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Abstract

In this thesis, the percolation properties of the ferromagnetic as well as a disordered and frus-
trated multi-replica Ising model in two dimensions are considered. The investigated systems
can be understood as a collection of non-interacting copies (replicas) at the same temperature.
In this setup we define a correlated percolation problem, where we introduce and study two
types of clusters, namely the soft and hard constraint clusters. For the ferromagnetic case
the 1-, 2-, and 3-replica Ising models have been considered, with some preliminary results
concerning the 4-replica case. By means of Monte Carlo simulations on relatively large system
sizes and a finite-size scaling analysis we investigate the critical behaviour of the system and
provide estimates of the critical exponents. Specifically, for the 1-replica Ising model the crit-
ical exponents concerning the percolation strength and average cluster size are determined,
by considering the influence on the estimates of the exponents when particular cluster sets
are included or excluded in the definition of the observables. Subsequently, for the 2- and
3-replica case the critical behaviour of the system have been discussed in terms of the percola-
tion point, and the critical exponents concerning the correlation length, percolation strength,
and average cluster size for the soft and hard constraint clusters have been computed, re-
spectively. The inclusion or exclusion of different cluster sets in the definitions of percolation
strength and average cluster size have been also considered. Some preliminary results for
the 4-replica Ising model are also given. For the frustrated Ising model, i.e., the Edwards-
Anderson spin-glass, the percolation properties of Houdayer’s clusters have been investigated.
Such clusters define a percolation process similar to the 2-replica Ising ferromagnet, with the
obvious distinction that interactions are now random.
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and carried out by the author himself. In particular, all the necessary codes for generating the
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Chapter 1

Introduction

The theory of critical phenomena is one of the most intriguing and challenging areas in
the field of statistical and condensed matter physics [1–10]. It concerns changes of matter
from one thermodynamic state to another when an external parameter of the system, e.g.,
temperature, is varied. Such changes are characterized by discontinuities or divergences of the
associated physical observables, resulting from the complicated interactions among the large
(eventually infinite) number of degrees of freedom. Additionally, the study of the behaviour of
such systems, theoretically as well as experimentally, has revealed the fundamental concepts
of scaling and universality, which can be understood in the framework of the renormalization
group [11–14]. From the theoretical point of view, the Ising model which serves as a simplified
prototype for studying magnetism, is considered one of the pillars of statistical physics.

In the study of the Ising model, and spin systems in general, graphical representations
have played a crucial role in deepening our understanding and gaining geometric insights for
the nature of the phase transition. One natural framework of such an approach1 is percolation
theory [18–20], which can be regarded as the simplest model that exhibits a phase transition.
In its simplest formulation percolation concerns the study of clusters formed by neighbouring
occupied sites which are randomly and independently distributed on a lattice. Depending
on the probability p for a site to be occupied, clusters of different sizes can occur. For
small values of p only clusters of small size appear, while as p increases the average size of
clusters increases. If p exceeds a certain value pc, then a cluster that spans the whole system
emerges, which will be of infinite size as the size of the system becomes infinite. Such a
cluster is called a percolating cluster and the value of the probability where this occurs is pc,
the percolation threshold. Despite its simple formulation percolation theory is still an active
topic in mathematics, in particular in probability theory, and physics. This is for example
illustrated by the award of the Fields Medal to Prof. Hugo Duminil-Copin for his contribution
in the probabilistic theory of phase transitions; see Ref. [21] for a short exposition of his work.

For spin models, however, finding a suitable percolation process that properly describes
the critical behaviour of the system is not an easy task. The difficulty lies in the existence
of correlations among sites (spins), which are expressed via the Hamiltonian of the system.
Nonetheless, Fortuin and Kasteleyn (FK) [22–25] showed that the q-state Potts model can be
mapped onto a site-bond correlated percolation problem (the random cluster model), in which
with a certain temperature-dependent probability bonds are placed among neighbouring like

1Another approach is to generate graphs using high-temperature expansions; see, e.g., Ref. [15–17].
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spins and sites that are connected via a path of consecutive bonds are considered to be in
the same cluster. It turns out, that these FK clusters percolate at the thermal transition
point with critical exponents identical to the thermal ones. The success of such a description
is that FK clusters propagate the spin correlations of the system, as the probability of two
spins belonging to the same cluster is equal to the spin correlation function [26]. Additionally,
the FK representation of the q-state Potts model is also the core idea behind the powerful
algorithms of Swendsen and Wang [27] and Wolff [28], which significantly reduce critical
slowing down in the vicinity of the critical point.

Despite the success of the FK representation to properly describe the q-state Potts model,
initially, however, it was believed that clusters constructed by neighbouring spins with the
same orientation (geometrical clusters) are capable to propagate the spin correlations of the
system. Nonetheless, these geometrical clusters are not capable of describing the phase tran-
sition of the system as their associated exponents do not coincide with the thermal ones,
and generally they do not percolate at the thermal transition point. On the other hand, the
geometrical clusters of the q-state Potts model are still of some importance as in two dimen-
sions they percolate at the thermal transition point [29–31], and they are found to encode
the tricritical behaviour of the site-diluted Potts model for 0 ≤ q ≤ 4, see Refs. [32, 33] and
references therein. Additionally, the fractal boundaries of such clusters have been studied
in the framework of stochastic Loewner evolution (SLE), where various critical exponents,
previously conjectured on the basis of Coulomb gas map [34–38] and conformal invariance
[39], have been obtained analytically.

So far we have seen how the FK graphical representation can be a powerful tool in the
study of ferromagnetic systems, for the case of spin glasses, however, such a description is
no longer valid. The reason is that the FK clusters cannot properly propagate the spin
fluctuations of the system, as the spin correlation function is not equal to the probability
of finding two spins in the same cluster [40], resulting in a percolation transition at higher
temperatures compared to that of the thermal one [40, 41]. Of course spin glasses possess
their own challenges, where most interesting questions remain still unclear (see Refs. [42–
47] for a review). However, the study of their critical behaviour in terms of a graphical
representation has received, thus far, little attention in comparison with ferromagnets. Two
existing methods, though, are Houdayer’s clusters [48], and the spin-glass versions of the
FK clusters [49] and Chayes, Machta, and Redner (CMR) clusters [50, 51] proposed in Ref.
[40]. Such methods utilise a number of non-interacting copies (replicas) which are at the
same temperature, and study the percolation properties of clusters defined in the overlap
of such copies. From the computational point of view, these clusters can be seen as the
dynamics of a Monte Carlo process for sampling configurations, giving access to system sizes
that are unreachable by local-dynamic algorithms, e.g., Metropolis [52]. Although Houdayer’s
clusters, supported by local update moves to ensure ergodicity, define an acceptable Monte
Carlo process, the properties of such clusters have received less attention. Complementary to
that, the study of percolation defined from the overlap of such replicas for the ferromagnetic
case, remains elusive. On the other hand, for the percolation properties of clusters defined in
Ref. [40], some studies can be found in Refs. [40, 53].

Consequently, the motivation of this work is to achieve a better understanding of the per-
colation properties for clusters defined from the overlap of such replicas, for the ferromagnetic
and for Houdayer’s clusters, respectively. By means of extensive Monte Carlo simulations on
relative large system sizes, we study the cases of 1-(standard Ising), 2-, and 3-replica Ising
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models in two dimensions, for the case of the ferromagnet; some preliminary results for the
4-replica Ising model will also be discussed. To determine the critical behaviour we use the
theory of finite size scaling, from which the exponents concerning the correlation length, aver-
age cluster size, and percolation strength may be obtained. Comparisons between estimates
of the exponents resulting from the different definitions of the involved observables will be
discussed. Finally, for the case of Houdayer’s clusters a more qualitative analysis will be
given. The outline of this thesis’ contents is presented below.

Chapter 2 is devoted to an introduction to the basic theory of statistical physics, which is
necessary for the discussion of results that will follow in the later chapters. Specifically, the
theory of phase transitions and critical phenomena is discussed, where some characteristic
properties, scaling relations, and definition of critical exponents is given, in connection with
the ideas from renormalization group (RG) and finite size scaling (FSS). Afterwards, the
theory of percolation is described, followed by a discussion regarding its connection with
phase transitions of spin systems, i.e., the q-state Potts model. The basic properties of spin
glasses will be addressed in the last section of this chapter, with particular emphasis on the
two, quite distinct, pictures of replica symmetry breaking and droplet theory.

The numerical methods utilised in this thesis will be discussed in Chapter 3. After a
short introduction to the general theory of Monte Carlo simulations - where we recall the
Metropolis algorithm - we will review the cluster algorithms of Swendsen-Wang and Wolff
as methods for efficiently simulating the Ising and the q-state Potts model in the vicinity
of the critical point. Subsequently, the method of parallel tempering as a procedure which
substantially reduces the equilibration time for the spin-glass problem, will be discussed and
various temperature schedules which aim on improving the performance of the algorithm
will be covered. The cluster algorithm of Houdayer, which leads to simulation efficiency for
the spin-glass problem only for two-dimensional systems, is presented in the last section of
this chapter. Lastly, some aspects regarding autocorrelation times, histogram reweighting
technique, and error estimations are discussed in Appendix A.

In Chapter 4 we discuss the percolation properties of geometrical clusters for the two-
dimensional Ising model. We start by defining various wrapping probabilities and verifying
their interrelations. Then, we proceed with the estimation of the critical exponents concern-
ing the average cluster size and percolation strength, where we extend their “conventional”
definitions (coming from ordinary percolation) with the inclusion of various sets of clusters.
Additionally, as the values of such exponents are known analytically, we speculate the exis-
tence of scaling corrections for the different cluster sets used.

In Chapter 5, which forms the core part of this thesis, we study the percolation properties
of geometrical clusters of the multi-replica Ising ferromagnet in two dimensions, which can be
understood as a stack of statistically independent copies (replicas) of the initial system at the
same temperature. The inclusion of multiple replicas introduces a new percolation problem
which allows to define various cluster types. In the present study we discuss the so-called
soft and hard constraint types of clusters, where the soft constraint clusters are the same as
the ones of Houdayer’s cluster algorithm. Based on extensive Monte Carlo simulations for
large system sizes, the percolation properties for the cases of 2- and 3-replicas are discussed.
Specifically, by employing FSS the critical behaviour in terms of transition temperature and
critical exponents for both cluster types are obtained, by utilising the various sets of clusters
as introduced in Chapter 4. Lastly, some preliminary results for the 4-replica case are given.

Chapter 6 concerns the study of the percolation properties of Houdayer’s clusters for the
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two-dimensional Edwards-Anderson spin-glass problem. Since equilibration at low tempera-
tures is quite hard to achieve for such systems, we begin with an exposition of various criteria
that ensures it. Additionally, a comparison between some temperature schedules, that aim
to increase the performance of the parallel tempering algorithm is given. The chapter closes
with a qualitative description of the percolation properties of Houdayer’s clusters.

Finally, Chapter 7 contains our conclusions and some outlook for future work.



Chapter 2

Theoretical Background

In the field of statistical physics and critical phenomena one of the most intensively studied
models is undoubtedly the Ising model. Its simple formulation and being one of the few
models in statistical physics that a rigorous solution is available at least in one and two
dimensions, established the Ising model as one of the reference-point models in the field.
Additionally, its connection with percolation theory, has greatly enhanced our understanding
of phase transitions based on a geometrical interpretation. The core idea for such a description
is the introduction of clusters capable of propagating the spin fluctuations of the system.
Although, such clusters are well defined for the case of the Ising ferromagnet, for systems
with randomness, such as spin glasses, an appropriate cluster definition remains elusive.

2.1 Phase Transitions and Critical Phenomena

Statistical mechanics is a field of physics which focuses on the thermodynamic behaviour of
systems constituted of an enormous number of particles, typically of the order of Avogadro’s
number NA ∼ 1023. Although the equations of motion of each particle can be mathematically
well defined from classical or quantum mechanics, it is impossible to solve this gigantic number
of equations. Additionally, these equations are of little use for deriving the thermodynamic
properties of the system, which arise from the collective behaviour of all particles in the
system. Instead, statistical mechanics provides a probabilistic description which allows us
to compute average values and fluctuations of thermodynamic observables. Such systems
could have different phases, and changes from one phase to another are known as phase
transitions. These are remarkable collective phenomena, resulting in abrupt changes on the
physical properties of the system, when an external parameter such as temperature, pressure,
magnetic field, etc., is varying. The points where these changes take place are called transition
points and signify the transition from one state of matter to another. The spectrum of such
transitions is quite vast, ranging from the “ordinary” solid-liquid-gas transitions of water
to liquid-crystals up to the transition of the more “exotic” phases of superconductivity and
superfluidity. For a pedagogical introduction to phase transitions see, e.g., Refs. [1–10].

Depending on the nature of the phase transition, they are classified in two main categories:
first-order and continuous (second order). At first-order transitions two phases are separated
by a transition point and each phase has its own distinct macroscopic properties. Exactly
at the transition point, phases coexist which implies a mixed-phase regime where different

5
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spatial parts of the system are at different phases. For example, when water is exactly at its
freezing temperature it coexists with ice domains. Even slightly away from the critical point
the system will be in one of its unique phases. In such cases we expect to find discontinuities
in various thermodynamic observables as we pass through the transition point or equivalently
from one stable state to another. Finally, one important characteristic of such transitions is
that the correlation length (to be described shortly) is finite.

The situation is quite different for continuous phase transitions. In that case there exists
a point where the correlation length is infinite, thus fluctuations become important at all
length scales, which forces the system to be in a unique critical phase; such a point is called a
critical point. This means that as we approach the critical point the two phases will gradually
start to resemble each other and exactly at the critical point they will become identical, and
thus one unique phase will characterize the system. The first experimental realisation of a
continuous phase transitions was the phenomenon of critical opalescence, which concerns the
liquid-gas transition. In the vicinity of the transition point the liquid has a milky appearance
caused by the density fluctuations at all possible wavelengths and due to the anomalous
diffusion of light. What makes continuous phase transitions such interesting and challenging
phenomena is the fact that the correlation length is extended to the size of the system leading
to strong correlations among all degrees of freedom1, hence making standard perturbative
techniques inadequate for the description of the phenomena. An appropriate description
for such phenomena is feasible under the framework of renormalization group, which will be
discussed in Sec. 2.2.

In order to continue our discussion about phase transitions, let us now introduce the Ising
model, which has a central role in the study of critical phenomena (as well as in this thesis),
serving as a prototype for the study of magnetic systems. To this end we define a finite lattice
in d dimensions, at the sites i of which we place Boolean variables σi (spins) taking the values
±1. The Hamiltonian of the Ising model is given by

H = −J
∑
⟨i, j⟩

σiσj −H
∑
i

σi, (2.1)

where J is the interaction among spins (J > 0), H the external magnetic field, and ⟨ , ⟩ indi-
cates that the sum is restricted to nearest neighbours. Denoting a possible spin configuration
as µ and assuming that the system is in thermal equilibrium, and that we are in the canonical
ensemble2, the probability for the spin configuration µ to occur is given by the Boltzmann
weight

p (µ) =
e−H(µ)/kBT

Z
, (2.2)

where H(µ) is the energy of the configuration µ given in Eq. (2.1), T is the temperature,

1In the context of statistical physics, degrees of freedom is the number of independent parameters (variables)
required to describe the state of a physical system. For example, in three dimensions the state of an atom at
any moment is defined by six independent variables, i.e., three components of its position and three components
of its momentum; here we consider the atom as a point-like particle with no internal structure. Thus, for a
system consisting of N atoms the number of degrees of freedom is 6N . For the Ising model, see Eq. (2.1), the
number of degrees of freedom is equal to the total number of spins.

2In the canonical ensemble the system is placed in a heat bath of fixed temperature and we allow to exchange
energy with its environment; for that and also as a survey in statistical mechanics see, e.g., Refs. [54–56].
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kB is the Boltzmann’s constant, and Z is the partition function. Adopting now the common
notation β ≡ 1/kBT , the partition function is defined as

Z (β,H) =
∑
µ

exp [−βH(µ)] , (2.3)

where the summation is over all the possible spin configurations µ of the system. Equa-
tion (2.3) ensures that the probabilities defined in Eq. (2.2) are properly normalized, i.e.,∑

µ p (µ) = 1. Besides a normalisation constant, the partition function is of great importance
as it encodes the statistical properties of the system; this can be realised from the connection
with basic thermodynamic quantities. For any observable O its expectation value ⟨O⟩ is given
by averaging over all configurations with the appropriate Boltzmann weight

⟨O⟩ = 1

Z

∑
µ

O(µ) e−βH(µ). (2.4)

In this framework the free energy of the system is defined as [56]

F = − 1

β
lnZ. (2.5)

From thermodynamics, the free energy is related to the internal energy U ≡ ⟨H⟩ and entropy
S as [56]

F = U − TS. (2.6)

The internal energy U using Eqs. (2.3) and (2.4), can be written in terms of the partition
function Z as

U = ⟨H⟩ = 1

Z

∑
µ

H(µ) e−βH(µ) = −∂ lnZ

∂β
. (2.7)

Since the free energy F is the Legendre transform of U with respect to entropy S we can
write [56]

S = −
(
∂F

∂T

)
H

= β2∂F

∂β
= −kB β

∂ lnZ

∂β
+ kB lnZ. (2.8)

Accordingly, the specific heat C is given as

C =

(
∂U

∂T

)
H

= kB β2 ∂
2 lnZ

∂β2
= kB β2

[
⟨E2⟩ − ⟨E⟩2

]
, (2.9)

where we adapt the more common notation for the internal energy, i.e., ⟨H⟩ ≡ ⟨E⟩. From
Eqs. (2.5), (2.7), (2.8), and (2.9) we see that the knowledge of the partition function allows
the calculation of the various thermodynamic observables. Note that Eq. (2.9) allows also the
calculation of the specific heat from the variance of the internal energy, which is frequently
used in Monte Carlo studies [57–60].

Another important observable for magnetic systems is the magnetisation M which gives
the sum of all spins in the system, i.e., ⟨M⟩ ≡ ⟨

∑
i σi⟩, and it can be expressed in terms of

the free energy as [56]
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⟨M⟩ = −
(
∂F

∂H

)
T

. (2.10)

Additionally, the magnetic susceptibility X, using Eq. (2.5), can be expressed as [56]

X =

(
∂⟨M⟩
∂H

)
T

=
1

β

∂2 lnZ

∂H2
= β

[
⟨M2⟩ − ⟨M⟩2

]
. (2.11)

We note again the connection of Eqs. (2.10) and (2.11) with the partition function, and that
similarly to Eq. (2.9), the magnetic susceptibility can be calculated from the variance of the
magnetisation.

An observable of particular interest is the two-point connected correlation function, which
is a measure of the relative alignment between two spins at sites i and j

G (i, j) = ⟨σiσj⟩ − ⟨σi⟩⟨σj⟩. (2.12)

If we assume that the system is translational invariant, then Eq. (2.12) depends only on
the distance difference, i.e., i⃗ − j⃗ ≡ r⃗, and ⟨σi⟩ = ⟨σj⟩ ≡ ⟨σ⟩. Note here that translational
symmetry requires a system of infinite size, defining the so-called thermodynamic limit. Hence,
we can rewrite Eq. (2.12) as

G (r⃗) = ⟨σiσj⟩ − ⟨σ⟩2. (2.13)

Away from the critical point and for large distances the correlation function decays exponen-
tially with distance |r⃗| [1], i.e.,

G(r⃗) ∼ e−|r⃗|/ξ, |r⃗| ≫ ξ, (2.14)

where ξ is the correlation length which provides a measure of the extent of correlations among
spins, thus spins are uncorrelated with each other as long as |r⃗| ≫ ξ. Exactly at the critical
point the correlation length becomes infinite and Eq. (2.14) is no longer valid. Though, based
on experimental facts and studies on simplified lattices it has been realised that at the critical
point the correlation length follows a power law behaviour [3, 8, 9], i.e.,

G(r⃗) ∼ 1

|r⃗|d−2+η
, (2.15)

where η is called anomalous dimension, and it is a first example of a critical exponent. At
Sec. 2.2 we will discuss the set of critical exponents and the relations among them.

In order to characterize the transition and the separation between two (or more) phases,
it is useful to define a parameter, which will signify the onset of order at the phase transition.
This parameter is called order parameter and its definition depends each time on the particular
system of study. For the Ising model, this parameter is the magnetisation [Eq. (2.10)]. Above
the critical temperature T > Tc it is zero and the system is in the paramagnetic phase and
for T < Tc it takes non-zero values and the system is in the ferromagnetic phase.

There is also a close connection between the order parameter of the system and the
symmetries of the Hamiltonian. Setting H = 0 in Eq. (2.1), we see that the Hamiltonian is
invariant under a global flip of all spins (Z2-symmetry). At T > Tc the magnetisation is zero
and spins do not have a preferred orientation, thus the symmetries of the Hamiltonian are
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preserved. For T < Tc the majority of spins are aligned to a specific direction (either up or
down), hence the system in that phase has less symmetries than the Hamiltonian. This is
known as spontaneous symmetry breaking, see, e.g., Refs. [8, 55]. For finite systems though,
such a break of symmetry will never occur, as for T < Tc the two ground states are equivalent
and the system spends equal time in both states (for a sufficiently long time), resulting in a
zero average magnetisation and hence the absence of a phase transition, see e.g., Refs. [57, 59].
This is also true though for the case where the number of spins is infinite, i.e., thermodynamic
limit, and in the absence of a magnetic field. In order to break the symmetry then one has to
introduce a magnetic field, which after the thermodynamic limit is taken, we set H to zero.
The magnetic field aligns all spins to the direction of the field, meaning that one out of the
two ground states is selected. After the thermodynamic limit is taken, setting H = 0 would
result the spins to maintain their position, since flipping each one separately would require
an infinite amount of energy. Lastly, note that the symmetry can be also broken if we “force”
the spins on the boundaries to point in the same directions and then take the thermodynamic
limit [56].

One of the striking features of phase transitions is the concept of universality, see, e.g.,
Refs. [61, 62]. It was experimentally realised that systems of different nature could have
the same critical behaviour, as long as they have the same dimensionality, symmetry of the
order parameter, and range of interactions. This means that the critical behaviour is inde-
pendent of the microscopic details, and different systems could be grouped into broad classes
characterised by the same critical properties, which are called universality classes. This pro-
vides a major aid, as one can characterise the critical behaviour of a certain class of systems,
by studying the simplest possible model of that class. Although initially experimentally re-
alised, universality is well-justified in the context of the renormalization group, which will be
presented in the next section (Sec. 2.2).

2.2 Renormalization Group

In the development of the theory of phase transitions many characteristic features were ex-
tracted mainly from experimental data or theoretical assumptions, e.g., relations between
scaling exponents, Widom’s scaling hypothesis [63], universality. Renormalization group (RG)
theory provides the appropriate description of phase transitions where the above facts arise
naturally from the underlying theory. The theory was initiated by Kadanoff [11] and it was
further developed by Wilson [12–14]. In principle, RG performs a coarse-graining transfor-
mation to the degrees of freedom of the system, which results in decreasing their number and
changing the length scales of the system. At the critical temperature though, the correlation
length is infinite and the system is scale invariant, thus a change of scales under this coarse-
grained procedure will not change the properties of the system. The points where the system
is invariant under the RG transformation are called fixed points. Besides the original papers
of Kadanoff and Wilson, a discussion regarding the RG theory can be found in Refs. [3, 5–9,
64].

Let us consider an arbitrary system which is described by a Hamiltonian H. In what
follows we will absorb the factor β = 1/kBT into the various parameters in H, i.e., H →
H/kBT . This is known as the reduced hamiltonian. We introduce the renormalization group
operator R which transforms H to a new Hamiltonian H′, by reducing the number of degrees
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of freedom from N to N ′. The latter defines the scale factor b, as bd ≡ N/N ′, where d is the
dimension of the system. The two Hamiltonians are related as follows:

H′ = RH. (2.16)

For example in a magnetic system spins can be reduced by some coarse-graining procedure,
where we replace a block of spins by a single spin according to some rule. This is known as
block-spin transformation. Specifically, consider that we partition the lattice of H in Eq. (2.1)
into blocks of length b, then each block will contain bd spins. At each block i we now define
a new spin variable σ′

i according to the following rule:

σ′
i =

{
+1,

∑
j∈block σj > 0

−1,
∑

j∈block σj < 0
. (2.17)

This is called the majority rule, as the sign of each spin σ′
i is determined by the majority of

spins in the block [8, 65]. Note that in the case where the number of +1 spins is equal to
the number of −1 spins in the block, one can proceed by choosing the value of σ′

i at random,
giving equal probability to plus or minus sign. Thus, the renormalized Hamiltonian H′ will
have N ′ spins, which will take ±1 values according to the rule of Eq. (2.17). Another rule
that works quite well for one dimensional systems is the decimation rule, see, e.g., [8].

As the RG transformation only involves the reduction of the number of spins, the Hamil-
tonians H,H′ should still describe the same system, which means that the partition functions
are invariant under this transformation:

ZN ′(H′) = ZN (H). (2.18)

Rewriting now the free energy F to the reduced free energy, i.e., F → F/kBT , we have

f(H) =
F (H)

N
=

1

N
lnZN (H) =

b−d 1

N ′ lnZN (H) =

b−d 1

N ′ lnZN ′(H′) = b−df(H′), (2.19)

where f is the reduced free energy per spin. Thus, the free energy of the two Hamiltonians
are related by the scale factor b. This is the starting point for the extraction of the critical
exponents, as we will see later on in this section.

Now the next step is to study the behaviour of H near the fixed point. For that let us
express the Hamiltonian as

H =
∑
i

KiAi, (2.20)

where Ai are local operators which are functionals of the degrees of freedom of the system,
and Ki is its conjugate field, i.e., coupling constants. Let us denote as K ≡ {K1,K2, . . . ,Kn}
the vector which describes the position of the system in the multi-dimensional parameter
space. The RG transformation corresponds then to a change (move) in this parameter space
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K ′ = RK. (2.21)

If the system is at a fixed point of R it remains at that point,

K = RK. (2.22)

Now under the RG transformation the length scales are reduced by a factor b. Hence, we
can write for the correlation length

ξ(K ′) = ξ(K)/b. (2.23)

Since the correlation length decreases after an RG transformation, this means that the system
moves away from the critical point. Though, if we are at the fixed point

ξ(K) = ξ(K)/b, (2.24)

which indicates that ξ is either infinite of zero. The ξ = ∞ fixed points are called critical
fixed points and the ξ = 0 trivial fixed points.

If our system is close to a fixed point, K∗, then Kn = K∗
n + δKn. Performing an RG

transformation K ′ = RK, we can write K ′
n as

K ′
n = K∗

n +
∑
m

∂K ′
n

∂Km

∣∣∣∣
Km=K∗

m

δKm +O
(
(δK)2

)
=

K∗
n +

∑
m

MnmδKm +O
(
(δK)2

)
, (2.25)

where

Mnm =
∂K ′

n

∂Km

∣∣∣∣
Km=K∗

m

(2.26)

is the linearised RG transformation close to the fixed point K∗.

We denote the corresponding eigenvalues of the M matrix as λi, and we note that these
should depend on the values of the scaling factor b, λi(b). If we perform two successive RG
transformations of scales b1, b2, then the total scale will change as b1b2. For the eigenvalues
that means [5, 6]

λi(b1)λi(b2) = λi(b1b2). (2.27)

Additionally, if the scale factor is b = 1, meaning that the RG transformation leaves the
system unchanged, then λi(1) = 1. Consequently, this property in connection with Eq. (2.27)
implies that the eigenvalues λi(b) are of the form:

λi(b) = byi , (2.28)

where yi is a number independent of b.

Neglecting now non-linear terms, Eq. (2.25) can be rewritten as
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δK ′ = MδK. (2.29)

Expressing now δK in the base of the eigenvectors µi of the matrix M, Eq. (2.29) becomes:

δK ′ = M
∑
i

ciµi =
∑
i

ci b
yi µi =

∑
i

c′i µi, (2.30)

where ci, c
′
i are coefficients satisfying the relation c′i = byici. We see then that close to the

fixed point the flow of the Hamiltonian in the parameter space depends strongly on the initial
state ci and on the sign of yi. If yi > 0 then c′i increases under successive RG transformations
and the system flows away from the fixed point. In that case the µi eigenvector is said to
be relevant. If yi < 0 then c′i decreases under successive RG transformations and the system
is moving closer to the fixed point. In that case the µi eigenvector is said to be irrelevant.
If now yi = 0, c′i is not changing, and we cannot conclude from these linearised equations
whether the system moves to or away from the fixed point. In that case the µi eigenvector is
said to be marginal.

Under the RG transformation the free energy of Eq. (2.19) has contributions from an
analytic and a non analytic part, which both are functions of K. The analytic part of
the free energy can be understood as a background term, which does not exhibit any singular
behaviour, even at the critical point [7, 8, 64]. Since we are interested in the critical behaviour
of the system we can neglect the analytic part, and thus Eq. (2.19) can be written as

fs(K) = b−dfs(K
′), (2.31)

where the subscript s stands for the singular (non analytic) part of the free energy. Near the
fixed point K,K ′ can be written in terms of {ci, c′i} respectively and recalling that c′i = byici
we can write

fs(c1, c2, c3, . . . ) = b−dfs(b
y1c1, b

y2c2, b
y3c3, . . . ). (2.32)

For a magnetic system, such as the Ising model, the two relevant variables are c1 = t, c2 =
h, where t ≡ (T − Tc) /Tc and h ≡ H/kBT , and we will rename y1, y2 to yt, yh, which is
considered as the standard notation. Thus, Eq. (2.32) can be written as

fs(t, h, c3, . . . ) = b−dfs(b
ytt, byhh, by3c3, . . . ). (2.33)

Note that c3 is an irrelevant variable (y3 < 0), which should vanish in the limit of infinite
RG transformations; the same applies to the rest of the irrelevant variables (if present).
With appropriate derivations of Eq. (2.33) we can extract the relation between yt, yh and the
critical exponents. For example, we consider here the specific heat at zero field which scales
as C|H=0 ∼ t−α. Hence3,

C|h=0 ∼
∂2fs
∂t2

∣∣∣∣
h=0

= b−d+2yt f̃(bytt, 0) = td/yt−2f̃(±1, 0), (2.34)

from which we can read off that α = 2 − d/yt. Note that for the last step in Eq. (2.34) we
proceed by setting byt |t| = 1, which moves the temperature dependence to the prefactor while

3Note that we have set the irrelevant variables to zero here.
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leaving the function with a constant argument. Following the same procedure for the rest of
the observables, the critical exponents can be expressed as follows [5, 6, 8]:

α = 2− d

yt
, (2.35a)

β =
d− yh
yt

, (2.35b)

γ =
2yh − d

yt
, (2.35c)

δ =
yh

d− yh
, (2.35d)

where we can immediately deduce the following scaling relations

a+ 2β + γ = 2, (2.36)

γ = β (δ − 1) . (2.37)

Additional exponents could be derived from the scaling form of the correlation function,
which under an RG transformation can be written as [8]

G (r⃗, t, h, c3, . . . ) = b−2(d−yh)G
(
b−1r⃗, bytt, byhh, c3, . . .

)
. (2.38)

Setting byt |t| = 1 and h = 0 to Eq. (2.38) and omitting the irrelevant variables we obtain

G (r⃗, t) = t2(d−yh)/ytG
(
r⃗t1/yt , 1

)
. (2.39)

From Eq. (2.14) we see that for large distances r⃗, G behaves as e−|r⃗|/ξ, thus we can identify

the correlation length as ξ ∼ |t|−1/yt . Additionally, as the critical temperature is approached
ξ diverges with an exponent ν as ξ ∼ |t|−ν , and consequently we have [7, 8]

ν =
1

yt
. (2.40)

At the critical point t = 0, according to Eq. (2.38) G takes the form

G (r⃗) ∼ |r⃗|−2(d−yh) , (2.41)

where we have set h = 0, and b = |r⃗|; the irrelevant variables are ignored. Thus, comparing
Eq. (2.41) with Eq. (2.15) we have for the critical exponent η:

η = d+ 2− 2yh. (2.42)

From ν and η we can write two more relations among the critical exponents [6–8]

a+ dν = 2, (2.43)

γ = ν (2− η) , (2.44)
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where Eq. (2.43) is called hyperscaling relation. This is valid below and at the upper critical
dimension du; du is the dimension above which the critical exponents are assigned their mean
field values [7, 8]. For d > du not only Eq. (2.43) fails but the whole RG description, as
presented above, needs to be reformulated in order to predict the correct exponents [8, 66].
For a discussion regarding hyperscaling see Ref. [67].

2.3 Finite-size Scaling

Phase transitions occur in the limit where the size of the system goes to infinity, where
thermodynamic quantities approach zero or they diverge as the critical point is approached.
On the other hand, in experiments on real systems or numerical methods, such as Monte
Carlo simulations, the size of the system is finite. Hence, a question arises: Is there a way
from which we can probe the asymptotic behaviour of the infinite system by studying systems
of finite size? The answer is affirmative, and it can be accomplished under the framework of
finite-size scaling (FSS); see Refs. [68–71] for some standard bibliography.

Using the renormalization group language of Sec. 2.2, the free energy density for a finite
system of linear size L can be expressed under a renormalization group transformation of a
scaling factor b as [70, 72, 73]

f
(
t, h, L−1

)
= b−dfs

(
bytt, byhh, by1u, bL−1

)
+ fa (t, h) , (2.45)

where the relevant field variables t ≡ (T − Tc)/Tc and h ≡ H/kBT are the reduced temper-
ature and magnetic field, respectively. The exponents yt and yh are the relevant (positive)
eigenvalues of t and h. For simplicity we consider only one irrelevant scaling field u which
corresponds to the largest irrelevant (negative) eigenvalue y1. Using the standard notation
[74, 75] we define y1 ≡ −ω, where ω is the leading correction-to-scaling exponent. The func-
tion fs is the singular part of the free energy density, and fa is the analytic part resulting
from the RG transformation [75]. By setting now L = b, Eq. (2.45) gives

f
(
t, h, L−1

)
= L−dfs

(
Lytt, Lyhh, L−ωu

)
+ fa (t, h) . (2.46)

Taking appropriate derivates of Eq. (2.46) with respect to t and h, various thermodynamic
quantities can be extracted. For example, the derivative of f with respect to h gives the
magnetisation per spin,

m = −∂f

∂h
= L−d+yh m̃

(
Lytt, Lyhh, L−ωu

)
= L−β/ν m̃

(
Lytt, Lyhh, L−ωu

)
, (2.47)

where the β/ν exponent results from the scaling relations of Eqs. (2.35c) and (2.40). Addi-
tionally, the analytical part of the free energy fa does not scale with L, thus as far as the
scaling behaviour of m is concerned, it can be neglected [8]. Considering similar derivatives
of the free-energy density, the specific heat, and magnetic susceptibility scaling forms can be
obtained. Additionally, if we are interested in the case of zero magnetic field (h = 0) and
we neglect corrections to scaling the above quantities (all considered per spin here) take the
form
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c = Lα/ν c̃
(
tL1/ν

)
, (2.48a)

m = L−β/νm̃
(
tL1/ν

)
, (2.48b)

χ = Lγ/νχ̃
(
tL1/ν

)
, (2.48c)

where c̃, m̃, and χ̃ are called scaling functions, and they are independent of L, up to the
point where corrections to scaling are not important. Note that corrections to scaling can be
neglected if we are close to the critical point and for relatively large system sizes [74].

Thus, one can utilise Eq. (2.48), to extract the critical exponents. Additionally, the critical
exponent ν and critical temperature Tc need also to be obtained. For the exponent ν, Binder
showed [76] that the probability distribution of the magnetisation can be expressed as

P (m) = Lβ/νP̃
(
ξ/L,mLβ/ν

)
, (2.49)

where P̃ is a scaling function. The n-th order cumulant of the magnetisation can then be
expressed as [75, 76]

⟨mn⟩ ≡ Lβ/ν

∫
dmmnP̃

(
ξ/L,mLβ/ν

)
∼ L−nβ/ν

∫
dz znP̃ (ξ/L, z) = L−nβ/νP̃k(ξ/L), (2.50)

where z = mLβ/ν and P̃k as a new scaling function. The fourth-order Binder cumulant of the
magnetisation [76], is defined as4

Q = 1−
〈
m4
〉

3 ⟨m2⟩2
, (2.51)

which is a dimensionless quantity, that does not scale with the size of the system. It is easy to
check from Eqs. (2.50) and (2.51), that the maximum of the derivative of the Binder cumulant
with respect to temperature scales as

dQ

dT

∣∣∣∣
max

∼ L1/ν . (2.52)

Thus, one can use Eq. (2.52) to obtain the exponent ν. An alternative method for the
estimation of the ν exponent is proposed in Ref. [74]. In that, ν is estimated by considering
logarithmic derivatives of powers of the magnetisation with respect to temperature, i.e.,

∂

∂T
ln ⟨mn⟩ = 1

⟨mn⟩
∂

∂T
⟨mn⟩ = 1

T 2

(
⟨mnE⟩
⟨mn⟩

− ⟨E⟩
)
, (2.53)

where the maximum of the slope should scale similar to Eq. (2.52) [74], i.e.,

4Similar cumulants can be defined for the internal energy, i.e., QE = 1− ⟨E4⟩
3⟨E2⟩2 .
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∂ ln ⟨mn⟩
∂T

∣∣∣∣
max

∼ L1/ν . (2.54)

After ν has been estimated, one can proceed with the estimation of the critical temper-
ature. For that, one well established technique is known as the crossing method [76], where
one considers pairs of system sizes (L1, L2) , with L1 < L2, and the critical temperature is
determined from the crossings of these curves. Specifically, it can be shown [76, 77] that the
temperatures where such pairs of system sizes cross Tcross(L) scales with the system size as

Tcross (L, r) = Tc + a3L
−1/ν−ω

(
r−ω − 1

r1/ν − 1

)
, (2.55)

where a3 is a non-universal scaling parameter, r ≡ L2/L1 is the ratio of the two system sizes,
ω is the leading correction-to-scaling exponent, and L can be either the smaller (L1) or the
larger (L2) system size of each considered pair.

A more commonly used approach for the estimation of the critical point, is from the
location of the peaks of various thermodynamic quantities, such as the specific heat or the
magnetic susceptibility [74]. For finite systems the location of the peaks correspond to the
position where the scaling function becomes maximum, cf. Eqs. (2.48a) and (2.48c). Thus, if
the maximum, say of the specific heat, is at L1/νt∗ ≡ x∗ then one can write

T ∗(L)− Tc

Tc
L1/ν = x∗, (2.56)

or equivalently

T ∗(L) = Tc + Tc x
∗L1/ν . (2.57)

Thus the location of the peaks as a function of L creates a sequence of pseudo-critical points
T ∗(L), which approach the asymptotic temperature of the infinite system Tc as the size of the
system increases. Note, that Eq. (2.57) is valid as long as the sizes of the systems are relatively
large and for temperatures close to Tc, otherwise one has to consider scaling correction terms
[74].

If we now want to calculate α/ν, β/ν or γ/ν, an a priori knowledge of the infinite-volume
critical temperature results in constant expressions for the scaling functions of Eqs. (2.48).
Thus, exponent ratios could be determined by plotting the involved observable as a function
of L on a log-log plot and calculating the slope (using a fitting routine) of this straight line.
This can also be accomplished by considering the pseudo-critical points T ∗(L), as described
above, which results again in constant scaling functions. In any case, however, if corrections
to scaling are strong then the above procedure is no longer valid and one has to take them
into account [74], i.e.,

A = b1L
x
(
1 + b2L

−ω
)
, (2.58)

where A is one of the c, m, χ of Eqs. (2.48) with x the appropriate exponent, ω is the leading
correction-to-scaling exponent and b1, b2 are non-universal scaling parameters.

Practical implementations of all the above, as well other, FSS schemes have been devel-
oped over the years to the analysis of critical phenomena, see Refs. [64, 74, 78–82] for some
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examples. From the above discussion it is clear that FSS is an important tool for the identifi-
cation of critical exponents. Although, the discussion here was limited to the case where the
external parameters were the temperature and the magnetic field, same considerations are
applicable to other systems which exhibit critical behaviour, provided that a suitable control
parameter(s) exist. In the following section percolation is discussed, which is one of simplest
models that exhibits a phase transition, and has a close connection with the study of phase
transitions in spin systems. In this framework, FSS is an important tool in the investigation
of the critical properties of percolation models and it has been extensively used in this thesis
too.

