Rate
(Mbps)

Maximum
Capacity Coverage

Cellular

5G [10,20,25–27] 11–13 4–8 1–10 Gbps Up to
several km

4G (LTE) [10,13,
20,25,26,28,29] 100 3–8 100 Mbps–

1 Gbps 5–50 km

3G [10,13,20,28] 121–217 Up to 3.1 3.1–14.7 Mbps Up to 10 km

2.5G (GPRS)
[10,20] 500–1000 0.120 56–171.2 kbps ∼35 km

Non-
cellular

Satellite [8] 2000 ∼ 104 10 Mbps (UL),
1 Gbps (DL) 1000 s of km

LAN/WLAN/
WiFi [8,10,13,30] 50 500 11/54/600/

1000 Mbps ∼100 m

Bluetooth [13,25] 34–200 2 1.5–2 Mbps ∼200 m

Zigbee [8,25] 200 0.250 250 kbps 10–300 m

Both cellular and non-cellular technologies have been emulated/simulated for more
flexible, scalable, and secure experimentation. On one hand, these experiments attempt to
allow the replication of real-world networks in controlled environments without risking
physical systems. On the other hand, they offer the opportunity to define parameters and
effectively validate and test various teleoperation applications in different scenarios and
conditions. The parameters of simulated/emulated networks depend on how the user
defines them. For example, in a simulation experiment, driving control had a latency of
170 ms and flight control had 1.5 to 3 s [28]. Another example, an NS3–IP-based emulator,
had a latency of 16–19 ms [10]. The simulated ROS-based virtual network adapter had
64–74 ms, Rosbridge had 270 ms and WiFi had 445 ms [8,27]. However, these networks are
primarily implemented in simulations and may not always yield realistic results due to
real-world networks’ inherent uncertainty and dynamic nature.

Studies have also used other communication technologies in teleoperation, including
the Internet through a wired Ethernet cable, VLAN, radio link, inter-process communication
(IPC) wireless network, umbilical cable, dual-tone multi-frequency (DTMF) and multimodal
radio frequency (RF), VideoLAN Client (VLC), and acoustics [8,30].

4.3. Network Latency Characteristics

Network quality in a system (e.g., teleoperation) can be defined by its QoS and quality
of experience (QoE) [31,32], also known as objective and subjective factors, respectively. The
objective factors include the network performance parameters. Meanwhile, the subjective
factors include user performance parameters such as user interface, video quality, driving
precision, comfort level, manoeuvre security, and interruptions [32].

Network latency is a QoS component that produces a time delay when transferring
data across a communication network [33,34]. Usually, it is calculated as end-to-end delay
or round-trip time (RTT), which refers to the time taken for data transfer from source
to destination and back again to the source. Networks with longer delays resulting in a
noticeable lag have high latency. A sufficient amount significantly affects the application
system performance, and more elevated levels can cause system failures.

4.4. End-to-End Delay

The latency sources in this teleoperation feedback loop are shown in Figure 6. Latency
sources and components of CAV teleoperation in an end-to-end loop include sensor expo-
sure delay (e.g., camera capture delay) (∆Sd), encoding delay (∆Ed), data communication
delay in terms of transmission (vehicle to the station (∆Td,1) and station to vehicle (∆Td,2)),
processing or decoding delay (∆Dd), visual display delay (∆Vd), operator response time
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(∆Od), and vehicle actuation delay (∆Ad) [25,35,36]. It is challenging to mitigate all these
different sources of latency in a system [15].

The one-way latency is calculated as the sum of scheduling, transmission, and re-
transmission time [37]. The information might be re-transmitted if lost. The sum of
delays from camera capture to display is called capture-to-display latency or glass-to-glass
latency [25], which is also the one-way uplink latency. The capture-to-display latency
(∆C2D) is given by

UL = ∆C2D = ∆Sd + ∆Ed + ∆Td,1 + ∆Dd + ∆Vd (1)

Similarly, on the one-way downlink (DL) side, control-to-response latency is the sum
of delays from sending operator control commands to the vehicle actuation response.
This latency also includes control command processing, encoding, and decoding delays.
However, these delays are negligible when compared to delays in capture-to-display latency.
Hence, they are not considered in the equation. The modified control-to-response latency
(∆C2R) can be represented as

DL = ∆C2R = ∆Td,2 + ∆Ad (2)

Finally, the overall end-to-end latency (∆E2E) or RTT is the sum of delays of all the
components from uplink to downlink over the network. The end-to-end latency can be
represented in an equation as

∆E2E = UL + DL = (∆Sd + ∆Ed + ∆Td,1 + ∆Dd + ∆Vd) + (∆Td,2 + ∆Ad) (3)

Figure 6. Different sources of latency in CAV teleoperation control loop. The latency in the diagram
is shown by red lines, which show approximately the magnitude of each component (for illustration
purposes). The blue colour region is the uplink data from sensors to the operator perception inter-
face. Similarly, the green region is the downlink, the control data from the operator station to the
vehicle actuators.

For example, the latency values in different sources can be [25,38]:

• For camera capture, ∆Sd = 17–33 ms at a frame rate of 30 fps.
• For data encoding, ∆Ed = 17–50 ms.
• For data transmission, ∆Td,1 = 25–50 ms.
• For video decoding, ∆Dd = 17–32 ms.
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• For digital visual interface (DVI) and liquid-crystal display (LCD), ∆Vd involves a
refresh time of 10 ms, a display time of 16.7 ms at 60 fps, and a frame buffer of 17 ms.

• For joystick control command transmission, ∆Td,2 = 32 ms.
• For sensors and actuators, ∆Sd + ∆Ad is roughly 50 ms.
• Network jitter is approximately below 150 ms.
• For LTE, the average handover latency is 40 ms.

Human operators have demonstrated the ability to perceive delays as low as 10 to
20 ms [28]. A latency of around 300 ms has a noticeable impact on the operator behaviour.
In contrast, latencies of 1 s or more can drastically affect real-time operations. Such delays
often cause operators to adjust strategies, transitioning from open-loop to closed-loop
control methods, including start-and-stop or move-and-wait, sometimes even disregarding
the visual feedback [18,19]. The cognitive threshold for maintaining real-time performance
is typically within 0.4 s. Upon receiving feedback from the vehicle, operators must respond
within 0 to 3 s, with a minimum response time of 0.2 s [39,40].

4.5. Modelling Network Delay

For network latency, a major problem is with the variability (unpredictable fluctuations)
of the delay rather than its magnitude, which degrades the teleoperation performance [29],
suggesting that there needs to be a deterministic delay [41].

Researchers have modelled delays using simulations and emulations or have gathered
data from real communication networks. These delays are injected into simulated or
emulated networks. The delays used in these experiments can be classified as constant
(fixed time delay) or varying (incorporating network jitter) [42]. Uddin and Ryu [43]
categorise some predictive methods based on constant and variable time delays. Further, the
end-to-end delay can be symmetric or asymmetric [43]. Symmetric means the uplink and
downlink delays are approximately equal. Meanwhile, asymmetric delays refer to different
delay values in the uplink and downlink, which is usually the case for teleoperation, i.e.,
the uplink sensor data delays are greater than the downlink control command delays.