2.4 Percolation

2.4.1 Ordinary percolation

Percolation is one of the simplest models that exhibits a phase transition [18–20]. In order
to define the model let us consider a d-dimensional lattice where each site is occupied in-
dependently with a probability p ∈ [0, 1]. A cluster is defined as an object, constituted of
neighbouring occupied sites. For small values of p we have few clusters of small size but for p
values close to one there exists a cluster that spans the whole lattice with size proportional to
the system. The size of this spanning cluster becomes infinite as the size of the system goes
to infinity. The existence of an infinite spanning cluster is related to a value pc called the
percolation threshold, below which only clusters of finite size emerge while above it an infinite
cluster appears in the infinite system. Percolation focuses on the study of the properties of
such clusters.

The above system defines the site percolation problem. Another variant is the bond per-
colation, where all sites are occupied and bonds are placed randomly between neighbouring
sites in the lattice. A cluster is then defined by groups of sites connected by bonds. Further
modifications of percolation exist ranging from the site-bond percolation to more exotic vari-
ants such as explosive and bootstrap percolation, which are beyond the scope of the present
thesis; for different variants of percolation see e.g., Ref. [83] and references therein. Now
we turn our attention to the basic observables which are necessary for the description of the
percolation transition.

From the above discussion it is clear that the percolation transition is evidenced by the
appearance of a spanning cluster for p > pc, while only finite-size clusters occur for p < pc
[19]. Exactly at pc there is no spanning cluster with probability one, but rather very large
clusters [84]. From that we define the spanning probability R(p), which for a fixed value of
p gives the probability that a spanning cluster occurs. For finite systems, R is a smooth
increasing function of p, which varies from 0 at p = 0 to 1 at p = 1. As the size of the
system increases, R(p) becomes sharper near pc and transforms into a step-function when the
size of the system is infinite, where R(p) = 0 for p < pc and R(p) = 1 for p > pc. Another
quantity of interest is the percolation strength, P∞(p), which denotes the probability that a
site belongs to the infinite cluster. For p < pc, P∞(p) is zero as there is no spanning cluster
while it takes non-zero values for p > pc and P∞ = 1 at p = 1 meaning that all spins belong
to the cluster. Similar to magnetisation of the Ising model, P∞ serves as an order parameter
for the percolation problem. Additionally, a useful quantity is the cluster size distribution
ns(p), which denotes the number of finite size clusters containing s sites, per lattice site. Since



18 CHAPTER 2. THEORETICAL BACKGROUND

s ns(p) gives the probability that a site belongs to a finite size cluster of size s, we can write
the following relation [19] ∑

s

sns(p) + P∞(p) = p, (2.59)

where the sum is restricted to finite size clusters.
Now, the average cluster size S of the finite size clusters can be computed as follows

S(p) =

∑
s s

2ns(p)∑
s sns(p)

. (2.60)

Note that the sums in Eq. (2.60) are restricted to finite size clusters only. The above definition
is consistent with what the average cluster size would be if we randomly pick a site that belongs
to a finite cluster, whereas

∑
s sns(p)/

∑
s ns(p) is consistent with what the average cluster

size would be if every cluster was chosen with equal probability [19].
We can now define the correlation function GC(r), which gives the probability that two

sites at distance |r⃗| belong to the same cluster5. Away from the critical point and for large
distances GC(|r⃗|) decays exponentially,

GC(r⃗) ∼ e−|r⃗|/ξ, |r⃗| ≫ ξ, (2.61)

where the correlation length ξ is related to the average distance between two sites that belong
to the same cluster and it can be defined from the second moment of the correlation function
as [19]

ξ2 =

∑
r r

2GC(r⃗)∑
r GC(r⃗)

. (2.62)

This is known as the second moment correlation length6.
The m-th moment of the cluster size distribution is given as Mm(p) =

∑
smns(p). Several

observables, as the ones introduced above, can be written in terms of specific moments of the
cluster size distribution as [18, 19, 83]

Average number of clusters, A(p) : A(p) ∼
∑

ns(p), (2.63a)

Percolation strength, P∞(p) : P∞(p) ∼ 1−
∑

s ns(p), (2.63b)

Average cluster size, S(p) : S(p) ∼
∑

s2 ns(p). (2.63c)

Exactly at pc, the correlation length diverges, ξ → ∞, such that the system is scale
invariant and the percolating cluster behaves as a self-similar (fractal) object. This is valid
also for p ̸= pc as long as the length-scale L on which the system is investigated is much
smaller than the correlation length; here L can be regarded as the scaling window on which
we observe the infinite system or the linear size of a finite system. For L ≪ ξ the mass of the
cluster M will scale as M ∼ LD, where D is the fractal dimension of the cluster. Above pc

5The subscript C declares that, such observables are defined in the context of percolation.
6Note that the ξ’s as defined in Eqs. (2.61) and (2.62) are not equivalent, though their difference is quite

small; see the discussion in Ref. [85].
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we have L ≫ ξ, and the infinite cluster is a homogeneous object of mass M ∼ ξD(L/ξ)d [19],
where d is the dimensionality of the system. Thus, the scaling behaviour of the percolating
cluster can be summarized as follows,

M ∼

{
LD, L ≪ ξ

ξD(L/ξ)d, L ≫ ξ.
(2.64)

In the vicinity of pc the cluster size distribution takes the form [19]

ns ∼ s−τf (c (p) s) , (2.65)

where τ is a critical exponent, and c (p) vanishes at pc as c (p) ∼ |p− pc|1/σ, which defines
the σ exponent. As a consequence, near pc observables exhibit a power-law behaviour of the
form [18, 19]

Average number of clusters, A(p) : A(p) ∼ |p− pc|2−α , (2.66a)

Percolation strength, P∞(p) (p > pc) : P∞(p) ∼ (p− pc)
β , (2.66b)

Average cluster size, S(p) : S(p) ∼ |p− pc|−γ , (2.66c)

Correlation length, ξ(p) : ξ(p) ∼ |p− pc|−ν , (2.66d)

where α, β, γ, ν are the critical exponents. These exponents, including D, are not indepen-
dent and can be expressed in terms of τ, σ as [18, 19]

2− α =
τ − 1

2
, β =

τ − 2

σ
, γ =

3− τ

σ
, D =

d

τ − 1
, ν =

τ − 1

d σ
, (2.67)

from which we can obtain the following relations

α+ 2β + γ = 2, D =
1

ν
(β + γ) . (2.68)

Assuming now that hyperscaling holds we have

d ν = 2− α, D = d− β

ν
. (2.69)

The last equation of Eq. (2.69) can be obtained from the fact that the mass M is proportional
to LdP∞ and equating this with Eq. (2.64) and expressing everything in terms of (p− pc)
with the use of Eqs. (2.66b) and (2.66d).

In two dimensions exact results give τ = 187/96 and σ = 36/91, and in three dimensions
best estimates are τ ≈ 2.18 and σ ≈ 0.45 [19]. The upper critical dimension is du = 6 and
the obtained exponents for d ≥ 6 are α = −1, β = γ = 1, ν = σ = 1/2 and τ = 5/2. Thus,
while Eqs. (2.68) holds for any dimension, Eqs. (2.69) becomes invalid for d > 6.
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2.4.2 Correlated percolation

In Sec. 2.4.1 we introduced the theory of percolation, as one of the simplest models that
possesses a phase transition. The crucial feature of this model was that sites on the lattice
were occupied independent of each other. However, percolation can also be extended to the
case where correlations among sites exist. One example, which is closely related to critical
phenomena, is the use of clusters in the study of liquid-gas or ferromagnetic-paramagnetic
transitions. In such cases one attempts to transform the problem of interacting particles or
spins (for the case of magnets) to a problem of non-interacting clusters [18]. If such clusters
are properly defined then one can utilise them to study the critical behaviour of the system.
The properties of such clusters were described by Fisher [86] in his droplet model, where the
constructed clusters should percolate at the transition point, the correlation length of the
clusters should be the same with that of the actual model, and that the mean cluster size
should diverge as the susceptibility.

Specifically, for the Ising model, these clusters were initially constructed by neighbouring
spins in the same state (geometrical clusters), and it was believed that such clusters should
describe the critical behaviour of the system. It was shown numerically [87] and then rig-
orously proven [29–31], that in two dimensions such clusters percolate at the Ising critical
point, however the average cluster size diverge with an exponent different from the one of
the magnetic susceptibility - this was shown by using series expansions at [88] and later it
has been shown exactly at [89]. Additionally, in three dimensions it was shown numerically
[90] that the “minority” spins percolate at a temperature lower than the critical one. As
it turned out geometrical clusters are too big to properly describe the critical behaviour of
the system. One reason is because of correlations and the other is purely geometrical [26,
91]. At infinite temperature and zero magnetic field there are no correlations among spins
resulting in a concentration p = 0.5 of up and down spins. If spins are placed in a lattice with
pc < 0.5, e.g., simple cubic lattice with pc ≈ 0.3, percolating clusters of up and down spins
will occur. Thus, even in the absence of correlations among spins percolating clusters will
emerge, making geometrical clusters inadequate for the description of the critical behaviour
of the system.

The appropriate geometrical description was given by Fortuin and Kasteleyn [22–25],
where they showed that the q-state Potts model is equivalent to a site-bond percolation
problem (random cluster model) [92]. Given the connection between these models, clusters
are defined as neighbouring spins with same orientation which are also connected by an
additional bond of certain probability. These Fortuin and Kasteleyn clusters (FK) percolate
at the critical temperature of the system, and more importantly they encode the critical
behaviour of the system, resulting in critical exponents identical to the thermal ones.

2.4.3 Random cluster model

In this section we present the random cluster model and its connection with the q-state Potts
model. Here we will follow a more mathematical representation compared to Sec. 2.4.1, as
we believe that it will address in a more concrete way the key features of the model.

We consider a graph (lattice) with V vertices and E edges, i.e., G = (V,E). On each
edge e ∈ E we assign a vector ω = (ω (e) : e ∈ E), where we consider the edge e to be open
if ω (e) = 1 and closed if ω (e) = 0. The set of possible bond configurations is denoted as



2.4. PERCOLATION 21

Ω = {0, 1}E , members of which are the vectors ω(e). We denote by C(ω) the number of
connected components (clusters).

Let now p ∈ [0, 1] be the probability that a bond is open, respectively (1− p) for a bond
to be closed, and each cluster is weighted by a factor of q ∈ (0,∞). The measure ϕp,q on a
configuration ω ∈ Ω is given as [92]

ϕp,q (ω) =
1

ZRC
qC(ω)

∏
e∈E

pω(e) (1− p)1−ω(e) , (2.70)

where ZRC is the partition function of the random cluster model given by

ZRC(p, q) =
∑
ω∈Ω

{
qC(ω)

∏
e∈E

pω(e) (1− p)1−ω(e)

}
. (2.71)

Note that setting q = 1 to Eq. (2.71) we obtain the ordinary bond percolation, i.e., each edge
is open or closed independently with probability p and (1− p) respectively.

Let us now define the q-state Potts model, where on each vertex i of G we assign a variable
σi which can take one of the 1, 2, . . . , q possible values. We can then define as sample space
the set Σ = {1, 2, . . . , q}V and a configuration σ = (σi : i ∈ V ) ∈ Σ. Thus, the Hamiltonian
of the model can be written as

H = −J
∑
e∈E

δσiσj , (2.72)

where δij is the Kronecker delta, and J is the edge-strength. For q = 2 we can rewrite δσiσj

as 1
2 (σxσy + 1), which apart from an unimportant constant is the Ising model for coupling-

strength J ′ = 2J . A probability measure is given then as

πβ,q (σ) =
e−βH(σ)

ZP
, (2.73)

where β is the inverse temperature β = 1/T (where the Boltzmann’s constant is kB = 1) and
ZP is the partition function of the Potts model. Fortuin and Kasteleyn showed that the Potts
models can be recast as random cluster models, and thermal quantities of the Potts model can
be understood via the cluster properties of the random cluster models [22–25]. The connection
between the two models can also be seen under the representation of Edwards and Sokal [92,
93], where they defined a site-bond-correlated percolation problem of interacting Potts spins
along with bond variables which are activated by a certain choice of the bond probability
p = 1− e−βJ . Starting from the product sample space Σ× Ω, where Σ = {1, 2, . . . , q}V and
Ω = {0, 1}E , we can define a measure µ(σ, ω) as

µ(σ, ω) = Z−1
∏
e∈E

{
(1− p) δω(e),0 + p δω(e),1 δe(σ)

}
, (2.74)

where δe(σ) is δσiσj , and Z is the partition function of this product space which is defined as

Z =
∑

(σ, ω)∈Σ×Ω

∏
e∈E

{
(1− p) δω(e),0 + p δω(e),1 δe(σ)

}
. (2.75)
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Consequently the measure of the Potts Eq. (2.73) and the measure of the random cluster
model Eq. (2.70) are coupled via the measure of Eq. (2.74), which is called the Edwards-Sokal
coupling.

Under this representation we can derive the following [92, 93]:

1. The marginal measure on Σ, µ1(σ) =
∑

ω∈Ω µ(σ, ω), is the Boltzmann measure of the
q-state Potts model at temperature β:

µ1(σ) =
1

ZP
exp

{
−β

∑
e∈E

δe(σ)

}
.

2. The marginal measure on Ω, µ2(ω) =
∑

σ∈Σ µ(σ, ω), is the random cluster model with
p, q parameters:

µ2(ω) =
1

ZRC
qC(ω)

∏
e∈E

pω(e) (1− p)1−ω(e) .

3. The partition functions ZP, ZRC satisfy the following equation

ZRC = e−β|E|ZP,

where |E| is the number of edges.

4. The conditional measure µ(σ |ω) on Σ is obtained by assigning on each connected
component (cluster) a value chosen equiprobably from the set {1, 2, . . . , q}, thus all
spins that belongs in the same cluster have the same value.

5. The conditional measure µ(ω |σ) on Ω is obtained by setting ω(e) = 0 if for the edge e,
which connects the i, j vertices, σi ̸= σj and if σi = σj then ω(e) = 1 with probability
p or ω(e) = 0 with probability 1− p.

6. The probability that two vertices i, j belong to the same cluster is proportional to the
two-point correlation function of spins σi, σj .

Therefore, we see that the Edwards-Sokal coupling provides a clear connection between
the Potts and the random cluster model. As a final remark to this section we note that the
above conclusions resulting from the Edward-Sokal representation can be extended to the
case where the interactions among spins are generally different, as long as they are positive.
Unfortunately, in the presence of frustration (see Sec. 2.5) this is no longer valid.

2.4.4 Geometrical clusters

Although intuitively plausible, geometrical clusters fail to properly describe the phase tran-
sition of the q-state Potts model, whereas the FK formulation turns out to be the “success
story” behind such a description. Nonetheless, geometrical clusters still possess features which
make them interesting to study on an individual basis. Geometrical clusters of the q-state
Potts model define a site correlated percolation process which still undergoes a (percolation)
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transition. In the limiting case of infinite temperature, T → ∞, one recovers ordinary (site)
percolation and for T = 0 one arrives at the FK definition of clusters (p = 1). Additionally, it
has been argued that geometrical clusters provide a description of the tricritical Potts model
for q ≤ 4 in two dimensions, which also reflects a connections between geometrical and FK
clusters [32, 33].

Moreover, cluster boundaries of two-dimensional critical systems have been studied an-
alytically in the framework of stochastic Loewner evolution (SLE). SLE was introduced by
Schramm [94] based on the work of Loewner, and is a subject of probability theory where
families of random planar curves with conformally invariant probability measures are gener-
ated. Several results of critical exponents that were conjectured before under the Coulomb
gas mapping [34–38] or conformal invariance [39] have been rigorously obtained from this
method (for an overview see Refs. [95–98]).

In two dimensions the q-state Potts model undergoes a continuous phase transition for
q ≤ 4 and turns to first-order for q > 4. This has been initially stated by Baxter [99], in
connection with other statistical models, but renormalization group approaches could not
reveal the first-order character for q > 4. By extending the pure model to include vacant
sites Nienhuis et al. [100] managed to show the first-order nature of the transition and
provide indications of a relation between critical and tricritical behaviour. Specifically, the
geometrical clusters of the pure Potts model encode the tricritical behaviour of the site-diluted
Potts model. Stella and Vanderzande showed [89, 101] this connection for the q = 2 Potts
model, i.e., Ising model, and the q = 1 tricritical Potts model. In line with arguments from
renormalization, conformal invariance, and numerical simulations they found that the critical
exponents of the geometrical clusters of the two-dimensional Ising model are given by the
critical exponents of the q = 1 tricritical Potts model. These results were then generalized
for q ≤ 4 [102, 103]. The connection between critical and tricritical branches also dictates a
connection between geometrical and FK clusters, i.e., the two cluster types are mapped with
the same transformation that maps the critical and tricritical regimes.

Following the notation of [32], the q-state Potts model can be parametrized as follows [35]

√
q = −2 cos(π/κ), 1 ≤ κ ≤ 2, and κ =

1 +m

m
, m = 1, 2, 3, . . . (2.76)

where κ is connected to the central charge c via [39]

c = 1− 6 (1− κ)2

κ
. (2.77)

From Eqs. (2.76) and (2.77) we see that κ = 2, 3/2, 4/3, 6/5 correspond to q = 0, 1, 2, 3, 4
Potts models with c = −2, 0, 1/2, 4/5, 1, respectively.

With the above formulation various fractal dimensions of the FK clusters can be expressed
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in terms of κ [37, 104, 105]

yt = 1− 3

2
κ, (2.78a)

D = 1 +
1

2κ
+

3

8
κ, (2.78b)

Dh = 1 +
κ

2
, (2.78c)

Dep = 1 +
1

2κ
, (2.78d)

Drb = 1− 3

2κ
+

κ

2
, (2.78e)

where yt = 1/ν is the thermal eigenvalue, D the fractal dimension, Dh the fractal dimension of
the hulls, Dep the fractal dimension of the external perimeter, and Drb the fractal dimension
of the red bonds. In ordinary percolation sites are considered in the hull, if they belong to
the cluster and are neighbours with vacant sites which are connected to the outside. External
perimeter sites are vacant sites connected to the outside of the cluster, which neighbour sites
that belong to the hull of the cluster. For both cluster boundaries see Refs. [106, 107], also
see Ref. [33] for a nice illustration of the difference between hull and external perimeter sites.
The red bonds [26, 108] correspond to bonds that upon deleting one of them the cluster splits.
Additionally, the are certain relations among the various fractal dimensions introduced above,
see Ref. [32] and references therein.

The mapping of the two cluster types is reflected in the fact that both have the same
central charge [103]. From Eq. (2.77) it is easy to see that for given c the two values of κ
(κ+, κ−) satisfy the relations κ+κ− = 1, with κ+ ≥ 1 and κ− ≤ 1. Thus, the central charge
is invariant under the transformation κ → 1/κ, i.e., c(κ) = c(1/κ), where κ ≡ κ+. Applying
this transformation to the set of Eqs. (2.78) we obtain [32]

ygt = 1− 3

2κ
, (2.79a)

Dg = 1 +
1

2
κ+

3

8κ
, (2.79b)

Dg
h = 1 +

1

2κ
, (2.79c)

Dg
rb = 1− 3κ

2
+

1

2κ
. (2.79d)

These exponents are in agreement with the ones of the geometrical clusters for 1 ≤ κ ≤ 2 [89,
102, 103], hence the superscript g. Thus we can conclude that the geometrical clusters are
images of the FK clusters under the transformation κ → 1/κ. Finally, the external perimeter
of the FK clusters has no image under the transformation because geometrical clusters are
characterized by only one fractal dimension, i.e., Dg

ep = Dg
h [32, 33] .

The tricritical Potts branch can be parametrized as [39]

√
q = 2 cos

( π

m

)
= −2 cos

(
1 +m

m
π

)
= −2 cos

(
π

κ−

)
, (2.80)

where the last equation comes from the relation of κ with m at Eq. (2.76) and the fact that
κ− = 1/κ+ = 1/κ. Equation (2.80) states that the critical and tricritical regimes are mapped



2.5. SPIN GLASSES 25

onto each other via the transformation κ → 1/κ. At the same time, as we saw before, this
transformation maps the geometrical and FK clusters. Thus, we can conclude that for a given
central charge the FK clusters of the tricritical q-state Potts model are the geometrical clusters
of the pure q′-sate Potts model [32, 109]. Exact values of the several fractal dimensions and
their numerical verification are given in Refs. [32, 33, 109, 110].

In conclusion, geometrical clusters might not be the appropriate geometrical representa-
tion that describes the critical fluctuations of the Potts model, nonetheless its connection with
its diluted version is still of some significance. Additionally, the more sophisticated FK clus-
ters properly describe the phase transition, however they cannot be applied to systems which
are characterised by disorder. For example, in spin glass systems the presence of frustration
results in failure of the above description. Although spin glasses are a challenging problem on
its own terms, an appropriate cluster description would be beneficial for the understanding
of the model. We will come back to this point in Chap. 6, for now we continue our discussion
by describing some of the essential features of spin glasses.

2.5 Spin Glasses

Spin glasses are magnetic materials in which competition between ferromagnetic and antifer-
romagnetic interactions among magnetic moments (spins) leads to a magnetically disordered
phase at low temperatures. At this phase spins are “frozen” in random orientations and there
is no long-range order, leading presumably to a new kind of magnetic ordering. The inherent
complexity and rich properties of those systems, accompanied by a vast number of experimen-
tal realisations, have been stimulating the interest of many scientists (not strictly physicists)
over the last decades; thus exploring this novel and unconventional state of matter. In the
literature there is a plethora of scientific papers, review articles, books, etc., concerning the
study of spin glasses. Some of the standard references can be found in Refs. [42–47] and for
application of spin glasses to areas outside physics see Refs. [111, 112] and references therein.

Initially, spin glasses were introduced to describe the properties of magnetic alloys. These
are materials in which a small amount of magnetic impurity, typically Mn or Fe, is randomly
diluted inside a non-metallic magnetic host, e.g., CuMn or AuFe. Experiments on AuFe
[113] revealed a cusp in the magnetic susceptibility at low magnetic fields, signalling a new
ordered phase at low temperatures. On the other hand, the specific heat did not show
any singularity, but rather a broad maximum at higher temperatures than the peak of the
magnetic susceptibility. Additionally, neutron scattering and other experimental techniques
which concern the magnetic structure indicated that at low temperatures no long-range order
appears, with spins remaining frozen in random orientations. Finally, not only magnetic
alloys exhibit a spin-glass behaviour but a relatively broad class of materials ranging from
certain insulators, such as EuxSr1–xS, up to crystalline and amorphous materials. For an
extended review on the experimental results of spin glasses see Ref. [42].

Although the spin-glass behaviour arises from the competing ferromagnetic and antifer-
romagnetic interactions, the mechanisms on an atomic scale responsible for such interactions
differs substantially from one class of materials to the other. For the magnetic alloys it arises
from the Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions between the localized impu-
rity spins, mediated by the conduction electrons. Mathematically the interaction between
two spins separated by distance r can be expressed as
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J(r) = J0
cos (kF r + ϕ0)

(kF r)3
, (2.81)

where kF is the Fermi wavevector, and ϕ0, J0 are constants which depend on the material.
From Eq. (2.81) we see that as r changes, interactions change from ferromagnetic [J(r) > 0]
to antiferromagnetic [J(r) < 0] , and the interaction strength decreases as r increases. The
timescale of spin diffusion is considerably larger than the experimental timescales, thus for all
purposes interactions among spins are considered to be quenched. Additionally, as impurities
are randomly distributed inside the material, interactions among spins have equal probability
of being ferromagnetic or antiferromagnetic. These two features of spin glasses are often
called quenched disorder.

In 1975 Edwards and Anderson [114] proposed a simplified model that should capture the
main features of spin glasses, the so called Edwards-Anderson (EA) model. For that, let us
consider a d-dimensional lattice, where at each of its vertices, i, we place localized magnetic
moments (spins) and allow them to interact via a Hamiltonian

H = −
∑
⟨i,j⟩

Jijσiσj −H
∑
i

σi, (2.82)

where, as in Eq. (2.1), σi takes the values ±1, H is the external field, ⟨ , ⟩ indicates that the
sum is restricted to nearest neighbours, and Jij is a fixed random variable which can take
positive and negative values, and indicates the interactions between spins. Interactions among
spins can be chosen in several ways, though for simplicity we consider them as independent
random variables following the same distribution. Two common choices of distributions are
the Gaussian distribution, with mean zero and variance one

P (Jij) =
1√
2π

exp

(
−
J2
ij

2

)
, (2.83)

and the bimodal distribution7

P (Jij) = p δ (Jij − 1) + (1− p) δ (Jij + 1) , (2.84)

where Jij = 1 with probability p and Jij = −1 with probability (1− p).

In the spin glass phase spins are frozen, which means that the average local magnetisation
is non-zero, mi = ⟨σi⟩ ≠ 0 and the average is over all possible states for a given realisation
of disorder. On the other hand, the total magnetisation, M =

∑
imi, is zero as on average

half of the spins are constantly pointing up and the other half down. Thus, magnetisation
is not a good order parameter. A more natural order parameter that captures the spin-glass
transition was introduced by Edwards and Anderson:

qEA =
1

N

∑
i

⟨σi⟩2 , (2.85)

where N is the total number of spins.

7We note here that since the distribution takes only two values, i.e., ±1, the term binary might be more
relevant. However, we employ the term bimodal as it is widely used among the spin glass community.
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One important feature of the EA model is the presence of frustration [115]. In order to
describe it let us consider Eq. (2.82), where we set the external field H to zero for simplicity.
To minimize the energy of the system each term in the sum of Eq. (2.82) has to be minimized.
This is of course dictated by the sign of the interaction Jij among spins i and j, as for Jij > 0
spins should point in the same direction, whereas for Jij < 0 spins should point in the opposite
direction. Frustration now arises from the fact that, given a bond configuration, there is no
spin configuration that satisfies all interactions simultaneously. More generally, for dimensions
greater or equal than two all spins along a closed loop C cannot satisfy simultaneously all
interactions if ∏

⟨i,j⟩ ∈ C

Jij < 0. (2.86)

Note that frustration could also be present because of geometrical reasons. For example a
system with antiferromagnetic interactions on a triangular lattice has all plaquettes frustrated.
Finally, the presence of frustration accompanied with quenched disorder, as described above,
are the two essential features of the spin glass theory.

2.5.1 Mean field picture

In order to gain insight into the nature of the transition, a conventional approach in statistical
physics is to construct and solve a mean-field theory of the model at hand. Mean-field theory
suppress fluctuations, leading to a simplified version of the model whose solution is usually a
straightforward procedure. For the spin-glass problem, however, the solution turned out to
be exceptionally difficult, and revealed several new and intriguing phenomena.

An infinite-range interaction version of the EA model was introduced by Sherrington and
Kirkpatrick [116], its Hamiltonian is

H = − 1√
N

∑
1≤i<j≤N

Jijσiσj , (2.87)

where N is the total number of spins and Jij is again a random variable drawn from a
Gaussian distribution with zero mean and variance one. The 1/

√
N factor ensures a finite

limit of the free energy per spin as the thermodynamic limit is approached (N → ∞). The
disorder averaged free energy is −βF = lnZ, where the over-bar denotes an average over
the disorder distribution. As lnZ is hard to calculate, one makes use of the identity ln(x) =
limn→0 (x

n − 1) /n and the free energy becomes

−βF = lim
n→0

Zn − 1

n
, (2.88)

Thus, one proceeds by considering n ∈ N independent replicas of the system with the same
disorder realisation, then averaging over all disorder realisations, and at the end taking the
limit n → 0. This is known as the replica method8. We can then define an overlap between
two replicas α and β, which serves as an order parameter [112]

8An alternative approach is the cavity method [117].
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qαβ =
1

N

N∑
i=1

⟨σi⟩α ⟨σi⟩β . (2.89)

Initially, the replica-symmetric (RS) solution was proposed, meaning that replicas are
indistinguishable

qαβ =
1

N

N∑
i=1

⟨σi⟩2 = qEA. (2.90)

Thus, the RS solution coincides with the Edward-Anderson order parameter. The RS solution
predicts a phase transition at Tc = 1, with a cusp of the magnetic susceptibility and specific
heat at this temperature. However, it does not describe the low temperature phase correctly
as the entropy becomes negative. The failure of such description was first attributed to the
inappropriate exchange of limits n → ∞ and N → ∞. However, it was realised later that
the problem pertained to something deeper, namely the assumption of replica-symmetry was
incorrect.

In the following years other solutions to the mean field problem were proposed. Thouless,
Anderson and Palmer (TAP) [118] proposed an alternative mean field description by the
inclusion of the Onsager reaction field term. Additionally, the RS solution of the SK model
was studied by de Almeida and Thouless (AT) [119] on the T − h plane. It was found that
the RS solution is stable only in the paramagnetic phase and becomes unstable under a phase
boundary, known as the AT line.

With the above observations in mind, it became apparent that for a correct description
of the spin-glass phase, the symmetry of replicas must be broken [119, 120]. However, there
is not a unique way to break the symmetry of the replicas. Thus, the only way to find
an appropriate physical solution was by trial and error [112]. In a series of papers Parisi
[121–124] proposed a solution for the SK model by constructing an appropriate ansatz of the
replica symmetry matrix. Parisi’s solution for the SK model is known as the replica symmetry
breaking (RSB) solution.

One of the striking features of RSB is that for a given disorder realisation in the spin glass
phase there exist many pure states, which are not connected by any symmetry transforma-
tion9. The connection between the different phases can be expressed via Eq. (2.89), where
now α, β indicate the pure phases and not the replicas as before, and qαβ satisfies the relation
−qEA ≤ qαβ ≤ qEA; note that this corresponds again to a specific choice of the couplings.
Consequently, one can define the overlap distribution PJ(q) as [46, 47]

PJ(q) =
∑
α,β

Pα Pβ δ (q − qαβ) . (2.91)

where the indices α, β indicate pure states of the system, Pα is the probability for the system
to be in the pure state α, qαβ is the overlap between the pure states α and β, and the
subscript J indicates the specific disorder realisation. Another interesting feature of spin
glasses is that the overlap distribution PJ(q) is not self-averaging [125–128]. This means that
two different disorder realisations will have, in general, non-vanishing weights at different

9A counterexample is the Ising ferromagnet, where in the low-temperature phase and in the absence of a
magnetic field two pure states exist, which are related by a global spin-flip transformation.
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values of q. Thus, it is expected that averaging over all disorder realisations will result in
non-vanishing weights for all values of q. Of course, each realisation always has a non-zero
contribution from q = ± qEA.

RSB also shows some form of hierarchical structure known as ultrametricity [125, 129,
130]. This means that given three states α, β, and γ, the following inequality is always
satisfied:

qαγ ≥ min (qαβ, qβγ) . (2.92)

This property defines a measure over the space of states, namely for each pair of states α and
γ, the overlap qαγ is obtained by going back in the tree until reaching the first common level.

The RSB scenario also supports the idea of rugged free-energy landscapes, i.e., the free
energy is characterized by many local minima separated by large energy barriers the size of
which increases with the size of the system. That leads to many metastable states, where the
system is trapped and thus cannot explore the full phase space. This is a typical problem in
Monte Carlo simulations of spin glasses as we will see in Chap. 3. Consequently, the dynamics
in the spin glass phase is very slow, and as the system size goes to infinity this could lead to
ergodicity-breaking [131, 132].

2.5.2 Droplet theory

An alternative theory of spin glass systems is droplet theory [133–140], which provides
markedly different physical insights and conclusions in comparison with the RSB. The droplet
is a compact area of coherently flipped spins with respect to the ground state, which is as-
sumed to govern the thermodynamic behaviour of the system. The surface of a droplet with
typical size l is assumed to have a fractal dimension Ddrop < d, where d is the dimensionality
of the system. The free-energy cost of generating a droplet of linear size l is

Fl ∼ Y lθ, (2.93)

where θ is the so-called stiffness exponent, Y the stiffness modulus and θ < (d− 1) /2 (for
an explanation see Appendix A of Ref. [140]). One particularly important result is that
the scaling form of the correlation function for models with continuous distribution of the
interactions and in the absence of magnetic field at temperatures close to zero scale as [47,
134]

G2(i, j) = ⟨σi σj⟩2 − ⟨σi⟩2 ⟨σj⟩2 ∼
T

Y |r⃗|θ
, (2.94)

where i⃗ − j⃗ ≡ r⃗, i.e., the distance between site i and site j, and T is the temperature. We
define now the overlap between two configurations σα, σβ which are statistically independent,
and have the same equilibrium distribution and bond realisation as

q =
1

N

N∑
i=1

σα
i σ

β
i . (2.95)

where N is the total number of spins in each configuration. Then it can be shown [47, 134]
that Eq. (2.94) implies that the variance of the distribution of q is approaching zero as L−θ.
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Thus, in the thermodynamic limit the distribution consists of two delta functions at ±qEA.
Consequently, the droplet picture supports a single pair of pure states, contrary to the RSB
picture. Lastly note, that for models with discrete bond distribution Eq. (2.94) has to be
modified, though it is believed that the type of interactions will not modify the single pair of
pure states [47].

In the presence of a magnetic field H, the energy cost for flipping a droplet scales as
lθ −Hld/2, and since θ < (d− 1) /2 the spin-glass phase remains unstable for all values of H.
This is in contrast with RSB, which predicts a spin glass phase for all H > 0 below the AT
line.

Whether RSB or the droplet theory is appropriate for the description of the low tem-
perature phase of spin glasses in finite dimensions is still hotly debated. The main source
of information regarding the nature of the transition in two- and three-dimensional systems
comes from numerical simulations (some of the basic techniques will be discussed in Chap. 3),
which in turn gives controversial results. For completeness we note that although the RSB
and droplet theory are the most fully developed theories for the spin glasses, there exist two
additional theories, namely the TNT picture [141, 142] and the chaotic pairs picture [143]. For
a short review of the different pictures see Ref. [144]. Finally, we should point out that spin
glasses show also remarkable off-equilibrium behaviour, such as ageing, hysteresis, memory
effects, etc., just to name a few. See also Refs. [42, 44, 45] for some reviews on the topic.



Chapter 3

Simulation Methods

Statistical physics focuses on the study of systems which are constituted of a vast number
of degrees of freedom. This in turn leads to the evaluation of large sums [see Eq. (2.4)] for
the case of discrete degrees of freedom, or high-dimensional integrals for continuous degrees
of freedom. These calculations are notably difficult and for most interesting physical systems
an analytical solution is missing. Therefore, one has to utilise approximate methods, which
can be of analytical or numerical character. Analytical methods such as series expansions or
transfer matrix calculations, can provide approximate answers. On the other hand, numerical
methods have played an important role in the progress of the field in connection with the
continuous increase of computer power. For that a well-established process is the Monte Carlo
method (MC).

3.1 Monte Carlo Simulations

3.1.1 Simple sampling

In order to describe the MC method, let us recall Eq. (2.4) which expresses the average value
of an observable O,

⟨O⟩ = 1

Z

∑
µ

O(µ) e−βH(µ). (3.1)

The goal then is to calculate the sum for the case of discrete degrees of freedom, or integral
for the case of continuous degrees of freedom, of Eq. (3.1). In practice though this is not an
easy process even for systems with moderate number of degrees of freedom. The rationale of
this failure, is that the number of states µ increases exponentially with the number of degrees
of freedom, and as one is interested in the thermodynamic limit the calculation of such a sum
(integral) becomes impossible. Such difficulties can be alleviated by utilising an MC process,
which provides estimates for quantities as in Eq. (3.1).

The basic idea behind the MC method is to estimate the sum of Eq. (3.1) by summing
over a subset of the phase space, where the states are chosen from a random process, i.e.,
states are chosen according to some probability1 P (µ). According to this, if M consecutive

1This is correct as long as the degrees of freedom are discrete. For continuous degrees of freedom one has
to work with suitable probability densities instead.

31
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states are generated, M = {µ(1), µ(2), . . . , µ(M)} at time steps i = 1, 2, . . . ,M respectively,
then an estimate of ⟨O⟩ is given as

O =

∑M
i=1O [µ(i)] e−βE[µ(i)]/P [µ(i)]∑M

i=1 e
−βE[µ(i)]/P [µ(i)]

, (3.2)

where µ(i) is the state at time i, P [µ(i)] is probability that the state µ(i) is chosen, O [µ(i)]
is the value of the observable O at the state µ(i) and E [µ(i)] is the energy of the state µ(i).
Note that P [µ(i)] has to be strictly positive in order for Eq. (3.2) to hold. As the number of
time steps M increases, Eq. (3.2) approaches ⟨O⟩ and in the limit of M → ∞ we obtain

lim
M→∞

O = ⟨O⟩. (3.3)

The question that arises now is what probability distribution P (µ) one should choose.
If states are chosen from a uniform distribution, then they are completely independent of
each other, corresponding to a true random sampling. This is called simple sampling and
it provides reasonable estimates for β = 0, i.e., when temperature is infinite and all states
contribute equally to the sums of Eq. (3.1). On the other hand, at non-zero temperatures
the Boltzmann distribution gives large weights only to a small region of the state space, thus
making simple sampling not the optimal choice for exploring the representative region of the
state space.

3.1.2 Importance sampling and the Metropolis algorithm

Contrary to simple sampling, importance sampling picks states according to some probability
distribution (other than the uniform one), which for the case of a system in equilibrium is
the Boltzmann distribution, i.e., Peq(µ) = e−βE(µ)/Z. Replacing P (µ) with Peq(µ), Eq. (3.2)
becomes

O =
1

M

M∑
i=1

O [µ(i)] , (3.4)

which is just a simple average over the selected states. Thus, in order to utilise Eq. (3.4)
one has to generate states according to the Boltzmann distribution. This can be achieved by
using a Markov process (or Markov chain) µ(t) [57–60, 145, 146].

In a Markov process one generates a chain of random states, µ(1) → µ(2) → µ(3) → . . . ,
according to some probability distribution, here the Boltzmann distribution. The restriction
is that the current state depends only on the preceding state and not on the history of the
hole trajectory in state space. Thus, the conditional (transition) probability for the system
to be in state i at the time-step t, given that it was in state j at time-step t− 1, etc., can be
written as

P [µ(t) = i | µ(t− 1) = j] = P [µ(t) = i | µ(t− 1) = j, µ(t− 2), . . . µ(1)] (3.5)

If we require that the Markov chain is homogeneous then the transition probabilities do
not depend on time, i.e., W (i → j) ≡ P [µ(t) = i | µ(t− 1) = j]. From this property of
the Markov chain and the normalisation of the probabilities W , i.e., W (i → j) ≥ 0 and
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∑
j W (i → j) = 1, it can be shown that the probability of being in state µ at time-step t,

i.e., P (µ, t), satisfies the so-called Master equation [58, 145]

P (µ, t)− P (µ, t− 1) =
∑
µ′

[
P (µ′, t)W

(
µ′ → µ

)
− P (µ, t)W

(
µ → µ′)] , (3.6)

where on the right-hand-side of Eq. (3.6) the first term of the sum accounts for all processes
that reach µ while the second term corresponds to all processes leaving µ. Thus, Eq. (3.6) can
be interpreted as a continuity equation, reflecting the fact that the probability is conserved.

If we want the distribution to be stationary, the left-hand-side of Eq. (3.6) should be
zero. A sufficient, though not necessary, condition for the Boltzmann distribution to be a
stationary probability P (µ, t) = Peq(µ), is given by the so-called detailed balance

Peq(µ
′)W

(
µ′ → µ

)
= Peq(µ)W

(
µ → µ′) . (3.7)

Additionally to stationarity of the Boltzmann distribution, one has to guarantee the con-
vergence of P (µ) to Peq(µ). This is a more subtle issue, but it can be proved under the
additional condition of ergodicity of the Markov chain. Ergodicity ensures that a Markov
process can reach with a finite probability any state, irrespective of the starting state; for a
discussion about convergence of the MC process see Ref. [147]. By substituting the Boltz-
mann weights to Eq. (3.7) we can rewrite it as

W (µ → µ′)

W (µ′ → µ)
= e−β(E(µ′)−E(µ)), (3.8)

where E(µ), E(µ′) are the energies of states µ, µ′ respectively.

Metropolis algorithm

There are many choices of transition probabilities that satisfy Eq. (3.8). One of the most
commonly used choices is the Metropolis algorithm [52]. Here the new state is generated by
updating a single degree of freedom, with a transition probability given as

W
(
µ → µ′) = {e−β[E(µ′)−E(µ) ], if E(µ′) > E(µ)

1, if E(µ′) < E(µ).
(3.9)

It is easy to check that this choice of transition probability of Eq. (3.9) satisfies the
condition of detailed balance, see Eq. (3.8). Additionally, ergodicity is ensured as on a finite
lattice any state could be reached given an initial state by updating one by one the degrees
of freedom that these two states differ [57]. A practical implementation of the Metropolis
algorithm for the Ising model is given below:
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Metropolis algorithm

(1) Pick a spin i.