Many studies in the literature predominantly perform teleoperation in fixed or constant
time delay settings, testing their methodologies on different levels of constant delays. For
example, Sato et al. [36] use constant delay values of 150 ms, 200 ms, and 400 ms in WiFi
LAN communication. Chen et al. [44] set their delay as 0.5 ± 0.1 s. Zheng et al. [45] set
the control delay to 300 ms and the sensor delay to 600 ms. Moniruzzaman et al. [46,47]
utilise Simulink blocks to add delays of 300 ms into their simulator model. Other similar
examples include Refs. [21,22,48–61].

However, it is crucial to evaluate teleoperation performance on delay values close to
real-world networks exhibiting many fluctuations. Studies that model real-world network
delays tend to have varying delays that can fit a predefined time sequence (such as a
distribution or a function) or model them as a random process [42]. It has been shown that
the generalised extreme value (GEV) distribution can model delays for mobile communica-
tion data [35,42]. The GEV distribution has been used to model variable delay in various
studies [35,42,62–64]. The probability density function (PDF) of GEV(ξ, µ, σ) is defined as

fξ ̸=0,µ,σ =
1
σ

(
1 + ξ

x − µ

σ

)− 1
ξ −1

e−(1+ξ
x−µ

σ )
− 1

ξ
(4)

where x is a random variable for the delay value, ξ is the shape parameter, µ is the location
parameter, and σ is the scale parameter. Based on extreme value theory, if ξ > 0, the
distribution has a heavy tail with µ − σ

ξ as the lower bound.
The authors in Perez et al. [65] characterise the function of RTT delays as a defined delay

threshold (where it is not very significant), rapidly and linearly decaying, and then, ending
with a long tail. Examples of such functions include piecewise linear [66], algebraic, logistic,
and log-logistic [67]. Thus, Perez et al. model delays using the following algebraic function:
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ID =

{
1 − 1

2

{
(1 + x6)

1
6 − 3(1 + ( x

3 )
6)

1
6 + 2

}
, if x ≥ 0

1, Otherwise

}
(5)

where

x = log2

(
T

Tm

)
(6)

where T is the interaction lag and Tm is the model parameter.
In another example, Zhou et al. [68] use variable time delays calculated by combining

constant terms for the main delay with periodic trigonometric functions of different periods
for small delay variations together with normally distributed noise, as shown below:

D = A0 + A1sin
(

2π

T1
t + ϕ1

)
+ A2sin

(
2π

T2
t + ϕ2

)
+ A3ω(0, 1) (7)

where T1 and T2 are periods of trigonometric terms and ω(0, 1) is normally distributed noise.
Likewise, Zhou et al. [69] model delays as a sine wave distribution. Bacha et al. [70]

use a random time delay based on a Gaussian distribution in the range [0.1, 1] s. Hatori and
Uchimura [71] and Nagakura et al. [72] vary the delay between 3.5 and 4.0 s and 3.0 and
4.0 s. Other studies that implemented time-varying delays include [73–84].

Some studies have also considered collecting and using real-world network data
for teleoperation. Zheng et al. [42] measure the delay between Michigan and California.
Guo et al. [85] collect variable delay from real network data using the User Datagram
Protocol (UDP). Saparia et al. [86] collect data from 4G LTE networks. Kebria et al. [87]
use the Internet to collect delay data between Australia and Scotland. Sridhar et al. [88]
experiment on a physical network using Amazon Web Services for Uttar Pradesh and
Karnataka. Other studies that used real networks include [4,29,89–91].

4.6. Interdependency between Network Parameters and Latency

Certain network objective factors influence network latency and teleoperation
[18,22,29,31–34,41,60,65,89–92]. Latency is directly impacted by distance, vehicle den-
sity, handover between cells, speed, mobility, and packet loss. Latency increases as the
remote vehicle is farther away from the teleoperation station, which increases the overall
RTT [32,34,90]. Wireless networks have limited bandwidth, and increased network traffic
from vehicle density can result in congestion, causing delays in data transmission and
increasing latency [32,91]. Increasing handover between cells might lower the throughput
and increase the latency [90]. Teleoperation at higher speed demands even faster reaction
times, and higher mobility also decreases the operator situation awareness [22,60,65]. La-
tency measures the delay in a packet’s arrival at the destination, and more latency leads to
fewer packets arriving per unit of time, which might lead to higher packet loss [33].

Meanwhile, some parameters may have indirect relationships, such as bandwidth,
throughput, signal strength, data rate, and coverage. For instance, although less bandwidth
increases latency during peak usage, more bandwidth does not necessarily mean more data,
particularly if latency is high [33,34]. A low-latency and -bandwidth network indicates that
throughput will also be low. With a large bandwidth and low latency, throughput will be
higher, and network connection will be more efficient [33,34,90]. Latency becomes lower
with better signal strength. However, it is not a linear correlation. Signal strength may
influence the throughput but not the latency [89,90]. As long as the signal strength is not
too poor, the network latency is maintained within the acceptable limits for teleoperation.
Higher data rates typically lead to lower latency, as more data can be transmitted and
processed quickly and vice versa [32,91]. Coverage can be less in rural areas than in urban,
which can lead to more latency, indicating that latency depends on location as well [32].
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Some studies have shown that latency has a more significant effect on teleoperation than
actuator delay [18]. Moreover, latency has a significant impact on video streaming methods
such as field of view (FOV), orientation, camera viewpoint, depth perception, video quality,
and frame rate [22], which might affect the situational awareness of the operator.

Further, latency depends on the wireless technologies being used. Different network
types and mediums provide different QoS and have diverse requirements and effects on
latency [90].

4.7. Network Delay Impact on Various Teleoperation Domains

Teleoperation is generally used as a fallback solution to maintain the safety of a vehicle
in cases of failure scenarios such as malfunction, challenging weather, confusing situations,
collision, or other such situations [93]. Other use cases of teleoperation include places
where it is dangerous or difficult for humans to reach, such as telerobotics for space and
underwater exploration, satellite communications, use of unmanned aerial vehicles (UAVs)
and unmanned ground vehicles (UGVs) for reconnaissance missions, search and rescue,
or surveillance in military/defensive applications, and also for telesurgery in medical
domains [40]. The impact of network latency and requirements across various domains are
detailed in Table 3.

Table 3. Impact of network latency on teleoperation across domains.

Teleoperation
Domain Applications Impact of

Latency
Teleoperated
System

Wireless
Technology

Latency
Thresholds

Other
Requirements

Telesurgery
(Medical)
[61,94,95]

Robotic col-
orectal surgery,
neurosurgery,
spinal surgery,
telestenting,
laparoscopic
surgery

Degradation in
teleoperation
performance
leading to
increased
mortality risks

Single-/dual-
arm robot,
robotic surgical
system, UAV

LAN, commer-
cial Internet,
WiFi

16–172 ms; rec-
ommended be-
tween <200 ms
and <=250 ms,
acceptable <330–
370 ms

Data rate:
6 Mbps;
distance (re-
mote station
to vehicle):
103 miles,
2848 km,
4500–8500 km.

1ASUV [40,96]

Remote barge
control: Trans-
port and lo-
gistics in
river/seaports,
autonomous
ships/barges,
maritime

Can introduce
significant risks
of accidents

Automated
barge/ship

Satellite, WiFi,
4G, 5G network

E2E: 35 ms,
video feedback
<22 ms and
50 ms,
camera
stream <22 ms
and 50 ms

Data rate:
2 Mbps.