(2) Calculate the energy difference ∆E = E(µ′)− E(µ) for flipping the spin i.

(3) Generate a random number r, with r ∈ [0, 1).

(4) If r < exp [−β∆E], then flip the spin.

(5) Go to step (1) and repeat.

The Metropolis algorithm can be implemented for a variety of systems in statistical
physics, such as lattice/off-lattice models, discrete/continuous symmetries, long-range/short-
range interactions. Its simplicity and flexibility are the main reasons of considering it as one of
the standards MC processes. Finally, similarly to Metropolis other single-spin-flip algorithms
exist, e.g., heat-bath algorithm [148], Glauber algorithm [149].

3.2 Cluster Algorithms

Although single-spin-flip or local updates are applicable to essentially all models in statistical
physics, their main drawback is that they perform quite poorly in the vicinity of a continuous
phase transition, where the degrees of freedom are strongly correlated. This can be understood
in terms of the autocorrelation time τ , which quantifies the minimum necessary number of
time steps (sweeps) for two configurations to be statistically independent, see Appendix A.1.
In the thermodynamic limit and close to the critical point the autocorrelation time τ scales
as [57, 58]

τ ∼ ξz, (3.10)

where z ≥ 0 is the dynamical critical exponent. As we have seen in Chap. 2 correlation
length scales as ξ ∼ |T − Tc|−ν , and thus it diverges as the critical temperature is approached.
Consequently the autocorrelation time also diverges as

τ ∼ |T − Tc|−zν , (3.11)

a phenomenon known as critical slowing down at a continuous phase transition. For finite
systems ξ can not exceed the linear dimension of the lattice, say L, and near the critical
point τ ∼ Lz. Thus if the size of the system increases, τ is rapidly growing and the rate at
which statistically independent configurations are created decreases substantially, at least for
reasonable computational times [57].

Specifically, for the case of the Metropolis algorithm for the two-dimensional Ising model
at the critical temperature z ≈ 2.17 [150, 151]; see also Ref. [152] for a review. Therefore,
correlations among configurations become pronounced. In order to reduce such correlations
non-local algorithms such as cluster algorithms have been introduced, which significantly
reduce the dynamical critical exponent z. The corresponding caveat though is that such
algorithms depend strongly on the studied system.
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Swendsen-Wang algorithm

As we have seen in Chap. 2, Fortuin and Kasteleyn showed that the q-state Potts model is
equivalent to a percolation process, in the sense that the partition function of the former
can be written as a sum over all FK clusters on the lattice. Swendsen and Wang (SW) [27]
based on the FK decomposition proposed a cluster algorithm for the q-state Potts model.
The algorithm proceeds in two steps: First given the spin configuration, bonds are created
among aligned spins with a probability padd = 1− exp (−2βJ). Then, given the bond config-
uration, clusters are created from aligned spins that are connected with bonds. Under this
construction spins belonging to different clusters are statistically independent and we can
assign independently to each cluster a new spin value. For the Ising model the algorithm
proceeds as follows:

Swendsen-Wang algorithm

(1) Construct the bond configuration: If neighbouring spins are aligned, form a bond
with probability padd = 1− exp (−2βJ).

(2) Identify all clusters: As clusters we consider spins that are connected directly or
indirectly via bonds.

(3) Flip all clusters (even the ones with only one cite) independently with probability
1/2.

(4) Delete all bonds, go to step (1) and repeat.

Thus, it is possible that neighbouring spins with the same orientation are not part of the
same cluster as their bond could be deleted with probability 1− padd. This results in clusters
of smaller size compared to the geometrical ones where all neighbouring aligned spins are
included in the same cluster. Only when β → ∞, i.e., at zero temperature, the two cluster
types coincide.

Hence, at each step of the SW algorithm, the whole lattice is decomposed into clusters
which are then randomly assigned a spin value +1 or −1. It turns out that these clusters
(FK) suppress significantly the temporal correlations, resulting in an exponent z sufficiently
smaller compared to algorithms with single-spin-flip dynamics (values are given further down)
[27, 153]. Although, this holds in the vicinity of the critical point (where much of the most
interesting things are happening), away from this region, although correct, local-spin-flips
updates perform slightly better [57].

Wolff algorithm

Soon after the SW algorithm had been suggested, Wolff [28] proposed a variant of it, where
instead of the whole lattice decomposition a single cluster is flipped at a time. The imple-
mentation, again for the Ising model, is as follows:
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(a) Wolff cluster. (b) Geometrical cluster.

Figure 3.1: Spin configuration of the 2-dimensional Ising model near the critical temperature
Tc ≈ 2.269185 for a 128× 128 lattice. (a) A Wolff cluster from down (black) spins is depicted
in purple colour (b) The equivalent geometrical cluster is depicted is orange colour, where all
aligned spins (black) are included in the cluster, which results in an apparent difference in
sizes between the two cluster types.

Wolff algorithm

(1) Pick a spin at random.

(2) If its neighbours are aligned, add them to the cluster with probability padd =
1− exp (−2βJ).

(3) For the new members of the cluster, repeat step (2), until all members have checked
their neighbours.

(4) Flip the cluster.

(5) Go to step (1) and repeat.

Similarly to the SW construction, the clusters created by the Wolff algorithm are smaller
compared to the geometrical ones, and they coincide only at zero temperature. This is shown
in Fig. 3.1, where the size of a typical Wolff cluster, see Fig. 3.1(a), is sufficiently smaller than
the geometrical one, see Fig. 3.1(b), where all aligned spins (orange dots) are considered to
be in the same cluster.

For both cluster algorithms temporal correlation are suppressed mainly through the flip-
ping of the larger clusters. In the SW implementation though, the whole configuration is
decomposed into clusters, which are flipped independent of their size. This means that a sig-
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nificant part of effort, as well computational time, is dedicated to the construction of smaller
clusters which do not contribute much. In contrast, Wolff’s implementation picks on average
larger clusters which are always flipped. Thus, if a large cluster is picked then the suppression
of correlations is comparable with the SW and if a smaller cluster is picked nothing changes
much but the computational effort is relatively small. Thus, correlations are suppressed even
further than in the SW algorithm resulting to a smaller dynamical exponent z. This is true
for the three-dimensional Ising model, where z = 0.28(2) for the Wolff and z = 0.50(3) for the
SW algorithm [153], for the two-dimensional Ising the two methods give comparable results,
i.e., z ≈ 0.26 [153]. Lastly, similarly to SW the Wolff algorithm performs better in the vicin-
ity of the critical point, while away from it local-spin-flips are expected to perform slightly
better.

Finally, it is worth mentioning that both cluster algorithms can be implemented (with
some modifications) for other systems too. For the q-state Potts model for example, where
each spin can take values from 1 to q, the SW algorithm can proceed by decomposing the
system into clusters2 and assigning to each one of them a random value from 1 to q with
probability 1/q. Additionally, the Wolff algorithm can be extended to the case of the XY
and Heisenberg models [28, 154–156].

3.3 Spin Glass Simulations

In Sec. 2.5 we saw that spin glasses are systems with rugged free-energy landscapes, where
states in phase space are separated by large energy barriers with many local minima, which
grow rapidly as the size of the system increases. Although for such systems conventional MC
schemes, e.g., the Metropolis algorithm, work in principle, the time needed to equilibrate
even the smallest system is extremely large, thus making them impractical. The reason is
that at low temperatures such MC algorithms usually get “trapped” in local energy minima
having not enough energy to overcome the energy barriers, thus not exploring the full, or at
least a representative portion, of the phase space. In this section we discuss two methods
that are able to overcome such large energy barriers, leading to a substantial reduction of the
equilibration time: (i) Parallel tempering (ii) Houdayer’s cluster algorithm.

3.3.1 Parallel tempering

In parallel tempering (PT) [157] several copies of the system are simulated at different tem-
peratures, and at regular time intervals copies are exchanged. In this fashion copies which
usually get stuck in a local minima at low temperatures can escape to higher temperatures
where equilibration is faster. Thus, the diffusion of copies from lower to higher temperatures,
and vice versa, allows for a better exploration of the phase space.

Let us consider M non-interacting copies (replicas) of a system, which we simulate in
parallel using an MC process, e.g., Metropolis algorithm, for each copy, running at inverse
temperatures β1, β2, . . . , βM respectively. Since the copies are not interacting, the partition
function of the whole system can be written as

2In that case the probability to form a bond between two spins with the same q value is padd = 1 − e−βJ

[27].
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Z =

M∏
j=1

∑
µ(j)

e−βjH(j)
, (3.12)

where µ(j), H(j) is the spin configuration and energy of the j-th replica, respectively. The
probability to exchange copies j, k is given by

W (j, βj ↔ k, βk) = min
[
1, e(βk−βj)(Ek−Ej)

]
. (3.13)

It can be shown that such transition probabilities satisfy detailed balance [157], while ergod-
icity is ensured if ergodic MC update schemes are performed in each replica. The exchange
probability depends on the difference βk−βj of inverse temperatures, and decreases exponen-
tially as the temperature difference is increased. Thus, it is preferable to consider exchanges
between neighbouring temperatures, i.e., i ↔ i± 1.

Although the idea of PT is relatively simple, a suitable choice of temperatures is essential
for the performance of the algorithm. This can be understood from the energy histograms
of the individual replicas. If two neighbouring temperatures i, i + 1 are sufficiently away
from each other such that the overlap of their respective energy histograms will be small, the
exchange probability will be relatively small. Thus, these copies are highly unlikely to be
exchanged and the round-trip of copies from the lowest to the highest temperature and back
will stop. On the other hand, if the temperatures are very close to each other, resulting in a
large overlap of the energy histograms, computational time is wasted without gaining much
information about the system.

Thus, a suitable temperature schedule is required such that the overlap of the energy
histograms is sufficiently large. There is a plethora of different temperature schedules in the
literature, in order for the PT algorithm to perform optimally. Here we will firstly discuss
the ones that are used in this thesis (see Chap. 6) and briefly comment on some of rest.

As the random walk of copies in the temperature space depends on the exchange events of
copies, we have to assure a sufficient exchange probability for all temperatures involved. This
can be guaranteed if exchange probabilities are approximately independent of temperature.
For systems with not strong divergence of the specific heat, such as spin glasses, this can
be achieved with a geometric progression schedule [158–160]. Given a range of temperatures
[T1, TM ] the intermediate values M − 2 can be computed via

Tj = T1

j−1∏
k=1

M−1

√
TM

T1
. (3.14)

With this schedule more replicas are placed at low temperatures, and fewer in the high
temperature regime. However, if the specific heat has a strong divergence then the exchange
probability drops in the vicinity of the critical point, leading to a non-optimal temperature
schedule. In the case of the Ising model for example, where a phase transition occurs for
dimensions greater than one, the geometrical schedule leads to poor performance as near the
critical region the probability for replicas to be exchanged is sufficiently low, see Fig. 3.2.
Finally, given a temperature range, the optimal number of temperatures for systems without
a phase transition is of the order of M ∼

√
N , where N is the total number of spins. For

systems with a continuous phase transition, however, it can been shown [157] that the optimal
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Figure 3.2: Acceptance probability as a function of temperature T , from simulations of the
two-dimensional Ising ferromagnet for linear size L = 20, using a geometrical temperature
schedule. In the vicinity of the critical point A(T ) is rather small (close to zero), leading to
poor performance of the PT algorithm.

number of temperatures is M ∼
√
N1−dν/α where d the dimensionality of the system, ν the

critical exponent of the correlation length, and α the critical exponent of the specific heat.

The other temperature schedule that is implemented in this thesis is the inverse linear one.
Here, inverse temperatures are equally spaced between the low and high inverse temperature
regime.

A more elaborate technique called the feedback-optimized method [159], defines an op-
timal temperature schedule by maximizing the rate of the replicas’ round trips in a given
temperature range. Using a recursive readjustment of the temperatures the local diffusivity
of the copies is maximized. However, the method is quite complicated and hard to control;
especially since some numerical differentiation is involved.

Another method introduced in Ref. [161], suggested that the round trip of copies can be
significantly increased by adjusting the number of MC sweeps in each copy to the autocor-
relation time before a proposed exchange of the copies. Additionally, the temperatures were
adjusted so that a constant overlap of the energy histogram was obtained (50% of exchange
probability). Although, the method improves the performance of the algorithm, it comes
with an additional cost of pre-runs in order to estimate the autocorrelation times.

Lastly, a recent parametric scheme was proposed in Ref. [162]. In this method the optimal
temperature set is determined by the optimal choice of the involved parameters. For the
optimal set of parameters pre-runs need be to be performed. Once the optimal parameters
for some system sizes are known, by employing FSS, the temperature-schedule parameters
for larger system sizes can be obtained. Again this method provides reliable temperature sets
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with the additional cost of pre-runs. However, the fact that the parameters for larger system
sizes can be indirectly determined from fit results and not from direct simulations is surely
advantageous.

3.3.2 Houdayer’s cluster algorithm

In Sec. 3.2 we discussed the cluster algorithms for the case of ferromagnetic systems and
how efficiently they can be for simulations in the vicinity of the critical point. For spin
glasses though, such algorithms cannot be applied because of frustration. Specifically, for
ferromagnetic systems the spin-spin correlation function is equal to the probability that two
sites belong to the same FK cluster [40]. Consequently, a phase transition in the spin system
emerges from a percolation transition of the FK clusters, and vice versa. Unfortunately,
this relation does not hold for spin glasses resulting in a transition temperature well above
the transition temperature of the spin glass phase [41, 163, 164]. Over the years attempts
have been made to construct a cluster algorithm for the spin glass problem [40, 48, 165–169].
However, a cluster algorithm for accessing larger system sizes especially in three dimensions
is still missing.

For two-dimensional systems, however, the cluster algorithm proposed by Houdayer [48]
can efficiently simulate the spin glass system at low temperatures, where the relaxation is
sufficiently slow. The caveat of the method is that it is applicable only for lattice geometries
where the percolation threshold pc is above 0.5; below that, although correct, it becomes
inefficient.

Houdayer’s algorithm considers two independent copies of the system at the same tem-
perature and with the same disorder realisation of the interactions among spins. Then, a qi
variable is defined as qi = s

(1)
i s

(2)
i which connects the lattice site i between the two copies.

Under this construction domains with q = 1 and q = −1 are created, see Fig. 3.3. Then
clusters in both copies are constructed by activating bonds between neighbouring spins with
the same q value and a non-zero interaction. It can be easily checked that if we flip a cluster
with q = −1 the energy of each of the two copies will change but not the total energy (the
sum of the energies of the two copies). In the absence of a magnetic field the same holds
for clusters with q = 1. Thus, such cluster moves trivially satisfy detailed balance and are
always accepted. Additionally, to ensure that the algorithm is ergodic, Metropolis updates
are introduced in each copy.

The idea of the algorithm is similar to the replica MC method [170], with the essential dif-
ference that there copies are at different temperatures. PT moves are also included to ensure
fast equilibration. Thus, if one simulates M such pairs of copies at different temperatures
one MC step consists of the following steps:3

1. For each of the 2M copies perform one Metropolis sweep.

2. For every temperature and pair pick a spin at random and perform one cluster update.

3. Perform one PT update for all pairs of copies at neighbouring temperatures.

3In the original paper of Houdayer [48] a large number of copies at each temperature is considered. However,
as argued in Ref. [162] it is prudent to consider only two copies at each temperature and use the additional
computational resources for simulation over additional disorder realisations.
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(a) System 1 (b) System 2 (c) Overlap

Figure 3.3: Illustrative example of a 10× 10 grid for Houdayer’s clusters. Yellow plaquettes
represent +1 spins and black plaquettes −1 spins. Figs. 3.3(a) and 3.3(b) represent the spin
configuration of the first and second copy respectively. Fig. 3.3(c) is the overlap of the two
configurations.

As it was stated above, the algorithm is restricted to lattices where pc > 0.5. Because the
cluster update does not reject any aligned neighbouring spin, if pc < 0.5 then even at high
temperatures percolating clusters would occur in both replicas. Thus, a cluster update would
result in just an exchange of replicas and the algorithm will be inefficient.
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Chapter 4

Geometrical Clusters of the Ising
Model

The properties of geometrical clusters of the Ising model have been studied extensively over
the years by many researchers. As it was discussed in Sec. 2.4.2, such clusters cannot properly
describe the phase transition of the Ising model in any dimension as, in general, they percolate
at different temperatures from the thermal transition and their exponents do not coincide with
the thermal ones. Nonetheless, in two dimensions geometrical clusters percolate at the critical
temperature of the phase transition. Additionally, the connection of geometrical clusters of
the two-dimensional Ising model with the site-diluted q-state Potts model, as well as an
analytic description of their boundaries via the stochastic Loewner evolution method, still
make them appealing (see Sec. 2.4.4). Besides, such clusters define an interesting percolation
problem the properties of which are not completely understood.

In this chapter we investigate the percolation properties of such clusters for the two-
dimensional Ising ferromagnet, with the help of Monte Carlo simulations. The behaviour of
wrapping probabilities and their interlineations will first be discussed. Then the estimation
of critical exponents of the average cluster size and percolation strength using FSS, and a
comparison with the already known analytical values will be obtained. Since the critical
temperature is known exactly, simulations will be performed precisely at this critical point
for the estimation of the involved exponents. Additionally, special considerations, will be
given to the estimation of critical exponents and the existence of finite-size corrections when
observables are defined from different cluster sets.

Specifically, we have simulated the two-dimensional Ising model with periodic boundary
conditions using the Swendsen-Wang algorithm [27]. We considered systems of linear size L =
16, 32, 64, 128, 256, 512, 600, 1000, 1200, 1600 and 2000, at the exact critical temperature Tc =
2/ ln

(
1 +

√
2
)
of the two-dimensional Ising model1. For each L the total number of simulation

steps was 1.1× τint, E × 105 sweeps, where τint, E is the integrated autocorrelation time of the
energy (see Appendix A.1), and τint, E×104 sweeps were discarded during equilibration. After
every τint, E sweeps a measurement was taken, leading to up to 105 measurements per run.
The estimates of τint, E, rounded up to the next largest integer, in ascending order of the
system size are: τint, E = 4, 5, 5, 6, 7, 9, 9, 10, 11, 11, 12 sweeps. Statistical errors were

1The only exception is for the system of linear size L = 256, which was simulated at a temperature range
T = [1.5− 3.8], see Sec. 4.1.

43



44 CHAPTER 4. GEOMETRICAL CLUSTERS OF THE ISING MODEL

estimated by means of jackknife blocking, see Appendix A.2. We considered a cluster to
percolate in one direction if it wraps around this direction and is connected back to itself.
To identify the wrapping clusters, we employed the method of Machta et al. [171] (see also
Ref. [172] for an alternative method).

4.1 Wrapping Probabilities

The spanning probability R, introduced in Sec. 2.4.1, gives the probability for a spanning
cluster to emerge, in the limit of the infinite system. For ordinary percolation, R is given as
a function of p, which expresses the fraction of occupied sites (or bonds) in a lattice, and by
varying p we could observe the phase transition from a non-percolating to a percolating phase
and vice versa. In the study of phase transitions of spin systems, the control parameter is the
temperature T , whose variation signals the transition2. For the Ising model in particular, we
expect that above the transition temperature, T > Tc, the probability of finding an infinite
cluster is 0, i.e., R(T > Tc) = 0, while the ordering phase should be characterized by the
appearance of an infinite cluster R(T < Tc) = 1. Thus, R(T ) is a step-function whose
discontinuity marks the transition temperature.

For systems of finite size L, R(T ) varies continuously with temperature and approaches a
step-function in the thermodynamic limit, i.e., L → ∞. There are a variety of ways in which
a cluster can span the system. For finite systems with periodic boundary conditions though,
it is common to work with the so-called wrapping probability, which considers a cluster to
percolate in one direction if it wraps around this direction and connects back to itself (closed
loop). Even defining a percolating cluster as above, still percolation can occur in various
ways. Here, and throughout this thesis, we will consider the following cases for the wrapping
probabilities R:

1. Rx or y is the probability for a cluster to wrap around the horizontal or vertical direction
(or both).

2. Rx and y is the probability for a cluster to wrap around the horizontal and vertical
direction.

3. Rx is the probability for a cluster to wrap around the horizontal direction.

4. Rx and y is the probability for a cluster to wrap around the horizontal but not the vertical
direction.

On square lattices, i.e., L × L, due to symmetry the horizontal and vertical directions are
equivalent, meaning that Rx = Ry and Rx and y = Ry and x.

These four wrapping probabilities satisfy the following inequalities [173]

Rx and y ≤ Rx ≤ Rx or y and Rx and y ≤ Rx. (4.1)

This is illustrated in Fig. 4.1, where the four wrapping probabilities introduced above are
plotted as a function of temperature, for a system of linear size L = 256. Additionally, they
satisfy the following equalities [173]

2Note that p is a number defined in [0, 1], whereas T is defined in [0,∞).
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Figure 4.1: Wrapping probabilities as a function of temperature T for a system of linear size
L = 256. The dashed vertical line marks the transition temperature of the two-dimensional
Ising model.

Rx or y = Rx +Ry −Rx and y = 2Rx −Rx and y, (4.2)

Rx and y = Rx −Rx and y = Rx or y −Rx =
1

2
(Rx or y −Rx and y) . (4.3)

This means that by knowing two of them, we can calculate the rest of them. Equations (4.2)
and (4.3) are plotted in Figs. 4.2(a) and 4.2(b) respectively, where one can visually verify
that the equalities hold. Except Rx and y, all probabilities are monotonous functions of tem-
perature. In contrast, Rx and y exhibits a maximum which signals the transition, and as the
system size increases this maximum shifts towards the asymptotic value of the temperature
[173].

Finally, we note that in numerical studies of percolation wrapping probabilities are utilised
to determine the percolation threshold pc [173–177]. Similarly, they have also been used in
the study of phase transitions of spin systems as they can provide estimates of the critical
temperature [178–182]. In what follows in this chapter, however, we will not attempt to
determine the critical temperature, since it is known that for the geometrical clusters of the
two-dimensional Ising model it coincides with that of the thermal transition. Nonetheless, we
note that the wrapping probabilities will be employed for finding the critical temperature for
the multi-replica Ising model, as we will see in Chap. 5.

4.2 Average Cluster Size

As we have seen in Sec. 2.4.1, the average cluster size S diverges at the critical point with
an exponent γ. For the Ising model, S is expected to diverge at the critical temperature Tc
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Figure 4.2: Equality relations of wrapping probabilities as a function of temperature T for a
system of linear size L = 256. (a) Eq. (4.2) (b) Eq. (4.3). The dashed vertical line marks the
transition temperature of the two-dimensional Ising model.

as S ∼ |t|−γ , where t ≡ |T − Tc| /Tc is the reduced temperature. Since the calculation of S
considers only finite size clusters, its divergence can be understood as follows: In the non-
percolating phase (T > Tc) many small clusters contribute to S and as the critical temperature
is approached the size of the clusters, though finite, increases. On the other hand, in the
percolating phase (T < Tc) most spins belong to the percolating cluster and clusters formed
by the residual spins are relatively small and do not contribute much to S.

For finite systems of linear size L the average cluster size exhibits a maximum in the
vicinity of the critical point and according to FSS it satisfies the following equation [19]

S(L, T ) = Lγ/ν S̃
[
L1/ν (T − Tc)

]
, (4.4)

where ν is the critical exponent of the correlation length, and S̃ is a universal finite-size scaling
function. Note, that the position of the maximum T ∗ of the average cluster size, defines a
sequence of pseudo-critical points as a function of L and according to FSS it should scale as

T ∗(L) = Tc + aL−1/ν , (4.5)

where a = argmax S̃, i.e., the argument that maximizes the scaling function S̃, see, e.g.,
Ref. [74]. Thus, one can provide estimates of the critical temperature and the exponent ν
from the location of the peaks using Eq. (4.5). Note that for thermal observables, Tc and
ν are estimated from the maxima of the specific heat or magnetic susceptibility. Of course
Eq. (4.5) is valid as long as we are close the critical region and for large enough system sizes
[74].

In numerical studies of percolation the “standard” approach for estimating the average
cluster size is to exclude the largest cluster in each measurement [19]. In that way S exhibits a
maximum near the transition, as in the non-percolating phase there exist many small clusters,
while in the percolating phase most sites belong to the largest (usually percolating) cluster
which we exclude. Thus, the peaks Speak should scale with the linear size of the system L as
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Figure 4.3: Average cluster size S as a function of temperature of the two-dimensional Ising
ferromagnet for system of linear size L = 256. By excluding the largest cluster in each
measurement (C \ max C) S has a maximum around the critical point (red dashed line),
whereas if all clusters all included (C) S is a monotonously increasing function as temperature
decreases.

Speak ∼ Lγ/ν , from where one can obtain the critical exponent. Nonetheless, we will extend
this approach by considering different sub-sets of clusters. Specifically, we will estimate the
average cluster size for the following cases:

1. All clusters are included: C.

2. Exclude the largest cluster in each measurement: C \ max C.

3. Exclude all percolating clusters: C \ P .

4. Exclude all clusters percolating in horizontal and in vertical direction: C \ Px and y.

5. Exclude all clusters percolating in one specific direction, e.g., horizontal: C \ Px.

6. Exclude all clusters percolating in one but not the other direction, e.g., horizontal and
not vertical: C \ Px and y.

Note that the inclusion of all clusters results in a monotonously increasing average cluster
size as the temperature decreases, and at zero temperature S will be equal to the total number
of spins, see Fig. 4.3. Even though S does not exhibit a maximum, Eq. (4.5) can be applied
for the estimation of the critical temperature and the ν exponent by considering as T ∗(L) the
inflection points of the function S(L, T ). However, this procedure is more complicated as for
the estimation of such inflection points the numerical derivative should be applied which is
prone to systematic errors [183].
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Figure 4.4: Log-log plot of the average cluster size as a function of L, for the different
definitions, at the Ising critical temperature Tc = 2/ ln(1 +

√
2).

Nonetheless, since the percolation temperature is known analytically for the geometrical
clusters of the two-dimensional Ising model, which coincides with that of the thermal phase
transition [29–31], we performed simulation exactly at Tc = 2/ ln(1 +

√
2). Consequently for

T = Tc, S̃(0) = const., and Eq. (4.4) becomes S(L) ∼ Lγ/ν , which allows an estimation of
the exponent γ/ν. In Fig. 4.4 the average cluster size is plotted as a function of the system
size and for all the definitions introduced above. For the definitions at hand, data seems to
follow straight lines, parallel to each other. This implies that corrections to scaling are not
prominent and that the γ/ν exponent is independent of the definitions been used. For the
estimation of γ/ν we performed fits using the least-squares Levenberg-Marquardt algorithm3

[183] for each of the different definitions. Fits performed in intervals Lmin ≤ L ≤ Lmax, where
Lmin was continuously increased while Lmax was kept fixed at Lmax = 2000. By performing
consecutive linear fits with an increasing value of Lmin, we were also able to monitor the
influence of corrections to scaling.

Figure 4.5 shows the estimates of γ/ν as a function of 1/Lmin, and in Table B.1, shown
in the Appendix, we report the estimates of γ/ν and the respective quality-of-fit parameters
Q [183] for the different definitions. From the definitions used, C and C \ Px and y converge
relatively quickly to the asymptotic value γ/ν = 91/48 [89], which is denoted by the dashed
horizontal line in Fig. 4.5. Additionally, from Table B.1 we observe that for the C and
C \ Px and y with Lmin ≥ 64 and Lmin ≥ 256 respectively, the estimations of the exponent
are less than 3 standard deviations (3σ) away from the asymptotic value, verifying the fact

3In general, the Levenberg-Marquardt algorithm is a common method for fitting to non-linear models.
However, for the fits performed in this thesis we used the gnuplot program, where the Levenberg-Marquardt
algorithm is the standard in-built option.
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Figure 4.5: Exponent ratio γ/ν as a function of 1/Lmin, for the different definitions, using
linear fits. The dashed horizontal line marks the asymptotic value 91/48 ≈ 1.896 [89].

that corrections to scaling are not significant. In contrast, corrections to scaling are quite
substantial for the rest of the definitions, i.e., C \ Px and y, C \ Px, C \ max C, and C \ P ,
cf. Fig. 4.5. For example, even for the largest Lmin value, i.e., Lmin = 1200, the deviation
from the asymptotic value is greater than 5σ, see Table B.1.

Thus, we see that for the average cluster size the C and C \ Px and y definitions lead to
considerably smaller corrections to scaling compared to the rest of definitions. Finally, the fact
that C and C \ Px and y definitions give similar results can be explained as follows: Clusters
that percolate in one but not the other direction are very scarce. Thus, excluding them from
the sums of Eq. (2.60) will not alter the average cluster size significantly. Estimates of the
exponent have been also reported in Ref. [184] using the C \ Px definition, and in Ref. [33]
using the C definition.

4.3 Percolation Strength

The inclusion of different definitions can also be applied to the case of the percolation strength
P∞. As we discussed in Sec. 2.4.1, P∞ is the probability of a site to belong to the infinite
cluster, in the thermodynamic limit. For finite systems though, this is usually defined as
the probability for a site to belong in the largest cluster, which can be estimated by the
number of sites belonging to the largest cluster divided by the total number of sites. This is
shown in Fig. 4.6, where P∞ is plotted as a function of temperature for a system of linear
size L = 256. As temperature goes to zero, P∞ goes to 1, meaning that all spins belong to
the same cluster. Exactly at zero temperature geometrical clusters are identical to the FK
clusters. As temperature now increases the percolation strength will decrease, as the size of
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Figure 4.6: Percolation strength P∞ as a function of temperature of the two-dimensional Ising
ferromagnet for a system of linear size L = 256. In each measurement, the largest cluster
is considered (max C). The dashed vertical line marks the transition temperature of the
two-dimensional Ising model.

the percolating cluster (or the largest in that occasion) will decrease. According to FSS, in
the vicinity of the critical point the percolation strength has the following scaling behaviour
[19]

P∞ (L, T ) = L−β/νP̃∞

[
(T − Tc)L

1/ν
]
, (4.6)

where P̃∞ is a universal scaling function.
Adapting now the idea of different cluster sets for the case of percolation strength we can

obtain several definitions. Specifically, we consider in each configuration, the fraction of sites
that belong to the:

1. Largest cluster: max C.

2. Largest percolating cluster: max P .

3. Largest cluster that percolates in horizontal and in vertical direction: max Px and y.

4. Largest cluster that percolates in one specific direction, e.g., horizontal: max Px.

5. Largest cluster that percolates in one but not the other direction, e.g., horizontal and
not vertical: max Px and y.

Depending on the definition it is possible that the percolation strength, given a configuration,
could be zero as it is likely that none of the clusters percolate in the way that is dictated by
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Figure 4.7: Log-log plot of the percolation strength as a function of L, at the Ising critical
temperature Tc = 2/ ln(1 +

√
2) for (a) all definitions, (b) all definitions except max Px and y.

The data for the different definitions in panel (b) have been shifted downwards by: max P
0.04, max Px 0.08, and max Px and y 0.12, for clarity.

the definition. The only exception to that is the max C, where for each configuration the
largest cluster is always considered.

As with the average cluster size, for simulations exactly at the critical temperature of
the two-dimensional Ising model, P̃∞(0) = const., and Eq. (4.6) becomes P∞(L) ∼ L−β/ν ,
which allows for the estimation of the involved exponent. In Fig. 4.7 P∞ is plotted as a
function of L on a log-log scale, for the different definitions considered. Data from different
definitions seem to follow straight lines indicating small scaling corrections. In order to check
the influence of scaling corrections, we follow the same procedure as with the average cluster
size, by performing fits in intervals Lmin ≤ L ≤ Lmax, with varying Lmin, while Lmax = 2000
is fixed.

As we can see in Fig. 4.8 for all definitions, aside from max Px and y, the asymptotic
value β/ν = 5/96 (dashed horizontal line) is approached relatively quickly indicating that
corrections to scaling are not substantial. This is also verified in Table B.2 in the Appendix,
where for Lmin ≥ 64 the deviations from the asymptotic value is less than 3σ for all definitions,
except for max Px and y. Specifically, for max Px and y deviations are less that 2σ for all values
of Lmin. For the max Px and y definition, although the estimations are less than 3σ for all
Lmin ≥ 16, the respective error bars are quite large, see Table B.2. This is to be expected,
as clusters percolating in one but not the other direction are relatively rare, which leads to
poor statistics during the simulation process, and thus to large error bars in the estimation
of the exponent.

4.4 Concluding Remarks

In this chapter we discussed the properties of the geometrical clusters of the two-dimensional
Ising model. In particular, the properties of the wrapping probabilities and their interre-
lations, as well as the average cluster size and percolation strength along with their corre-
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Figure 4.8: Exponent ratio β/ν as a function of 1/Lmin, for the different definitions, using
linear fits. The dashed horizontal line marks the asymptotic value 5/96 ≈ 0.052 [89].

sponding exponents were studied. As for the latter, we utilised different sets of clusters for
the estimation of the critical exponents for the average cluster size and percolation strength.
We also monitor the influence of corrections to scaling, via fits on intervals Lmin ≤ L ≤ Lmax

with increasing Lmin while Lmax was kept fixed at Lmax = 2000. The accuracy of our data
reveals the existence of corrections to scaling for the different cluster-sets at hand, and for
the sets where scaling corrections are not substantial our estimates are in good agreement
with the theoretical values.

For the average cluster size, the convergence to the asymptotic value is relatively fast
when (i) all clusters are included (ii) excluding clusters that percolate in one but not the other
direction. For the rest of the definitions, i.e., excluding the largest cluster, clusters percolating
in both directions, and clusters percolating in one direction, strong scaling corrections are
observed.

The percolation strength does not exhibit a strong dependence on the cluster definitions
used. All definitions, except max Px and y, provide high accuracy estimates for the involved
exponent. The discrepancy between max Px and y and the rest of the definitions relies on
the poor statistics for the estimation of the percolation strength, as in that case clusters
percolating in one but not the other direction are very rare.

The above analysis for the estimates of critical exponents using different sets of clusters
revealed that strong scaling corrections can emerge when specific definitions are chosen (see
also Ref. [185]). For example, excluding the largest cluster in the estimation of the average
cluster size leads to substantial scaling corrections, nonetheless this is the usual definition
used in percolation studies [19]. Hence, the above analysis will be also utilised in the next
chapter, where the percolation properties of the multi-replica Ising model are discussed.



Chapter 5

The 2- 3- and 4-replica Ising Model

Ordinary percolation can be understood as one of the simplest models exhibiting a phase tran-
sition. Over the years many variants and modified percolation models have been introduced,
finding applications in many and diverse fields (for reviews see, e.g., Refs. [26, 83, 186]).
Specifically, in statistical physics the formulation introduced by Fortuin and Kasteleyn for
the q-state Potts model as a site-bond correlated percolation process (see Sec. 2.4.2), where
the limiting cases of q → 0 and q → 1 correspond to tree and uncorrelated percolation respec-
tively [186], has greatly enhanced our understanding for the q-state Potts model. However,
finding a well-defined percolation process for a general class of models, such as spin-models,
is by no means a straightforward task, as the percolation process depends strongly, in general
terms, on the specific system at hand. For example, the FK clusters for the q-state Potts
model propagate the critical fluctuations of the system, as the spin correlation function is
equal to the probability of finding two sites belonging in the same cluster in the FK repre-
sentation [26]. Over the years attempts have been made to tackle other spin systems, such
as spin glasses, by defining a suitable percolation process. Unfortunately, the FK represen-
tation does not properly describe the phase transition of the spin-glass system, with clusters
percolating at a much higher temperature [40, 41].

For such a description, attempts have been made by studying the percolation properties of
clusters defined from several non-interacting copies (replicas) of the initial system. Houdayer’s
algorithm [48] (see Sec. 3.3.2) as well as the proposed cluster algorithms by Machta et al.,
in Ref. [40] of the two-replica FK representation [49] and the spin-glass version of Chayes,
Machta, and Redner (CMR) [50, 51], are in the right direction. Nonetheless, little attention
has been paid to the percolation properties of such replicas for the ferromagnetic case. This
can be beneficial as on one hand features of such cluster could potentially be utilised in the
study of spin-glass systems, and on the other hand this defines an interesting percolation
problem in its own right.

In this chapter, we will discuss such a percolation process for the two-dimensional Ising
model, defined in terms of multiple replicas of the system, i.e. multi-replica Ising model.
Specifically, we will consider the cases of two, three, and four replicas, where two types of
clusters will be involved, namely the soft constraint and hard constraint clusters. For the two
cluster types the critical behaviour will be studied, in terms of identifying the critical point
and the set of critical exponents that characterize the transition.

53
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5.1 Multi-replica Ising Model

In order to introduce the multi-replica Ising model, let us rewrite here the Hamiltonian of the
Ising model in the absence of an external field, cf. Eq. (2.1),

H = −J
∑
⟨i, j⟩

σiσj . (5.1)

The multi-replica Ising model consists of k copies (replicas), all of which are described by
Eq. (5.1). All replicas are at the same temperature T and do not interact with each other,
thus being statistically independent. Consequently, one can write the partition function of
the system as

Z =
∑
µ(1)

∑
µ(2)

· · ·
∑
µ(k)

e−β[H(1)+H(2)+···+H(k)], (5.2)

where µ(n), H(n) is the spin configuration and energy of the n-th replica respectively.

Assuming that all k replicas are defined on a lattice of linear size L, we can construct a
new set of spin variables k, defined on a lattice of linear size L too, at the site i of which ki
takes the values ±1 according to

ki =

k∏
r=1

σ
(r)
i , (5.3)

where the superscript r is used to distinguish between different replicas. On the k-plane,
defined from Eq. (5.3), we identify the geometrical clusters, i.e., neighbouring spins pointing
in the same direction, in two distinct ways:

1. From neighbouring spins i, j satisfying ki = kj : We refer to those as soft constraint
clusters.

2. From neighbouring spins i, j satisfying σ
(r)
i = σ

(r)
j , ∀ r = 1, 2, . . . , k: We refer to those

as hard constraint clusters1.

As it is illustrated in Fig. 5.1 for the case of two replicas, the hard constraint clusters are
subsets of the soft constraint clusters. Additionally, note that the soft constraint clusters
are the same as the ones of Houdayer’s cluster algorithm, cf. Sec. 3.3.2. Having defined the
multi-replica Ising model for the general case of k replicas we now proceed with the critical
properties of the 2-replica Ising model in two dimensions.

5.2 The 2-replica Ising Model

In this section we will discuss the percolation properties of the 2-replica Ising model in two
dimensions. Since the replicas are at the same temperature and do not interact with each
other in the limit of infinite temperature every spin in each replica has equal probability
of pointing up or down. This results in configurations in the k-plane, defined above, where

1It is easy to check that the definition of the hard constraint clusters immediately implies that ki = kj .
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(a) ki = 1 kj = 1

Replica 1

Replica 2

hard constraint soft constraint

(b) ki = −1 kj = −1

Replica 1

Replica 2

hard constraint soft constraint

Figure 5.1: Schematic representation of the formation of soft and hard constraint clusters
between two neighbouring spins, for the 2-replica case.

each spin is uncorrelated with each other, pointing in random directions, and consequently
clusters will be of very small size. However, one has to be careful with such arguments since
the existence of large or even percolating clusters strongly depends on the geometry of the
lattice. For example, in lattice geometries where the percolation threshold (see Sec. 2.4) is
not greater than 0.5, e.g., cubic lattices, percolating clusters will occur even in the infinite
temperature limit. Nonetheless, since our simulations were performed on square lattices (to
be discussed below), the percolation threshold is above2 0.5.

On the other hand, at temperatures sufficiently below the critical one, both replicas
should be characterized by a large percolating cluster whose size is comparable with the size
of the entire system. Thus, in the k-plane a percolating cluster should also occur at such
temperatures. Consequently, there must be a critical temperature, such that an incipient
spanning cluster in the k-space emerges. It is tempting and to some extent plausible, to
assume that the critical temperature should be the critical temperature of the Ising model
(or 1-replica Ising model, as we will address it from now on). This statement can be supported
by looking at typical configurational snapshots as in Fig. 5.2, where configurations of the two
replicas are shown (upper panel) along with the soft and hard constraint cluster (lower panel)
for a system of linear size L = 128 at the critical temperature of the 1-replica model. In that
case we see that replicas 1 and 2 have a large percolating cluster, whereas the soft and hard
constraint clusters are just critical, with the appearance of an incipient percolating cluster
for both soft and hard constraint clusters. Of course, the precise location of the critical
temperature will be obtained in a more robust way (see Sec. 5.2.2), rather than simply
looking at random equilibrium configurations, however it provides a qualitative picture for
the behaviour of the system.