Underwater op-
erations: ocean
science/ engi-
neering, marine
science and
maintenance

Can compro-
mise critical
operations and
maintenance

Remotely op-
erated vehicles
with single-
/dual-arm
manipulators

Sonar or acous-
tic communi-
cation links,
visual light
communica-
tion (VLC),
underwater
radio frequency
transmission

1–2 s (optical
link),
1 min (acousti-
cal link)

N/A
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Table 3. Cont.

Teleoperation
Domain Applications Impact of

Latency
Teleoperated
System

Wireless
Technology

Latency
Thresholds

Other
Requirements

2 UAV [25]

Search and
rescue, disaster
situations, net-
work coverage,
construction,
delivery

Can degrade
real-time
situational
awareness and
response times,
compromis-
ing mission
effectiveness

Remote drone

Bluetooth
(IEEE 802.15.1),
Zigbee (IEEE
802.15.4), WiFi
(IEEE 802.11x),
5G cellular
networks

<50–100 ms,
no effect
<144 ms and
<240 ms,
significant ef-
fect at 1000 ms

Data rate:
50 Mbps,
control:
60–100 kbps,
visual: 4 Mbps;
bandwidth:
25 MHz;
frame rate
20–25 Hz,
30–60 fps;
height:
200 m–450 m;
distance 20 km.

Nuclear [40]

Nuclear de-
commissioning,
reactor mainte-
nance

Can increase
risk of acci-
dents/errors

Dual-arm ma-
nipulators with
force feedback
and articulated
boom

N/A <=200 ms Visual update:
5 fps.

Ordnance Dis-
posal [40]

Bomb and
mine clearance,
nuclear and
hazardous ma-
terial handling,
explosive ord-
nance disposal
robots

Can reduce
precision in
handling haz-
ardous materi-
als, increasing
the risk of acci-
dents/detonations.

Various mo-
bile systems
with single-
or dual-arm
manipulators

Fibre optic
connection,
wireless

<=200 ms,
<1 s (wireless) N/A

Space [19,39,97]

Space robotic
exploration, re-
sources mining
and extraction,
debris removal

Can increase
the risk of
accidents and
impede mission
efficiency

Robotic space-
craft and rovers,
include robot
manipulators

Satellite com-
munication,
deep space
network, radio
frequency

Earth to low
Earth orbit is 0.4
s at a minimum,
Earth to Moon:
up to 3 s,
Earth to Mars:
8.6–40 or 45 min

Bandwidth:
few 100 bps
to 3 Mbps or
greater;
distance: Earth
to Moon:
384,400 km,
Earth to
Mars about
140 million miles.

Games [98,99]

Network games,
first-person
shooter games,
racing games,
moving target
selection

Can degrade
player’s per-
formance and
QoE

Game con-
trollers, TV, PC,
virtual reality

Wireless net-
works, Internet,
cloud-based

Network game:
max. 120 ms,
first-person
shooter games:
acceptable
150–180 ms,
racing games
<100 ms, fast
targets <50 ms,
slow targets
<150 ms,
moving tar-
gets degrade
performance
40–400 ms

Frame updates:
30–60 fps;
online or vir-
tual.

1 ASUV—autonomous surface and underwater vehicle; 2 UAV—unmanned aerial vehicle.
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Several studies have explored teleoperation as a critical use case within their respective
domains. Although teleoperation is used in different critical applications, most studies
employ robots as their teleoperation system. Some use mobile robots, while others require
single- or dual-arm manipulator robots (such as telesurgery). Nevertheless, a consistent
finding across these studies is the detrimental impact of latency on teleoperation perfor-
mance and operational safety, ranging from compromised mission effectiveness to increased
mortality risks in critical applications such as telesurgery. It is universally acknowledged
that having lower latency is the best case for effective operation. The minimum accept-
able latency threshold is shown to be influenced by factors such as required data rates,
teleoperation distance, and, most importantly, the choice of wireless technologies.

Even within domains seemingly disparate from traditional teleoperation, such as
gaming, parallels can be drawn with teleoperation regarding identical setups and the
importance of responsive interactions from the operators. Thus, while the specifics and
unique demands may vary across domains, the overarching concern remains the mitigation
or compensation of latency to ensure optimal teleoperation performance and safety.

4.8. CAV Teleoperation Requirements

Considering various domains, most of the literature on teleoperation uses mobile
robots with or without manipulators. Comparatively, there is less research conducted on
CAV teleoperation [8,12]. Despite the similarities of challenges faced by teleoperated robots
and CAVs, the latter operate in significantly more complex environments, encountering
far greater challenges [7]. For example, CAVs have higher stakes and operate in adverse
weather conditions, long distances from remote stations, at higher speeds, and involve
ethical decision making. Hence, more research is recommended in this area.

The network requirements of CAVs are different from those of teleoperation in other
domains. For example, compared to robotic teleoperations, CAVs involve realistic, uncer-
tain, long-distance environments with usually higher vehicle speeds. The requirements of
CAV teleoperation are shown in Table 4. Most studies provided requirements for latency
thresholds and data rates, as the most critical QoS parameters for CAV teleoperation are
the uplink data rates and the downlink latency [100].

Table 4. CAV teleoperation requirements.

Reference Scenarios Latency Thresholds Data Rates

[101] At low speed with a multi-camera sys-
tem, low visual quality 600 ms Up to 2 Mpbs

[65]

Commercial NSA 5G measurements
in three different locations: cross-
border trial site (between Portugal
and Spain), test site, and laboratory

RTT minimum is 45 ms;
<50 ms is infrequent;
minimum of 80–100 ms

N/A

[90]
Dataset of 78 h and 5200 km of driv-
ing in different areas of Germany
over LTE networks

250 ms, 300 ms impossible to control
Steering commands 0.25 Mbps;
1–3 Mbps for one stream;
UL: 3 Mbps and DL: 0.25 Mbps

[102] Multi-operator switching to improve
LTE coverage 100 ms UL: 3 Mbps

[22] Lane changes, sharp turns, lead vehi-
cle brake, curve, roadblock, highway

Three studies—delays of up to 300
ms, other studies 400–3000 m;
avg. 120.3 ms in WLAN;
median of ∼55.14 ms;
96% delays 250 ms;
5G 60–260 ms

N/A
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Table 4. Cont.