In what follows, we will discuss the percolation properties of the 2-replica Ising model
in two dimensions. Specifically, we will obtain the transition temperature Tc, of the model
as well as the set of critical exponents concerning the correlation length, average cluster size
and percolation strength, i.e., ν, γ, and β, respectively. To this end, Monte Carlo simulations
and a FSS analysis will be employed. In particular, we simulated the 2-replica Ising model

2An interesting case in two dimensions is also the triangular lattice, where the site-percolation threshold is
exactly 0.5.



56 CHAPTER 5. THE 2- 3- AND 4-REPLICA ISING MODEL

(a) Replica 1. (b) Replica 2.

(c) Soft constraint clusters. (d) Hard constraint clusters.

Figure 5.2: Snapshot configurations of the two-dimensional Ising model, at the critical tem-
perature Tc. (a) First replica. (b) Second replica. (c) Soft constraint clusters. (d) Hard
constraint clusters. In (c) and (d) all clusters, apart from the largest percolating one, are
assigned colours at random. For the largest percolating cluster of both the soft and hard
constraint definitions, the same colour (black) is assigned. Note that in our setup we allow
the black colour to be assigned only to the largest percolating cluster.



5.2. THE 2-REPLICA ISING MODEL 57

in two dimensions on a square lattice using periodic boundary conditions for a range of
system sizes and temperatures, including the critical temperature of the 1-replica model, i.e.,
Tc = 2/

(
1 +

√
2
)
. Simulations were performed using the SW algorithm [27], for systems

of linear size L = 8, 10, 16, 20, 32, 40, 50, 64, 80, 100, 128, 160, 200, 256, 320, 400, 512,
640, 800, 1024, 1280, 1600 and 2048. For each system size and each replica a total number
of 1.1 × τint, E × 105 sweeps was considered, where τint, E is the integrated autocorrelation
time of the energy (see Appendix A.1). The estimates of τint, E, rounded up to the next
largest integer, are varying from τint, E = 3 sweeps for L = 8 to τint, E = 15 sweeps for
L = 2048. For each L the first τint, E × 104 sweeps were discarded during equilibration and a
measurement was taken after τint, E sweeps, leading to a number of 105 measurements per run.
On each measurement and for both cluster types, the full cluster profile of the configuration
was recorded, i.e., size of each cluster, and whether it percolates. From that, we calculated
the wrapping probabilities, average cluster size, and percolation strength, for the different
definitions as introduced in Chap. 4. For the percolation (or wrapping due to the periodic
boundary conditions) of the clusters we employed the method of Machta et al. [171] (see also
Ref. [172] for an alternative method).

We will now proceed with a general description of the observables introduced above. As
for each observable we will consider two cluster types, namely soft and hard constraint clusters
(see Sec. 5.1), a superscript (s) and (h) will be used in all the quantities considered, in order
to distinguish them.

5.2.1 Observables

Wrapping probabilities

Firstly, we consider the different types of wrapping probabilities R as introduced in Sec. 4.1,
for the soft and hard constraint clusters of the 2-replica Ising model. In Figs. 5.3 and 5.4 the
wrapping probabilities R are plotted as a function of temperature T for the different system
sizes L of the soft and hard constraint clusters, respectively. Except for Rx and y, the wrapping
probabilities increase as the temperature decreases, signalling the existence of a percolating
cluster. Additionally, for all R’s (including Rx and y), curves of different L seem to cross
around a temperature which is close to that of the 1-replica Ising model which is denoted
by the dashed vertical line, for both cluster types (see right panel of Figs. 5.3 and 5.4). In
percolation studies such crossings denote the transition point from a non-percolating to a
percolating phase, see, e.g., [173, 176]. More rigorous considerations about the estimation of
the critical point will be given in Sec. 5.2.2, for now note that this observation is in agreement
with the snapshots of Fig. 5.2.

The Rx and y case is of some importance since, as we discussed in Sec. 4.1, it exhibits a
maximum that shifts towards the critical point as the size of the system increases. Addition-
ally, as it was stated above such a function also exhibits a crossing point, for the soft and hard
constraint clusters, respectively. Both, the position of the maxima as well the crossing points,
are expected to converge to the critical point of the infinite system [173]. In numerical studies
of ordinary percolation it has been observed that Rx and y exhibits both crossing points and
maxima only in three dimensions [176], whereas in two dimensions there are no crossings
among the curves [173, 176]. Thus, the existence of both crossing points and maxima for the
two-dimensional Ising model is an interesting feature.
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Figure 5.3: Left column: Wrapping probabilities of the soft constraint clusters, for the 2-
replica Ising model as function of temperature T , for different system sizes L. Right column:
Analogous to left column for the larger system sizes considered. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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Figure 5.4: Left column: Wrapping probabilities of the hard constraint clusters, for the 2-
replica Ising model as function of temperature T , for different system sizes L. Right column:
Analogous to left column for the larger system sizes considered. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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Figure 5.5: (a) Average cluster size of the soft constraint clusters S(s) on a semi-log axis, for
the 2-replica Ising model as a function of temperature T , for different system sizes L. (b)
Analogous to panel (a) for the larger system sizes considered. The dashed vertical line marks
the transition temperature of the 1-replica Ising model.

Average cluster size

Using the conventional definition of the average cluster size S, where the largest cluster is
excluded from the sums of Eq. (2.60), such quantity should exhibit a maximum which increases
as the size of the system increases, while the location of the maximum should be around the
transition point, and shifted towards its asymptotic value with the increasing size of the
system. This is shown in Figs. 5.5 and 5.6, where S is plotted as a function of temperature
T for the different system sizes L of the soft and hard constraint clusters respectively. As the
system size increases the maximum of S also increases, and the location of the peak shifts
to lower temperatures, approaching (presumably) the transition point of the 1-replica Ising
model, which is again denoted by the dashed vertical line (see Figs. 5.5(b) and 5.6(b) for
the soft and hard constraint clusters, respectively). Additionally, from Figs. 5.5 and 5.6 we
can observe that for a fixed temperature and system size, the soft constraint clusters are on
average larger than the hard constraint clusters, e.g., for L = 2048 the peak of the hard
constraint cluster is very close to 105 as shown in Fig. 5.6(b), while from Fig. 5.5(b) we see
that the corresponding peak for the soft constraint clusters is around 2 × 105. This is to
be expected, since as it was already mentioned in Sec. 5.1 the hard constraint clusters are a
subset of the soft ones.

Percolation strength

The percolation strength P∞ as a function of temperature T for different system sizes L of
the soft and hard constraint clusters is shown in Figs. 5.7 and 5.8, respectively. In these plots
we used the definition of P∞, where the largest cluster is considered in each measurement, see
Sec. 4.3. For both cluster types the percolation strength increases with decreasing tempera-
ture, and it approaches the value 1 as the temperature goes to zero, signalling the fact that
all spins in their respective replicas are pointing in the same direction. As the temperature
increases, the percolating clusters in each replica reduce their size, resulting in percolating
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Figure 5.6: (a) Average cluster size of the hard constraint clusters S(h) on a semi-log axis,
for the 2-replica Ising model as a function of temperature T , for different system sizes L. (b)
Analogous to panel (a) for the larger system sizes considered. The dashed vertical line marks
the transition temperature of the 1-replica Ising model.

clusters in the k-plane of smaller size. Finally, at very high temperatures percolation strength
will be essentially zero, as very small clusters occurs in both replicas, and consequently the
percolation strength of the soft and hard constraint clusters for the 2-replica Ising model will
be zero too, cf. Sec. 4.3.

Note that the behaviour of the above observables for the soft and the hard constraint
clusters is, at least qualitatively, similar to that of the 1-replica Ising model. For the latter
case we already discussed the scaling behaviour of the average cluster size and percolation
strength, by performing simulations at the critical point of the 1-replica Ising model and
determining the critical exponents γ/ν and β/ν, see Chap. 4. We will now proceed to the
investigation of the critical behaviour of the 2-replica Ising model for the soft and hard
constraint clusters, respectively.

5.2.2 Critical behaviour

The critical behaviour of the 2-replica Ising model will be discussed in this section. We will
begin with the estimation of the critical exponent ν and critical temperature for the soft and
hard constraint clusters, respectively, by utilising the wrapping probabilities. Subsequently,
the critical exponents γ/ν and β/ν will be determined by utilising different sets of clusters,
as introduced in Chap. 4.

Critical exponent ν

In Sec. 2.3 we discussed how the ν exponent can be determined from the maximum of deriva-
tives of the Binder cumulant or the maximum of derivatives of logarithms of powers of the
magnetisation, via Eqs. (2.52) and (2.54) respectively. In the FK representation percolation
quantities correspond to observables of the physical system, e.g., the percolation strength of
the FK clusters is equivalent to the magnetisation of the system. For geometrical clusters,
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Figure 5.7: Percolation strength of the soft constraint clusters P
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model as a function of temperature T , for different system sizes L. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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however, such a correspondence is absent, thus one cannot utilise directly Eqs. (2.52) and
(2.54) to determine the ν exponent.

Nonetheless, one can work with quantities similar to the Binder cumulant which are ex-
pected to exhibit the same scaling behaviour. As we have pointed out in Sec. 4.1, in numerical
studies of percolation wrapping probabilities have been employed to estimate the critical ex-
ponent ν. These are dimensionless quantities which depend strongly on the geometry of
the lattice, similar to the Binder cumulant (for the latter see, e.g., Refs. [148, 187–189]).
Thus, in the vicinity of the critical point the maximum of the derivative of R with respect to
temperature is expected to behave as [173, 176]∣∣∣∣dRdT

∣∣∣∣
max

∼ L1/ν . (5.4)

The absolute value in taken, as R is a monotonously decreasing function of temperature
leading to a negative slope for all definitions, except Rx and y which for temperatures below
its maximum is an increasing function of temperature (positive slope) for both cluster types
(see Figs. 5.3 and 5.4).

These maxima are numerically determined by finding the root of the second derivative
of R with respect to temperature. For the evaluation of the derivative the symmetric-finite-
difference approximation was used, and the root of the second derivative was estimated using
the bisection method [183]. In order to minimize the effects of systematic errors coming
from the numerical estimation of derivatives, the single histogram reweighting technique was
employed (see Appendix A.4).

In Figs. 5.9 and 5.10 the maximum of the absolute values of the derivatives of the wrapping
probabilities with respect to temperature are plotted as a function of the system size L, for the
soft and hard constraint clusters, respectively. The seemingly straight lines for all definitions
considered (on a log-log plot) for both soft and hard constraint clusters, indicate that Eq. (5.4)
is valid, and that the slopes of such lines should provide estimates of the ν exponent.

To extract ν, we performed linear fits similar to the ones described in Sec. 4.2. Specifically,
we considered intervals of Lmin ≤ L ≤ Lmax where fits were performed by systematically
increasing Lmin, while Lmax was kept fixed at Lmax = 2048. Estimated values from fits for
the ν exponent as a function of 1/Lmin are shown in Figs. 5.11 and 5.12 for the soft and hard
constraint clusters respectively. For the soft constraint clusters and for L above a certain
threshold around Lmin = 100, estimates of the exponent ν for the soft constraint clusters are
consistent with a value around 1, i.e., ν(s) ≈ 1. This can also be verified from Table B.3 in
the Appendix, where we report the values of ν(s) for different fit intervals, the deviation ∆σ

of the estimates from ν(s) = 1 in multiples of their estimated statistical errors, the number
of degrees of freedom3 (d.o.f.), the χ2 per degree of freedom (χ2/d.o.f.) and the respective
quality-of-fit parameter Q. In particular, for Lmin ≥ 100 and all definitions considered the
estimated ν(s) is less than 3σ away from ν(s) = 1 with acceptable values of χ2/d.o.f. and
Q [183, 190]. For the hard constraint clusters the convergence to the asymptotic value of

the exponent ν for the hard constraint clusters, i.e., ν(h), is slower except for the R
(h)
x and y

definition which approaches the ν(h) = 1 value faster. This can also be seen from Table B.4

in the Appendix, where for Lmin ≥ 800 and all definitions considered, except R
(h)
x and y, the

3In the fitting context the number of degrees of freedom is defined as the number of the available data
points minus the fitting parameters of the fitting function. See also Ref. [190] for a more detailed discussion.
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Figure 5.9: Log-log plot of |dR/dT |max for the different definitions of the wrapping probabil-
ities of the soft constraint clusters, for the 2-replica Ising model as a function of system size
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estimated ν(h) is less than 3σ away from ν(h) = 1 with acceptable values of χ2/d.o.f. and Q.

For R
(h)
x and y all estimates are consistent with ν(h) = 1 for all values of Lmin. Nonetheless, as

fits are linear, precautions against unavoidable corrections to scaling dictate that estimates
of ν(h) for small values of Lmin (say Lmin ≤ 100) should not be regarded as reasonable.

We can thus conclude, that the several estimates of ν resulting from the different defini-
tions of the wrapping probabilities are in agreement with each other for both soft and hard
constraint clusters. Additionally, estimates seems to indicate that soft and hard constraint
clusters are characterized by the same critical exponent ν, i.e., ν(s) = ν(h) = 1, which in turn
coincides with the critical exponent for the geometrical clusters of the 1-replica Ising model.
We now turn our attention at the estimation of the critical temperature Tc.

Critical temperature

For the estimation of the critical temperature we will utilise the crossing method. As we
discussed in Sec. 2.3 the crossing method considers the crossings of curves of the Binder
cumulant of pairs of system sizes (L1, L2), which scale according to Eq. (2.55). In the absence
of immediate correspondence between percolation quantities and observables of the system,
we will work with the wrapping probabilities, which resemble the Binder cumulant.

We have already elaborated in Sec. 5.2.1 that the wrapping probabilities cross at a tem-
perature close to the critical temperature of the 1-replica Ising model for both soft and hard
constraint clusters (see Figs. 5.3 and 5.4 respectively). This is shown more clearly in Fig. 5.13,
where Rx or y is plotted as a function of temperature for the larger system sizes considered,
i.e., L = [512− 2048], for the soft (top panel) and hard (bottom panel) constraint clusters,
respectively. Even in this smaller temperature range (cf. Figs. 5.3 and 5.4), it is visually
evident that the crossings occurs at (or very close) to the critical temperature of the 1-replica
Ising model.

We applied Eq. (2.55) by considering the crossings of wrapping probabilities of pairs of
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system sizes (L, 2L), for both soft and hard constraint clusters. The crossings were obtained
using the bisection method [183], and in order to produce more accurate results for the position
of the crossings, the single histogram reweighting technique was used (see Appendix A.4).
In Figs. 5.14 and 5.15, the temperatures where the crossings of the pairs of the wrapping
probabilities occur are plotted as a function of 1/L [we used the smaller system size of the
pair (L, 2L)] for all definitions and for the soft and hard constraint clusters, respectively.
For the larger system sizes, Tcross lies around the critical temperature of the 1-replica Ising
model, indicated by the dashed vertical line. For obtaining more accurate estimates of the
critical temperature, we first tried to perform fits according to Eq. (2.55). Unfortunately, the
accuracy of the data resulted in fits of poor quality and consequently to unreliable estimates
of the involved parameters. Note, that such non-linear fits are usually hard to control, even
when some of the involved parameters, e.g., ν or ω, are known either analytically or from other
works. As an alternative, we proceed by considering linear fits on intervals Lmin ≤ L ≤ Lmax

in the same fashion as before. This means that fits performed by setting the L-exponent of
Eq. (2.55) equal to one, i.e., 1/ν + ω = 1, which is a reasonable choice since estimates of the
exponent ν, as discussed above, are in agreement with a value around 1 and assuming that
the correction exponent ω is small. Thus, the fitting ansatz is of the form

Tcross(x) = Tc + ax, (5.5)

where a is a non-universal scaling parameter and x ≡ 1/L.

For the soft constraint clusters fitting results are reported in Table B.5 in the Appendix.

The estimates of the critical temperature T
(s)
c are consistent with the critical temperature of

the 1-replica Ising model, i.e., Tc ≈ 2.2691853, with deviations of the estimates from Tc being
less than 3σ for all Lmin values and all definitions. The only exception is the estimate for

the R
(s)
x or y definition and Lmin = 320, where the deviation is slightly larger than 3σ, namely

3.2σ from the critical temperature of the 1-replica Ising model. Note that for all definitions



68 CHAPTER 5. THE 2- 3- AND 4-REPLICA ISING MODEL

2.245

2.25

2.255

2.26

2.265

2.27

2.275

0.001 0.01 0.1

T
(h

)
cr
o
ss

1/L

R
(h)
x or y

R
(h)
x and y

R
(h)
x

R
(h)
x and y

Figure 5.15: Estimates of the crossing temperatures of pairs (L, 2L) from the wrapping prob-
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and values of Lmin, the fitting parameter a is consistent with zero, as all estimates differ
less than 3σ from it. This means that data are consistent with straight lines parallel to the
x ≡ 1/L axis. Nonetheless, not all definitions result in reasonable values of χ2/d.o.f. and

Q. The R
(s)
x or y has relatively large values of χ2/d.o.f. (greater than 1.7) and consequently

poor Q values, for all the Lmin values. Additionally, the R
(s)
x definition has also relatively

large values of χ2/d.o.f., although for fewer Lmin values compared to R
(s)
x or y. On the other

hand, R
(s)
x and y and R

(s)
x and y have at least acceptable χ2/d.o.f. and Q values for the majority

of the Lmin values. For the hard constraint clusters results are reported in Table B.6 in the

Appendix. Similarly to soft constraint clusters, the estimates of the critical temperature T
(h)
c

are consistent with that of the 1-replica Ising model, for the larger Lmin values considered.
For most of Lmin ≥ 320 and for all definitions the values of χ2/d.o.f. and Q are reasonable.
All the above can be illustrated on Figs. 5.16 and 5.17, where the estimates of the critical
temperature are plotted as a function of 1/Lmin for the soft and hard constraint clusters,
respectively.

We note that by performing linear fits according to Eq. (5.5) and obtaining reasonable
estimates and quality of fits (in most of the cases), does not imply that corrections to scaling
are absent, but rather that they are not accessible within the accuracy of our data. Addition-
ally, we checked if the estimates of the critical temperature of the soft and hard constraint
clusters are affected when the exponent 1/ν + ω of Eq. (2.55) is close but different from one.
In particular we performed fits (not presented here) using Eq. (2.55) for three different (fixed)
values of the exponent, i.e., 1/ν +ω = 0.9, 1.1, and, 1.2. For each definition and value of Lmin

the estimated fitting parameters, resulting from the three different values of the exponent,
are consistent with each other and in agreement with the ones obtained from Eq. (5.5), for
the soft and hard constraint clusters, respectively. Thus, we see that our estimates for the
critical temperature of the soft and hard constraint clusters are stable since no systematic
shift appears upon varying the exponent 1/ν + ω of Eq. (2.55).
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We can conclude that, given the accuracy of our data and the size of the systems con-
sidered, both soft and hard constraint clusters have the same critical temperature which
coincides with that of the 1-replica Ising model. Although our simulations were of reasonable
length and for sufficiently large system sizes, we cannot exclude the possibility that deviations
from the above behaviour could become visible for even larger system sizes. We will now pro-
ceed with the estimate of the critical exponents for the average cluster size and percolation
strength. Having determined the critical temperature of the system, or at least a reasonable
value close to it, we performed simulations at that temperature., i.e., the critical temperature
of the 1-replica Ising model, for the estimation of the aforementioned exponents.

Percolation strength

For the percolation strength P∞, we will use the definitions as of Sec. 4.3, for the case
of the 1-replica Ising model. In Figs. 5.18 and 5.19 the percolation strength is plotted as
a function of system size for the different definitions considered, as computed at the critical
temperature of the 1-replica Ising model for the soft and hard constraint clusters, respectively.
For both cluster types and all definitions the data seem to follow straight lines, indicating
that corrections to scaling are small and that the involved exponent is independent of the
definition used. The scaling behaviour of P∞ should follow Eq. (4.6), and as simulations are
performed at the critical temperature the scaling function is constant, i.e., P∞ ∼ L−β/ν , thus
allowing the determination of the exponent, cf. Sec. 4.3.

For that we performed linear fits (on a log-log scale) on varying intervals Lmin ≤ L ≤ Lmax,
in the same fashion as described before, e.g., see Sec. 4.2. In Figs. 5.20 and 5.21 the estimated
exponent β/ν is shown as a function of 1/Lmin for the soft and hard constraint clusters,
respectively. Similarly to the 1-replica case (see Sec. 4.3), the max Px and y definition provides
unreliable estimates of the exponent for both cluster types, as clusters percolating in one but
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not the other direction are very rare, leading to poor statistics for the involved observable, i.e.,
P∞. The rest of the definitions provide estimates of the exponent which are in agreement with
each other in between error bars, at least for the larger Lmin values. Additionally, in order
to include smaller system sizes for the estimation of the exponent non-linear fits, including
one correction term, were performed. Unfortunately, the resulting fits where of poor quality
(large values of χ2/d.o.f.) resulting in unreliable estimates of the involved fitting parameters.
Hence, as a trade-off between unavoidable corrections to scaling and values of χ2/d.o.f. close
to one, our estimates for the percolation strength exponent of the soft and hard constraint
clusters are

(
β

ν

)(s)

= 0.0950(7), χ2/d.o.f. ≈ 0.96, Lmin = 320, max P
(s)
x and y, (5.6)(

β

ν

)(h)

= 0.1184(11), χ2/d.o.f. ≈ 0.82, Lmin = 512, max P (h)
x . (5.7)

For more details regarding the fitting results of the exponent β/ν for the soft and hard
constraint clusters see Tables B.7 and B.8 in the Appendix, respectively.

Average cluster size

As with the percolation strength discussed above, we will utilise the different definitions of
the average cluster size as introduced in Sec. 4.2. Figs. 5.22 and 5.23 show the average cluster
size as a function of system size for the different cluster-set definitions considered evaluated
at the critical temperature of the 1-replica Ising model, and for the soft and hard constraint
clusters, respectively. As with P∞, the straight lines indicate that corrections to scaling
should be small and that the exponent should be independent of the definition. Nonetheless,
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this is only a crude observation; recall that the same behaviour occurred for the 1-replica
case but as it turned out the involved exponent strongly depended on the definition that
was used, see Sec. 4.2. Having performed simulations at the critical temperature, the scaling
equation of the average cluster size, see Eq. (4.4), can be written as S ∼ Lγ/ν , allowing for
the estimation of the involved exponent.

Again, linear fits (on a log-log scale) were performed on alternating intervals Lmin ≤ L ≤
Lmax, and the estimated exponents for the soft and hard constraint clusters as a function of
1/Lmin for all definitions considered are shown in Figs. 5.24 and 5.25 respectively. For both
soft and hard constraint clusters the C and C \ Px and y definitions, converge quickly to a

value around (γ/ν)(s) ≈ 1.81 and (γ/ν)(h) ≈ 1.77, respectively, indicating that corrections
to scaling are not substantial. In contrast, the rest of the definitions seem to have strong
scaling corrections, and the convergence to the asymptotic value is quite slow. As in the
case of the 1-replica model, C and C \ Px and y yield similar results, since the exclusion of
clusters wrapping in one but not the other direction will not change the sums of Eq. (2.60)
significantly as such clusters are very rare, cf. Sec. 4.2. The results from the linear fits to
the average cluster size are reported in Tables B.9 and B.10 in the Appendix for the soft and
hard constraint clusters, respectively.

In order to obtain more reliable estimates of the exponent concerning the average cluster
size, we would like to incorporate correction-to-scaling terms. Since the asymptotic behaviour
of the involved exponent should be independent of the definition used, we performed joint fits
[191] using all definitions considered, for the soft and hard constraint clusters, respectively.
The fitting ansatz is of the form

S = aLγ/ν
(
1 + bL−ω

)
, (5.8)

and the fits below have been performed by treating γ/ν and ω as shared (common) parameters
for all definitions, whereas a and b as dependent on the specific data-set (different definition)
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Figure 5.23: Log-log plot of average cluster size for the different definitions of the hard
constraint clusters S(h), for the 2-replica Ising model as a function of the system size L , at
the critical temperature of the 1-replica Ising model.
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Figure 5.25: Exponent ratio for the different definitions of the hard constraint clusters
(γ/ν)(h), for the 2-replica Ising model as a function of 1/Lmin.

used. Since data from different definitions are not statistically independent, as they result
from the same MC series, a naive implementation of the above fitting procedure will result in
wrong estimates of the errors for the involved parameters. Thus, in order to provide reliable
estimates for the errors of the involved parameters, the jackknife method was employed (see
Appendix A.2). The fitting results from the joint fits are reported in Tables B.11and B.12 in
the Appendix for the soft and hard constraint clusters, respectively.

In Figs. 5.26 and 5.27, the exponent γ/ν is plotted as a function of 1/Lmin, resulting
from the joint fits described above, for the soft and hard constraint clusters respectively. For
the different values of Lmin, the estimates of the exponent are consistent with each other, in
between error bars, while as Lmin increases the respective errors increase as a consequence of
the decreasing d.o.f.. Additionally, the estimates of the exponent ω up to a certain value of
Lmin = 256 are consistent with each other for both cluster sets. Nonetheless, for Lmin = 320
and above the error bars of the ω are quite large, resulting in unsatisfactory estimates. This
is shown in Figs. 5.28 and 5.29 for the soft and hard constraint clusters respectively. Note,
that the estimated ω exponent is relatively small for both cluster types (around 0.3), which
is consistent with the strong scaling corrections observed for the average cluster size for some
of the definitions employed.

Fractal dimension

At the percolation threshold pc, the incipient spanning cluster is a fractal object, with its mass
M (number of sites belonging to the infinite cluster) characterized by a critical exponent D,
i.e., the fractal dimension, see Sec. 2.4.1. In numerical studies of percolation D is estimated
from the mass of the largest cluster, which scales as M ∼ LD [19]. Additionally, the fractal
dimension is related to the other exponents according to Eqs. (2.68) and (2.69), i.e., D =
(β + γ) /ν and D = 2 − β/ν. Since we have already obtained estimates for the β/ν, γ/ν we
will determine D by using these relations. Specifically, from Eqs. (5.6) and (5.7) we have

(β/ν)(s) = 0.0950 ± 0.0007 and (β/ν)(h) = 0.1184 ± 0.0011, and according to Tables B.11
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and B.12 we choose (γ/ν)(s) = 1.814± 0.005 and (γ/ν)(h) = 1.765± 0.004. Thus, the fractal
dimensions for the two cluster types are listed below

D(s) = 1.909± 0.005, D(h) = 1.883± 0.004, using D =
β + γ

ν
(5.9)

D(s) = 1.9050± 0.0007, D(h) = 1.8816± 0.0011, using D =d− β/ν. (5.10)

Note that the above estimates are smaller than D = 187/96 ≈ 1.9479, which is the fractal
dimension of the geometrical clusters of the 1-replica Ising model [89]. Additionally, the
estimates resulting from the two different relations of the fractal dimension are consistent with
each other, for the soft and hard constraint clusters, respectively. As mentioned in Sec. 2.4.1
the (β + γ) /ν holds for all dimensions, while the D = d − β/ν is a hyperscaling relation,
valid only below the upper critical dimension. From, that we can conclude that hyperscaling
holds for both cluster types. Note that Ds > Dh, indicating that the soft constraint clusters
are more dense than the hard ones, in good agreement with the configurational snapshots of
the two cluster types in Fig. 5.2.

5.2.3 Concluding remarks

In this section we discussed the percolation properties of the 2-replica Ising model, in terms
of the soft and hard constraint clusters. After a short exposition of the main observables
considered, we proceeded to the determination of the critical behaviour for both cluster types.

Firstly, an estimate of the correlation length exponent ν was obtained with the use of
the wrapping probabilities. Specifically, one can obtain estimates of the ν exponent from
the wrapping probabilities, since the maximum of the absolute value of the derivative of the
wrapping probability with respect to temperature should scale as ∼ L1/ν . The location of the
maximum of the derivative was obtained by identifying the temperature where the second
derivative becomes zero. For the numerical estimation of the second derivative the symmetric-
finite-difference approximation was used and the root of the second derivative was estimated
using the bisection method. Additionally, in order to avoid, as far as possible, the systematic
errors arising from the numerical derivatives, the single-histogram reweighting technique was
used. The estimates of ν, resulting from the fits, indicate that ν = 1 for both soft and hard
constraint clusters, which coincides with the exponent of the 1-replica Ising model.

Subsequently, the critical temperature was obtained using the crossing technique for pairs
(L, 2L) of the wrapping probabilities. Again, for more refined results the temperature where
the curves cross was obtained using the single-histogram reweighting technique. The obtained
results agree with a temperature similar for the soft and hard constraint clusters, which again
coincides with that of the 1-replica Ising model. Nonetheless, we stress again the fact that
the critical temperatures obtained are subjected to the given accuracy of our data, and we
cannot exclude the possibility that the true asymptotic value can be slightly shifted away
from the critical temperature of the 1-replica Ising model, which could only be revealed by
more extensive simulations.

We then proceeded with the estimations of the critical exponents for the percolation
strength and average cluster size, where we utilised the sets of different definitions as discussed
in Sec. 4.1. For the percolation strength the associated exponent is independent of the
definition used and different for the two types of clusters. Similarly to the 1-replica case
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Table 5.1: Critical exponents of the soft and hard constraint clusters for the 2-replica Ising
model and the exact values (last column) of the critical exponents for the 1-replica model, in
two dimensions respectively.

2-replicas 1-replica

Exponent

Constraint
soft hard −

ν 1.005(5) 1.00(3) 1

β/ν 0.0950(7) 0.1184(11) 5/96 ≈ 0.0521

γ/ν 1.814(5) 1.765(4) 91/48 ≈ 1.8958

D = γ/ν + β/ν 1.909(5) 1.883(4) 187/96 ≈ 1.9479

D = d− β/ν 1.9050(7) 1.8816(11) 187/96

(see Sec. 4.3), the definition where the largest cluster percolating in one but not the other
direction is considered in each measurement, provide poor estimates of the exponent, for both
cluster types, as such clusters are very rare leading to pure statistics.

The average cluster size is more sensitive to the definition being used, with C and
C \ Px and y exhibiting small scaling corrections, while the rest of the definitions have strong
corrections to scaling, both for the soft and hard constraint clusters, respectively. Again,
the C and C \ Px and y definitions give similar results as clusters that percolate in one but
not the other direction are very rare and do not alter significantly the sums of Eq. (2.60).
In order to obtain more accurate estimates of the exponent we performed joint fits using all
definitions and including a correction term for the two cluster types, respectively. The expo-
nents are in agreement with the estimates obtained from the individual fits using the C and
C \ Px and y, and different for the soft and hard constraint clusters. Also, the correction-to-
scaling exponent is relatively small for both cluster types, indicating that corrections cannot
be neglected. Lastly, via the scaling relations we obtained the fractal dimension of the soft
and hard constraint clusters. All the estimated exponents for the 2-replica Ising model, along
with the analytical values of the 1-replica case, are reported in Table 5.1. It is clear that the
respective critical exponents for the soft and hard constraint clusters are different from each
other, as well as from them of the 1-replica case; except for the exponent ν.

5.3 The 3-replica Ising Model

We continue our discussion with the percolation properties of the 3-replica Ising model in
two dimensions considering the soft and hard constraint clusters as introduced in Sec. 5.1.
Similarly to the 2-replica case (see Sec. 5.2), we will focus our attention on the estimation
of the critical temperature Tc, and the critical exponents ν, β, γ concerning the correlation
length, average cluster size, and percolation strength, respectively. These estimations were
obtained with the help of Monte Carlo simulations and subsequently by applying the FSS
analysis. The simulation details concerning the 3-replica case are similar to those of the 2-
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replica runs (see Sec. 5.2) with the obvious difference that three instead of two replicas are
simulated for each temperature and system of linear size L.

On a more qualitative basis now we expect that the 3-replica Ising model should exhibit
a critical behaviour. Well below the critical temperature of the 1-replica Ising model all
three replicas have a percolating cluster of a size comparable to that of the system, thus
in the k-plane a percolating cluster should also occur (for both soft and hard constraint
cluster). In contrast, in the limit of infinite temperature spins on each replica point in
random directions and one should expect that in the k-plane there is no percolating cluster.
Consequently, there should be a finite temperature where an incipient percolating cluster in
k-space appears for the first time. This can be visually realised in Fig. 5.30, where in the
upper panel configurations of the three replicas are shown, and in the lower panel the soft
and hard constraint clusters are presented. We see that both cluster types are characterized
by a percolating cluster, where the size of the soft constraint one is larger than that of the
hard constraint one. Additionally, note that the temperature from where these configurations
were taken is below the critical point of the 1-replica Ising model. As it will become apparent
in the next sections the transition temperature for the soft and hard constraint clusters is
below that of the 1-replica Ising model, as well as different between the two cluster types. For
the configurational snapshots of Fig. 5.30 in particular, we choose a temperature which lies
in between the critical temperatures of the soft and hard constraint clusters, cf. Fig. 5.43.
We will now proceed with a general description of the aforementioned observables, before
discussing their critical behaviour in Sec. 5.3.2.

5.3.1 Observables

Wrapping probabilities

In Figs. 5.31 and 5.32 the wrapping probabilities R are plotted as a function of temperature
T for the different system sizes L of the soft and hard constraint clusters, respectively. The
situation here is different from the 2-replica case, as the wrapping probabilities cross at
temperatures not very close the critical point of the 1-replica Ising model, which is denoted
by the dashed vertical line; see the right panels of Figs. 5.31 and 5.32 respectively and cf.
Figs. 5.3 and 5.4. Additionally, the deviation of the crossings from the critical temperature
of the 1-replica Ising model for the hard constraint clusters appear larger than the one for
the soft constraint, indicating that the transition point of the two cluster types is potentially
different. This issue will be discussed in greater detail in Sec. 5.3.2, where the estimation
of the critical point for both cluster types will be considered. For now note that this is in
agreement with Fig. 5.30, where the soft and hard constraint clusters appear critical for a
temperature below that of the 1-replica Ising model. Lastly, note that similarly to the 2-
replica case, Rx and y exhibits a maximum and a crossing point, which should converge to the
same critical point as the size of the system becomes infinite [173].

Average cluster size

The average cluster size S is plotted as a function of temperature T for the different system
sizes L considered, of the soft and the hard constraint clusters in Figs. 5.33 and 5.34, re-
spectively. Here we used again the conventional definition, where on each measurement the
largest cluster is excluded, which results in the appearance of a maximum in the vicinity of
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(a) Replica 1. (b) Replica 2. (c) Replica 3.

(d) Soft constraint clusters. (e) Hard constraint clusters.

Figure 5.30: Snapshot configurations of the two-dimensional Ising model, at temperature
T = 2.26884. (a) First replica. (b) Second replica. (c) Third replica. (d) Soft constraint
clusters. (e) Hard constraint clusters. In (d) and (e) all clusters, apart from the largest
percolating one, are assigned colours at random. For the largest percolating cluster of both
the soft and hard constraint definitions, the same colour (black) is assigned. Note that in our
setup we allow the black colour to be assigned only to the largest percolating cluster.
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Figure 5.31: Left column: Wrapping probabilities of the soft constraint clusters, for the 3-
replica Ising model as function of temperature T , for different system sizes L. Right column:
Analogous to left column for the larger system sizes considered. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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Figure 5.32: Left column: Wrapping probabilities of the hard constraint clusters, for the 3-
replica Ising model as function of temperature T , for different system sizes L. Right column:
Analogous to left column for the larger system sizes considered. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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Figure 5.33: (a) Average cluster size of the soft constraint clusters S(s) on a semi-log axis,
for the 3-replica Ising model as a function of temperature T , for different system sizes L. (b)
Analogous to panel (a) for the larger system sizes considered. The dashed vertical line marks
the transition temperature of the 1-replica Ising model.

the critical point. We note again that S for the same system size and temperature is larger
for the soft constraint clusters in comparison with the hard constraint ones. For example, the
peak of the average cluster size for L = 2048 is around 4× 104 for the soft constraint clusters
whereas for the hard constraint ones around 2×104, see Figs. 5.33(b) and 5.34(b) for the soft
and the hard constraint clusters, respectively.

Percolation strength

The percolation strength P∞ is plotted as a function of temperature T for the different
system sizes L of the soft and hard constraint clusters in Figs. 5.35 and 5.36, respectively.
The definition that has been used here is, again, that of the largest cluster considered in each
measurement. For both cluster types P∞ is a decreasing function of temperature, and as
temperature approaches 0 it goes to 1, signalling that all spins in the k-plane are aligned.
In contrast, for very high temperatures (approaching infinity) the percolation strength is
essentially zero, reflecting the fact that in all replicas spins are pointing in random directions,
cf. Sec. 5.2.1. Note that the percolation strength decreases faster as a function of temperature,
for the 3-replica case in comparison with the 2-replica case, for the respective cluster type
and system size L, cf. Figs. 5.7 and 5.8.

5.3.2 Critical behaviour

In this section the critical behaviour of the 3-replica Ising model will be discussed, where
we will follow the same path as for the case of the 2-replica Ising model (see Sec. 5.2.2).
Namely, the critical exponent ν will first be discussed, followed up by the determination of
the critical point, for the soft and hard constraint clusters, respectively. Subsequently, the
critical exponents β/ν and γ/ν will be considered.
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Figure 5.34: (a) Average cluster size of the hard constraint clusters S(s) on a semi-log axis,
for the 3-replica Ising model as a function of temperature T , for different system sizes L. (b)
Analogous to panel (a) for the larger system sizes considered. The dashed vertical line marks
the transition temperature of the 1-replica Ising model.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

P
(s
)

∞

T

L=8
L=10
L=16
L=20
L=32
L=40
L=50
L=64
L=80
L=64
L=80
L=100
L=128

L=160
L=200
L=256
L=320
L=400
L=512
L=640
L=800
L=1024
L=1280
L=1600
L=2048

Figure 5.35: Percolation strength of the soft constraint clusters P
(s)
∞ , for the 3-replica Ising

model as a function of temperature T , for different system sizes L. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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Figure 5.36: Percolation strength of the hard constraint clusters P
(s)
∞ , for the 3-replica Ising

model as a function of temperature T , for different system sizes L. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.

Critical exponent ν

For the estimation of the ν exponent, we will utilise the absolute value of the derivatives of
the various wrapping probabilities with respect to temperature for the soft and hard con-
straint clusters, which their maxima scale with system size L according to Eq. (5.4), cf.
Sec. 5.2.2. The maxima of the aforementioned derivates are plotted as a function of system
size L (on a log-log scale) in Figs. 5.37 and 5.38, for the soft and hard constraint clusters,
respectively. These maxima are obtained from the root of the second derivative of R with
respect to temperature, where the derivative is evaluated numerically using the symmetric-
finite-difference approximation, and the root of the second derivative is estimated using the
bisection method [183]. Additionally, the single histogram reweighting technique is employed
(see Appendix A.4), in order to minimize the effect of systematic errors, coming from the
numerical estimation of the derivatives.

In order to utilise Eq. (5.4), we will perform linear-fits (on a log-log scale) on varying
intervals Lmin ≤ L ≤ Lmax, similarly to the 2-replica case, see Sec. 5.2.2. The estimates of
the involved exponent as a function of 1/Lmin are shown in Figs. 5.39 and 5.40 for the soft and
hard constraint clusters, respectively. For the ν exponent of the soft constraint clusters, ν(s),
estimates resulting from different definitions are quite distinct from each other, for small and
intermediate values of Lmin, while they seem to approach a common value which is close to
1 only for the two largest values of Lmin, i.e., L = 1024 and 1280. Additionally, for the hard
constraint clusters ν(h) does not seem to have approached its asymptotic value as it increases

as the Lmin increases, for all definitions except R
(h)
x and y. For the latter definition ν(h) behaves

inconsistently, as it is close to a value around 1.02 for all Lmin ≤ 200, whereas above that it
increases as Lmin increases, with the exception of the second- and third-to-last points which
are consistent with a value around 1.

Such behaviour of the involved exponent for the two cluster types is a strong indication
that corrections to scaling are present, which in turn influence the behaviour of the exponent.
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Figure 5.37: Log-log plot of |dR/dT |max for the different definitions of the wrapping proba-
bilities of the soft constraint clusters, for the 3-replica Ising model as a function of system
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To incorporate that we performed fits including a correction term as in Eq. (2.58). Unfor-
tunately, such fits were unreliable, with quite large error estimates on the involved fitting
parameters. As an alternative we tried fits including a logarithmic correction term of the
form:

f(L) = a1L
1/ν (1 + a2/ logL) , (5.11)

where a1, a2 are non-universal scaling parameters. We note that there is no obvious reason
for such corrections to appear here, given that such logarithmic corrections usually emerge
at the upper critical dimension. Thus, since an ansatz like Eq. (2.58) do not provide reliable
estimates for the involved parameters, our choice for logarithmic corrections to scaling can
only be seen as an alternative on a speculative basis.