References Scenarios Latency Thresholds Data Rates

[93] Real-time streaming on LTE DL median 100 ms streaming frames 0.5 Mbps, 1 Mbps, and 4 Mbps

[103] Remote driving using 3G DL: avg. 121 ms video streams N/A

[29]

Conduct remote driving prototype in a
controlled lab environment. The delay
is manually simulated to match LTE
measured delay

100 ms for video transmission UL: 16.02 Mbps, DL: 7.43 Mbps

[4]

14-mile drive in Scotland, UK, across
the city’s outskirts, mixing urban,
secondary roads, and a highway
over 4G networks

Avg. video streaming 648 ms
1280 × 720 pixels and 563 ms
640 × 480 pixels video

N/A

[41]
ROS-based video streaming during
remote driving, WiFi with TCP and
UDP protocols

UDP video streaming 720P with
50 ms N/A

[91] Single-cell 5G network that covers a
3-lane highway scenario UL 100 ms, DL 20 ms UL: 32 Mbps,

DL: 0.4 Mbps

[104] Driving locations for multiple paths 170 ms minor impact, 700 ms signifi-
cant impact. N/A

[105] Remote driving in a slalom course,
setup with several traffic cones

3G: video 205 ms and control
217 ms;
4G: video 183 ms and control
110 ms

N/A

[21] Parking, snake, pylon and long track At least 300 ms N/A

[32,106] Direct remote steering, indirect re-
mote driving instructions UL: 100 ms, DL: 20 ms UL: 32/36 Mbps, DL: 0.4 Mbps

[32,107] Virtual digital twin remote driving UL: 10–50 ms,
DL: 10–66 ms

UL: 8–50 Mbps,
DL: 5 Mbps

[32,108,109]

Remotely controlled manoeuvring,
path-based driving; unexpected
blockage on desired route/parking
lot of vehicle, overcoming obstacle,
trajectory-based driving, rural road
or highway

UL: 40–80 ms UL: 10–50 Mbps, DL: 0.5 Mbps

[32,110] Vehicle enters a roadblock or block-
ing scenario UL: 120 ms, DL: 80 ms N/A

[24,32] Direct remote steering, indirect re-
mote driving instructions 300 ms UL: 8–30 Mbps,

DL: 0.3 Mbps

[32,111]
Information/support message ex-
change V2X, absolute speed of up
to 250 km/h

UL: 5 ms, DL: 5 ms UL: 25 Mbps,
DL: 1 Mbps

[112] Vehicle-to-everything (V2X) use
cases Maximum of 5 ms UL: 25 Mbps,

DL: 1 Mbps

[100] Teleoperated driving with 5G UL and DL 40 ms UL: 3–32 Mbps,
DL: 0.5 Mbps

The effect of latency thresholds can be classified as less impact, acceptable, difficult,
and impossible thresholds. As mentioned earlier, using different wireless technologies for
teleoperation can induce different latency thresholds. Summarising Table 4, it is evident
that the downlink latency threshold is relatively lower than the uplink. By combining all
the overall latency thresholds, it can be concluded that less than 170 ms has less impact on
performance, and between 250 ms and 300 ms has an acceptable effect, with the average
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uplink latency in the range of 50 to 120 ms and downlink latency in the range of 20 to
80 ms (with some outliers). As the latency becomes higher, such as greater than 300 ms, the
operator performance seems to degrade, making it difficult. Further degradation is seen
above 700 ms and 1 s, making teleoperating almost impossible.

Similarly, regarding data rate, it can be inferred that CAVs have significantly higher
uplink data needs than downlink needs. This is because CAV sensor perception (such as
camera, lidar, and radar sensors) takes up more data than the control commands. The
average uplink data rate can range from 8 to 50 megabits per second (Mbps), as camera
data themselves take about 8 Mbps, while data rates for the downlink are in the range of
0.25 to 5 Mbps.

Correspondingly, there are network QoS and other environmental requirements for
CAV teleoperation not covered in Table 4, such as a bandwidth of about 30 to 100 MHz,
depending on urban or rural environments, a throughput greater than 3 Mbps [65], visual
quality with a minimum or average resolution of 640 × 480 along with approximately 150◦

view angle FOV, and a fluent image of 25 to 30 frames per second (FPS) is sufficient for
teleoperators [90]. Further, the service reliability is preferred to be 99% for uplink and
99.999% for downlink [32,91]. Suppose the teleoperation service is scaled up in the coming
years. In that case, it will be feasible for the current networks to handle a vehicle density of
about 10 vehicles per kilometre square (veh/km2) [91]. Most studies focus on driving at
low speeds, such as less than 50 km/h [32]. However, a few studies suggest the maximum
speed teleoperated vehicles can tolerate is 100 to 250 km/h, above which performance
will degrade significantly [41]. Therefore, to avoid such degradation, it is recommended
to perform remote driving at low-to-medium speeds rather than at high speeds. With
regards to distance, CAV teleoperations can be conducted over long distances, for example,
5200 km in [65] and 19,000 km in [90].

5. Latency Mitigation Strategies

Most delay compensation or mitigation approaches can be broadly classified into
control, perception, and network optimisation methods. These methods are reviewed
further in the following subsections. However, it is worth noting that, in this paper, it is
assumed that the network optimisation methods are already performed. Hence, they are
covered very briefly. This paper primarily focuses on the control and perception approaches.
A comprehensive list of latency mitigation strategies for control and perception is provided
in Table 5 and Table 6, respectively. A practical summary of these strategies highlighting
their advantages and disadvantages is later provided in Table 7.

Predictive methods have been shown to be well suited for delay compensation on
both the downlink and uplink of teleoperation [70,113]. In the realm of predictive methods,
passivity-based and predictive display-based methods have been most commonly used.
They have been shown to reduce inconsistency. However, the performance degrades with
increasing and variable time delays. A broad classification of latency mitigation methods is
demonstrated in Figure 7.

5.1. Control Latency Approaches

Control latency is the delay in data transmission of control commands from the opera-
tor to the vehicle (i.e., on the downlink). A list of latency mitigation strategies for control is
provided in Table 5. On the one hand, earlier researchers focused on mathematical models
for accurately predicting and compensating for undelayed controller signals [45]. These
methods are well known to be model-based approaches [69]. They are usually modelled
according to control theorems, out of which the most extensively researched compensation
methods are based on the perspective of passivity theory [44,51,114]. Passivity-based con-
trol methods predict the signals after the delay without knowledge of the magnitude of
the delay. They ensure the stability and transparency of the bilateral teleoperation systems.
A few examples include wave variable-based methods, scattering signals, time-domain
passivity analysis (TDPA)-based methods [48,77,79,80], and model-mediated teleoperation
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(MMT) [69,80,115]. The major drawback of these methods is that they require knowledge of
system dynamics. Moreover, their performance degrades due to model errors and compli-
cated conditions with variable time delay, large disturbances, or extensions to multilateral
systems [69].

Figure 7. Latency mitigation strategy classification.

On the other hand, model-free approaches based on data-driven models have been
developed. These methods have grown popular as they are more robust and do not re-
quire any knowledge of system dynamics [69]. They are adaptable and can deal with
disturbances and uncertainties while making predictions. A popular example is neural
networks (NNs) [69,116]. Time-series prediction methods effectively mitigate the effects
of control latency by predicting or imitating the operator behaviour [12]. They tend to
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be more adaptable to non-linear data. In the literature, most studies employ or com-
bine traditional NN methods such as auto-encoder (AE), variational auto-encoder (VAE),
recurrent neural network (RNN), and long short-term memory (LSTM) for time-series
data [12]. Among these, RNN [74,117] and LSTM [55,69,74,118,119] are more suitable for
time-series prediction. However, sometimes RNNs cannot learn long-term dependen-
cies, whereas LSTMs have the advantage of retaining both long- and short-term memory.
A limitation of LSTMs is that they are incompatible with dynamic output lengths and
may require retraining [12]. More recent methods, for instance, sequence-to-sequence
(Seq2Seq) models [120] and generative adversarial networks (GANs) [121] have shown
great performance for time-series prediction, and they can tackle these limitations. GANs
learn the distributions of time series well and also adapt to new data, but might not
capture dependencies. Meanwhile, Seq2Seq has a better mapping of input and output
data relationships.

Other significant control prediction methods include state estimation filters, motion
models, linear regression, proportional–derivative models, statistical models, and proba-
bilistic models [116], among others. Linear regression is a simple approach with good accu-
racy for smooth and linear motion. However, it is prone to errors and overshooting [122].
State estimation filters, such as Kalman filters (and their extensions), are commonly fol-
lowed by motion models and are robust against fluctuations [122]. However, they are sen-
sitive to noise and computationally expensive. Proportional–derivative methods achieve
stability without knowing system dynamics, but their robustness may come at the cost of
transparency [45]. Statistical models represent the control loop in the form of equations; for
example, auto-regressive models, moving average models, and their extensions. However,
these methods are unsuitable for non-linear and dynamic data, which can be expected in
the real world [12].

Other control approaches aim to minimise delay, including supervisor control, control
autonomy augmented reality [113], and adaptive-based control [70,113]. Approaches such
as supervisor control involve the operator sending high-level commands, minimising
communication requirements and delay, where the remote robot or vehicle needs planning
and control algorithms. However, it does not involve continuous teleoperation [114].
Onboard control autonomy capabilities can be activated to mitigate the effects of delay.
Such approaches can be classified as adjustable autonomy, collaborative control, mixed-
initiative control, and sliding autonomy [51]. They are all impacted by communication
delays and are computationally expensive [45].

Table 5. Mitigation strategies for control latency.

Reference Domain Teleoperation Entity Algorithm

[45] Vehicle
teleoperation

Control delay and sen-
sor delay

Model free predictive frame-
work

[69] Robotic tele-
operation

Delay and control pre-
diction

LSTM-based bilateral active
estimation model (BAEM)

[70]
Telesurgery,
control frame-
work

Control and force feed-
back

Kalman filter and RL-based
DDPG algorithm

[49] Robotic tele-
operation Control, steering PD controller

[42] Teleoperated
military UGVs

Control, steering, and
heading prediction

Steering-model-based feed-
forward predictor, model-free

[50] Robotic tele-
operation

Control and haptic
data

Input-to-state stability (ISS)
controller
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Table 5. Cont.

Reference Domain Teleoperation Entity Algorithm

[51] Robotic tele-
operation Control and haptic

Llewellyn’s criterion and a
passivity-based criterion with
and without the wave trans-
formation.

[123]
Robotic tele-
operation
(medical)

Control prediction

Gated recurrent units (GRUs)
integrated with a double deep
Q-learning network (DDQN)
algorithm

[87] Robotic tele-
operation Control

Adaptive interval type-
2 fuzzy neural network,
Lyapunov–Krasovskii
method

[124] Space robotic
teleoperation Control interface

Interactive planning and
supervised execution (IPSE)
teleoperation system

[115] Robotic tele-
operation Control uncertainty

Integrate RL with model-
mediated teleoperation
(MMT)

[74] Telepresence
robot

Predict control com-
mands

Integrate RNN and LSTM
with RL-DDPG for predicting
the behaviour of the teleoper-
ator

[44]
Teleoperation
of multiple
robots

Control

A wave-variable-based
time-delay-compensated
four-channel architecture for
multilateral teleoperation

[114] Bilateral tele-
operation Control

Adaptive NN based on
Markov jump, partial
feedback linearisation us-
ing nominal dynamics,
Lyapunov–Krasovskii func-
tional

[54] Robotic tele-
operation

Control—
handwritten letter
drawing

K-means, Gaussian mixture
model (GMM), hidden semi-
Markov models (HSMMs),
and linear quadratic tracking
(LQT) for motion recognition
and segmentation

[48] Bilateral robot
teleoperation

Control and force feed-
back

Force controller and time-
domain passivity approach
(TDPA)

[125] Bilateral tele-
operation Improve control

Integral-order and fractional-
order PD controller, along
with frequency-domain anal-
ysis for maximum upper
bound of delay, Lyapunov–
Krasovskii functional

[118]
Train to
ground com-
munication

State and network pre-
diction

LSTM and high-degree
polynomial linear regression
(HPLR)
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Table 5. Cont.

Reference Domain Teleoperation Entity Algorithm

[53] UGV teleoper-
ation

Predict human steer-
ing behaviour

Two-point visual steering
model based on PI con-
troller, adaptive control of
thought–rational (ACT-R)
cognitive model

[75]

Teleoperating
autonomous
vehicles, flight
simulator

Control prediction PID control model to pre-
dicted motion

[76]
Robotic tele-
operation for
surgery

Motion scaling for con-
trol

Constant, position and veloc-
ity scaling to improve per-
formance and decrease errors
during delay

[72] Tele-driving Control prediction Model predictive control
(MPC) and Kalman filter

[77]
Robotic bilat-
eral teleopera-
tion

Control

Radial basis function (RBF)
neural network (NN)-based
four-channel wave-based
time-domain passivity ap-
proach (TDPA), Lyapunov
control

[71] Robotic tele-
operation Control prediction

Model predictive control
(MPC) and linear interpo-
lation to predict state and
avoid obstacles

[78] Connected ve-
hicles

Connected cruise con-
trol

Optimal control using linear
quadratic regulation and min-
imising a cost function

[79] Bilateral tele-
operation Control

TDPA and time delay power
network (TDPN) to achieve
position synchronisation

[55]
Teleoperated
ground vehi-
cles

Control prediction

Predicted trajectory guidance
control (PTGC) and deep-
learning-based LSTM model
to predict trajectory

[43] Bilateral tele-
operation Control prediction Survey of predictive control

approaches

[126] Road vehicle
teleoperation

Control and haptic pre-
diction

Two-stage predictive ap-
proach environment model
(Bayesian filters) and haptic
feedback to compensate
delay, warn collisions and
assists

[80] Bilateral tele-
operation

Adaptive control, re-
duce haptic data dur-
ing delay and improve
QoE

Delay-adaptive control
switching scheme between
TDPA and MMT

[81] Bilateral tele-
operation Adaptive control

Radial basis function (RBF)
neural network-based con-
troller
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Table 5. Cont.

Reference Domain Teleoperation Entity Algorithm

[82] Bilateral tele-
operation

Adaptive control, posi-
tion tracking and force
feedback

Radial basis function neu-
ral network (RBFNN)-based
adaptive sliding mode con-
troller and projection map-
ping by saturation function

[127] Robotic tele-
operation

Control sensory ma-
nipulation, haptic
feedback

Augmented sensory manipu-
lation based on motor learn-
ing and rehabilitation princi-
ples, inverse kinematics for
human adaptation during de-
lays

[83] Tele-driving Control
Model predictive control
(MPC) and improvement in
cost function

[84] Tele-driving Control

Model predictive control
(MPC) and model error
compensator (MEC), Kalman
filter

[128]
Telepresence
robot, IoT,
healthcare

Delayed control sig-
nals

Markov model, deep rein-
forcement learning (DRL)-
based deep deterministic pol-
icy gradient (DDPG)

[12] Robotic tele-
operation Control prediction

Survey of time-series predic-
tion: Statistical approaches
and neural network ap-
proaches

[88] Robotic tele-
operation Control

Model-free predictor modi-
fied with adaptively varying
predictor parameter

[58] Strategy
games Control prediction

Artificial neural networks
with internal states predicting
future position of mouse

[64] Vehicle teleop-
eration

Control and steering
prediction

Non-linear model pre-
dictive control (NMPC),
successive reference-pose
tracking (SRPT) to predict
and improve path tracking,
reference pose and speed

5.2. Perception Latency Approaches

Perception latency is the delay in the perception system at the remote operator’s end.
A list of latency mitigation strategies for perception is provided in Table 6. Predictive
displays generate the probable vehicle response on the delayed or predicted view based
on the current actions of the operator. They have been shown to effectively withstand and
compensate for the negative impacts of latency during teleoperation [42]. These methods
can be classified as offline or online [129]. The former involves using prior knowledge of
static environments and operator behaviour models before making predictions. The latter
is suitable for dynamic environments and makes near real-time predictions to provide
instantaneous feedback.