In Figs. 5.41 and 5.42 the estimates of the exponent ν are plotted as a function of 1/Lmin

for the soft and hard constraint clusters, respectively. For the soft constraint clusters, ν(s) is
compatible with a value around 1, for all definitions considered (with two exceptions which
will be discussed shortly). However, for the larger values of Lmin there is a trend of increasing

values, especially for the R
(s)
x and y definition, but still consistent with the value 1 in between

error bars. Additionally, note that for Lmin = 40 and 50 the estimations of ν(s) for Rx and y,
significantly deviate from ν(s) = 1, especially for L = 50. In general, the estimates of the
fitting parameters correspond to the minimization of χ2 in the space of the parameters [183,
190]. This parameter-space, especially for non-linear fits4 as the one here, could have rugged
landscapes with many local-minima, and it is likely that the minimization process could get
“stuck” in one of those, resulting in a non-optimal set of parameters. In order to overcome
such issues different initial starting values of the parameters should be tried, in order to assure
that the global minimum has been reached; of course there is no a priori guarantee that this
should happen. For our case we tried several initial values, but the resulting parameters did
not change significantly. In any case, though, since such estimates correspond to values of
Lmin which are relatively small in comparison with the rest that we consider, as a precaution
against unavoidable corrections to scaling we will not take them into account. Finally, note
that the estimates of ν(s) corresponding to Lmin = 1024 for all definitions have been omitted,
as the error bars were extremely large, making them unreliable, however, these values along
with the fitting results for the rest of the definitions have been reported in Table B.13 in the
Appendix.

The estimates of the ν exponent for the hard constraint clusters, ν(h), increase for Lmin ≤
400, where after that point it reaches a plateau which is around the value of ν(h) ≈ 1.5. For
the largest Lmin, i.e., Lmin = 1024, however, the error bars of the estimates for the different
definitions are quite large making them unreliable. Note that the estimates for Lmin = 512
and 640, have been omitted from Fig. 5.42 as their error bars are extremely large resulting to
unreliable estimates, while for Lmin = 1024 the fitting routine could not provide any result, as
it did not converged. All the fitting results have been reported in Table B.14 in the Appendix.

4Note that the minimization routine could also get “stuck” even for linear fits. This might happen as some
regions of the parameter space could be quite flat and during the minimization process of χ2, which is usually
implemented by the gradient descent method, the routine might not be able to reach the minimum value of
χ2.
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model as function of 1/Lmin. Estimates extracted from fits using a logarithmic correction
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Critical temperature

Similarly to the 2-replica case, the estimation of the critical temperature of the soft and hard
constraint clusters for the 3-replica Ising model will be obtained via the crossing method. As
in Sec. 5.2.2, the location of the crossings of the wrapping probabilities of pairs of system
sizes (L, 2L) were obtained using the bisection method [183], along with the single histogram
reweighting technique, in order to produce more accurate estimates, see Appendix A.4. In
Fig. 5.43 the Rx or y is plotted as a function of temperature T for the larger system sizes
considered, i.e., L = [512− 2048], for the soft (green colour) and hard (blue colour) constraint
clusters, respectively. In contrast to the 2-replica case, curves of soft and hard constraint
clusters cross at different temperatures, which are both below the critical temperature of the
1-replica Ising model (dashed vertical line), cf. Fig. 5.13.

In Figs. 5.44 and 5.45 the positions of the crossings are plotted as a function of 1/L,
where we again considered the smaller system size of the pair (L, 2L), for all definitions and
for the soft and hard constraint clusters, respectively. For the soft constraint clusters we see
that crossings for the larger system sizes [see Fig. 5.44(b)] seem to approach a temperature
different, but quite close, to that of the 1-replica Ising model. Nonetheless, one cannot exclude
the possibility that such crossings could approach the critical temperature of the 1-replica
Ising model, if larger system sizes will be considered. For the hard constraint clusters, the
situation is somewhat more clear, as the deviation from the critical temperature of the 1-
replica Ising model is quite pronounced, especially for the largest system sizes, and we can
expect that the asymptotic value must be different from that of the 1-replica Ising model, see
Fig. 5.45(b).

To determine the critical temperature we performed fits according to Eq. (2.55), where
we accumulate the exponent 1/ν + ω in a single parameter ϵ, i.e.,

Tcross(x) = Tc + axϵ, (5.12)
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Figure 5.44: (a) Estimates of the crossing temperatures of pairs (L, 2L) from the wrapping
probabilities of the soft constraint clusters, for the 3-replica Ising model as a function of 1/L.
The dashed horizontal line marks the transition temperature of the 1-replica Ising model. (b)
Analogous to panel (a) for the larger system sizes considered. The x-axis is in a log-scale for
a better presentation of the results.
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Figure 5.45: (a) Estimates of the crossing temperatures of pairs (L, 2L) from the wrapping
probabilities of the hard constraint clusters, for the 3-replica Ising model as a function of 1/L.
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where x ≡ 1/L, ϵ ≡ 1/ν+ω, and a is a non-universal scaling parameter. Once again fits were
performed on varying intervals Lmin ≤ L ≤ Lmax, in the same fashion as before (see, e.g.,
Sec. 5.2.2). We note that fits using Eq. (5.12) were also performed initially for the estimation
of the critical temperature for the soft and hard constraint clusters of the 2-replica Ising
model. However, as discussed in Sec. 5.2.2, the accuracy of our data resulted in fits of poor
quality and consequently to unreliable estimates of the involved parameters. Thus, fits using
Eq. (5.5) were performed instead.

In Figs. 5.46 and 5.47 the estimates of the critical temperature are plotted as a func-
tion of 1/Lmin for the soft and hard constraint clusters, respectively. Note that data points

corresponding to Lmin = 128, 160, 200, 256, and 320 for the R
(s)
x and y definition, have been

omitted from Fig. 5.46, as the estimated errors of the critical temperature were extremely
large, leading to unreliable estimates of the involved parameter. For values of Lmin = 100

and above, estimates of the T
(s)
c are consistent with the critical temperature of the 1-replica

Ising model, which is indicated by the dashed horizontal line; this is also supported from Ta-
ble B.15 in the Appendix, where the fitting results are reported. Nonetheless, from Fig. 5.43
we see that the position of the crossings of Rx or y (green lines) are in a temperature range
[2.2685− 2.269], which is also in agreement with the estimated values of the critical temper-
ature from Fig. 5.46; the same holds for the rest of the wrapping probabilities considered,
though not presented here, i.e., the crossings for the rest of the definitions are in a tem-
perature range [2.2685− 2.269]. Thus, although our estimates are consistent with a critical
temperature equal to the 1-replica Ising model, we cannot exclude the possibility that the
asymptotic value might be different, but quite close, from that. To clarify this issue simula-
tions on larger system sizes have to be performed. For the hard constraint clusters estimates

of T
(h)
c , see Fig. 5.47, clearly show that the critical temperature is below that of the 1-replica

Ising model, and close to a value around T
(h)
c ≈ 2.268. Here the data points for Lmin = 400

and 512 for Rx or y and Lmin = 256, 320, 400, and 512 for R
(s)
x and y, are excluded for the same

reason as with the soft constraint clusters discussed above, see also Table B.16 in the Ap-
pendix. Additionally, from Fig. 5.43, we see that the position of the crossings for the hard
constraint clusters (blue lines) lies around [2.2675− 2.2682], which is also compatible with
the results from the fits obtained above.

Furthermore, for relatively large values of Lmin, say Lmin ≥ 160, the exponent ϵ is consis-
tent with the value 1 for the soft and hard constraint clusters, respectively, see Tables B.15

and B.16; the only exception is for R
(s)
x and y where this is valid for Lmin ≥ 256. Of course

this is subject to the fact that a reasonable estimate has been obtained, e.g. for R
(s)
x and y and

Lmin = 400 the exponent is 0.660 ± 0.483, which is not a reliable estimate since its error is
comparable with the estimated value. Nonetheless, for other values of Lmin and definitions of
wrapping probabilities, results provide reasonable estimates of the involved exponent. From
the estimation of the ν exponent using logarithmic fits, results are consistent with a value
around 1 for the soft and 1.5 for the hard constraint clusters, respectively, i.e., ν(s) ≈ 1 and
ν(h) ≈ 1.5. However, as the estimates of the accumulated parameter ϵ are consistent with a
value around 1 too, this is clearly a contradiction. For example for the hard constraint clusters
we have ν(h) ≈ 1.5, which implies that the correction exponent is negative, which is certainly
unreasonable as this in turn would suggest that corrections to scaling become important as
the size of the system increases. Additionally, for the soft constraint clusters one can argue
that presumably the correction exponent is quite small such that ϵ(s) ≈ ν(s), however, the
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Figure 5.46: Estimates of the critical temperature of the soft constraint clusters, for the 3-
replica Ising model as a function of 1/Lmin. The dashed horizontal line marks the transition
temperature of the 1-replica Ising model.

correction-to-scaling exponent needs to be determined in order to check the validity of that
argument.

From the discussion thus far, it is clear that the estimates of the exponent ν, and critical
temperature of the soft and hard constraint clusters for the 3-replica Ising model, are not
as concrete as the ones obtained for the 2-replica Ising model; we will further elaborate on
this issue in the concluding part of this section, see Sec. 5.3.3, where a possible explanation
for the existence of possibly strong corrections to scaling based on qualitative arguments will
be given. However, we continue our discussion with the estimation of the critical exponents
concerning the average cluster size and percolation strength. For the 2-replica Ising model,
the estimation of the critical temperature for the soft and hard constraint clusters, allowed
us to perform simulations exactly at this temperature and study the scaling behaviour of
the percolation strength and average cluster size as a function of system size, from which
we extracted the respective exponents. In the lack of such concrete estimates of the critical
temperature for the two cluster types of the 3-replica Ising model, one has to find a different
strategy. As discussed in Sec. 2.3, the sequence of pseudo-critical points T ∗(L), which can
be obtained from, e.g., the position of the maxima of the magnetic susceptibility, or the
crossings of the Binder cumulant, can be further utilised to extract the critical exponents
of the observables of interest. In our case we will use the crossing points of Rx or y of the
soft and hard constraint clusters, respectively, as such sequence of pseudo-critical points,
and calculate the observables of interest at these temperatures5. Additionally, the single
histogram reweighting method (see Appendix A.4) will be utilised, in order to have more
accurate estimates of the involved observables. We begin our discussion by considering the
percolation strength.

5Note, that two sequences of such pseudo-critical points will be utilised, namely one for the soft and the
other for the hard constraint clusters.
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Figure 5.47: Estimates of the critical temperature of the hard constraint clusters, for the 3-
replica Ising model as a function of 1/Lmin. The dashed horizontal line marks the transition
temperature of the 1-replica Ising model.

Percolation strength

In Figs. 5.48 and 5.49 the percolation strength P∞ is plotted as a function of system size, for
the different definitions considered, evaluated at the crossing points of Rx or y, for the soft and
hard constraint clusters, respectively. Contrary to the 2-replica case, the different definitions
seem to follow straight lines but not parallel to each other, indicating that they would result
in different estimates of the involved exponent, cf. Figs. 5.18 and 5.19. As discussed above,
utilising the sequence of pseudo-critical points of Rx or y results in a constant scaling function
of Eq. (4.6), i.e., P∞ ∼ L−β/ν , which allows the determination of the exponent, cf. Sec. 4.3.

In order to extract the critical exponent we performed linear fits (on a log-log scale) on
varying intervals Lmin ≤ L ≤ Lmax as in the 2-replica Ising model, cf. Sec. 5.2.2. In Figs. 5.50
and 5.51 the estimated exponent β/ν is plotted as a function of 1/Lmin for the soft and hard
constraint clusters, respectively. As mentioned above the different definitions, indeed, result
in different estimations of the involved exponent, which do not seem to converge to a common
value as Lmin increases. Specifically, for all definitions (except max Px and y) their estimates
increase with Lmin, and are quite distinct from each other for any value of Lmin, for the soft
and hard constraint clusters, respectively. This is inconsistent with what we have seen so
far for the percolation strength of the 1- and 2-replica Ising model, where the exponent is
independent of the definition used, cf. Secs. 4.3 and 5.2.2. One possible explanation for this
behaviour is the existence of strong scaling corrections, that do not allow us to observe the
true asymptotic value of the exponent, and can only be revealed if we consider larger system
sizes. For max Px and y, estimates result in quite small values of the exponent, in comparison
with the rest of the definitions, and for the larger values of Lmin they are even consistent with
0, leading to unreliable estimates, for the soft and hard constraint clusters, respectively. Of
course the fact that max Px and y is not consistent with the rest of definitions, is something
that has been observed again for the 1- and 2-replica Ising model, resulting from the rare
appearance of such clusters.



96 CHAPTER 5. THE 2- 3- AND 4-REPLICA ISING MODEL

10−2

10−1

100

101 102 103

P
(s
)

∞

L

max C(s)

max P
(s)
x or y

max P
(s)
x

max P
(s)
x and y

max P
(s)
x and y

Figure 5.48: Log-log plot of the percolation strength for the different definitions of the soft

constraint clusters P
(s)
∞ , for the 3-replica Ising model as a function of the system size L ,

evaluated at the pseudo-critical temperatures of R
(s)
x or y.

10−2

10−1

100

101 102 103

P
(h

)
∞

L

max C(h)

max P
(h)
x or y

max P
(h)
x

max P
(h)
x and y

max P
(h)
x and y

Figure 5.49: Log-log plot of the percolation strength for the different definitions of the hard

constraint clusters P
(h)
∞ , for the 3-replica Ising model as a function of the system size L,

evaluated at the pseudo-critical temperatures of R
(h)
x or y.



5.3. THE 3-REPLICA ISING MODEL 97

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

10−3 10−2

(β
/ν

)(
s)

1/Lmin

max C(s)

max P
(s)
x or y

max P
(s)
x

max P
(s)
x and y

max P
(s)
x and y

Figure 5.50: Exponent ratio for the different definitions of the soft constraint clusters (β/ν)(s),
for the 3-replica Ising model as a function of 1/Lmin.

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

10−3 10−2

(β
/ν

)(
h
)

1/Lmin

max C(h)

max P
(h)
x or y

max P
(h)
x

max P
(h)
x and y

max P
(h)
x and y

Figure 5.51: Exponent ratio for the different definitions of the hard constraint clusters
(β/ν)(h), for the 3-replica Ising model as a function of 1/Lmin.



98 CHAPTER 5. THE 2- 3- AND 4-REPLICA ISING MODEL

101

102

103

104

105

106

101 102 103

S
(s
)

L

C(s)

C(s) \ P
(s)
x and y

C(s) \ P
(s)
x and y

C(s) \ P
(s)
x

C(s) \ max C(s)

C(s) \ P
(s)
x or y

Figure 5.52: Log-log plot of average cluster size for the different definitions of the soft con-
straint clusters S(s), for the 3-replica Ising model as a function of the system size L , evaluated

at the pseudo-critical temperatures of R
(s)
x or y.

Average cluster size

In Figs. 5.52 and 5.53 the average cluster size S is plotted as a function of system size, for
the different definitions considered evaluated at the crossing points of Rx or y, for the soft and
hard constraint clusters, respectively. Similarly to the percolation strength discussed above,
utilising the sequence of pseudo-critical points of Rx or y results in a constant scaling function
of Eq. (4.4), i.e., S ∼ Lγ/ν , which allows the determination of the exponent, cf. Sec. 4.2.

Once again, we performed linear fits (on a log-log scale) on varying intervals Lmin ≤ L ≤
Lmax as in the 2-replica Ising model, cf. Sec. 5.2.2. The estimated exponent γ/ν is plotted
as a function of 1/Lmin for the soft and hard constraint clusters in Figs. 5.54 and 5.55, respec-
tively. As with the percolation strength, different definitions result in different estimates of
the involved exponent. In particular for the soft constraint clusters, we see that the estimates

of C(s) \ P
(s)
x or y, C(s) \ P

(s)
x and y, and C(s) \ P

(s)
x increase with Lmin and for the larger system

sizes considered they agree with each other, in between error bars, while the rest of definitions
decrease with Lmin, with estimates being quite distinct from each other especially for the def-
inition where the largest cluster is excluded in each measurement. For the hard constraint

clusters the C(h) \ P
(s)
x or y, C(h) \ P

(s)
x and y, C

(h) \ P
(h)
x and C(h) \ max C(h) increases with

Lmin, but their values do not agree with each other especially for the larger values of Lmin;

for C(h) \ max C(h) this is valid for all values of Lmin. The C(h) and C(h) \ P
(h)
x and y have

a peak around Lmin = 640, and as Lmin increases further they decrease. Note that C and
C \ Px and y provide estimates of the involved exponent close to each other for all values of
Lmin, in comparison to the rest of the definitions, as exclusion of clusters that percolate in
one but not the other direction are very rare and they do not alter the average cluster size
significantly; this has also been observed for the 1- and 2-replica Ising model, cf. Secs. 4.2
and 5.2.2, respectively.

Finally, it is clear that the estimates of the exponent provided here, are not sufficient to
draw any conclusion regarding its asymptotic value. Similarly to the percolation strength,
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this might be caused by the existence of strong corrections to scaling, and simulations on
larger system sizes would overcome such obstacles. We refer to this point in the next section
which summarizes the results obtained for the 3-replica Ising model.

5.3.3 Concluding remarks

The percolation properties of the 3-replica Ising model in terms of the soft and hard constraint
clusters were discussed, where the analysis and the path that we followed was similar to the
case of the 2-replica Ising model. Specifically, we first examine the general behaviour of the
main observables, and then proceed to the study of the critical behaviour of the system for
both cluster types.

For the estimation of the exponent ν we utilised the wrapping probabilities, as introduced
in Sec. 4.1. By calculating the maximum of the absolute value of the derivative with respect
to temperature of the wrapping probabilities, we provided estimates of the exponent ν, for
the soft and hard constraint clusters, respectively. At first we performed linear fits (on a
log-log scale) and observed that for the soft constraint clusters the estimates resulting from
the different definitions converged to a value close to 1 only for the two larger values of Lmin,
whereas for the hard constraint clusters the estimates were increasing with Lmin, except

from the second- and third-to-last points of R
(h)
x and y, see Fig. 5.40. Attempts to perform

fits including a correction term, led to unsatisfactory estimates of the exponent. As an
alternative method in order to tackle corrections to scaling, fits including a logarithmic term
were considered. The performed fits were of reasonable quality for most of the larger values
of Lmin, and the obtained results suggest that the exponent is consistent with a value ν(s) ≈ 1
for the soft constraint clusters, and ν(h) ≈ 1.5 for the hard constraint clusters. However, since
logarithmic corrections to scaling usually emerge for systems at the upper critical dimension
(see, e.g., Ref. [71] and references therein, and Ref. [109] for the case of percolation), we are
not able to provide a concrete explanation of why such corrections could emerge here, since
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the upper critical dimension of the Ising model is four.

Subsequently, the critical temperature for the soft and hard constraint clusters, was stud-
ied by utilising the crossing technique of pairs (L, 2L) of the wrapping probabilities. For
that we performed fits according to Eq. (2.55), where we accumulate the exponent 1/ν + ω
into a single parameter ϵ. For the soft constraint clusters results indicate that the critical
temperature in consistent with that of the 1-replica Ising model, however, from Fig. 5.43

the location of the crossings of R
(s)
x or y for the larger system sizes considered (green colour

lines) is in a temperature range [2.2685− 2.269], which can also be supported from these
estimates. For the hard constraint clusters, results are consistent with a temperature below
that of the 1-replica Ising model, and as is shown in Fig. 5.43 this is in agreement with the

location of the crossings of R
(h)
x or y for the larger system sizes considered (blue colour lines)

which lies around [2.2675− 2.2682]. Additionally, the accumulated exponent ϵ is consistent
with a value around 1 for the soft and hard constraint clusters, respectively. For the hard
constraint clusters this is inconsistent with the obtained value of ν(h) ≈ 1.5, as this implies a
negative correction-to-scaling exponent. For the soft constraint clusters, on the other hand,
this implies that corrections to scaling are negligible, as ν(s) ≈ 1, which still needs further
investigation.

Having not obtained accurate estimates for the critical temperature, the estimation of
the critical exponents concerning the percolation strength and average cluster size, were
determined by utilising the sequence of pseudo-critical points resulting from the crossings of
Rx or y for the soft and hard constraint clusters, respectively. Additionally, in order to provide
more accurate estimates the single histogram reweighting technique was utilised. For the
percolation strength estimates of the involved exponent coming from different definitions are
quite distinct from each other for the soft and hard constraint clusters, respectively. For the
exponent of the average cluster size, results also show that the exponent approaches different
values depending on the definition being used, with estimates using C and C \ Px and y being
closer to each other, only because excluding clusters percolating in one but not the other
direction are very rare and do not alter significantly the average cluster size.

It is obvious that the above results do not allow the extraction of any firm conclusions
regarding the critical properties of the soft and hard constraint clusters of the 3-replica Ising
model, in opposition to the 1- and 2-replica Ising model, cf. Chap. 4 and Sec. 5.2. One
possible explanation for that is the existence of strong scaling corrections, that do not allow
the extraction of the asymptotic behaviour. For that we have come up with a possible
explanation, which we outline here. Let us denote as T (3) the asymptotic critical temperature
of the clusters for the 3-replica Ising model; here we will not distinguish between soft and hard
constraint clusters. We assume that T (3) is different but quite close to that of the 1-replica
Ising model, i.e., T (1), which is a valid assumption for both cluster types, cf., Fig. 5.43. For
each of the three replicas the correlation length of the geometrical clusters ξ diverge at T (1)

and takes finite values at T (3); remember that the geometrical clusters of the 2-dimensional
Ising model (1-replica) percolate at the thermal transition point, see Sec. 2.4.2. On the other
hand, T (3) is close to T (1), thus the correlation length is expected to be relatively large,
though finite. This in turn defines an effective length scale L∗, as L∗ = ξ

(
T (3)

)
that enters

the problem of the 3-replica Ising model in the following fashion: If we study systems with
L < L∗ each replica would appear as if it is in the critical phase, and consequently we are
looking at the overlap of three incipient percolating clusters. For L > L∗ each of the three
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replicas should be in the percolating phase, which in turns means that we are looking at
the overlap of three non-critical percolating clusters. Thus, it is expected that the critical
behaviour must change substantially in the vicinity of L∗. Consequently, if L∗ is relatively
large, say L∗ ≳ 500, this could justify the presence of strong corrections to scaling, which
in turn explains the unsatisfactory results obtained for the 3-replica Ising model. Lastly, we
note that L∗ can be estimated from the definition of the second moment correlation length
[see Eq. (2.62)], or alternatively by utilizing the average radius of the clusters which is directly
connected with the correlation length ξ; for the latter see, e.g., Ref. [19].

5.4 The 4-replica Ising Model: Preliminary Results

In the final section of this chapter we will discuss some preliminary results concerning the
percolation properties of the 4-replica Ising model for the soft and hard constraint clusters as
introduced in Sec. 5.1. The simulation details are similar to the ones introduced in Sec. 5.2
for the 2-replica case, with the difference that the largest system considered here is of linear
size L = 1600, as opposed to the 2- and 3-replica Ising model which was L = 2048, and we
did not perform simulations exactly at the critical temperature of the 1-replica Ising model,
cf. Secs. 5.2 and 5.3.

5.4.1 Observables

Wrapping probabilities

In Figs. 5.56 and 5.57 the wrapping probabilities R are plotted as a function of temperature
T for the different system sizes L of the soft and hard constraint clusters, respectively. The
crossings of the wrapping probabilities are quite below the critical temperature of the 1-replica
Ising model which is denoted by the dashed vertical line; see the right panels of Figs. 5.56 and
5.57, respectively. This is also supported in Fig. 5.58, where Rx or y is plotted as a function
of temperature T for the larger system sizes considered, i.e., L = [400− 1600], for the soft
(green colour) and hard (blue colour) constraint clusters, respectively. According to that, the
critical temperature of the soft constraint clusters is around [2.263− 2.267], whereas for the
hard constraint clusters is around [2.253− 2.257]. These temperature ranges are below the
ones obtained for the soft and hard constraint clusters of the 3-replica Ising model; we remind
here that for the soft constraint clusters the temperature range was [2.2685− 2.269] and for
the hard constraint clusters [2.2675− 22682]. Consequently, we see that as the number of
replicas increases the critical temperature shifts to lower values, for the soft and the hard
constraint clusters, respectively. Of course for more precise conclusions accurate estimates
of the critical temperature as the ones for the 2-replica Ising model should be obtained, see
Sec. 5.2.2.

Average cluster size

In Figs. 5.59 and 5.60 the average cluster size S is plotted as a function of temperature
T for the different system sizes L considered of the soft and the hard constraint clusters,
respectively. Here we used again the conventional definition of the average cluster size, where
on each measurement the largest cluster is excluded, which results in the appearance of a
maximum in the vicinity of the critical point. From Fig 5.59(b) we see that the chosen
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Figure 5.56: Left column: Wrapping probabilities of the soft constraint clusters, for the 4-
replica Ising model as function of temperature T , for different system sizes L. Right column:
Analogous to left column for the larger system sizes considered. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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Figure 5.57: Left column: Wrapping probabilities of the hard constraint clusters, for the 4-
replica Ising model as function of temperature T , for different system sizes L. Right column:
Analogous to left column for the larger system sizes considered. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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Figure 5.58: Rx or y as a function of temperature for system sizes L = [400− 2048], for the
soft (green colour) and hard (blue colour) constraint clusters, of the 4-replica Ising model.
The dashed vertical line marks the transition temperature of the 1-replica Ising model.

temperature range for the soft constraint clusters dose not allow to clearly observe the peak
of the average cluster size, as opposed to the 2- and 3-replica case, cf. Figs 5.5(b) and 5.33(b),
respectively. Since the discussion for the 4-replica Ising model is on a more qualitative basis
the relative poor choice of temperature range for the average cluster size of the soft constraint
clusters does not raise further concerns, however, for a more detailed analysis simulations need
to be performed for higher temperature values. For the hard constraint clusters though we
see that the peaks of S for the different system sizes are below the critical temperature of the
1-replica Ising model, see Fig. 5.60(b).

Percolation strength

The percolation strength P∞ is plotted as a function of temperature T for the different
system sizes L of the soft and hard constraint clusters, in Figs. 5.61 and 5.62, respectively.
The definition that has been used here is, again, that of the largest cluster considered in
each measurement. Qualitatively, the behaviour of P∞ is similar to the 2- and 3-replica Ising
model, namely it decreases as function of temperature T , and as temperature goes to 0 it
approaches the value 1, meaning that all spins in the k-plane are aligned. As the temperature
approaches infinity the percolation strength is essentially zero, reflecting the fact that spins
in their respective replicas are pointing in random directions.

5.4.2 Concluding remarks

In this section we presented some preliminary results regarding the percolation properties of
the soft and hard constraint clusters for the 4-replica Ising model. As the discussion was on a
more qualitative basis no firm conclusions can be made. Nonetheless, existing results indicate
that, as in the 3-replica Ising model, the hard constraint clusters percolate at a temperature
lower than that of the soft constraint clusters. Additionally, the critical temperature seems to
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Figure 5.59: (a) Average cluster size of the soft constraint clusters S(s) on a semi-log axis,
for the 4-replica Ising model as a function of temperature T , for different system sizes L. (b)
Analogous to panel (a) for the larger system sizes considered. The dashed vertical line marks
the transition temperature of the 1-replica Ising model.
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Figure 5.60: (a) Average cluster size of the hard constraint clusters S(s) on a semi-log axis,
for the 4-replica Ising model as a function of temperature T , for different system sizes L. (b)
Analogous to panel (a) for the larger system sizes considered. The dashed vertical line marks
the transition temperature of the 1-replica Ising model.
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Figure 5.61: Percolation strength of the soft constraint clusters P
(s)
∞ , for the 4-replica Ising

model as a function of temperature T , for different system sizes L. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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Figure 5.62: Percolation strength of the hard constraint clusters P
(s)
∞ , for the 4-replica Ising

model as a function of temperature T , for different system sizes L. The dashed vertical line
marks the transition temperature of the 1-replica Ising model.
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shift to lower temperatures as the number of replicas increases for the soft and hard constraint
clusters, respectively; cf. Figs. 5.43 and 5.58.

Lastly, we note that if our explanation for the existence of strong scaling corrections for
the 3-replica Ising model is correct (see Sec. 5.3.3), then not such strong corrections are
expected for the 4-replica case. This can be understood as follows: Let us denote as T (4) the
asymptotic critical temperature of the clusters for the 4-replica Ising model (again we do not
distinguish between soft and hard constraint clusters). From the above discussion it seems
plausible to assume that T (4) < T (3). Thus, since we are below the critical temperature of
the 1-replica Ising model, each of the four replicas will satisfy ξ

(
T (4)

)
< ξ

(
T (3)

)
, which in

turn means that the effective length scale L∗ of the 4-replica Ising model will be smaller than
that of the 3-replica Ising model.



Chapter 6

Spin Glasses

Until now it should have become clear that graphical representations have greatly enhanced
our understanding in the study of phase transitions. Rigorous conclusions exist only for the
case of the Ising, and Potts in general, ferromagnet, however, attempts of such a description
for the spin glass problem have been made, although to certain extent incomplete. In Chap. 5
the multi-replica Ising model was introduced and the critical behaviour of the 2- and 3-replica
case were studied. As it was also mentioned there, the soft constraint clusters are the same
as the ones of Houdayer’s algorithm, with the exception that in the latter interactions among
spins are random. Thus, the percolation properties of Houdayer’s clusters presented here
can be understood as a continuation of the discussion in Chap. 5. Of course simulating a
spin glass system is challenging on its own terms and thus we will first discuss the issue of
equilibration.

6.1 Temperature-Schedule Comparisons

Here we study the two-dimensional Edwards-Anderson model, see Eq. (2.82), in the absence of
a magnetic field h = 0, where the interactions Jij are drawn from a Gaussian distribution with
mean zero and variance one. The system was simulated using Houdayer’s cluster algorithm, as
described in Sec. 3.3.2, for a range of temperatures and systems of linear sizes L = 10, 20, 30
and 40. At each temperature two replicas of the system were considered, and a Monte Carlo
step (sweep) consists of the following moves: (i) One Metropolis sweep for each replica. (ii)
One Houdayer cluster update for each pair of replicas at the same temperature. (iii) One
PT update for all pairs of replicas at neighbouring temperatures. The number of disorder
realisations was 100 for all system sizes.

As already discussed in Sec. 3.3 spin-glass systems are hard to equilibrate at low temper-
atures, as the system is usually trapped in local energy minima and thus does not explore the
phase space fully. Parallel tempering (PT) is used to alleviate this problem, by utilising par-
allel simulations of several replicas of the system at different temperatures, and attempting
swaps between adjacent replicas. In order to assure equilibration we monitor the time series
of the spin overlap q, which is the order parameter of the system [124, 192] and is defined as

q =
1

N

N∑
i=1

σ
(1)
i σ

(2)
i , (6.1)
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Figure 6.1: Logarithmically binned time series of q2 as a function of time t, at temperature
T = 0.2 and for the different system sizes L considered.

where σ
(1)
i , σ

(2)
i refers to the spin i in the first and second replica, respectively, and N is the

total number of spins in each replica.

The time series of q2, averaged over all disorder realisations considered, is plotted in
Fig. 6.1, for a relative low temperature T = 0.2, where the logarithmic binning procedure has
been employed in order to ensure equilibration. For the two largest system sizes equilibration
is achieved for t > 105 sweeps, while for L = 10 and 20 equilibration is achieved for t > 104

sweeps. Additionally, note that the mean of q2 decreases as the size of the system increases.
This is consistent with the fact that in two dimensions, there is strong evidence of a spin-
glass phase at zero temperature only (see, e.g., Ref. [47] and references therein), thus the spin
overlap should be zero for all non-zero temperatures in the thermodynamic limit. Of course
for finite system sizes q2 takes non-zero values.

An alternative criterion for equilibration of a system with Gaussian couplings was proposed
in Ref. [193], which resorts to an identity introduced in Ref. [194] for the Sherrington and
Kirkpatrick spin-glass model [116], which is defined through the Hamiltonian in Eq. (2.87).
For this purpose let us introduce the link overlap ql, which is defined as [193]

ql =
1

Nl

∑
⟨i,j⟩

σ
(1)
i σ

(1)
j σ

(2)
i σ

(2)
j , (6.2)

where Nl is the number of links (bonds) in the system; for a regular cubic lattice with
periodic boundary conditions Nl = Nz/2, where z is the coordination number, i.e., number
of neighbours per site. The average energy per site e can be written as

⟨e⟩ = − 1

N

∑
⟨i,j⟩

Jij ⟨σiσj⟩T , (6.3)

where ⟨. . . ⟩T and the over-bar denotes thermal and disorder average, respectively. It can be
shown that the thermal and disorder average of the link overlap ⟨ql⟩ is related to ⟨e⟩ as [193,
194]
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at temperature T = 0.2 and for system of linear size L = 40.

⟨ql⟩ ≡
1

Nl

∑
⟨i,j⟩

⟨σiσj⟩2T = 1− T |⟨e⟩|
(z/2)J2

, (6.4)

where J is the variance of the interaction distribution, which is set to 1 here. Equation (6.4)
holds as long as the system is in equilibrium. Assuming that all replicas start with spins
pointing in random directions, if the systems are not equilibrated ⟨ql⟩ is expected to be
relatively small, as spins are exploring, initially, quite distinct parts of the configuration
space, in comparison with equilibrium. Thus, as the number of sweeps increases ⟨ql⟩ is an
increasing function of time, where for times greater than the equilibrium time it fluctuates
around its mean value. Contrary to ⟨ql⟩, the right-hand-side of Eq. (6.4) will be a decreasing
function for times lower than the equilibration time, since for that case ⟨e⟩ is a deceasing
function. Consequently, when both sides of Eq. (6.4) agree the system is in equilibrium [193];
see also Ref. [195] for the case where an external magnetic field is applied. This is shown
in Fig. 6.2, where q2 and the two terms of Eq. (6.4) are plotted as a function of time, for a
system of linear size L = 40 at temperature T = 0.2. According to that, for t > 105 sweeps
⟨ql⟩ and 1 − T |⟨e⟩| /(z/2)J2 are equal indicating that the system is in equilibrium, which is
in agreement with the result obtained from Fig. 6.1. The above reported equilibration times
have been obtained using the optimal temperature schedule and set of parameters for the PT
procedure; in what follows we discuss how we determined such parameters.

In Sec. 3.3.1, we mentioned that the geometric progression schedule is appropriate for
systems that do not exhibit a strong divergence of the specific heat [158–160]. Since two-
dimensional spin glasses do not possess a phase transition at any non-zero temperature,
geometric progression seems a plausible temperature schedule. In Fig. 6.3 the probability A
for replicas to be exchanged is plotted as a function of temperature T for different numbers
of temperatures NT , and system sizes L = 10 − 40. Given a system size L we see that A
increases as the number of temperatures NT increases, for all T . Consequently, if we want
the probability for replicas to be exchanged relatively high, we have to include more replicas
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Table 6.1: Tunnelling times for the different number of temperatures NT and system sizes L
considered, using the geometric progression schedule for the PT algorithm. The asterisk (∗)
corresponds to a temperature range [0.2 : 1.5], while the rest to [0.2 : 2.0]. Cells with N/A
represent no tunnelling event.

L
NT 10 15 20 25 30 35

10 229± 1 255± 1 302± 1 353± 1 − −
20 1903± 13 995± 3 918± 2 959± 2 − −

30 29960± 318 3848± 17 2361± 6
2079± 3
1509± 3∗

1550± 3∗ −

40 N/A 19486± 110 6537± 21
4441± 9
2900± 6∗

2695± 8∗ 2680± 4∗

as the size of the system increases.

As argued in Ref. [159], for a speed-up of equilibration, besides a high probability for
replicas to be swapped, one has to ensure that each system passes on average the same time
in each temperature. For that we measure the time needed for a replica to travel from the
lowest to highest temperature and back. Such a round trip is called tunnelling and the
required time for that tunnelling time. Note that, since each replica performs a random walk
in the temperature space, the minimum tunnelling time corresponds to that of an unbiased
random walker [159, 161]. In Table 6.1 we report the tunnelling times for the corresponding
system sizes and number of temperatures NT of Fig. 6.3. One could naively think that
the more replicas considered the smaller the tunnelling time would be. However, we see
that the smaller tunnelling time does not necessarily correspond to the highest number of
temperatures, e.g., for L = 20 the optimal number of temperatures is NT = 20 which results
the lowest tunnelling time of 918± 2 sweeps. Additionally, cells in Table 6.1 with an asterisk
(*) correspond to a temperature range [0.2 : 1.5] while the rest to [0.2 : 2.0], from where we
see that the maximum and minimum temperatures can also affect the tunnelling times. For
example the optimal tunnelling time for L = 30 corresponds to NT = 25 and temperature
range [0.2 : 1.5], i.e., 1509± 3 sweeps.

The other temperature schedule that we have considered is the inverse linear, see Sec. 3.3.1.
Similarly to Fig. 6.3, the probability for replicas to be exchanged A as a function of tempera-
ture T for different number of temperatures NT , and system sizes L = 10− 40 for the inverse
linear schedule is plotted in Fig. 6.4. Additionally, the tunnelling times are reported in Ta-
ble 6.2. It is clear that the geometrical schedule outperforms the inverse linear one, in both
the probabilities for replica swapping and tunnelling times. For the former as it is shown in
Fig. 6.4, A decreases as the temperature increases and for the two largest system sizes the
probability is very close to zero. This is also reflected in the tunnelling times, where for some
system sizes and values of NT there is no tunnelling event (N/A entries). Additionally, we see
that for a fixed system size tunnelling events, if at all happening, correspond to considerably
larger tunnelling times in comparison with the geometric progression schedule. Of course
increasing the number of temperatures could lead to smaller tunnelling times, but this comes
with an additional computing cost as one has to simulate more replicas. Thus, the geometric
progression schedule is preferred, in order for the PT algorithm to perform optimally.
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Figure 6.3: Acceptance probability of replica-swapping A as a function of temperature T , for
different number of temperatures NT , using the geometric progression schedule. Figs. (a),
(b), (c), (d) correspond to systems of linear size L = 10, 20, 30, and 40 respectively.

Table 6.2: Tunnelling times for the different number of temperatures NT and system sizes
L considered, using the inverse linear schedule for the PT algorithm. The asterisk (∗) cor-
responds to a temperature range [0.2 : 1.5], while the rest to [0.2 : 2.0]. Cells with N/A
represent no tunnelling event.

L
NT 10 15 20 25

10 2580± 76 640± 7 499± 3 499± 2

20 N/A 299936± 11555 13386± 260 4106± 43

30 N/A N/A N/A 190467± 3948

40 N/A N/A N/A N/A
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Figure 6.4: Acceptance probability of replica-swapping A as a function of temperature T , for
different number of temperatures NT , using the inverse linear schedule. Figs. (a), (b), (c),
(d) correspond to systems of linear size L = 10, 20, 30, and 40 respectively.
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Figure 6.5: (a) Wrapping probability of clusters percolating in horizontal direction Rx as
a function of temperature T for the different system sizes L, of the two-dimensional Ising
spin-glass. (b) Enlarged region of (a).

6.2 Percolation Analysis

After determining the optimal temperature schedule and parameters for PT and ensuring
equilibration of the system, we continue our discussion with the percolation properties for the
clusters of the overlap as defined in Sec. 3.3.2. As already mentioned in Sec. 5.1, the overlap
clusters for the spin-glass model are constructed in a similar way as the soft constraint clusters
of the 2-replica Ising ferromagnet, with the essential difference that the interactions are now
chosen at random. Our analysis here will not be as thorough as it was for the case of the
ferromagnet (see Chap. 4 and 5) but we will rather restrict ourselves to a more qualitative
description of the percolation properties of the cluster overlap. For the possible extension
of the work presented in the Chaps. 4 and 5 to the spin-glass problem see the discussion in
Chap. 7.

In Fig. 6.5(a) the wrapping probability of clusters percolating in the horizontal direction
Rx is plotted as a function of temperature T for the different system sizes L considered.
Curves should cross at the transition point, which for the two-dimensional Ising spin-glass is
at Tc = 0. Nonetheless, from Fig. 6.5(b) the Rx curves appear to cross at finite temperatures,
still the crossing point shifts to lower temperatures with increasing system size. This is an
indication that there is no phase transition at finite temperature at the thermodynamic limit.

In Fig. 6.6 the average cluster size S is plotted as a function of temperature T for the
different system sizes L considered. Since our analysis for the spin-glass problem at this
point is more qualitative, as we discussed in the beginning of this section, we used only the
definition where the largest cluster is excluded in each measurement, i.e., C \ max C. With
this definition, S has a maximum the location of which shifts towards the transition point
as the size of the system increases. For the two-dimensional spin-glass the transition point
is at T = 0 and it is clear even for this relatively small system sizes that the location of the
maximum moves to zero as the system size increases.

Lastly, in Fig. 6.7 the percolation strength P∞ is plotted as a function of temperature T
for the different system sizes L considered. Here we see that as the temperature decreases
the number of sites belonging to the largest cluster increases, indicating that the system
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Figure 6.6: Average cluster size S as a function of temperature T for the different system
sizes L, of the two-dimensional Ising spin-glass. The definition for S considered here is the
exclusion of the largest cluster in each measurement, i.e., C \ max C.

is approaching its critical point. Of course since Tc = 0 here, a percolating cluster in the
thermodynamic limit will appear only at that temperature, for finite size systems though
percolating clusters can occur even at non-zero temperatures.

6.3 Concluding Remarks

In this chapter the percolation properties of Houdayer’s clusters for the two-dimensional
Edwards-Anderson spin-glass model with Gaussian interactions were discussed. At first the
issue of equilibration was presented, along with a comparison of different temperature sched-
ules, which led to the determination of an optimal set of parameters for the PT algorithm.
Subsequently, the percolation properties of the system were discussed.

Specifically, for the equilibration of the system we monitored the time series of the order
parameter q2 at a relatively low temperature T = 0.2, by utilising the logarithmic binning
procedure. We observed that equilibration is achieved for L = 10 and 20 after t > 104

sweeps, while for L = 30 and 40 the system is in equilibrium after t > 105 sweeps. As
we considered Gaussian interactions, we employed an alternative criterion for equilibration,
as outlined in Ref. [193]. The latter method provided similar results to the one from the
time series of q2. For the PT algorithm the geometric progression and the inverse linear
temperature schedules were compared. From the probabilities of replicas to be exchanged A
and tunnelling times we concluded that geometric progression outperforms the inverse linear
schedule, for all system sizes considered, cf. Tables 6.1 and 6.2. Additionally, for the geometric
progression, we observed that for a given system of linear size L the minimum tunnelling time
do not necessarily correspond to the maximum number of temperatures considered. This is
to be expected, as PT works optimally if replicas perform an unbiased random walk in the
temperature space.

Having obtained the optimal parameters for the PT algorithm, and assured equilibration
we discussed the percolation properties of Houdayer’s clusters, which are constructed in the
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Figure 6.7: Percolation strength P∞ as a function of temperature T for the different system
sizes L, of the two-dimensional Ising spin-glass. The definition for P∞ considered here is the
inclusion of the largest cluster in each measurement, i.e., max C.

same way as the soft constraint clusters for the 2-replica Isng model, see Sec. 5.2. For that
the average cluster size, percolation strength, and wrapping probability in the horizontal
direction, for the different system sizes L as a function of temperature T , were presented.
The crossings of the curves of different system sizes of the wrapping probability shifts to
lower temperatures as the size of the system increases, indicating the absence of a spin-glass
phase for any non-zero temperature. This is also supported from the location of the peaks for
the average cluster size, which shifts to lower temperatures as the size of the system increases.
The percolation strength increases as the temperature decrease, indicating that the size of the
largest cluster is increasing. Of course, a spanning cluster should appear only at T = 0, when
the thermodynamic limit in approached. Clearly, more concrete results would be welcome at
this point and a detailed analysis of the percolation properties of such clusters is called for;
some considerations in this direction are discussed in Chap. 7.
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Chapter 7

Conclusions and Outlook

In this thesis, we studied the percolation properties of the geometrical clusters for the fer-
romagnetic and frustrated (spin-glass) multi-replica two-dimensional Ising model. For the
ferromagnet we performed large scale Monte Carlo simulations, on relatively large system
sizes up to Lmax = 2048. The critical behaviour in terms of critical temperature and the set
of critical exponents characterizing the transition were obtained from FSS analysis. For the
spin-glass system more qualitative arguments were given, based again on numerical simula-
tions.

For the case of the 1-replica Ising model, the critical exponents of the average cluster
size and percolation strength were obtained by utilising different cluster sets for the involved
observables. For the percolation strength, the corresponding exponent β/ν does not strongly
depend on the definition used, with estimates being in very good agreement with the analytical
value [89], except for the max Px and y definition. The latter can be understood as clusters
percolating in one but not the other direction are very rare, leading to poor statistics for the
estimation of the involved exponent. On the other hand, the average cluster size strongly
depends on the definition used. The definitions where all clusters are included and excluding
clusters that percolate in one but not the other direction lead to estimates of the γ/ν exponent,
which have small scaling corrections and are in good agreement with the analytical value
[89]. If percolating clusters are excluded (except clusters percolating in one but not the
other direction) or the largest cluster, however, strong scaling corrections are observed with
deviations from the asymptotic value being considerably large even when fits are performed
on the larger system sizes. This is of special importance as the exclusion of the largest cluster
is one of the most commonly used definitions in the numerical studies of percolation [19].
Since the inclusion of different cluster sets could lead to estimations of exponents which suffer
less from scaling corrections, an interesting exercise could be the inclusion of such cluster
sets for the estimation of the critical exponents for the FK clusters. Consequently, as the
critical exponents of the FK clusters coincide with those of the thermal phase transition for
the q-state Potts model, estimates of the exponents using such cluster sets could lead to
improvement of the already existing results, especially in three dimensions and for values of
q other than two1.

The multi-replica Ising model was then discussed, as a system of non-interacting copies

1Note that in the case of the three-dimensional Ising (q = 2) model critical exponents are known to very
high accuracy from MC simulation [81] and the conformal bootstrap method [196–199]
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(replicas) at the same temperature, for the two-dimensional case. The inclusion of replicas
introduces a k-plane, on which we defined and studied two clusters types, namely the soft and
hard constraint clusters. As far as percolation is concerned, the study of such clusters in the k-
plane defines a correlated percolation process, the properties of which are beyond from trivial.
On the other hand, and specifically the soft constraint clusters are the same as the ones of
Houdayer’s clusters [48] defined for the spin-glass problem. In order to investigate the critical
behaviour of the model we employed different wrapping probabilities and sets of clusters in
the definitions of the average cluster size and percolation strength that were introduced in
Chap. 4. Additionally, in order to obtain more accurate estimates of the involved parameters,
the single histogram reweighting technique was employed.

For the case of the 2-replica Ising model, our results suggest that the soft and hard con-
straint clusters percolate at the transition temperature of the 1-replica Ising model. However,
the possibility that simulations on larger system sizes could show that the asymptotic value of
the critical temperature is different from that of the 1-replica Ising model cannot be excluded.
In the lack of correspondence between percolation quantities of the geometrical clusters and
that of the physical system, the estimation of the ν exponent for the geometrical clusters
cannot be obtained by using the, somewhat, standard procedures in the study of phase tran-
sitions, i.e., the maximum of derivatives of the Binder cumulant or the maximum of derivatives
of logarithms of powers of the magnetisation [74]. Consequently, for the estimation of the
involved exponent the wrapping probabilities were utilised, as their maximum of the absolute
value of the derivative with respect to temperature scale as ∼ L1/ν . The exponent was found
to be the same for the soft and hard constraint clusters, and equal to that of the 1-replica
Ising model, i.e., ν(s) = ν(h) = 1. For the critical exponents β/ν and γ/ν, concerning the per-
colation strength and average cluster size, respectively, simulations performed at the critical
temperature of the soft and hard constraint clusters, i.e., the transition temperature of the
1-replica Ising model. For the percolation strength, the estimated exponents for the soft and
hard constraint clusters respectively, are different from that of the 1-replica case, as well as
from each other. Similarly to the 1-replica case, estimates from the different definitions agree
with each other and corrections to scaling are not substantial. However, the definition where
the largest clusters that percolate in one but not the other direction is considered results to
unreliable estimates of the exponent, for the same reason as in the 1-replica case described
above. On the other hand, the average cluster size strongly depends on the definition used,
with the inclusion of all clusters and the exclusion of clusters that percolate in one but not
the other direction exhibiting smaller corrections to scaling, in comparison with the rest of
the definitions. For obtaining more accurate estimates of the involved exponent we performed
joint fits, including a correction term, and using all the definitions considered, for the soft
and the hard constraint clusters, respectively. The estimates of γ/ν from the joint fits were
in agreement with the ones obtained from the individual fits using the C and C \ Px and y, for
the soft and hard constraint clusters, respectively. Additionally, the critical exponents for the
two cluster types are different from the respective exponent of the 1-replica model, as well as
from each other. The correction-to-scaling exponent was found to be relatively small for both
cluster types; a fact that justifies the strong scaling corrections that we observed in the esima-
tion of γ/ν, when certain types of percolating clusters were excluded in the definition of the
average cluster size. Finally, utilising the scaling relations we obtained the fractal dimension
for the two cluster types. The soft constraint clusters have a larger fractal dimension from
the hard constraint ones, meaning that they are more dense. This is in agreement also with
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the configurational snapshots of Fig. 5.2, as well as with the fact that the hard constraint
clusters are a subset of the soft constraint ones. The set of critical exponents concerning the
2-replica ising model, are reported in Table 5.1.

For the 3-replica Ising model the obtained results are not as thorough as the ones obtained
for the 2-replica Ising model, nonetheless some “crude” conclusions on the basis of the current
analysis can be obtained. For the critical exponent ν results obtained from fits including a
logarithmic correction term, seem to be consistent with a value ν(s) ≈ 1 for the soft constraint
clusters and ν(h) ≈ 1.5 for the hard constraint clusters. However, we are not able to provide
any plausible explanation of why such type of corrections should apply here, as these are
usually present for systems at their upper critical dimension. We also highlight that fits
including a logarithmic-correction term were utilised, only after attempting fits that include
a correction exponent which, however, did not provide any reasonable estimate for the involved
exponent. For the critical temperature, results for the soft constraint clusters are vague. On
one hand, the estimates of the critical point resulting from the fits agree with a temperature

similar to that of the 1-replica Ising model. The crossings, on the other hand, of R
(s)
x or y

suggest that the critical temperature lies on the interval [2.2685− 2.269], which can also be
supported from the fitting results. Consequently, we conclude that the critical temperature
could be the same as that of the 1-replica Ising model, or if not, quite close to it. For the
hard constraint clusters results suggest that the critical temperature is below that of the

1-replica Ising model, which also agrees with the location of the crossings of R
(s)
x or y for the

hard constraint clusters. Additionally, the accumulated exponent ϵ of Eq. (5.12) is consistent
for both clusters types with a value around 1. For the hard constraint clusters, this implies
a negative correction exponent, provided that ν(h) ≈ 1.5, which obviously is wrong. For
the soft constraint clusters, if ν(s) ≈ 1, we can conclude that the correction exponent is
sufficiently small and cannot be obtained given the accuracy of our data; of course such
statement needs further investigation. For the critical exponents concerning the percolation
strength and average cluster size, in the lack of precise estimates of the critical temperature,
we utilised the sequences of pseudo-critical points of the crossings of Rx or y, for the soft and
hard constraint clusters, respectively. Depending on the definition used, estimates approach
different values, and thus any conclusion regarding the values of the involved exponents is
inadequate. A possible explanation, for such unsatisfactory results is the presence of strong
corrections to scaling which, as discussed in the last part of Sec. 5.3.3, can be deduced from
the presence of an effective length scale L∗ in the vicinity of which the scaling behaviour
changes substantially. Thus, if L∗ is relatively large, say L∗ ≳ 500, this can explain the
presence of such strong scaling corrections. Unfortunately, given the time restrictions for the
thesis to be delivered, we were not able to perform such calculations. Still we are currently
working in this direction.

For the 4-replica Ising model we presented some preliminary results, concerning the general
behaviour of the wrapping probabilities, average clusters size, and percolation strength. Of
some importance is the qualitative observation that the positions of the crossings of the
wrapping probabilities of the soft and hard constraint clusters are at temperatures below the
ones obtained for the 3-replica Ising model, and consequently from that of the 2- and 1-replica
Ising model, respectively.

A continuation of the work presented in this thesis concerning the percolation properties
of the ferromagnetic multi-replica Ising model is the determination of the critical exponents
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for the 3-replica Ising model. For that we need to first understand, though, the existence and
role of the possible strong scaling corrections which affect the determination of the exponents;
we have already proposed a strategy to identify that, which we are currently working on.
Subsequently, the critical behaviour of the 4-replica Ising model needs to be determined
in terms of the critical temperature and critical exponents of the soft and hard constraint
clusters, respectively. Having such information we can shed light in questions like: How the
critical temperature and critical exponents depend on the number of replicas? Does a relation
connecting the critical exponents with the number of replicas exist? What can we expect if
we take the number of replicas to infinity? Finally, a possible outlook of this work is to study
the Fortuin Kasteleyn clusters in the multi-replica framework. This is an interesting research
path as the FK clusters have the same set of exponents with those of the thermal system
and thus it would be beneficial to study how the inclusion of replicas will affect (or not) the
critical behaviour of the system.

Based on a more qualitative analysis, some aspects regarding the percolation properties
of Houdayer’s clusters were presented, for the two-dimensional Edwards-Anderson spin-glass
using Gaussian random interactions. Since spin glasses are hard to equilibrate at low tem-
peratures we first presented evidence, based on the time series of the order parameter, that
all system sizes considered have reached their stationary distribution. As interactions were
Gaussian, we also cross-checked equilibration by using the method outlined in Ref. [193], with
results found to be in agreement with the former method. For our simulations, we utilised
the PT algorithm for which a comparison between two temperature schedules, namely the
geometric progression and the inverse linear, was performed. The comparison was based on
the probability of replicas to be exchanged and the tunnelling time, and showed that ge-
ometric progression outperforms the inverse linear schedule for all system sizes considered.
Having ensured equilibration and defined the optimal set of parameters for the PT algorithm,
we proceeded with the study of the percolation properties of the system. In particular, we
considered the average cluster size, percolation strength, and wrapping probability in the
horizontal direction as a function of temperature. The shift of the crossings of the wrapping
probability and of the peak of the average cluster size to lower temperatures as the system size
increases, supports, at least qualitatively, a zero critical temperature for the two-dimensional
spin glass; this is also supported from other studies on more firm grounds, see, e.g., Ref. [47]
and references therein.

Throughout this thesis, the importance of graphical representation as a method which
enhances our understanding in the study of phase transitions was revealed. From that per-
spective, an analysis similar to the multi-replica Ising model for the percolation properties
of Houdayer’s clusters, sounds very promising towards the way of deepen our understanding
for the spin-glass problem. Additionally, such analysis can also be applied to other graphical
representation approaches for the spin-glass problem, such as the one proposed from Machta,
et al. [40]; for the latter a study already exists [53].



Appendix A

Statistical Analysis of Monte Carlo
Data

A.1 Autocorrelation Time

From the discussion in Chap. 3, it is obvious that in a Markov process the generated states
of the chain will be statistically dependent, as the next state depends on the preceding one.
In order to quantify the degree of correlations between two states at time steps t and t′, for
an observable O, we define the unnormalized autocorrelation function as

CO

(
t′, t
)
=
〈
O(t′)O(t)

〉
−
〈
O(t′)

〉
⟨O(t)⟩ , (A.1)

where O(t) is the value of the obervable O at time step t, with t′ < t. Assuming that the
process is stationary then, ⟨O (t′)O(t)⟩ = ⟨O(0)O(t− t′)⟩, and thus we can write CO (t′, t) =
CO (0, t′ − t) ≡ CO(t). Note that CO(0) is equivalent to the variance σ2(O) of O. Typically
CO(t) decays exponentially for large t [200]

CO(t) ∼ e−t/τexp, O , (A.2)

where τexp, O defines the exponential autocorrelation time, which depends on the specific
observable O and on the dynamics of the process. In general, a MC process is characterized
by a number of different correlation times. The exponential autocorrelation time for the
particular observable O, is then defined as the largest of the correlation times, i.e.,

τexp, O = lim
t→∞

sup
t

− ln ρO(t)
, (A.3)

where ρO(t) ≡ CO(t)/CO(0) is the normalized autocorrelation function.

Now if the observable O is appearing according to a probability distribution P (O), then
its expectation value is given as

⟨O⟩ =
∫

dOP (O)O. (A.4)

In a MC process one generates a time series of states {O(1), O(2), . . . , O(N)} according to
P (O). An unbiased estimator of ⟨O⟩ is then given by the time average (mean) O as

123



124 APPENDIX A. STATISTICAL ANALYSIS OF MONTE CARLO DATA

O =
1

N

N∑
t=1

O(t), (A.5)

where N is the length of the time series. Note that the estimator O is a random number
fluctuating around the expectation value, and coincides with ⟨O⟩ only in the limit N →
∞. Attention should be paid to the fact that although the distribution of the individual
measurements P (O) can be chosen arbitrarily1, the distribution of the average O must be
Gaussian, at least for uncorrelated data and in the limit of N → ∞, according to the central

limit theorem [201]. This means that the variance of O, i.e., σ2
(
O
)
≡ ⟨O2⟩−

〈
O
〉2
, is sufficient

to describe the fluctuations of O. It is easy to check that for uncorrelated data

σ2
(
O
)
=

CO(0)

N
=

σ2 (O)

N
, (A.6)

which means that the variance of the mean reduces with the number of measurements.
If the data are correlated, then the variance is given as follows [201]

σ2
(
O
)
=

2σ2 (O)

N

[
1

2
+

N∑
t=1

(
1− t

N

)
ρO(t)

]
. (A.7)

Note that for the case of uncorrelated data ρO(t) = 0 and from Eq. (A.7) one recovers
Eq. (A.6). If the decay of the correlation function is exponential, then for any meaningful MC
process where N ≫ τexp, O, the factor (1− t/N) will not contribute much to the summation
and it can be neglected [201, 202]. Then one can define the integrated autocorrelation time as

τint, O ≡ 1

2
+

N∑
t=1

ρO(t). (A.8)

By adopting Eq. (A.8) into Eq. (A.7) one gets

σ2
(
O
)
=

σ2 (O)

N/2τint, O
. (A.9)

This means that similarly to uncorrelated data, the variance of the mean reduces with the
number of measurements, but compared to Eq. (A.6) the number of uncorrelated measure-
ments have now been reduced by a factor of 2τint, O.

In general τint, O is different from τexp, O, and one can show that τint, O ≤ τexp, O [203].
Only when the the decay is purely exponential (one correlation time), then τint, O and τexp, O
are, apart from minor corrections, equal [201, 204].

A.2 The Binning and Jackknife Methods

A.2.1 The Binning method

As O is a random number fluctuating around the expectation value ⟨O⟩, the complete answer
is provided only if the variance of O, i.e., σ2

(
O
)
is calculated. For uncorrelated data this

1In our case it is the Boltzmann distribution.
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is a straightforward task, as for a time series with N entries an estimator of σ2
(
O
)
[see.

Eq. (A.6)] is

σ̂2
(
O
)
=

1

N(N − 1)

N∑
t=1

[
O(t)−O

]2
, (A.10)

which is an unbiased estimator, i.e.,
〈
σ̂2
(
O
)〉

= σ2
(
O
)
, see e.g. Refs. [148, 190, 205]. For

correlated data the situation is more involved, as according to Eq. (A.9) an estimation for the
variance of the mean requires the estimate of the integrated autocorrelation time τint, O, which
in general is not a simple task and computationally expensive, see Appendix A.3. However,
an estimate of the variance of O could be accomplished by employing the binning method,
which is simple to implement and computational less demanding.

For the binning method we group the N entries of an initial time series {O(1), O(2), . . . ,
O(N)}, in blocks of length l = N/n, where n is the number of blocks and for simplicity we
assume that N is an integer multiple of n. Then at each block i we define the block average
as

Ob(i) =
1

l

l∑
t=1

O[(i− 1)l + t], (A.11)

with i = 1, 2, . . . , n. Which results in a new time series of smaller length n,
{
Ob(1), Ob(2), . . . ,

Ob(n)
}
. The mean O and its variance σ2

(
O
)
will not change under this transformation. How-

ever, if the autocorrelation function of the initial series decays exponentially, see Eq. (A.2),
it can be shown [206] that the variance of the individual measurements of the blocked time
series σ2(Ob) is reduced, leading to a less correlated time series compared to the initial one.
Additionally, as the length of the block increases correlations of the blocked time series should
reduce, and for the limiting case of l → ∞ the produced time series will be uncorrelated2. In
that limit, we can use the estimator of Eq. (A.10) for uncorrelated data, to compute σ2

(
O
)
.

In the case of finite time series, one can utilise the blocking method by assuring that
the length of the block is l ≫ τ and l ≪ N , where τ is the exponential of the integrated
autocorrelation time, see Appendix A.1. This can be achieved by estimating the variance
of the mean σ2

(
O
)
using the estimator of Eq. (A.10) as a function of l. As the size of

the blocks increases, σ̂2
(
O
)
approaches the asymptotic value σ2

(
O
)
and eventually from a

value l and above it reaches a plateau value where deviations from the asymptotic value are
negligible compared to statistical fluctuations (an illustration of that can be found in Fig. 2
of Ref. [205]). In practice, as a rule of thumb, for a reliable estimation of statistical errors the
length of the time series should be N ≳ 104 × τ , then the blocking method can be utilised by
considering a number of blocks of the order of hundred, say 100− 500 blocks [205].

A.2.2 The Jackknife method

Let us introduce a time series of length N for an observable O, whose data are uncorrelated.
This can be obtained directly from a MC process, or could be the result of the binning method
described above (see Appendix A.2.1), where in the latter case N is the number of blocks

2Obviously, for the limiting case where blocks have infinite length we need an initial time series of infinite
length (N → ∞). Additionally, we need always to ensure that the number of blocks is relatively large.
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used for the binning transformation. Since data are uncorrelated, estimates of ⟨O⟩ and σ2
(
O
)

can be computed directly via Eqs. (A.5) and (A.10) respectively. For the case of quantities
which are expressed as functions of the expectation value F (⟨O⟩), an estimate is provided
by replacing the expectation value with the mean, i.e., F̂

(
O
)
≡ F̂ . As for the variance of

F̂ , σ2(F̂ ), the traditional approach is via error propagation formulas, which are based on
Taylor expansions [207]. This is quite problematic as such expansions are usually of first
order leading to truncation errors, and ignores cross-correlations between the observables3.
Furthermore, error propagation assumes an analytic expression of the function F which is not
always available, for example when finding the maximum of the specific heat as a function of
temperature using histogram reweighting of the energy time series. In order to overcome such
problems resampling methods have been utilised, which calculate variances in an automatic
way, without the need of partial derivatives and keeping track of variances and covariances
of the observables involved as in the error propagation method. Here we discuss one of such
resampling schemes, namely the jackknife method; for that and other resampling schemes see
Refs. [190, 208, 209].

Before discussing how the jackknife can be used to estimate the variance of quantities such
as F (⟨O⟩), let us consider the bias of the estimator F̂ , i.e., how far on average the estimator
is from the expectation value, F (⟨O⟩) − ⟨F̂ ⟩. For most commonly considered MC processes
we can write that [190]

F (⟨O⟩) = ⟨F̂ ⟩+ A1

N
+

A2

N2
+ . . . , (A.12)

meaning that the bias is of order 1/N . If F depends linearly on ⟨O⟩, i.e., F (⟨O⟩) = ⟨O⟩
it can be estimated from F̂

(
O
)
= O without bias. For non-linear functions F , however,

bias is present (such as in the case of response functions, i.e., specific heat and magnetic
susceptibility), and it reduces as the number of measurements N increases. We now remove
one entry from the initial time series O, and denote the estimator of the expectation value
F (⟨O⟩) as F̂

(
O′
)
≡ F̂N−1. Note that F (⟨O⟩) does not change since it does not depend on

the specific realization of the time series, whereas O′ is a different mean value since we have
excluded one measurement from the time series. Thus, we can rewrite Eq. (A.12) as

F (⟨O⟩) = ⟨F̂N−1⟩+
A1

N − 1
+

A2

(N − 1)2
+ . . . , (A.13)

where A1, A2 will not change, since the N and the N − 1 entries are sampled from the same
probability distribution [190]. Expressing now F (⟨O⟩) as

F (⟨O⟩) = N⟨F̂ ⟩ − (N − 1)⟨F̂N−1⟩, (A.14)

the bias at first order eliminates. Thus, by constructing an estimator for the expectation
value ⟨F̂N−1⟩, a reduced bias estimator for F (⟨O⟩) can be obtained. The jackknife method
constructs such an estimator, by considering N time series of length N − 1 each, where in
each one of them a single entry, different each time, is omitted. Under this construction, the
jackknife block averages are given as

3For simplicity we restrict F here to be a function of a single observable O, though in general it can depend
on more than one, i.e., F (⟨O1⟩ , ⟨O2⟩ , ⟨O3⟩ . . . ). In the case of several observables if their respective time series
have been generated from the same simulation, cross-correlation between them appear which enter as elements
of the covariance matrix in the Taylor expansion [190, 207].
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OJ,i =
1

N − 1

N∑
t=1
t̸=i

O(t), (A.15)

and the mean of the expectation value ⟨F̂N−1⟩ as

F̂N−1 ≡ F̂J =
1

N

N∑
i=1

F (OJ,i). (A.16)

According to Eq. (A.14), the jackknife reduced-bias estimator of F (⟨O⟩) can be written
as

F̂RB = NF̂ − (N − 1)F̂J . (A.17)

From Eqs. (A.12) and (A.13) it is easy to see that the the estimator F̂RB has a bias of leading
order 1/N2 instead of 1/N . Additionally, for the case where F depends linearly on ⟨O⟩, i.e.
F (⟨O⟩) = ⟨O⟩, it is easy to check that F̂J = F̂ , and consequently the estimator F̂RB has no
bias.

In the jackknife scheme, σ2(F̂ ), i.e., the variance of the estimator F̂ , can be obtained via
the following estimator [190, 208, 209]

σ̂2(F̂ ) =
N − 1

N

N∑
i=1

[
F (OJ,i)− F̂J

]2
. (A.18)

This is similar to the estimator of the variance of the mean O for uncorrelated data in
Eq. (A.10), with the difference that the N − 1 factor appears in the denominator. If we were
to interpret the different F (OJ,i) estimates, as results from N performed simulations, then
Eq. (A.10) could be utilised. Nonetheless, ignoring the fact that such estimates are highly
correlated, since they differ by a single measurement, would result in an underestimation of
the variance. Although, it has been shown [190, 208, 209] that such an underestimation of
the variance can be quantified to a factor of 1/(N − 1)2, from where we obtain the correct
expression of the variance if we multiply the right-hand side of Eq. (A.10) with (N − 1)2.

As we stated in the beginning of this section, the jackknife method was performed in an
uncorrelated time series, which could potentially be the result of the binning method applied
to a time series of correlated data. This would require the additional effort to create an
uncorrelated time series first and then perform the jackknife analysis. However, one can
avoid the creation of the uncorrelated time series, and proceed with the jackknife analysis
(almost) directly, see Ref. [205]. In that case the time series is divided into bins of length
l = N/n, similarly defined as in Appendix A.2.1. Then, jackknife time series are constructed
by excluding a single bin each time, resulting to n different time series of N − l length each.
Under this construction the jackknife block averages of Eq. (A.15) becomes

OJ,i =
1

N − l

N∑
t=1

t̸={Bi}

O(t), (A.19)
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where {Bi} = {(i− 1)l + 1, . . . , il} is the i-th excluded bin. It is easy to check that the
jackknife block averages of Eq. (A.19) applied to the correlated time series of length N are
equal to those of Eq. (A.15), if one were to apply the binning transformation to the correlated
time series, resulting in a new time series of length n. Correspondingly, the mean of the
expectation value ⟨F̂N−1⟩ of Eq. (A.16) becomes

F̂N−1 ≡ F̂J =
1

n

n∑
i=1

F (OJ,i). (A.20)

and the estimator of the variance of F̂ of Eq. (A.18) becomes

σ̂2(F̂ ) =
n− 1

n

n∑
i=1

[
F (OJ,i)− F̂J

]2
. (A.21)

A.3 Numerical Estimation of Autocorrelation Times

An estimator of the autocorrelation function, see Eq. (A.1), of a time series of length N for
an observable O is given by [206]

ĈO(t) =
1

N − t

N−t∑
t′=1

[
O(t′)−O

] [
O(t′ + t)−O

]
, (A.22)

where O is given by Eq. (A.5). The estimator in Eq. (A.22) is biased, and it can be shown [206,
210] that its bias, to leading order, is −σ2(O)τint, O/2N . On the other hand, if N ≫ τint, O,
which is the necessary condition for a meaningful time series, this bias can be ignored. If we
assume that the autocorrelation function has an exponential behaviour, then the exponential
autocorrelation time τexp, O can be estimated by performing non-linear fits of the form

ĈO(t) = ae−t/τexp, O , (A.23)

where a is a fitting parameter. For finite time series the behaviour can be reasonably de-
scribed by the above exponential law only for a certain time range. As the time separation
increases the variance of the estimator ĈO(t) diverges rapidly, and the statistical noise be-
comes apparent up to the point that Eq. (A.23) is no longer valid.

Focusing now on the static properties of the system, the integrated autocorrelation time
τint, O is of more interest. An estimator of Eq. (A.8) can be given as

τ̂int, O =
1

2
+

N∑
t=1

ρ̂O(t), (A.24)

where ρ̂O(t) is the estimator of the normalized autocorrelation function, see Appendix A.1,
which is given as

ρ̂O(t) =
ĈO(t)

ĈO(0)
. (A.25)
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The estimator in Eq. (A.25) behaves quite badly as the time separation increases, for the
same reason as described above for ĈO(t), resulting in a rather unreliable estimate for τint, O.
As a compromise, Eq. (A.24) is estimated by introducing a cut-off k < N in t, i.e.,

τ̂int, O(k) =
1

2
+

k∑
t=1

ρ̂O(t). (A.26)

The introduced cut-off k will increase the systematic errors in the estimation of τ̂int, O, while
the increase of k reduces it but increases the statistical error. Thus, as a compromise between
systematic and statistical errors one proceeds by choosing the cut-off in a self-consistent
manner, namely once k ≥ 6 τ̂int, O(k) [148]. The variance of τ̂int, O(k) can be approximately
found, for τint, O ≪ k ≪ N , to be [200, 204, 211]

σ2 [τ̂int, O(k)] ≈
2 (2k + 1)

N
τ2int, O(k), (A.27)

where “≈” stands for “approximately equal to”.
An alternative estimate of τint, O can be obtained by using Eq. (A.9) as

τint, O =
1

2

σ2(O)

σ2(O)/N
. (A.28)

Then an estimator of τint, O, can be obtained from the estimators of σ2(O) and σ2(O)/N
respectively. Such estimates can be found from the jackknife method for the case of correlated
measurements, where we create n jackknife blocks of length l = N − N/n each, where N is
the length of the initial time series, see Appendix A.2.2. Then one proceeds by utilising the
jackknife estimator of Eq. (A.21), which for the case of the variance of O is simply

σ̂2(O) =
n− 1

n

n∑
i=1

[
OJ,i −OJ

]2
, (A.29)

where OJ,i is given from Eq. (A.19) and OJ from Eq. (A.20) which becomes

F̂J = OJ =
1

n

n∑
i=1

OJ,i. (A.30)

The σ2(O)/N term could be understood as the variance of the mean σ2(O) for uncorrelated
data, and an estimator can be provided by replacing n withN at Eqs. (A.29) and (A.30) above.
The value of n should be chosen such that the jackknife blocks are statistically independent.
To ensure this, one can plot σ̂2(O) of Eq. (A.29), as a function of n and choose a value of n
when a plateau is reached, cf. Appendix A.2.1. Finally, an estimate of the variance of τ̂int, O,
could be given by repeating the jackknife procedure to second order, i.e., on each jackknife
time series a second jackknife transformation is performed leading to n−1 new jackknife time
series of length N − 2l each, see Ref. [212] for the implementation details.

A.4 Histogram Reweighting

Performing a MC simulation at a specific temperature T0, or inverse temperature β0, we
obtain information about thermal averages of observables explicitly at that temperature.
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However, additional information for temperatures other than β0 (in principle for any other
temperature β) can be obtained implicitly by reweighting the data from temperature β0

4.
This idea was developed by Ferrenberg and Swendsen [213, 214] (see also Refs. [57, 148]),
which turned out to be a powerful tool, when combined with other MC schemes, in the study
of phase transitions.

Let us re-express the partition function of the system at temperature β0 as a sum over
the different energies that the system possesses, instead of a sum over the different states of
the system, i.e.,

Z(β0) =
∑
{σi}

e−β0H({σi}) =
∑
E

Ω(E)e−β0E , (A.31)

where E is the energy of the system, and Ω(E) is the number of states that have energy E.
The term Ω(E)e−β0E in Eq. (A.31) can be identified, apart from a normalization constant, as
the energy histogram at temperature β0, i.e., Pβ0(E) ∼ Ω(E)e−β0E . For the energy histogram
to be normalized Pβ0(E) should be divided by Z(β0), but this is unimportant in what follows.
Note that knowledge of Pβ0(E) allows a direct evaluation of the observables. At a temperature
β different from β0 the energy histogram can be expressed as

Pβ(E) ∼ Ω(E)e−βE = Ω(E)e−β0Ee−(β−β0)E ∼ Pβ0(E)e−(β−β0)E . (A.32)

Thus, from the energy histogram at β0 we can estimate the energy histogram at β by
reweighting the former histogram with a factor exp [− (β − β0)E]. For any observable O
whose values solely depends on the configurational energy, such as internal energy or specific
heat, the expectation value at a temperature β can be written as

⟨O⟩ (β) =
∑

E Pβ(E)O(E)∑
E Pβ(E)

=

∑
E Pβ0(E) e−(β−β0)E O(E)∑

E Pβ0(E) e−(β−β0)E
, (A.33)

where the normalization constants cancel out.
For the case of observables O, whose values do not uniquely depend on the configurational

energy, such as magnetizationM , one proceeds by constructing expectation values at constant
energy (microcanonical) ⟨⟨O⟩⟩ which can then be identified as the O(E) in Eq. (A.33). From
the implantation perspective though, one has to decide beforehand which observables want
to construct the respective histograms, e.g., which powers of k, l for

〈
⟨Mk

〉
⟩, or for mixed

quantities as
〈
⟨ElMk

〉
⟩ one wants to consider .

An alternative, and somewhat simpler, method is to utilise the time series of the energy
and the respective measurements of an observable O, (Ei, Oi). If we have performed simula-
tions of length N at an inverse temperature β0, the expectation value of any observable which
depends on energy and magnetization at temperature β, ⟨O⟩ (β), is expressed as

⟨O⟩ (β) =
∑N

i=1Oi e
−(β−β0)Ei∑N

i=1 e
−(β−β0)Ei

. (A.34)

Although, the reweighting method can be applied, in principle, for any temperature β,
in practice meaningful results are restricted only to a finite temperature-range |β − β0|. In

4Reweighting can be also employed to the other coupling parameters of the system, such as magnetic field,
here though we consider only the temperature parameter for simplicity.
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a MC process at an inverse temperature β0, the vast majority of states are sampled only in
the vicinity of the peak of the energy histogram Pβ0(E). Thus, the tails of Pβ0(E) are under-
sampled, which greatly influences the reweighted energy histogram at inverse temperature β
Pβ(E). Thus, a sufficient overlap among the energy histograms is required in order to obtain
reasonable estimates. This is why reweighting is mostly useful in the vicinity of the critical
point, where the energy histograms are relatively broad, ensuring a sufficient overlap among
different temperatures. As it is discussed in Ref. [148] a reliable reweighting range can be
obtained from requiring

|T − T0|
T0

≤ 1√
V C(T0)

, (A.35)

where T0 and T are the input and reweighted temperatures respectively, V is the total number
of sites, and C(T0) is the specific heat at temperature T0. In the critical region the specific
heat scales as C ∼ Lα/ν , and assuming that hyperscaling holds, i.e., α = 2 − dν, Eq. (A.35)
can be asymptotically written as

|T − T0|
T0

≤ L−1/ν , (A.36)

where α, ν are the critical exponents of the specific heat and correlation length respectively,
and d is the dimensionality of the system.

Reweighting for the multi-replica Ising model

Reweighting can also be also extended to the case of the multi-replica Ising model, see Chap. 5.
Since replicas are at the same temperature and they are statistically independent, the partition
function is identical to Eq. (A.31), with the energy E given by:

E = E(1) + E(2) + · · ·+ E(k), (A.37)

where E(n) is the energy of the n th replica and k the total number of replicas. Consequently,
having the time series of energy for all replicas and the time series of an observable O,
Eq. (A.34) transforms to

⟨O⟩ (β) =
∑N

i=1Oi e
−(β−β0) [E

(1)
i +E

(2)
i +...E

(k)
i ]∑N

i=1 e
−(β−β0) [E

(1)
i +E

(2)
i +...E

(k)
i ]

. (A.38)

In Fig. A.1 the reweighting method for the case of the 2-replica Ising model is illustrated,
for the wrapping probability in both directions of the soft constraint clusters. For a certain
temperature range the reweighted estimates are in agreement with the estimates resulting
from individual simulations. However, deviations are observed as the temperature increases.
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Figure A.1: Illustration example of the reweighting method for the wrapping probability in
both directions for the soft constraint clusters of the 2-replica Ising model, for system of linear
size L = 256. The red point corresponds to the temperature β0, from where the reweighted
estimates where extracted (orange line). The purple points correspond to individual simula-
tions, and are plotted to show the extend of agreement with the reiweighted estimates.



Appendix B

Fit Results

Appendix B includes tables where the results of parameters obtained from the fitting routines
are reported. Specifically, in Appendix B.1 the fitting results of the Ising (1-replica) ferro-
magnet are reported, see Chap. 4. Appendix B.2 includes the fitting results of the 2-replica
Ising model, see Sec. 5.2. Finally, Appendix B.3 includes the fitting results of the 3-replica
Ising model, see Sec. 5.3.

B.1 1-replica Ising model

133
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Table B.1: Estimates of γ/ν, quality-of-fit parameter Q, and deviations from the exact value,
γ/ν = 91/48 ≈ 1.896, in multiples of the estimated statistical errors ∆ (σ), for the cluster
sets of the average cluster size as introduced in Sec. 4.2.