During remote driving, the operator can receive sensory feedback in three main forms:
visual, audio, and haptic [7]. However, most studies do not focus on audio and haptic
feedback. Therefore, visual data are significant for the remote operator. Predictive display
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methods mainly focus on visual feedback prediction. However, most of the research on
predictive displays uses simulation-based experiments [36].

Earlier offline approaches estimate and predict images that rely on first-order prediction
techniques, depending on the system, delays, and actions of the operator [45]. They are
restricted to state prediction and future pose estimation. For example, estimating the visual
impact of control commands, heading angles, and steering wheel angles, predicting position
and trajectory, or by using other dynamic, curvature, and geometric models [52,129]. However,
reliance on geometric models for feature extraction and matching in low-textured scenes
may lead to inaccuracies [129]. Moreover, first-order techniques are ineffective for high-
latency, high-speed, and long-distance teleoperations and do not include factors related to the
uncertainty of future events. Integrating these first-order approaches with recent state-of-the-
art approaches that use artificial intelligence (AI) and NNs is challenging [46,51].

Similar to the model-free control approaches in the previous section, the modern
online prediction approaches involve deep neural networks (DNNs). They mainly involve
data-driven models for time-series predictions of future-perspective video frames [8].
These approaches have been shown to give good results in terms of performance. The
advanced methods for predictive display include the use of generative AI methods for
pixel synthesis (e.g., GANs) [46,129,130], pixel transformation and time-series methods
(e.g., LSTMs) [61], and probabilistic models [8]. Alternate methods that reduce the burden
on computation and the interface can be considered, such as motion and content separation
and extracting higher-level features in the visual feedback. Though DNNs offer accurate
predictions for non-linear and long-term signals, they require large amounts of data to
train for this accuracy, which can be costly in terms of computation, memory, and time [15].
Additionally, they are considered black-box models, which affects their transparency and
trustworthiness, especially in safety-critical applications such as remote driving. Recent
studies have also demonstrated that NNs’ predictions can be altered/manipulated by pixel
adversarial attacks [131,132].

Other visual feedback enhancement techniques for enhancing teleoperators’ overall
situational awareness (and not for delay compensation) include exocentric view, automatic
view adjustment, stereoscopic vision, virtual environment, vision-based object tracking,
and predictive systems [51].

Table 6. Mitigation strategies for perception latency.

Reference Domain Teleoperation Entity Algorithm

[133] CAV teleoper-
ation

Video stream, encod-
ing latency

Image processing approaches,
video encoder configuration

[122] Telepresence
Head-mounted
display (HMD) predic-
tion

Weighted least squares,
Kalman filter, weighted sum

[129] Robotic tele-
operation Predictive display CycleGAN

[116]

Tactile
Internet-
based re-
mote robotic
surgery

Predicting haptic com-
mands

Gaussian process regression
(GPR)

[47] Robotic tele-
operation

Video transformation
enhancement

Two video transformation-
based assistive visual inter-
faces
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Table 6. Cont.

Reference Domain Teleoperation Entity Algorithm

[36] CAV teleoper-
ation

Visual, predictive dis-
play for latency

Geometric model, homo-
graphic transformation

[52] CAV teleoper-
ation Predictive display Predicted vehicle state, curva-

ture model on steering angle

[46] UGV robot
teleoperation Predictive display Integrate Pix2Pix conditional

GAN with optical flow

[39] Robotic tele-
operation

Predictive display and
control

Kinematic model for aug-
mented predictive display
(for state and trajectory) and
autonomy of high-level con-
trol commands

[86] Tele-driving
vehicle Visual and control

Model predictive control
(MPC)—kinematic bicycle
model and potential fields,
augmented reality, predictive
display

[61]

Telerobotic
surgeries dur-
ing military
operations

Visual and control

Virtual representation with
object recognition (Mask
RCNN semantic segmen-
tation, Kalman filter state
estimation) and alpha-
blended layout. High-level
surgical actions using history
from LSTM

[63] Vehicle teleop-
eration Predictive display

Vehicle position and
perspective-predictive
image transformation

[56] UGV teleoper-
ation Predictive display

Image transformation and
state estimator for feedfor-
ward and feedback functions
to estimate the vehicle posi-
tion

[35] Vehicle teleop-
eration Predictive display

Image transformation, per-
spective projection, and
Smith predictor

[57] Road vehicle
teleoperation Predictive display

Grid-based distribution, TV-
L1 optical flow, semi-global
matching (SGM)

[134] Video stream-
ing

Video rate control dur-
ing latency

Markov decision process,
greedy approach, and
stochastic gradient descent
(SGD)

[8] Robotic tele-
operation

Visual, control, and
other entities

Review enhancement tech-
niques

[15]
Robotic and
CAV teleoper-
ation

Visual and control Review some mitigation tech-
niques

[130] Robotic
telesurgery

Predictive display and
control position

Pix2Pix conditional gener-
ative adversarial network
(cGAN) for predicting tool
position during surgery
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5.3. Network Optimisation Approaches

These optimisation methods target the latency during data transmission at the net-
work level. Parvez et al. [135] provide a survey on latency reduction solutions for 5G
networks. They divide the approaches into radio access network (RAN) solutions (e.g.,
short frame/packets, new waveform designs, mmWave aggregation), core network solu-
tions (e.g., high-speed backhaul, mobile edge computing (MEC)/fog-network architectures),
and caching solutions (e.g., distributed, centralised caching).

Various approaches have been proposed to optimise the network for reduced latency.
For instance, Hollinghurst et al. [136] use redundant messages to exploit randomness across
multiple paths, leading to low latency. Similarly, Hui et al. [137] consider a redundancy-
aware federated learning architecture for efficient and cooperative vehicular networking
and improved data quality accuracy. Ndikumana et al. [138] propose intelligent infotain-
ment caching models in autonomous vehicles, where they use deep learning to predict
contents that need to be cached. Their method can minimise content downloading delays.
Belogolovy et al. [38] reduce latency by using multiple links, enabling rate control and
scheduling in combination with slice-by-slice video processing. Hui et al. [139] develop a
smart-contract-based secure edge computing architecture, which offers low-cost services
for vehicles in 6G networks. Heryana et al. [140] focus on reducing video streaming latency
in vehicle teleoperation through network factors. They apply UDP and the Real-Time Mes-
saging Protocol (RTMP), tune the encoder, and further apply data compression. In another
representative work, Zhang et al. [141] utilise DetNet for telesurgery, integrating time-
sensitive networking (TSN), software-defined network (SDN), and other technical features
for a more deterministic network with low latency and jitter. Qiong et al. [142] propose
deep Q-learning to predict the optimal minimum contention window (MCW) for improved
vehicular communication and age fairness. Kousaridas et al. [100] analyse the requirements
of QoS predictions and discuss the architecture of a prediction model for 5G V2X applica-
tions, specifically for remote driving use cases. Further to that, Barmpounakis et al. [143]
use LSTMs for QoS prediction of 5G networks for CAVs.