C C \ Px and y C \ Px and y

Lmin γ/ν Q ∆(σ) γ/ν Q ∆(σ) γ/ν Q ∆(σ)

16 1.89490(11) 0.001 8.28 1.89419(11) 0.001 15.03 1.7488(14) 0.000 101.59
32 1.89510(14) 0.010 5.36 1.89440(13) 0.008 10.76 1.7618(19) 0.000 71.51
64 1.89535(17) 0.044 2.83 1.89465(17) 0.042 7.11 1.770(2) 0.002 53.39
128 1.8957(2) 0.123 0.75 1.8950(2) 0.130 3.94 1.776(3) 0.021 36.14
256 1.8957(3) 0.078 0.52 1.8950(3) 0.079 2.78 1.788(5) 0.658 22.21
512 1.8964(4) 0.723 1.30 1.8958(4) 0.747 0.10 1.785(7) 0.575 15.78
600 1.8964(6) 0.613 1.03 1.8956(6) 0.668 0.46 1.791(9) 0.611 11.97
1000 1.8964(10) 0.568 0.60 1.8962(9) 0.623 0.35 1.779(15) 0.639 7.71
1200 1.8964(14) 0.300 0.40 1.8971(14) 0.628 0.86 1.76(2) 0.778 5.59

C \ Px C \ max C C \ P

Lmin γ/ν Q ∆(σ) γ/ν Q ∆(σ) γ/ν Q ∆(σ)

16 1.7413(16) 0.000 99.00 1.7469(11) 0.000 140.19 1.7321(11) 0.000 148.24
32 1.756(2) 0.000 70.11 1.7584(14) 0.000 97.21 1.7459(15) 0.000 102.89
64 1.764(2) 0.016 54.90 1.7663(18) 0.000 70.59 1.7540(18) 0.000 76.73
128 1.771(3) 0.307 37.30 1.774(2) 0.003 48.41 1.765(3) 0.008 52.35
256 1.779(5) 0.875 23.45 1.785(4) 0.868 30.87 1.774(4) 0.514 33.64
512 1.778(7) 0.794 16.59 1.783(5) 0.806 21.64 1.774(5) 0.374 23.01
600 1.783(9) 0.847 12.52 1.787(7) 0.860 16.57 1.781(7) 0.544 16.65
1000 1.774(15) 0.873 8.11 1.782(11) 0.754 9.87 1.787(12) 0.431 9.04
1200 1.77(2) 0.969 5.85 1.779(17) 0.484 6.76 1.793(17) 0.228 6.15
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Table B.2: Estimates of β/ν, quality-of-fit parameter Q, and deviations from the exact value,
β/ν = 5/96 ≈ 0.052, in multiples of the estimated statistical errors ∆ (σ), for the cluster sets
of the percolation strength as introduced in Sec. 4.3.

max C max P max Px

Lmin β/ν Q ∆(σ) β/ν Q ∆(σ) β/ν Q ∆(σ)

16 0.05271(8) 0.005 7.94 0.05269(8) 0.008 7.65 0.05245(11) 0.230 3.30
32 0.05256(10) 0.030 4.94 0.05255(10) 0.036 4.76 0.05243(14) 0.166 2.56
64 0.05241(12) 0.081 2.66 0.05240(12) 0.092 2.55 0.05236(16) 0.136 1.68
128 0.05222(17) 0.141 0.81 0.05222(17) 0.136 0.83 0.0521(2) 0.216 0.06
256 0.0523(2) 0.109 1.14 0.0523(2) 0.103 1.13 0.0522(3) 0.156 0.43
512 0.0517(3) 0.744 1.06 0.0517(3) 0.718 1.07 0.0515(5) 0.597 1.32
600 0.0519(4) 0.670 0.44 0.0519(4) 0.653 0.42 0.0517(6) 0.494 0.70
1000 0.0514(7) 0.671 0.96 0.0514(7) 0.678 0.99 0.0507(9) 0.681 1.45
1200 0.0509(11) 0.586 1.17 0.0508(11) 0.600 1.19 0.0498(14) 0.955 1.61

max Px and y max Px and y

Lmin β/ν Q ∆(σ) β/ν Q ∆(σ) - - -

16 0.05224(14) 0.232 1.17 0.072(5) 0.432 4.38
32 0.05227(17) 0.169 1.08 0.069(6) 0.402 2.87
64 0.0522(2) 0.119 0.66 0.066(8) 0.347 1.78
128 0.0520(3) 0.135 0.42 0.066(10) 0.251 1.43
256 0.0523(4) 0.153 0.60 0.044(14) 0.730 0.56
512 0.0514(6) 0.508 1.14 0.06(2) 0.763 0.35
600 0.0517(7) 0.435 0.48 0.05(3) 0.676 0.07
1000 0.0505(12) 0.569 1.30 0.08(5) 0.617 0.59
1200 0.0490(19) 0.881 1.64 0.13(7) 0.651 1.04
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B.2 2-replica Ising model
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Table B.3: Estimates of ν(s), number of degrees of freedom (d.o.f.), χ2 per degree of freedom(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from the peaks of the derivatives with respect to

temperature, of the wrapping probabilities R of the soft constraint clusters, for the 2-replica
Ising model. ∆σ denotes the deviation of the estimates from the exact value ν = 1 of the
1-replica Ising model, in multiples of their estimated statistical errors.∣∣∣∣dR(s)

x or y

dT

∣∣∣∣
max

∣∣∣∣dR(s)
x and y

dT

∣∣∣∣
max

Lmin ν(s) σ ∆σ d.o.f. χ2/d.o.f. Q Lmin ν(s) σ ∆σ d.o.f. χ2/d.o.f. Q
8 0.9003 0.0018 55.9507 21 57.9428 0.0000 8 0.9716 0.0011 26.1497 21 16.8405 0.0000
10 0.9195 0.0020 39.5878 20 32.7718 0.0000 10 0.9780 0.0012 18.1323 20 9.5453 0.0000
16 0.9393 0.0024 25.7471 19 15.1207 0.0000 16 0.9848 0.0014 10.9866 19 4.0500 0.0000
20 0.9529 0.0027 17.4379 18 8.6417 0.0000 20 0.9888 0.0015 7.2802 18 2.3077 0.0013
32 0.9667 0.0031 10.6291 17 3.6348 0.0000 32 0.9924 0.0017 4.3410 17 1.1367 0.3102
40 0.9728 0.0035 7.7741 16 2.8241 0.0001 40 0.9938 0.0019 3.2034 16 1.0491 0.3996
50 0.9773 0.0038 5.8963 15 2.3963 0.0018 50 0.9951 0.0021 2.3506 15 0.9353 0.5233
64 0.9819 0.0043 4.2319 14 2.1318 0.0080 64 0.9977 0.0024 0.9558 14 0.6206 0.8505
80 0.9881 0.0049 2.4593 13 1.6746 0.0590 80 0.9982 0.0027 0.6584 13 0.6570 0.8066
100 0.9958 0.0055 0.7663 12 0.9391 0.5060 100 0.9994 0.0031 0.2003 12 0.6568 0.7943
128 0.9987 0.0063 0.2030 11 0.9395 0.5006 128 0.9985 0.0035 0.4288 11 0.6917 0.7479
160 1.0017 0.0072 0.2431 10 0.9585 0.4776 160 0.9996 0.0040 0.0942 10 0.7225 0.7040
200 1.0076 0.0082 0.9262 9 0.8101 0.6068 200 1.0035 0.0045 0.7900 9 0.3974 0.9370
256 1.0074 0.0096 0.7761 8 0.9113 0.5056 256 1.0054 0.0053 1.0288 8 0.3893 0.9270
320 0.9978 0.0114 0.1954 7 0.7039 0.6688 320 1.0047 0.0062 0.7573 7 0.4386 0.8785
400 1.0076 0.0145 0.5233 6 0.6174 0.7166 400 1.0025 0.0074 0.3338 6 0.4619 0.8370
512 1.0244 0.0204 1.1934 5 0.4622 0.8046 512 1.0008 0.0092 0.0887 5 0.5357 0.7494
640 1.0243 0.0223 1.0878 4 0.5777 0.6788 640 1.0039 0.0116 0.3400 4 0.6194 0.6486
800 1.0417 0.0314 1.3253 3 0.5674 0.6364 800 1.0130 0.0151 0.8627 3 0.5281 0.6630
1024 1.0183 0.0454 0.4032 2 0.6266 0.5344 1024 1.0066 0.0218 0.3016 2 0.7123 0.4905
1280 1.0430 0.0655 0.6571 1 0.9757 0.3233 1280 0.9831 0.0329 0.5153 1 0.5509 0.4579∣∣∣dR(s)

x

dT

∣∣∣
max

∣∣∣∣dR(s)
x and y

dT

∣∣∣∣
max

Lmin ν(s) σ ∆σ d.o.f. χ2/d.o.f. Q Lmin ν(s) σ ∆σ d.o.f. χ2/d.o.f. Q
8 0.9615 0.0018 20.9538 21 8.8272 0.0000 8 0.9840 0.0028 5.6639 21 2.2537 0.0008
10 0.9690 0.0020 15.1860 20 5.1961 0.0000 10 0.9879 0.0031 3.8708 20 1.9036 0.0087
16 0.9790 0.0024 8.7757 19 1.7209 0.0260 16 0.9943 0.0037 1.5546 19 1.3798 0.1243
20 0.9828 0.0027 6.4395 18 1.2089 0.2428 20 0.9986 0.0041 0.3464 18 1.1520 0.2930
32 0.9877 0.0030 4.0993 17 0.4530 0.9725 32 0.9997 0.0047 0.0692 17 1.2062 0.2492
40 0.9884 0.0034 3.4525 16 0.4672 0.9630 40 1.0043 0.0052 0.8393 16 0.9686 0.4886
50 0.9897 0.0037 2.7587 15 0.4593 0.9607 50 1.0063 0.0059 1.0590 15 1.0034 0.4477
64 0.9888 0.0042 2.6772 14 0.4756 0.9471 64 1.0085 0.0066 1.2969 14 1.0294 0.4195
80 0.9887 0.0048 2.3555 13 0.5121 0.9189 80 1.0035 0.0073 0.4848 13 0.9312 0.5190
100 0.9886 0.0056 2.0419 12 0.5547 0.8795 100 1.0065 0.0083 0.7790 12 0.9630 0.4820
128 0.9852 0.0062 2.3666 11 0.4729 0.9210 128 1.0101 0.0096 1.0557 11 0.9967 0.4463
160 0.9891 0.0070 1.5726 10 0.3560 0.9650 160 1.0076 0.0109 0.6940 10 1.0753 0.3771
200 0.9852 0.0079 1.8642 9 0.2829 0.9796 200 1.0111 0.0124 0.8957 9 1.1537 0.3203
256 0.9868 0.0091 1.4494 8 0.2999 0.9663 256 1.0173 0.0150 1.1562 8 1.2294 0.2768
320 0.9832 0.0101 1.6577 7 0.2495 0.9725 320 1.0179 0.0183 0.9784 7 1.4045 0.1983
400 0.9875 0.0124 1.0086 6 0.2286 0.9676 400 1.0187 0.0201 0.9276 6 1.6373 0.1323
512 0.9834 0.0144 1.1502 5 0.2128 0.9572 512 1.0113 0.0217 0.5205 5 1.8119 0.1067
640 0.9873 0.0214 0.5917 4 0.2505 0.9095 640 0.9660 0.0305 1.1162 4 1.2644 0.2814
800 0.9842 0.0245 0.6427 3 0.3116 0.8170 800 0.9681 0.0403 0.7915 3 1.6834 0.1682
1024 0.9723 0.0451 0.6144 2 0.4164 0.6594 1024 0.9171 0.0474 1.7472 2 0.7795 0.4586
1280 0.9688 0.0685 0.4546 1 0.8282 0.3628 1280 1.0164 0.1014 0.1621 1 0.0009 0.9767
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Table B.4: Estimates of ν(h), number of degrees of freedom (d.o.f.), χ2 per degree of freedom(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from the peaks of the derivatives with respect to

temperature, of the wrapping probabilities R of the hard constraint clusters, for the 2-replica
Ising model. ∆σ denotes the deviation of the estimates from the exact value ν = 1 of the
1-replica Ising model, in multiples of their estimated statistical errors.∣∣∣∣dR(h)

x or y

dT

∣∣∣∣
max

∣∣∣∣dR(h)
x and y

dT

∣∣∣∣
max

Lmin ν(h) σ ∆σ d.o.f. χ2/d.o.f. Q Lmin ν(h) σ ∆σ d.o.f. χ2/d.o.f. Q
8 0.9148 0.0008 101.7009 21 131.0008 0.0000 8 0.9576 0.0008 55.9868 21 33.3510 0.0000
10 0.9301 0.0010 72.8297 20 66.3924 0.0000 10 0.9632 0.0008 43.8880 20 20.9477 0.0000
16 0.9439 0.0011 51.0960 19 24.6452 0.0000 16 0.9706 0.0010 30.6712 19 6.9630 0.0000
20 0.9518 0.0012 39.3014 18 11.9735 0.0000 20 0.9737 0.0011 24.6858 18 4.4979 0.0000
32 0.9591 0.0014 29.2731 17 4.3528 0.0000 32 0.9781 0.0012 17.9136 17 1.2782 0.1954
40 0.9630 0.0015 23.9251 16 2.2889 0.0024 40 0.9798 0.0013 15.0890 16 0.7480 0.7461
50 0.9653 0.0017 20.1962 15 1.7667 0.0331 50 0.9809 0.0014 13.2041 15 0.5107 0.9367
64 0.9678 0.0020 16.4426 14 1.2997 0.1980 64 0.9819 0.0016 11.2074 14 0.4073 0.9734
80 0.9698 0.0022 13.8678 13 1.0510 0.3980 80 0.9817 0.0018 10.0680 13 0.4333 0.9585
100 0.9712 0.0024 11.8558 12 0.9963 0.4492 100 0.9816 0.0021 8.9718 12 0.4684 0.9340
128 0.9719 0.0028 10.1779 11 1.0592 0.3904 128 0.9822 0.0023 7.8575 11 0.4697 0.9229
160 0.9730 0.0031 8.6113 10 1.1011 0.3567 160 0.9836 0.0026 6.3711 10 0.3782 0.9566
200 0.9718 0.0036 7.9351 9 1.1649 0.3127 200 0.9850 0.0030 5.0424 9 0.3268 0.9666
256 0.9700 0.0043 6.9277 8 1.2407 0.2703 256 0.9866 0.0034 3.9356 8 0.2357 0.9843
320 0.9699 0.0051 5.9496 7 1.4176 0.1930 320 0.9881 0.0041 2.8815 7 0.2142 0.9823
400 0.9726 0.0061 4.4714 6 1.5432 0.1595 400 0.9880 0.0049 2.4389 6 0.2497 0.9596
512 0.9766 0.0078 3.0052 5 1.7033 0.1300 512 0.9887 0.0064 1.7665 5 0.2921 0.9176
640 0.9705 0.0096 3.0849 4 1.8217 0.1215 640 0.9868 0.0078 1.6881 4 0.3189 0.8655
800 0.9844 0.0129 1.2053 3 1.5024 0.2117 800 0.9847 0.0104 1.4649 3 0.3948 0.7567
1024 1.0035 0.0188 0.1875 2 1.2089 0.2985 1024 0.9836 0.0152 1.0821 2 0.5863 0.5564
1280 1.0268 0.0287 0.9326 1 1.2325 0.2669 1280 0.9965 0.0240 0.1440 1 0.6576 0.4174∣∣∣dR(h)

x

dT

∣∣∣
max

∣∣∣∣dR(h)
x and y

dT

∣∣∣∣
max

Lmin ν(h) σ ∆σ d.o.f. χ2/d.o.f. Q Lmin ν(h) σ ∆σ d.o.f. χ2/d.o.f. Q
8 0.9394 0.0009 67.6518 21 49.8816 0.0000 8 0.9943 0.0021 2.7298 21 0.8322 0.6819
10 0.9492 0.0010 50.0611 20 26.3080 0.0000 10 0.9959 0.0023 1.7896 20 0.6936 0.8369
16 0.9581 0.0011 36.7510 19 9.8627 0.0000 16 0.9980 0.0025 0.8123 19 0.5147 0.9582
20 0.9618 0.0012 30.7316 18 6.8407 0.0000 20 0.9977 0.0027 0.8388 18 0.5402 0.9405
32 0.9670 0.0014 23.4263 17 3.0629 0.0000 32 0.9980 0.0031 0.6539 17 0.5700 0.9161
40 0.9695 0.0016 19.4680 16 2.3533 0.0017 40 0.9992 0.0034 0.2515 16 0.5568 0.9171
50 0.9717 0.0017 16.5076 15 1.7658 0.0332 50 0.9979 0.0037 0.5819 15 0.5459 0.9160
64 0.9736 0.0019 13.9541 14 1.4569 0.1181 64 0.9996 0.0042 0.0874 14 0.5328 0.9156
80 0.9765 0.0021 11.1075 13 0.8390 0.6186 80 0.9998 0.0047 0.0351 13 0.5730 0.8776
100 0.9772 0.0024 9.4439 12 0.8700 0.5774 100 0.9976 0.0052 0.4660 12 0.5343 0.8939
128 0.9791 0.0028 7.5165 11 0.7802 0.6604 128 1.0002 0.0060 0.0407 11 0.5135 0.8958
160 0.9785 0.0032 6.8005 10 0.8425 0.5874 160 0.9985 0.0067 0.2213 10 0.5291 0.8709
200 0.9770 0.0037 6.2522 9 0.8638 0.5571 200 1.0001 0.0078 0.0147 9 0.5701 0.8227
256 0.9742 0.0043 5.9881 8 0.7731 0.6266 256 1.0004 0.0089 0.0417 8 0.6410 0.7439
320 0.9771 0.0050 4.5671 7 0.7000 0.6722 320 0.9950 0.0108 0.4657 7 0.6211 0.7390
400 0.9779 0.0058 3.7977 6 0.8023 0.5679 400 1.0018 0.0128 0.1419 6 0.5523 0.7686
512 0.9739 0.0070 3.7322 5 0.7452 0.5895 512 1.0002 0.0167 0.0140 5 0.6584 0.6551
640 0.9724 0.0092 2.9879 4 0.9146 0.4542 640 1.0052 0.0203 0.2582 4 0.7750 0.5412
800 0.9619 0.0127 3.0005 3 0.7203 0.5397 800 0.9962 0.0280 0.1342 3 0.9629 0.4091
1024 0.9626 0.0186 2.0078 2 1.0791 0.3399 1024 0.9764 0.0396 0.5952 2 1.2019 0.3006
1280 0.9945 0.0321 0.1712 1 0.4877 0.4849 1280 1.0568 0.0683 0.8315 1 0.0129 0.9095
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Table B.5: Estimates of T
(s)
c , a [see Eq. (5.5)], number of degrees of freedom (d.o.f.), χ2

per degree of freedom
(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from straight-line fits using

the crossing technique for the wrapping probabilities of the soft constraint clusters, for the
2-replica Ising model.

R
(s)
x or y R

(s)
x and y

Lmin T
(s)
c σ a σ d.o.f. χ2/d.o.f. Q Lmin T

(s)
c σ a σ d.o.f. χ2/d.o.f. Q

8 2.269135 0.000033 -0.004 0.013 18 1.8320 0.0168 8 2.269196 0.000012 -0.003 0.005 18 0.7479 0.7635
10 2.269121 0.000034 0.005 0.014 17 1.7196 0.0324 10 2.269195 0.000013 -0.002 0.005 17 0.7794 0.7193
16 2.269116 0.000035 0.008 0.014 16 1.7866 0.0269 16 2.269196 0.000013 -0.003 0.005 16 0.8241 0.6591
20 2.269111 0.000036 0.011 0.015 15 1.8830 0.0201 20 2.269197 0.000013 -0.003 0.006 15 0.8713 0.5969
32 2.269110 0.000037 0.012 0.016 14 2.0153 0.0133 32 2.269198 0.000014 -0.004 0.006 14 0.9115 0.5454
40 2.269099 0.000038 0.019 0.017 13 2.0975 0.0114 40 2.269201 0.000014 -0.006 0.006 13 0.9111 0.5405
50 2.269091 0.000039 0.023 0.019 12 2.2232 0.0086 50 2.269204 0.000014 -0.008 0.007 12 0.9288 0.5165
64 2.269092 0.000041 0.023 0.020 11 2.4253 0.0051 64 2.269205 0.000015 -0.009 0.007 11 1.0105 0.4337
80 2.269093 0.000043 0.022 0.022 10 2.6665 0.0029 80 2.269203 0.000015 -0.008 0.008 10 1.0928 0.3631
100 2.269101 0.000045 0.017 0.024 9 2.9301 0.0018 100 2.269197 0.000017 -0.003 0.009 9 1.0841 0.3705
128 2.269111 0.000048 0.010 0.026 8 3.2499 0.0011 128 2.269187 0.000018 0.003 0.010 8 0.9415 0.4805
160 2.269140 0.000052 -0.010 0.029 7 3.3446 0.0014 160 2.269199 0.000019 -0.005 0.011 7 0.6593 0.7068
200 2.269076 0.000058 0.036 0.035 6 2.9962 0.0063 200 2.269202 0.000020 -0.007 0.012 6 0.7342 0.6220
256 2.269020 0.000065 0.078 0.041 5 2.7894 0.0159 256 2.269198 0.000022 -0.004 0.014 5 0.8372 0.5230
320 2.268947 0.000075 0.134 0.051 4 2.5807 0.0353 320 2.269177 0.000026 0.012 0.017 4 0.3602 0.8371
400 2.268976 0.000094 0.111 0.068 3 3.3550 0.0180 400 2.269164 0.000031 0.023 0.022 3 0.2974 0.8273
512 2.269128 0.000119 -0.016 0.091 2 2.8315 0.0589 512 2.269178 0.000038 0.011 0.029 2 0.2481 0.7803
640 2.269275 0.000183 -0.145 0.153 1 4.5512 0.0329 640 2.269151 0.000057 0.036 0.048 1 0.0971 0.7554

R
(s)
x R

(s)
x and y

Lmin T
(s)
c σ a σ d.o.f. χ2/d.o.f. Q Lmin T

(s)
c σ a σ d.o.f. χ2/d.o.f. Q

8 2.269188 0.000017 -0.002 0.007 18 1.5419 0.0659 8 2.269196 0.000021 -0.001 0.008 18 1.8857 0.0128
10 2.269183 0.000017 0.000 0.007 17 1.5341 0.0730 10 2.269210 0.000021 -0.009 0.008 17 1.2716 0.1999
16 2.269187 0.000018 -0.002 0.007 16 1.5678 0.0684 16 2.269209 0.000022 -0.008 0.008 16 1.3449 0.1594
20 2.269191 0.000018 -0.004 0.008 15 1.6223 0.0596 20 2.269207 0.000022 -0.007 0.009 15 1.4272 0.1243
32 2.269187 0.000019 -0.002 0.008 14 1.7061 0.0473 32 2.269214 0.000023 -0.011 0.009 14 1.3811 0.1525
40 2.269191 0.000019 -0.004 0.009 13 1.7948 0.0379 40 2.269218 0.000023 -0.014 0.010 13 1.4471 0.1291
50 2.269198 0.000020 -0.009 0.009 12 1.7727 0.0465 50 2.269217 0.000024 -0.013 0.010 12 1.5644 0.0941
64 2.269190 0.000021 -0.004 0.010 11 1.7849 0.0506 64 2.269227 0.000025 -0.019 0.011 11 1.4282 0.1522
80 2.269183 0.000022 0.000 0.011 10 1.8119 0.0530 80 2.269233 0.000026 -0.023 0.012 10 1.4906 0.1355
100 2.269179 0.000023 0.003 0.012 9 1.9773 0.0376 100 2.269226 0.000028 -0.019 0.014 9 1.6061 0.1070
128 2.269174 0.000025 0.006 0.014 8 2.1971 0.0246 128 2.269208 0.000030 -0.007 0.016 8 1.5257 0.1422
160 2.269194 0.000027 -0.007 0.015 7 1.9006 0.0650 160 2.269211 0.000032 -0.008 0.017 7 1.7370 0.0954
200 2.269181 0.000029 0.002 0.017 6 2.0102 0.0606 200 2.269231 0.000034 -0.023 0.019 6 1.4810 0.1801
256 2.269164 0.000032 0.014 0.020 5 2.1444 0.0572 256 2.269243 0.000038 -0.031 0.023 5 1.6822 0.1350
320 2.269122 0.000038 0.046 0.025 4 1.4548 0.2131 320 2.269247 0.000043 -0.035 0.028 4 2.0890 0.0794
400 2.269158 0.000045 0.018 0.032 3 1.2453 0.2914 400 2.269171 0.000053 0.027 0.038 3 0.8914 0.4446
512 2.269206 0.000056 -0.022 0.042 2 0.7983 0.4501 512 2.269142 0.000070 0.052 0.054 2 1.1247 0.3247
640 2.269245 0.000077 -0.056 0.063 1 1.0719 0.3005 640 2.269043 0.000100 0.142 0.085 1 0.3466 0.5561



140 APPENDIX B. FIT RESULTS

Table B.6: Estimates of T
(h)
c , a [see Eq. (5.5)], number of degrees of freedom (d.o.f.), χ2

per degree of freedom
(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from straight-line fits using

the crossing technique for the wrapping probabilities of the hard constraint clusters, for the
2-replica Ising model.

R
(h)
x or y R

(h)
x and y

Lmin T
(h)
c σ a σ d.o.f. χ2/d.o.f. Q Lmin T

(h)
c σ a σ d.o.f. χ2/d.o.f. Q

8 2.269243 0.000017 -0.073 0.007 18 2.6913 0.0001 8 2.269216 0.000010 -0.043 0.004 18 1.2222 0.2320
10 2.269235 0.000017 -0.069 0.007 17 2.5096 0.0005 10 2.269213 0.000010 -0.041 0.004 17 1.1637 0.2855
16 2.269222 0.000017 -0.060 0.007 16 1.8857 0.0171 16 2.269212 0.000011 -0.041 0.004 16 1.2199 0.2427
20 2.269218 0.000018 -0.058 0.008 15 1.9202 0.0171 20 2.269211 0.000011 -0.040 0.005 15 1.2821 0.2035
32 2.269214 0.000018 -0.056 0.008 14 2.0027 0.0141 32 2.269208 0.000011 -0.038 0.005 14 1.3137 0.1895
40 2.269209 0.000019 -0.052 0.008 13 2.0519 0.0138 40 2.269209 0.000012 -0.039 0.005 13 1.4043 0.1480
50 2.269205 0.000020 -0.050 0.009 12 2.1823 0.0101 50 2.269209 0.000012 -0.039 0.006 12 1.5213 0.1081
64 2.269204 0.000020 -0.049 0.010 11 2.3771 0.0062 64 2.269209 0.000012 -0.039 0.006 11 1.6566 0.0766
80 2.269202 0.000021 -0.048 0.010 10 2.6018 0.0037 80 2.269207 0.000013 -0.037 0.006 10 1.7796 0.0585
100 2.269202 0.000022 -0.048 0.011 9 2.8908 0.0020 100 2.269205 0.000014 -0.036 0.007 9 1.9667 0.0388
128 2.269204 0.000023 -0.050 0.012 8 3.2410 0.0011 128 2.269198 0.000015 -0.031 0.008 8 1.9754 0.0453
160 2.269225 0.000025 -0.064 0.014 7 2.9196 0.0047 160 2.269208 0.000016 -0.038 0.009 7 1.8171 0.0792
200 2.269223 0.000027 -0.062 0.015 6 3.3951 0.0024 200 2.269208 0.000017 -0.039 0.010 6 2.1189 0.0478
256 2.269203 0.000029 -0.048 0.018 5 3.5555 0.0032 256 2.269195 0.000019 -0.029 0.011 5 1.9322 0.0854
320 2.269144 0.000034 -0.002 0.023 4 1.8286 0.1202 320 2.269173 0.000022 -0.012 0.014 4 1.3541 0.2472
400 2.269094 0.000043 0.038 0.030 3 1.0996 0.3478 400 2.269153 0.000026 0.004 0.019 3 1.2438 0.2920
512 2.269082 0.000054 0.049 0.042 2 1.5794 0.2061 512 2.269186 0.000032 -0.023 0.025 2 0.3964 0.6727
640 2.269056 0.000079 0.072 0.067 1 2.9577 0.0855 640 2.269157 0.000048 0.002 0.040 1 0.1554 0.6934

R
(h)
x R

(h)
x and y

Lmin T
(h)
c σ a σ d.o.f. χ2/d.o.f. Q Lmin T

(h)
c σ a σ d.o.f. χ2/d.o.f. Q

8 2.269221 0.000013 -0.049 0.005 18 1.9318 0.0101 8 2.269210 0.000020 -0.035 0.007 18 1.4877 0.0832
10 2.269216 0.000013 -0.046 0.005 17 1.7779 0.0248 10 2.269219 0.000020 -0.040 0.007 17 1.2803 0.1939
16 2.269216 0.000013 -0.046 0.005 16 1.8890 0.0169 16 2.269217 0.000020 -0.039 0.008 16 1.3467 0.1584
20 2.269216 0.000013 -0.046 0.006 15 2.0145 0.0112 20 2.269215 0.000021 -0.038 0.008 15 1.4189 0.1280
32 2.269209 0.000014 -0.042 0.006 14 1.9135 0.0205 32 2.269218 0.000021 -0.039 0.009 14 1.4890 0.1056
40 2.269209 0.000014 -0.042 0.006 13 2.0606 0.0133 40 2.269222 0.000022 -0.042 0.009 13 1.5502 0.0915
50 2.269212 0.000015 -0.043 0.007 12 2.1965 0.0095 50 2.269220 0.000023 -0.040 0.010 12 1.6639 0.0677
64 2.269202 0.000016 -0.037 0.007 11 1.9649 0.0275 64 2.269232 0.000023 -0.048 0.010 11 1.3214 0.2048
80 2.269197 0.000016 -0.034 0.008 10 2.0278 0.0267 80 2.269236 0.000024 -0.050 0.011 10 1.4166 0.1656
100 2.269197 0.000017 -0.034 0.009 9 2.2510 0.0164 100 2.269232 0.000026 -0.048 0.013 9 1.5577 0.1216
128 2.269201 0.000018 -0.037 0.010 8 2.4960 0.0105 128 2.269200 0.000029 -0.027 0.015 8 0.8199 0.5849
160 2.269218 0.000020 -0.048 0.011 7 2.0639 0.0438 160 2.269199 0.000030 -0.026 0.017 7 0.9351 0.4776
200 2.269211 0.000021 -0.043 0.012 6 2.2963 0.0322 200 2.269213 0.000033 -0.036 0.018 6 0.8460 0.5341
256 2.269188 0.000024 -0.027 0.015 5 1.7920 0.1107 256 2.269207 0.000037 -0.031 0.022 5 0.9901 0.4219
320 2.269152 0.000027 0.000 0.018 4 0.6061 0.6582 320 2.269205 0.000041 -0.030 0.027 4 1.2359 0.2932
400 2.269148 0.000033 0.004 0.023 3 0.7884 0.5002 400 2.269153 0.000051 0.012 0.036 3 0.6040 0.6123
512 2.269183 0.000041 -0.025 0.030 2 0.1402 0.8692 512 2.269186 0.000064 -0.016 0.048 2 0.5409 0.5823
640 2.269177 0.000058 -0.020 0.048 1 0.2589 0.6109 640 2.269116 0.000093 0.048 0.078 1 0.0004 0.9840
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Table B.7: Estimates of (β/ν)(s), number of degrees of freedom (d.o.f.), χ2 per degree of
freedom

(
χ2/d.o.f.

)
, quality-of-fit parameter Q, for the cluster sets of the percolation strength

of the soft constraint clusters, for the 2-replica Ising model.

max C(s) max P
(s)
x or y

Lmin (β/ν)(s) σ d.o.f. χ2/d.o.f. Q Lmin (β/ν)(s) σ d.o.f. χ2/d.o.f. Q
8 0.09559 0.00007 21 4.2770 0.0000 8 0.09567 0.00007 21 3.6964 0.0000
10 0.09544 0.00007 20 2.7264 0.0000 10 0.09551 0.00008 20 2.2767 0.0009
16 0.09531 0.00007 19 1.5251 0.0664 16 0.09535 0.00009 19 1.1198 0.3217
20 0.09523 0.00008 18 1.2876 0.1839 20 0.09529 0.00009 18 1.0379 0.4117
32 0.09510 0.00009 17 0.5889 0.9032 32 0.09516 0.00010 17 0.5184 0.9460
40 0.09506 0.00010 16 0.5613 0.9142 40 0.09513 0.00011 16 0.5174 0.9402
50 0.09502 0.00011 15 0.5334 0.9237 50 0.09506 0.00012 15 0.4489 0.9646
64 0.09505 0.00012 14 0.5414 0.9101 64 0.09506 0.00014 14 0.4809 0.9445
80 0.09500 0.00013 13 0.5168 0.9161 80 0.09503 0.00015 13 0.4964 0.9281
100 0.09497 0.00015 12 0.5314 0.8959 100 0.09498 0.00017 12 0.4976 0.9175
128 0.09497 0.00016 11 0.5782 0.8483 128 0.09500 0.00019 11 0.5341 0.8816
160 0.09498 0.00018 10 0.6353 0.7847 160 0.09497 0.00021 10 0.5765 0.8346
200 0.09482 0.00021 9 0.4527 0.9065 200 0.09480 0.00025 9 0.4441 0.9116
256 0.09481 0.00024 8 0.5072 0.8519 256 0.09479 0.00028 8 0.4977 0.8588
320 0.09475 0.00028 7 0.5562 0.7920 320 0.09472 0.00032 7 0.5463 0.7998
400 0.09464 0.00032 6 0.5659 0.7578 400 0.09460 0.00038 6 0.5743 0.7512
512 0.09451 0.00040 5 0.6250 0.6807 512 0.09436 0.00047 5 0.5344 0.7504
640 0.09447 0.00049 4 0.7751 0.5412 640 0.09412 0.00058 4 0.5441 0.7033
800 0.09418 0.00066 3 0.8952 0.4427 800 0.09395 0.00078 3 0.6916 0.5570
1024 0.09427 0.00093 2 1.3347 0.2632 1024 0.09408 0.00109 2 1.0242 0.3591
1280 0.09436 0.00146 1 2.6620 0.1028 1280 0.09418 0.00170 1 2.0425 0.1530

max P
(s)
x and y

max P
(s)
x

Lmin (β/ν)(s) σ d.o.f. χ2/d.o.f. Q Lmin (β/ν)(s) σ d.o.f. χ2/d.o.f. Q
8 0.09598 0.00016 21 1.1801 0.2567 8 0.09575 0.00012 21 1.3104 0.1544
10 0.09582 0.00017 20 0.9134 0.5697 10 0.09560 0.00013 20 0.8897 0.6010
16 0.09572 0.00018 19 0.8525 0.6441 16 0.09547 0.00014 19 0.6441 0.8752
20 0.09574 0.00020 18 0.8963 0.5832 20 0.09545 0.00015 18 0.6712 0.8430
32 0.09560 0.00022 17 0.8029 0.6918 32 0.09531 0.00017 17 0.4634 0.9691
40 0.09565 0.00024 16 0.8363 0.6448 40 0.09527 0.00018 16 0.4798 0.9579
50 0.09562 0.00026 15 0.8861 0.5798 50 0.09526 0.00020 15 0.5081 0.9380
64 0.09576 0.00029 14 0.8603 0.6028 64 0.09531 0.00023 14 0.5209 0.9228
80 0.09569 0.00032 13 0.9047 0.5473 80 0.09521 0.00025 13 0.4858 0.9339
100 0.09574 0.00035 12 0.9713 0.4737 100 0.09519 0.00027 12 0.5219 0.9022
128 0.09570 0.00039 11 1.0530 0.3958 128 0.09513 0.00030 11 0.5499 0.8701
160 0.09568 0.00045 10 1.1576 0.3144 160 0.09517 0.00034 10 0.5987 0.8164
200 0.09511 0.00052 9 0.7666 0.6476 200 0.09487 0.00039 9 0.3883 0.9414
256 0.09510 0.00059 8 0.8620 0.5479 256 0.09482 0.00045 8 0.4311 0.9031
320 0.09496 0.00068 7 0.9595 0.4590 320 0.09478 0.00051 7 0.4892 0.8431
400 0.09448 0.00081 6 0.9334 0.4694 400 0.09451 0.00062 6 0.4633 0.8359
512 0.09400 0.00099 5 0.9742 0.4318 512 0.09454 0.00077 5 0.5552 0.7345
640 0.09383 0.00121 4 1.2021 0.3075 640 0.09417 0.00097 4 0.5957 0.6657
800 0.09350 0.00166 3 1.5742 0.1933 800 0.09354 0.00128 3 0.6093 0.6089
1024 0.09414 0.00233 2 2.2847 0.1018 1024 0.09411 0.00179 2 0.8099 0.4449
1280 0.09615 0.00360 1 4.0297 0.0447 1280 0.09397 0.00293 1 1.6159 0.2037

max P
(s)
x and y

Lmin (β/ν)(s) σ d.o.f. χ2/d.o.f. Q
8 0.08976 0.00179 21 1.3125 0.1530
10 0.08990 0.00192 20 1.3760 0.1212
16 0.08891 0.00210 19 1.3783 0.1251
20 0.08777 0.00230 18 1.3698 0.1347
32 0.08779 0.00251 17 1.4504 0.1027
40 0.08575 0.00274 16 1.3271 0.1697
50 0.08602 0.00293 15 1.4112 0.1316
64 0.08450 0.00318 14 1.4011 0.1427
80 0.08380 0.00354 13 1.4933 0.1109
100 0.08187 0.00399 12 1.5270 0.1062
128 0.08176 0.00446 11 1.6656 0.0744
160 0.08336 0.00499 10 1.7811 0.0582
200 0.08861 0.00569 9 1.5663 0.1189
256 0.08764 0.00668 8 1.7523 0.0813
320 0.09044 0.00783 7 1.9353 0.0599
400 0.09467 0.00928 6 2.1374 0.0459
512 0.10701 0.01138 5 1.8636 0.0970
640 0.10320 0.01393 4 2.2732 0.0588
800 0.09447 0.01871 3 2.8683 0.0350
1024 0.09387 0.02530 2 4.3018 0.0135
1280 0.03775 0.03940 1 5.1516 0.0232
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Table B.8: Estimates of (β/ν)(h), number of degrees of freedom (d.o.f.), χ2 per degree of
freedom

(
χ2/d.o.f.

)
, quality-of-fit parameter Q, for the cluster sets of the percolation strength

of the hard constraint clusters, for the 2-replica Ising model.

max C(h) max P
(h)
x or y

Lmin (β/ν)(h) σ d.o.f. χ2/d.o.f. Q Lmin (β/ν)(h) σ d.o.f. χ2/d.o.f. Q
8 0.11452 0.00008 21 3.3023 0.0000 8 0.11614 0.00010 21 1.3262 0.1444
10 0.11462 0.00009 20 2.9359 0.0000 10 0.11619 0.00011 20 1.3182 0.1541
16 0.11475 0.00009 19 2.4601 0.0004 16 0.11630 0.00012 19 1.1513 0.2906
20 0.11490 0.00010 18 1.8246 0.0174 20 0.11646 0.00013 18 0.6613 0.8522
32 0.11499 0.00011 17 1.7118 0.0336 32 0.11651 0.00015 17 0.6687 0.8368
40 0.11510 0.00012 16 1.4982 0.0901 40 0.11660 0.00016 16 0.5793 0.9020
50 0.11522 0.00014 15 1.3426 0.1667 50 0.11667 0.00018 15 0.5697 0.9001
64 0.11546 0.00015 14 0.6321 0.8406 64 0.11682 0.00020 14 0.4233 0.9683
80 0.11552 0.00017 13 0.6030 0.8539 80 0.11690 0.00022 13 0.3983 0.9711
100 0.11560 0.00019 12 0.5786 0.8613 100 0.11692 0.00025 12 0.4273 0.9536
128 0.11573 0.00021 11 0.4535 0.9317 128 0.11704 0.00027 11 0.3593 0.9713
160 0.11582 0.00023 10 0.4164 0.9397 160 0.11707 0.00031 10 0.3910 0.9513
200 0.11582 0.00027 9 0.4626 0.9004 200 0.11708 0.00037 9 0.4342 0.9174
256 0.11592 0.00031 8 0.4645 0.8818 256 0.11714 0.00042 8 0.4806 0.8708
320 0.11600 0.00036 7 0.5062 0.8306 320 0.11714 0.00049 7 0.5492 0.7975
400 0.11594 0.00042 6 0.5793 0.7472 400 0.11713 0.00057 6 0.6408 0.6977
512 0.11585 0.00052 5 0.6769 0.6409 512 0.11690 0.00070 5 0.7060 0.6188
640 0.11590 0.00064 4 0.8417 0.4984 640 0.11690 0.00088 4 0.8825 0.4733
800 0.11559 0.00087 3 1.0309 0.3775 800 0.11646 0.00119 3 1.0780 0.3569
1024 0.11561 0.00122 2 1.5461 0.2131 1024 0.11620 0.00168 2 1.5936 0.2032
1280 0.11547 0.00193 1 3.0829 0.0791 1280 0.11599 0.00262 1 3.1756 0.0747

max P
(h)
x and y

max P
(h)
x

Lmin (β/ν)(h) σ d.o.f. χ2/d.o.f. Q Lmin (β/ν)(h) σ d.o.f. χ2/d.o.f. Q
8 0.12026 0.00019 21 0.7179 0.8191 8 0.11804 0.00015 21 0.7345 0.8011
10 0.12024 0.00021 20 0.7507 0.7756 10 0.11808 0.00017 20 0.7524 0.7737
16 0.12031 0.00023 19 0.7647 0.7521 16 0.11817 0.00018 19 0.7112 0.8113
20 0.12046 0.00025 18 0.6600 0.8534 20 0.11832 0.00020 18 0.5479 0.9363
32 0.12044 0.00027 17 0.6969 0.8093 32 0.11830 0.00022 17 0.5780 0.9108
40 0.12052 0.00030 16 0.7130 0.7836 40 0.11835 0.00023 16 0.5924 0.8924
50 0.12059 0.00033 15 0.7442 0.7410 50 0.11846 0.00026 15 0.5733 0.8975
64 0.12095 0.00037 14 0.4805 0.9447 64 0.11874 0.00030 14 0.3333 0.9899
80 0.12094 0.00040 13 0.5173 0.9158 80 0.11871 0.00032 13 0.3562 0.9825
100 0.12097 0.00045 12 0.5584 0.8767 100 0.11869 0.00035 12 0.3840 0.9698
128 0.12092 0.00050 11 0.6036 0.8275 128 0.11871 0.00039 11 0.4174 0.9493
160 0.12105 0.00057 10 0.6419 0.7789 160 0.11873 0.00046 10 0.4587 0.9170
200 0.12055 0.00067 9 0.4688 0.8964 200 0.11856 0.00053 9 0.4646 0.8991
256 0.12066 0.00077 8 0.5167 0.8449 256 0.11859 0.00061 8 0.5215 0.8412
320 0.12064 0.00090 7 0.5901 0.7646 320 0.11855 0.00071 7 0.5945 0.7610
400 0.12064 0.00107 6 0.6884 0.6590 400 0.11853 0.00084 6 0.6931 0.6552
512 0.11994 0.00130 5 0.6495 0.6619 512 0.11836 0.00105 5 0.8172 0.5371
640 0.11969 0.00159 4 0.7931 0.5294 640 0.11826 0.00130 4 1.0175 0.3966
800 0.11875 0.00212 3 0.9096 0.4354 800 0.11694 0.00173 3 0.9078 0.4363
1024 0.12047 0.00305 2 1.0578 0.3472 1024 0.11860 0.00240 2 0.8589 0.4236
1280 0.12122 0.00491 1 2.0771 0.1495 1280 0.11918 0.00397 1 1.6841 0.1944

max P
(h)
x and y

Lmin (β/ν)(h) σ d.o.f. χ2/d.o.f. Q
8 0.07362 0.00165 21 0.9916 0.4697
10 0.07514 0.00177 20 0.7624 0.7621
16 0.07611 0.00191 19 0.7083 0.8143
20 0.07629 0.00206 18 0.7445 0.7672
32 0.07674 0.00225 17 0.7740 0.7256
40 0.07669 0.00246 16 0.8222 0.6614
50 0.07748 0.00265 15 0.8348 0.6391
64 0.07647 0.00291 14 0.8435 0.6217
80 0.07645 0.00321 13 0.9083 0.5434
100 0.07569 0.00362 12 0.9668 0.4782
128 0.07774 0.00407 11 0.9461 0.4941
160 0.07659 0.00449 10 1.0032 0.4377
200 0.08177 0.00502 9 0.5214 0.8603
256 0.08045 0.00583 8 0.5622 0.8097
320 0.08048 0.00681 7 0.6425 0.7210
400 0.08038 0.00814 6 0.7495 0.6098
512 0.08939 0.00969 5 0.3097 0.9074
640 0.09243 0.01210 4 0.3432 0.8489
800 -0.08274 0.01681 3 0.2283 0.8767
1024 0.08392 0.02360 2 0.3399 0.7118
1280 0.07849 0.03468 1 0.6342 0.4258
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Table B.9: Estimates of (γ/ν)(s), number of degrees of freedom (d.o.f.), χ2 per degree of
freedom

(
χ2/d.o.f.