Table 7. Summary of mitigation strategies with pros and cons [12,15,123,144].

Algorithms Applicability Pros Cons

Offline methods or first-
order prediction Perception Simple and easy to im-

plement

Restricted to state prediction and pose estima-
tion. Heavily depends on system model. Inef-
fective for high-latency, high-speed, and long-
distance teleoperation

Neural
network

Time-series
models Both Long-term dependen-

cies
Prone to overfitting and require memory, re-
quire sequential data

Image segmen-
tation Perception Targeted instance or se-

mantic information
Computational complexity and require data
reliability

Generative
model Perception

Adaptive to new data
and learns distribution
of time series

Cannot guarantee to capture dependencies

Reinforcement
learning Control

Self-learning capability
and effective in multi-
agent coordination

Computationally complex

Regression Both Simple, captures future
trends

Sensitive to outliers, may not be generalised,
overfitting

Motion and content separa-
tion, extracting high-level
features

Perception Targeted instance or se-
mantic information Computationally complex

Probabilistic models Both Provides uncertainty
and likelihood

Can be complex, may not be suitable for real-
time prediction
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Table 7. Cont.

Algorithms Applicability Pros Cons

Visual enhancement Perception Improves situational
awareness

Sensitive to noise and may not be suitable for
dynamic data

MPC-based Control Applicable for short and
long delays It is computationally expensive

Fuzzy logic Control Robust to uncertainties Less precise

Active estimation Control Optimal and accurate
solution

Complex, computationally expensive, heavily
depends on system model

Adaptive-based estimation Control Robust to system dy-
namics

Complex, computationally expensive, Heavily
depends on system model

Passive estimation or
passivity-based Control Maintains stability of

system Does not have predictive capability

Local or onboard auton-
omy Control Backup, real-time re-

sponse
Affected by delay and requires computation,
maintenance, and updates

Supervisor control Control High-level commands No continuous commands

5.4. Initiatives, Standardisation Efforts, and Guidelines

Standards bodies and industry alliances play a crucial role in maintaining quality,
consistency, interoperability, and reliability across industries and domains by providing
formal guidelines, products, services, responsibilities, specifications, and requirements.

There are numerous standards for vehicular communications. For example, the In-
stitute of Electrical and Electronics Engineers (IEEE) and European Telecommunications
Standards Institute (ETSI) developed standards for dedicated short-range communication
(DSRC) (IEEE 802.11p or IEEE 1609 based) [145,146] and cooperative intelligent transport
systems (C-ITSs) [146]. The 3rd Generation Partnership Project (3GPP) develops standards
for wireless networks, inclining towards cellular vehicle-to-everything (C-V2X) [145]. The
IEEE developed communication protocols and standards for the Internet of Vehicles (IoV) and
intelligent transport systems (ITSs) among various interfaces, including vehicle-to-vehicle
(V2V), vehicle-to-infrastructure (V2I), and so on [31].

Standards for CAVs have been established by SAE standard J3016 since 2014, which
has defined taxonomies on driving automation systems and levels [10,14,147], where SAE
J3016 focuses on defining remote assistance and remote driving.

However, there is not a sufficient number of standards for vehicle teleoperation that
provide the requirements and responsibilities of remote driving.

Recognising this gap, the BSI has developed several publicly available specifications
(PASs) for the remote teleoperation of CAVs. According to BSI PAS 1886, the roles of remote
operators include remote monitoring, remote assistance, and remote driving to supervise,
support, and directly control the vehicle, respectively [9]. The remote operator is responsible
for continuously monitoring remotely at all SAE levels, including fully automated vehicles [10].
SAE levels 0–3 require remote driving from human operators as a fallback solution to achieve
MRC, sometimes including level 4. Remote assistance is primarily performed in SAE levels 3–5.
Furthermore, BSI PAS 1884 includes a section on training for remote operators, ensuring the
quality and proficiency of this critical role [148].

In addition to standards, some efforts from white papers and industry reports address
the current state, use cases, and requirements for safe CAV teleoperation. Projects such
as Endeavour-WP15B [149], 5GAA [24,106], 5GCroCo [108,109], and 5GMobix [110] have
contributed insights and recommendations, particularly concerning impacts and require-
ments for CAV teleoperation and network latency. Moreover, the initial deliverable of the
SAVOR project [150] undertakes experiments and provides recommendations on remote
monitoring and teleoperation of CAVs.

Other famous initiatives from corporate companies aim to develop self-driving sys-
tems, including Openpilot Level 2 [151], Nissan’s ProPilot Level 2 [152], BMW’s Personal
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Co-Pilot Level 2 [153], Mercedes-Benz’s Distronic Level 2 [154] and Drive Pilot Level 3 [155],
Audi A8 Level 3, Baidu Apollo Level 4 [156], Google Waymo’s World’s Most Experienced
Driver Level 4 [157], Ford’s and Volkswagen’s Argo AI Level 4 [158], General Motors Level
4 [159], Uber [160], Tesla, and Mobileye [3,4,161]. Most level 2 systems rely on cameras
and radar sensors, while levels 3 and 4 additionally use lidar sensors to perceive the
environment. Regarding automated control, all these levels have distance keeping, lane fol-
lowing and keeping. The level 2 vehicles, in contrast to 3 and 4, do not have lane-changing
autonomy [4].

A few of these initiatives have considered remote operations [14]. Examples include
Nissan Seamless Autonomous Mobility [162], ARGO AI remote system [158], Aurora
Teleassist [163], Voyage Telesisst [164], Zoox TeleGuidance [165], and UBER remote system
for remote guidance and assistance. Likewise, Valeo [166] has Drive4U Remote service and
Waymo level 4 ADS has human input for fleet response. Meanwhile, companies such as
Bosch [167], Baidu Apollo, Einride [168], Phantom Auto [169], Ottopia [170], Fernride [171],
and Vay [172] have considered remote driving solutions [14].

5.5. Method Correlation with CAVs

There are very few studies on delay mitigation methods for CAVs. Nevertheless, it
is feasible to adapt methodologies employed in other domains to fill this gap, provided
the distinctive requirements of CAVs are taken into consideration. However, it is essential
to note that the developed methods should be optimised and minimise any additional
latency they introduce in the teleoperation control loop [8]. A potential solution is using
predictive feedback methods, such as the predictive model-free and online approaches,
which are well suited for addressing both control and perception delays, respectively.
The developed methods should focus on dynamically adjusting their sensor retrieval and
driving behaviour based on the network conditions. One can achieve safe and reliable
teleoperation even while predicting the short-term or immediate future [12], i.e., during
latency, it is sufficient to predict approximately the number of frames based on the visual
update rates (the cameras FPS). Further, to improve the operator situational awareness, it is
also recommended to use multi-sensory feedback (e.g., cameras along with lidars, radars,
audio, and haptic). However, appropriate sensor choice is critical for the sensor fusion to
be safe and reliable, since camera-based sensors may require higher computational power
and are sensitive to lighting conditions. Meanwhile, active sensors such as lidar and radar
can be affected by interference from other sensors [173].

Moreover, most studies use simulations to experiment and test the teleoperation
environments [36]. This is a cost-effective solution, yet it may not always provide realistic
results due to simplistic assumptions and constrained conditions. Again, real-world
experiments also have their downsides, including being expensive to build and, most
importantly, not reproducible for further research.

6. Conclusions and Future Directions

This paper provides a systematic literature review on the impact of network latency
during teleoperation in CAVs. First, the latest trends and existing challenges have been
discussed, followed by a system model of teleoperation along with sources of latency, the
wireless technologies in teleoperation, and the impact of network latency across domains.
Performing the teleoperation of CAVs is challenging, as they operate in significantly com-
plex and dynamic environments with high mobility over long distances. The specifics and
unique demands may vary across domains, but a consistent finding is the detrimental
impact of network latency on teleoperation performance.

The CAV teleoperation system has a distinctive set of requirements, including low
latency, sufficient data rates, and high reliability. The most critical QoS parameters for CAV
teleoperation are the uplink data rates and the downlink latency. This is because CAV sensor
perception has significantly greater data needs than control commands, and a delay in
control commands is more alarming than a delay in perception. For ideal CAV teleoperation,
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an acceptable latency threshold is preferred to be less than 250 ms or 300 ms, with the
average uplink latency in the range of 50 to 120 ms and downlink latency in the 20 to 80 ms
range. This threshold correlates with a few safety-critical applications such as telesurgery,
UAV, nuclear, ordnance disposal, and some network games. Similarly, when it comes to
data rate, the average uplink data rate can range from 8 to 50 Mbps, while data rates for
downlink are in the range of 0.25 to 5 Mbps. The best wireless technology candidates to
meet these needs are cellular networks, which provide high-speed communication and
sufficient coverage for long-distance CAV teleoperation. As these technologies continue to
evolve, from 4G to 5G and anticipated 6G, they play a crucial role in shaping the future of
autonomous and remotely operated vehicles. The groundwork was laid by 4G by providing
the basic infrastructure necessary for initial teleoperation capabilities, despite its limitations
in latency and bandwidth. The advent of 5G significantly enhanced ultra-low latency, high
data rates, and robust reliability, enabling real-time high-definition video streaming and
precise remote control during teleoperation. This has made 5G the current standard for
advanced remote driving applications, enhancing safety and operational efficiency. While
still in the conceptual and development stage, the next generation 6G networks will be
better suited to sustain emerging applications and network traffic.

Then, state-of-the-art latency mitigation and compensation strategies have been analysed.
The latencies can occur in different sources of the CAV teleoperation system, including
transmission delay, operator response time, encoding and decoding, visual display, sensors,
and actuator delays, which makes delay mitigation quite challenging. The predictive methods
are well suited for latency mitigation in both teleoperation control and perception approaches.
Recent studies use model-free and online predictive approaches for control and perception
latencies, respectively. Among these, the most used are deep neural networks for time-series
predictions. In addition, there are also other equally capable methods involving regression,
probabilistic models, and local autonomy.

Enlightened by the aforementioned analysis, this paper proposes the following future
research directions:

• More empirical studies across diverse environmental settings would be beneficial in
determining the true and accurate CAV requirements. This also would establish a
comprehensive understanding of CAV teleoperation. It is important to consider the
impact of different levels of network reliability with varying QoS parameters, particularly
latencies and bandwidths. For example, the studies can include testing performance in
uncertain and dynamic environments, the trade-off between video quality and control
responsiveness, and quantifying the robustness of predictive algorithms.

• When developing latency mitigation methods, it would be beneficial to integrate vari-
ous approaches. For example, traditional statistical methods (i.e., first-order prediction
techniques) can be integrated with modern AI-based approaches to overcome their
limitations. This will allow the methods to be effective and reliable against non-linear
dynamic data (such as high-latency and high-speed teleoperations) without heavily
relying on complex and accurate system models. Another example, integrating predic-
tive methods with probabilistic approaches can provide the likelihood and uncertainty
of predictions. This would help in determining the reliability of the developed method.

• During teleoperation system experimentation, it is recommended to replicate real-
world network conditions (including communication networks and injected delays)
as closely as possible, as they offer robust evaluation by extensively testing the system
on time-varying and fluctuating latency. Note that teleoperation in the presence of
time-varying latency is more challenging than under constant and predictable latency.

• While there are a few white papers and initiatives from industry projects and alliances
for CAV teleoperation, there is a lack of sufficient standardisation in critical aspects
such as network latency requirements to guarantee consistent performance evaluation,
data security protocols to protect sensitive information and ensure the integrity of
communication, and interoperability between different teleoperation system compo-
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nents. Therefore, we recommend additional standardisation efforts to provide formal
guidelines, products, services, specifications, and requirements accordingly.
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Abbreviations
The following abbreviations are used in this manuscript:

1G First generation
3G Third generation
3GPP Third Generation Partnership Project
4G Fourth generation
5G Fifth generation
6G Sixth generation
ADS Automated driving system
AE Auto-encoder
AEB Autonomous emergency braking
AI Artificial intelligence
ASUV Autonomous surface and underwater vehicle
BSI British Standards Institution
CAV Connected and autonomous vehicle
C-ITS Cooperative intelligent transport system
C-V2X Cellular vehicle-to-everything
DL Downlink
DNN Deep neural network
DSRC Dedicated short-range communication
DTMF Dual-tone multi-frequency
DVI Digital visual interface
EBs Exabytes
ETSI European Telecommunications Standards Institute
FOV Field-of-view
FPS Frames per second
GAN Generative adversarial network
GB Gigabytes
GEV Generalised extreme value distribution
GPRS General Packet Radio Service
HMI Human–machine interface
IEEE Institute of Electrical and Electronics Engineers
IoE Internet of Everything
IoV Internet of Vehicles
IPC Inter-process communication
ITS Intelligent transport system
ITU International Telecommunication Union
LAN Local area network
LCD Liquid-crystal display
LSTM Long short-term memory
LTE Long-term evolution
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Mbps Megabits per second
MCW Minimum contention window
MEC Mobile edge computing
MHz Megahertz
MMT Model-mediated teleoperation
MRC Minimal risk condition
MRM Minimal risk manoeuvre
NN Neural network
ODD Operational design domain
PAS Publicly available specification
PDF Probability density function
QoE Quality of experience
QoS Quality of service
RAN Radio access network
RF Radio frequency
RNN Recurrent neural network
RTMP Real-Time Messaging Protocol
RTT Round-trip time
SAE Society of Automotive Engineers
SDN Software-defined network
Seq2Seq Sequence-to-sequence model
TDPA Time-domain passivity analysis
TSN Time sensitive networking
UAV Unmanned aerial vehicle
UDP User Datagram Protocol
UGV Unmanned ground vehicle
UL Uplink
V2V Vehicle-to-vehicle
V2I Vehicle-to-infrastructure
V2X Vehicle-to-everything
VAE Variational auto-encoder
Veh/km2 Vehicles per kilometre squared
VLAN Virtual local area network
VLC VideoLAN client
WiFi Wireless fidelity
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