)
, quality-of-fit parameter Q, for the cluster sets of the average cluster size

of the soft constraint clusters, for the 2-replica Ising model.

C(s) C(s) \ P
(s)
x and y

Lmin (γ/ν)(s) σ d.o.f. χ2/d.o.f. Q Lmin (γ/ν)(s) σ d.o.f. χ2/d.o.f. Q
8 1.809513 0.000087 21 4.56308 0.00000 8 1.806586 0.000091 21 6.89517 0.00000
10 1.809689 0.000093 20 3.36933 0.00000 10 1.806788 0.000097 20 5.49746 0.00000
16 1.809859 0.000099 19 2.27779 0.00119 16 1.807028 0.000104 19 3.60654 0.00000
20 1.809977 0.000107 18 1.91364 0.01109 20 1.807197 0.000112 18 2.90055 0.00003
32 1.810199 0.000118 17 0.83035 0.65888 32 1.807485 0.000124 17 1.35701 0.14701
40 1.810257 0.000127 16 0.78912 0.69989 40 1.807573 0.000134 16 1.24337 0.22504
50 1.810354 0.000141 15 0.67823 0.80869 50 1.807709 0.000149 15 1.05187 0.39696
64 1.810300 0.000158 14 0.68458 0.79192 64 1.807679 0.000168 14 1.11553 0.33729
80 1.810363 0.000171 13 0.66681 0.79749 80 1.807762 0.000182 13 1.09076 0.36130
100 1.810464 0.000192 12 0.61268 0.83349 100 1.807916 0.000206 12 0.97618 0.46890
128 1.810470 0.000211 11 0.66791 0.77032 128 1.807941 0.000227 11 1.05848 0.39104
160 1.810471 0.000237 10 0.73470 0.69233 160 1.807950 0.000256 10 1.16370 0.31008
200 1.810672 0.000273 9 0.57059 0.82236 200 1.808238 0.000296 9 0.88174 0.54064
256 1.810668 0.000310 8 0.64185 0.74308 256 1.808233 0.000338 8 0.99187 0.43985
320 1.810797 0.000357 7 0.65814 0.70780 320 1.808437 0.000391 7 0.97972 0.44381
400 1.810961 0.000418 6 0.67337 0.67123 400 1.808690 0.000460 6 0.96293 0.44856
512 1.811193 0.000515 5 0.68959 0.63128 512 1.809055 0.000561 5 0.89512 0.48316
640 1.811376 0.000633 4 0.79992 0.52498 640 1.809274 0.000690 4 1.04442 0.38249
800 1.811826 0.000849 3 0.85586 0.46320 800 1.809707 0.000937 3 1.23714 0.29436
1024 1.811575 0.001184 2 1.23756 0.29009 1024 1.809418 0.001306 2 1.80549 0.16439
1280 1.812003 0.001879 1 2.38908 0.12219 1280 1.809459 0.002037 1 3.61031 0.05742

C(s) \ max C(s) C(s) \ P
(s)
x or y

Lmin (γ/ν)(s) σ d.o.f. χ2/d.o.f. Q Lmin (γ/ν)(s) σ d.o.f. χ2/d.o.f. Q
8 1.665801 0.000483 21 112.24581 0.00000 8 1.659965 0.000604 21 73.25593 0.00000
10 1.670738 0.000523 20 87.66406 0.00000 10 1.664319 0.000651 20 61.01093 0.00000
16 1.676902 0.000576 19 58.42708 0.00000 16 1.671293 0.000730 19 40.68242 0.00000
20 1.682494 0.000639 18 38.88794 0.00000 20 1.677430 0.000812 18 26.47943 0.00000
32 1.687317 0.000703 17 25.07027 0.00000 32 1.683154 0.000902 17 15.47274 0.00000
40 1.690725 0.000769 16 19.20373 0.00000 40 1.685792 0.000969 16 12.97854 0.00000
50 1.694464 0.000853 15 13.60883 0.00000 50 1.688838 0.001051 15 10.11248 0.00000
64 1.698297 0.000956 14 8.97066 0.00000 64 1.692906 0.001193 14 7.13598 0.00000
80 1.700828 0.001055 13 7.19612 0.00000 80 1.696715 0.001338 13 4.63310 0.00000
100 1.703893 0.001177 12 4.92046 0.00000 100 1.699313 0.001496 12 3.76750 0.00001
128 1.707309 0.001345 11 2.85717 0.00094 128 1.702759 0.001667 11 2.10556 0.01677
160 1.709929 0.001512 10 1.70623 0.07300 160 1.705713 0.001879 10 1.15636 0.31532
200 1.711401 0.001742 9 1.57367 0.11664 200 1.708056 0.002222 9 0.85181 0.56809
256 1.713297 0.002001 8 1.30737 0.23428 256 1.710198 0.002501 8 0.52209 0.84084
320 1.715931 0.002348 7 0.83646 0.55676 320 1.712202 0.002905 7 0.33457 0.93852
400 1.716985 0.002750 6 0.88555 0.50430 400 1.713422 0.003551 6 0.33081 0.92108
512 1.719262 0.003394 5 0.80049 0.54906 512 1.713786 0.004370 5 0.39288 0.85405
640 1.721682 0.004153 4 0.74503 0.56116 640 1.713360 0.005479 4 0.48694 0.74537
800 1.722753 0.005636 3 0.96708 0.40710 800 1.714998 0.007370 3 0.61241 0.60687
1024 1.723473 0.008085 2 1.44290 0.23624 1024 1.717481 0.010531 2 0.86414 0.42141
1280 1.732534 0.012848 1 2.06250 0.15096 1280 1.721781 0.016278 1 1.60828 0.20473

C(s) \ P
(s)
x and y

C(s) \ P
(s)
x

Lmin (γ/ν)(s) σ d.o.f. χ2/d.o.f. Q Lmin (γ/ν)(s) σ d.o.f. χ2/d.o.f. Q
8 1.687890 0.000588 21 50.84706 0.00000 8 1.672312 0.000690 21 52.81165 0.00000
10 1.691924 0.000645 20 41.84282 0.00000 10 1.678316 0.000766 20 39.23729 0.00000
16 1.698120 0.000730 19 26.85278 0.00000 16 1.685037 0.000854 19 24.57939 0.00000
20 1.703801 0.000826 18 16.29187 0.00000 20 1.690142 0.000936 18 16.07468 0.00000
32 1.707498 0.000905 17 11.38825 0.00000 32 1.694648 0.001027 17 10.34203 0.00000
40 1.710956 0.001000 16 7.97503 0.00000 40 1.697673 0.001124 16 8.23978 0.00000
50 1.713873 0.001107 15 5.98582 0.00000 50 1.701234 0.001239 15 5.67292 0.00000
64 1.717189 0.001231 14 3.69927 0.00000 64 1.705202 0.001395 14 3.34484 0.00002
80 1.719231 0.001354 13 2.97629 0.00022 80 1.707637 0.001549 13 2.59955 0.00129
100 1.722010 0.001514 12 1.82118 0.03919 100 1.709678 0.001687 12 2.03769 0.01764
128 1.724173 0.001731 11 1.38291 0.17300 128 1.711888 0.001907 11 1.66022 0.07569
160 1.726399 0.001963 10 0.94355 0.49133 160 1.715298 0.002183 10 0.79549 0.63324
200 1.726125 0.002265 9 1.04187 0.40325 200 1.715966 0.002502 9 0.85077 0.56906
256 1.728055 0.002600 8 0.88645 0.52678 256 1.717949 0.002865 8 0.70466 0.68779
320 1.729426 0.002996 7 0.89192 0.51163 320 1.720439 0.003297 7 0.47273 0.85501
400 1.728761 0.003643 6 1.02341 0.40764 400 1.720922 0.004014 6 0.54410 0.77498
512 1.728151 0.004481 5 1.21717 0.29795 512 1.724297 0.005027 5 0.40427 0.84618
640 1.728616 0.005469 4 1.51598 0.19442 640 1.723668 0.006409 4 0.49907 0.73644
800 1.729654 0.007488 3 2.00757 0.11051 800 1.721117 0.008491 3 0.59553 0.61786
1024 1.734054 0.010856 2 2.85466 0.05758 1024 1.727020 0.012126 2 0.66083 0.51642
1280 1.747535 0.016877 1 4.62084 0.03159 1280 1.728886 0.019929 1 1.30774 0.25280
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Table B.10: Estimates of (γ/ν)(h), number of degrees of freedom (d.o.f.), χ2 per degree of
freedom

(
χ2/d.o.f.

)
, quality-of-fit parameter Q, for the cluster sets of the average cluster size

of the hard constraint clusters, for the 2-replica Ising model.

C(h) C(h) \ P
(h)
x and y

Lmin (γ/ν)(h) σ d.o.f. χ2/d.o.f. Q Lmin (γ/ν)(h) σ d.o.f. χ2/d.o.f. Q
8 1.770965 0.000119 21 6.13409 0.00000 8 1.767109 0.000126 21 4.57046 0.00000
10 1.770689 0.000128 20 4.75150 0.00000 10 1.766833 0.000135 20 3.30221 0.00000
16 1.770417 0.000139 19 3.61742 0.00000 16 1.766598 0.000147 19 2.61195 0.00015
20 1.770155 0.000150 18 2.68125 0.00014 20 1.766370 0.000160 18 2.00965 0.00670
32 1.769958 0.000168 17 2.42980 0.00084 32 1.766218 0.000179 17 1.91950 0.01255
40 1.769764 0.000182 16 2.09578 0.00628 40 1.766047 0.000194 16 1.70671 0.03819
50 1.769550 0.000203 15 1.86606 0.02163 50 1.765862 0.000218 15 1.58843 0.06810
64 1.769129 0.000228 14 0.80836 0.66097 64 1.765435 0.000245 14 0.68357 0.79290
80 1.768998 0.000247 13 0.72269 0.74251 80 1.765319 0.000266 13 0.63840 0.82357
100 1.768863 0.000278 12 0.69275 0.76021 100 1.765214 0.000303 12 0.64738 0.80294
128 1.768660 0.000306 11 0.52482 0.88807 128 1.765034 0.000334 11 0.55641 0.86521
160 1.768488 0.000346 10 0.46179 0.91520 160 1.764855 0.000376 10 0.50568 0.88735
200 1.768442 0.000403 9 0.50751 0.87026 200 1.764926 0.000440 9 0.55094 0.83792
256 1.768221 0.000461 8 0.44973 0.89146 256 1.764705 0.000504 8 0.51893 0.84321
320 1.768151 0.000527 7 0.50314 0.83289 320 1.764659 0.000578 7 0.58928 0.76528
400 1.768183 0.000617 6 0.58533 0.74237 400 1.764741 0.000678 6 0.67837 0.66717
512 1.768352 0.000762 5 0.67389 0.64323 512 1.765107 0.000831 5 0.69868 0.62438
640 1.768438 0.000945 4 0.83648 0.50169 640 1.765320 0.001034 4 0.84318 0.49750
800 1.768988 0.001275 3 0.97713 0.40232 800 1.765820 0.001406 3 1.03278 0.37671
1024 1.768761 0.001807 2 1.44996 0.23458 1024 1.765655 0.002021 2 1.54275 0.21379
1280 1.769525 0.002874 1 2.78290 0.09528 1280 1.766768 0.003176 1 2.87899 0.08974

C(h) \ max C(h) C(h) \ P
(h)
x or y

Lmin (γ/ν)(h) σ d.o.f. χ2/d.o.f. Q Lmin (γ/ν)(h) σ d.o.f. χ2/d.o.f. Q
8 1.591108 0.000511 21 182.10057 0.00000 8 1.617484 0.000678 21 88.41468 0.00000
10 1.598295 0.000555 20 135.89038 0.00000 10 1.623672 0.000736 20 69.73761 0.00000
16 1.606323 0.000608 19 87.92373 0.00000 16 1.632837 0.000826 19 41.78018 0.00000
20 1.613705 0.000676 18 58.15690 0.00000 20 1.640371 0.000920 18 24.80497 0.00000
32 1.619892 0.000741 17 37.23581 0.00000 32 1.646624 0.001020 17 14.41598 0.00000
40 1.624991 0.000823 16 26.96965 0.00000 40 1.650559 0.001119 16 10.78546 0.00000
50 1.629703 0.000913 15 19.21269 0.00000 50 1.653513 0.001210 15 8.74381 0.00000
64 1.634387 0.001020 14 13.04721 0.00000 64 1.657862 0.001378 14 6.25648 0.00000
80 1.638007 0.001135 13 9.96984 0.00000 80 1.661620 0.001531 13 4.30704 0.00000
100 1.642168 0.001277 12 6.60563 0.00000 100 1.664744 0.001719 12 3.33115 0.00007
128 1.645839 0.001444 11 4.49728 0.00000 128 1.667783 0.001899 11 2.34774 0.00689
160 1.649351 0.001625 10 2.73303 0.00231 160 1.671232 0.002165 10 1.48295 0.13840
200 1.651359 0.001860 9 2.48847 0.00770 200 1.673787 0.002542 9 1.23890 0.26556
256 1.653624 0.002144 8 2.23556 0.02211 256 1.676034 0.002953 8 1.11414 0.34968
320 1.657852 0.002571 7 1.28799 0.25151 320 1.678567 0.003456 7 0.98888 0.43703
400 1.658642 0.003023 6 1.46153 0.18698 400 1.681516 0.004097 6 0.85444 0.52768
512 1.661892 0.003662 5 1.25937 0.27840 512 1.683361 0.004913 5 0.93274 0.45828
640 1.665459 0.004425 4 1.05842 0.37531 640 1.685560 0.006238 4 1.08409 0.36240
800 1.667140 0.006045 3 1.35571 0.25431 800 1.684429 0.008495 3 1.43265 0.23104
1024 1.670372 0.008458 2 1.88429 0.15194 1024 1.690380 0.011918 2 1.89558 0.15023
1280 1.684913 0.013630 1 1.91779 0.16610 1280 1.692215 0.019119 1 3.77609 0.05199

C(h) \ P
(h)
x and y

C(h) \ P
(h)
x

Lmin (γ/ν)(h) σ d.o.f. χ2/d.o.f. Q Lmin (γ/ν)(h) σ d.o.f. χ2/d.o.f. Q
8 1.662465 0.000610 21 59.15485 0.00000 8 1.642167 0.000721 21 62.78574 0.00000
10 1.667275 0.000667 20 46.21631 0.00000 10 1.649906 0.000806 20 42.83783 0.00000
16 1.673828 0.000746 19 28.48176 0.00000 16 1.657194 0.000890 19 25.45683 0.00000
20 1.679222 0.000833 18 18.21956 0.00000 20 1.662576 0.000975 18 16.65681 0.00000
32 1.683856 0.000923 17 11.29818 0.00000 32 1.667617 0.001076 17 10.42353 0.00000
40 1.686728 0.001003 16 8.67517 0.00000 40 1.670567 0.001169 16 8.47906 0.00000
50 1.689592 0.001103 15 6.64914 0.00000 50 1.674387 0.001295 15 5.89724 0.00000
64 1.693736 0.001243 14 3.39266 0.00002 64 1.679191 0.001469 14 2.89637 0.00021
80 1.695887 0.001367 13 2.55763 0.00156 80 1.681360 0.001609 13 2.27724 0.00537
100 1.698161 0.001516 12 1.76828 0.04726 100 1.683131 0.001749 12 1.91183 0.02822
128 1.699633 0.001742 11 1.66083 0.07554 128 1.685051 0.001999 11 1.72818 0.06091
160 1.702437 0.001981 10 0.94511 0.48989 160 1.688066 0.002327 10 1.26018 0.24680
200 1.702026 0.002254 9 1.03386 0.40964 200 1.688924 0.002642 9 1.34788 0.20603
256 1.704147 0.002613 8 0.84029 0.56687 256 1.690997 0.003047 8 1.28326 0.24685
320 1.706004 0.003162 7 0.80513 0.58284 320 1.692716 0.003585 7 1.34821 0.22275
400 1.707430 0.003765 6 0.85819 0.52483 400 1.694894 0.004272 6 1.42660 0.19990
512 1.705995 0.004569 5 0.96843 0.43545 512 1.697035 0.005365 5 1.62484 0.14952
640 1.705413 0.005485 4 1.20133 0.30786 640 1.697647 0.006672 4 2.02512 0.08797
800 1.703463 0.007230 3 1.54465 0.20065 800 1.690501 0.008788 3 2.17982 0.08812
1024 1.717277 0.010884 2 0.87511 0.41682 1024 1.710058 0.012390 2 0.76310 0.46622
1280 1.725465 0.017431 1 1.38852 0.23866 1280 1.722920 0.020914 1 0.94344 0.33140
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Table B.11: Estimates of (γ/ν)(s), ω(s), number of degrees of freedom (d.o.f.), χ2 per degree
of freedom

(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from the joint fits of the different cluster

sets of the average cluster size of the soft constraint clusters, for the 2-replica Ising model.

Lmin (γ/ν)(s) σ ω(s) σ d.o.f. χ2/d.o.f. Q
8 1.811390 0.000371 0.359830 0.004932 124 1.138218 0.139235
10 1.811395 0.000471 0.359834 0.006307 118 1.055020 0.323360
16 1.811263 0.000517 0.355207 0.008225 112 1.005993 0.464423
20 1.811361 0.000570 0.342766 0.009803 106 0.882741 0.800453
32 1.810665 0.000679 0.333824 0.012648 100 0.754620 0.968087
40 1.810618 0.000737 0.329763 0.014456 94 0.776216 0.947034
50 1.810379 0.000906 0.320664 0.017689 88 0.759008 0.955187
64 1.811633 0.001267 0.305361 0.021440 82 0.664873 0.991655
80 1.811769 0.001542 0.299473 0.026023 76 0.678373 0.985782
100 1.811748 0.001974 0.287476 0.029534 70 0.697750 0.974460
128 1.812943 0.002753 0.264807 0.039112 64 0.652824 0.985793
160 1.815694 0.004755 0.227440 0.046825 58 0.557945 0.997441
200 1.814103 0.005005 0.250692 0.066069 52 0.540385 0.997269
256 1.818016 0.009095 0.231408 0.084336 46 0.540179 0.995425
320 1.822410 0.016902 0.182967 0.091874 40 0.558175 0.989254
400 1.822407 0.018788 0.202470 0.125647 34 0.629326 0.954388
512 1.823937 0.030203 0.185106 0.173036 28 0.713140 0.865631
640 1.826606 0.047056 0.188081 0.245855 22 0.870313 0.636241
800 1.815207 0.038453 0.256061 0.525071 16 1.153416 0.297953
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Table B.12: Estimates of (γ/ν)(h), ω(h), number of degrees of freedom (d.o.f.), χ2 per degree
of freedom

(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from the joint fits of the different cluster

sets of the average cluster size of the hard constraint clusters, for the 2-replica Ising model.

Lmin (γ/ν)(h) σ ω(h) σ d.o.f. χ2/d.o.f. Q
8 1.765286 0.000354 0.420846 0.004840 124 1.621569 0.000015
10 1.765241 0.000450 0.416482 0.006196 118 1.439385 0.001263
16 1.764923 0.000515 0.403877 0.007595 112 1.182591 0.090936
20 1.764917 0.000585 0.388444 0.009267 106 0.986672 0.520577
32 1.763818 0.000702 0.378186 0.012499 100 0.814381 0.912437
40 1.763670 0.000765 0.372318 0.014281 94 0.816499 0.902338
50 1.763132 0.000952 0.364162 0.017574 88 0.802815 0.912176
64 1.764243 0.001303 0.344508 0.022539 82 0.680493 0.988173
80 1.764284 0.001549 0.336953 0.026823 76 0.704124 0.976568
100 1.763859 0.001983 0.323147 0.031879 70 0.717411 0.964380
128 1.764818 0.002489 0.315016 0.041625 64 0.711214 0.961107
160 1.765909 0.003851 0.276662 0.051336 58 0.679679 0.970620
200 1.765423 0.004260 0.304791 0.069702 52 0.670405 0.967425
256 1.768600 0.006992 0.306598 0.093901 46 0.712551 0.928822
320 1.772304 0.011587 0.265977 0.115322 40 0.765549 0.857168
400 1.774685 0.014781 0.283488 0.146968 34 0.864560 0.692849
512 1.776114 0.021379 0.289084 0.206970 28 0.986415 0.484735
640 1.785511 0.046366 0.251442 0.258118 22 1.197071 0.237554
800 1.772523 0.017032 0.729094 0.614637 16 1.299761 0.186479
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B.3 3-replica Ising model
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Table B.13: Estimates of ν(s), number of degrees of freedom (d.o.f.), χ2 per degree of freedom(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from the peaks of the derivatives with respect to

temperature, of the wrapping probabilities R of the soft constraint clusters, using logarithmic
corrections [see Eq. (5.11)], for the 3-replica Ising model. ∆σ denotes the deviation of the
estimates from the exact value ν = 1 of the 1-replica Ising model, in multiples of their
estimated statistical errors.∣∣∣∣dR(s)

x or y

dT

∣∣∣∣
max

∣∣∣∣dR(s)
x and y

dT

∣∣∣∣
max

Lmin ν(s) σ ∆σ d.o.f. χ2/d.o.f. Q Lmin ν(s) σ ∆σ d.o.f. χ2/d.o.f. Q
8 0.912 0.002 13.95 20 14.640 0.000 8 0.800 0.005 0.70 20 3875 0.000
10 0.923 0.002 13.31 19 9.180 0.000 10 0.797 0.006 0.57 19 4079 0.000
16 0.935 0.003 10.06 18 6.670 0.000 16 0.815 0.005 0.52 18 4302 0.000
20 0.943 0.003 7.72 17 5.810 0.000 20 0.869 0.004 0.47 17 4494 0.000
32 0.958 0.004 4.77 16 4.390 0.000 32 1.015 0.004 0.06 16 4512 0.000
40 0.971 0.005 3.52 15 2.930 0.000 40 1.208 0.005 0.71 15 4218 0.000
50 0.977 0.006 2.45 14 2.860 0.000 50 2.314 0.013 2.36 14 1731 0.000
64 0.988 0.007 1.14 13 2.390 0.000 64 1.023 0.009 1.93 13 1.687 0.056
80 1.004 0.008 0.33 12 1.690 0.060 80 1.031 0.011 2.14 12 1.705 0.059
100 1.024 0.010 2.54 11 0.860 0.580 100 1.018 0.014 0.95 11 1.642 0.080
128 1.024 0.013 1.90 10 0.950 0.490 128 1.010 0.018 0.40 10 1.747 0.065
160 1.040 0.016 2.69 9 0.800 0.620 160 0.976 0.026 0.77 9 1.385 0.188
200 1.036 0.021 1.85 8 0.890 0.530 200 0.986 0.033 0.34 8 1.530 0.141
256 1.020 0.028 0.76 7 0.910 0.500 256 1.025 0.038 0.56 7 1.397 0.201
320 1.039 0.039 1.02 6 0.980 0.440 320 1.056 0.048 0.96 6 1.477 0.181
400 1.087 0.048 2.08 5 0.740 0.590 400 1.066 0.064 0.78 5 1.761 0.117
512 1.081 0.076 1.11 4 0.920 0.450 512 1.228 0.087 2.90 4 0.824 0.510
640 1.083 0.116 0.65 3 1.230 0.300 640 1.285 0.130 2.22 3 0.982 0.400
800 1.280 0.170 1.86 2 0.780 0.460 800 1.305 0.211 1.19 2 1.466 0.231
1024 0.853 1383538 0.00 1 0.220 0.640 1024 0.896 610401 0.00 1 1.635 0.201∣∣∣dR(s)

x

dT

∣∣∣
max

∣∣∣∣dR(s)
x and y

dT

∣∣∣∣
max

Lmin ν(s) σ ∆σ d.o.f. χ2/d.o.f. Q Lmin ν(s) σ ∆σ d.o.f. χ2/d.o.f. Q
8 0.934 0.002 12.15 20 6.430 0.000 8 1.070 0.007 10.31 20 1.027 0.425
10 0.941 0.003 9.96 19 5.390 0.000 10 1.064 0.008 7.88 19 0.982 0.479
16 0.956 0.003 7.67 18 3.010 0.000 16 1.045 0.012 4.59 18 0.696 0.819
20 0.960 0.004 5.83 17 2.970 0.000 20 1.046 0.013 3.95 17 0.736 0.768
32 0.972 0.005 3.38 16 2.520 0.000 32 1.042 0.020 2.44 16 0.779 0.712
40 0.979 0.006 2.24 15 2.270 0.000 40 1.052 0.023 2.60 15 0.787 0.694
50 0.981 0.008 1.64 14 2.430 0.000 50 1.057 0.027 2.33 14 0.837 0.629
64 0.994 0.009 0.45 13 2.010 0.020 64 1.054 0.032 1.75 13 0.900 0.553
80 0.990 0.011 0.64 12 2.130 0.010 80 1.056 0.037 1.51 12 0.974 0.471
100 1.006 0.013 0.35 11 1.890 0.040 100 1.024 0.053 0.47 11 0.960 0.481
128 1.000 0.016 0.01 10 2.030 0.030 128 0.966 0.107 0.33 10 0.926 0.507
160 1.003 0.020 0.11 9 2.240 0.020 160 1.013 0.088 0.15 9 0.948 0.482
200 1.040 0.025 1.13 8 1.960 0.050 200 0.979 0.144 0.15 8 1.037 0.405
256 1.062 0.031 1.36 7 2.070 0.040 256 0.971 0.201 0.13 7 1.185 0.308
320 1.018 0.047 0.26 6 2.070 0.050 320 1.164 0.130 1.39 6 0.825 0.550
400 1.092 0.056 1.22 5 1.790 0.110 400 1.162 0.177 0.92 5 0.990 0.422
512 1.024 0.096 0.18 4 2.000 0.090 512 1.362 0.256 1.43 4 0.975 0.420
640 0.876 0.483 0.17 3 2.320 0.070 640 1.555 0.434 1.18 3 1.177 0.317
800 1.178 0.196 0.58 2 2.410 0.090 800 2.117 0.998 0.94 2 1.431 0.239
1024 0.855 330233 0.00 1 2.910 0.090 1024 0.993 694 0.00 1 2.329 0.127
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Table B.14: Estimates of ν(h), number of degrees of freedom (d.o.f.), χ2 per degree of freedom(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from the peaks of the derivatives with respect to

temperature, of the wrapping probabilities R of the soft constraint clusters, using logarithmic
corrections [see Eq. (5.11)], for the 3-replica Ising model. ∆σ denotes the deviation of the
estimates from the exact value ν = 1 of the 1-replica Ising model, in multiples of their
estimated statistical errors.∣∣∣∣dR(h)

x or y

dT

∣∣∣∣
max

∣∣∣∣dR(h)
x and y

dT

∣∣∣∣
max

Lmin ν(h) σ ∆σ d.o.f. χ2/d.o.f. Q Lmin ν(h) σ ∆σ d.o.f. χ2/d.o.f. Q
8 1.040 0.000 5.85 20 14.829 0.000 8 1.076 0.002 9.26 19 14.841 0.000
10 1.050 0.000 5.60 19 14.376 0.000 10 1.084 0.003 8.95 18 13.681 0.000
16 1.060 0.000 6.39 18 11.176 0.000 16 1.105 0.003 10.07 17 9.350 0.000
20 1.070 0.000 6.19 17 10.836 0.000 20 1.118 0.004 10.24 16 7.917 0.000
32 1.100 0.000 8.19 16 6.458 0.000 32 1.147 0.006 12.13 15 4.642 0.000
40 1.120 0.010 9.05 15 5.088 0.000 40 1.158 0.007 11.65 14 4.262 0.000
50 1.130 0.010 9.49 14 4.130 0.000 50 1.196 0.010 12.18 13 2.595 0.001
64 1.150 0.010 10.54 13 3.119 0.000 64 1.196 0.010 12.18 13 2.595 0.001
80 1.170 0.010 11.04 12 2.446 0.003 80 1.214 0.012 12.30 12 2.152 0.011
100 1.190 0.010 10.20 11 2.139 0.015 100 1.237 0.015 12.38 11 1.704 0.066
128 1.190 0.020 7.73 10 2.332 0.010 128 1.263 0.020 11.13 10 1.467 0.145
160 1.210 0.020 6.38 9 2.430 0.009 160 1.288 0.024 10.40 9 1.306 0.227
200 1.230 0.030 5.32 8 2.582 0.008 200 1.306 0.031 8.45 8 1.357 0.210
256 1.290 0.040 6.02 7 1.872 0.070 256 1.367 0.041 9.62 7 0.848 0.547
320 1.390 0.050 11.48 6 0.511 0.801 320 1.429 0.058 9.71 6 0.586 0.742
400 1.430 0.070 8.25 5 0.512 0.767 400 1.427 0.083 6.11 5 0.703 0.621
512 1.520 0.110 9.04 4 0.284 0.888 512 1.534 0.128 5.52 4 0.571 0.684
640 1.550 0.170 5.27 3 0.367 0.777 640 1.525 0.198 3.04 3 0.760 0.516
800 1.510 0.280 2.46 2 0.537 0.585 800 1.466 0.342 1.29 2 1.118 0.327
1024 2.040 0.700 4.51 1 0.109 0.742 1024 1.245 0.885 0.19 1 2.139 0.144∣∣∣dR(h)

x

dT

∣∣∣
max

∣∣∣∣dR(h)
x and y

dT

∣∣∣∣
max

Lmin ν(h) σ ∆σ d.o.f. χ2/d.o.f. Q Lmin ν(h) σ ∆σ d.o.f. χ2/d.o.f. Q
8 1.050 0.000 7.47 20 11.873 0.000 8 1.031 0.007 2.96 20 2.206 0.001
10 1.060 0.000 7.08 19 11.558 0.000 10 1.030 0.008 2.43 19 2.320 0.001
16 1.080 0.000 7.57 18 9.162 0.000 16 1.035 0.011 2.09 18 2.420 0.001
20 1.080 0.000 7.42 17 8.656 0.000 20 1.048 0.013 2.32 17 2.424 0.001
32 1.110 0.010 7.12 16 7.166 0.000 32 1.031 0.018 1.09 16 2.441 0.001
40 1.120 0.010 7.55 15 6.095 0.000 40 1.052 0.020 1.64 15 2.376 0.002
50 1.140 0.010 7.86 14 5.324 0.000 50 1.029 0.026 0.71 14 2.340 0.003
64 1.180 0.010 10.21 13 3.106 0.000 64 1.030 0.032 0.59 13 2.519 0.002
80 1.200 0.010 12.33 12 2.036 0.018 80 1.058 0.036 1.01 12 2.575 0.002
100 1.220 0.010 11.05 11 1.807 0.047 100 1.088 0.041 1.31 11 2.670 0.002
128 1.250 0.020 13.95 10 1.006 0.436 128 1.063 0.054 0.70 10 2.864 0.001
160 1.270 0.020 11.52 9 1.005 0.433 160 1.151 0.061 1.49 9 2.710 0.004
200 1.300 0.030 9.99 8 0.898 0.517 200 1.203 0.075 1.59 8 2.897 0.003
256 1.340 0.040 11.01 7 0.579 0.774 256 1.224 0.103 1.20 7 3.299 0.002
320 1.340 0.060 7.40 6 0.673 0.671 320 1.269 0.136 1.01 6 3.809 0.001
400 1.350 0.080 4.87 5 0.804 0.547 400 1.308 0.187 0.77 5 4.554 0.000
512 1.400 0.120 3.53 4 0.911 0.456 512 0.935 786353 0.00 4 5.269 0.000
640 1.260 0.210 1.29 3 0.946 0.417 640 0.956 176628 0.00 3 6.450 0.000
800 1.270 0.330 0.69 2 1.418 0.242 800 1.552 0.664 0.38 2 4.685 0.009
1024 1.140 0.970 0.09 1 2.806 0.094 1024 − − − − − −
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Table B.15: Estimates of T
(s)
c , ϵ [see Eq. (5.12)], number of degrees of freedom (d.o.f.), χ2 per

degree of freedom
(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from non-linear fits of Eq. (5.12)

using the crossing technique for the wrapping probabilities of the soft constraint clusters, for
the 3-replica Ising model. ∆σ denotes the deviation of the estimates from the exact critical
temperature of the 1-replica Ising model, in multiples of their estimated statistical errors.

R
(s)
x or y R

(s)
x and y

Lmin T
(s)
c σ ∆σ ϵ σ d.o.f. χ2/d.o.f. Q Lmin T

(s)
c σ ∆σ ϵ σ d.o.f. χ2/d.o.f. Q

8 2.269053 0.000022 5.99 1.013 0.020 17 0.807 0.687 8 2.269083 0.000023 4.42 0.864 0.022 17 1.365 0.143
10 2.269047 0.000023 6.08 1.020 0.022 16 0.813 0.673 10 2.269081 0.000024 4.39 0.867 0.024 16 1.442 0.112
16 2.269063 0.000025 4.80 0.999 0.025 15 0.666 0.821 16 2.269083 0.000026 3.98 0.864 0.027 15 1.535 0.084
20 2.269063 0.000027 4.61 0.999 0.028 14 0.713 0.763 20 2.269064 0.000026 4.67 0.892 0.031 14 1.423 0.132
32 2.269066 0.000029 4.09 0.995 0.033 13 0.763 0.700 32 2.269095 0.000031 2.88 0.846 0.036 13 1.040 0.408
40 2.269073 0.000032 3.53 0.984 0.037 12 0.791 0.661 40 2.269099 0.000034 2.51 0.840 0.041 12 1.117 0.340
50 2.269066 0.000033 3.62 0.996 0.041 11 0.826 0.614 50 2.269115 0.000040 1.77 0.816 0.048 11 1.130 0.332
64 2.269074 0.000037 2.99 0.982 0.049 10 0.881 0.550 64 2.269106 0.000041 1.92 0.830 0.053 10 1.211 0.278
80 2.269103 0.000045 1.84 0.932 0.058 9 0.650 0.755 80 2.269156 0.000056 0.52 0.754 0.065 9 0.820 0.597
100 2.269088 0.000047 2.06 0.959 0.068 8 0.670 0.719 100 2.269164 0.000065 0.34 0.744 0.077 8 0.915 0.503
128 2.269098 0.000058 1.51 0.940 0.089 7 0.750 0.630 128 2.269173 0.000077 0.17 0.731 0.094 7 1.036 0.403
160 2.269067 0.000060 1.97 1.004 0.114 6 0.746 0.612 160 2.269149 0.000085 0.42 0.767 0.123 6 1.175 0.316
200 2.269133 0.000097 0.55 0.870 0.153 5 0.530 0.754 200 2.269226 0.000147 0.28 0.655 0.168 5 1.179 0.316
256 2.269124 0.000116 0.53 0.887 0.204 4 0.659 0.621 256 2.269069 0.000087 1.33 0.947 0.211 4 0.365 0.833
320 2.269075 0.000121 0.92 1.002 0.288 3 0.782 0.503 320 2.269092 0.000134 0.69 0.886 0.312 3 0.464 0.707
400 2.269492 0.000836 0.37 0.460 0.482 2 0.101 0.904 400 2.269207 0.000344 0.06 0.660 0.483 2 0.486 0.615
512 2.269172 0.000529 0.03 0.809 0.990 1 0.047 0.829 512 2.269036 0.000229 0.65 1.104 0.957 1 0.658 0.417

R
(s)
x R

(s)
x and y

Lmin T
(s)
c σ ∆σ ϵ σ d.o.f. χ2/d.o.f. Q Lmin T

(s)
c σ ∆σ ϵ σ d.o.f. χ2/d.o.f. Q

8 2.269067 0.000024 4.90 0.905 0.024 17 0.677 0.829 8 2.269046 0.000069 2.01 0.837 0.071 17 1.475 0.093
10 2.269067 0.000025 4.69 0.905 0.025 16 0.719 0.777 10 2.269070 0.000080 1.45 0.805 0.081 16 1.510 0.086
16 2.269067 0.000027 4.35 0.905 0.029 15 0.767 0.716 16 2.268999 0.000067 2.81 0.913 0.088 15 1.238 0.234
20 2.269060 0.000028 4.43 0.915 0.032 14 0.787 0.685 20 2.268963 0.000062 3.60 0.983 0.097 14 1.211 0.259
32 2.269075 0.000032 3.40 0.893 0.038 13 0.758 0.706 32 2.269023 0.000091 1.79 0.868 0.129 13 1.185 0.283
40 2.269073 0.000035 3.23 0.895 0.043 12 0.820 0.630 40 2.269025 0.000099 1.61 0.864 0.148 12 1.283 0.220
50 2.269081 0.000039 2.68 0.882 0.050 11 0.870 0.569 50 2.269194 0.000204 0.04 0.630 0.183 11 0.946 0.495
64 2.269078 0.000041 2.59 0.888 0.056 10 0.953 0.482 64 2.269129 0.000179 0.32 0.707 0.205 10 0.997 0.443
80 2.269094 0.000048 1.89 0.860 0.067 9 0.988 0.447 80 2.269251 0.000303 0.22 0.571 0.246 9 1.017 0.423
100 2.269091 0.000054 1.75 0.865 0.079 8 1.110 0.352 100 2.269195 0.000281 0.03 0.628 0.282 8 1.132 0.338
128 2.269082 0.000059 1.75 0.882 0.097 7 1.253 0.269 128 7.004098 27328 0.00 0.000 0.402 7 0.311 0.949
160 2.269032 0.000057 2.69 1.001 0.130 6 1.149 0.331 160 34.609 1598623 0.00 0.000 0.496 6 0.349 0.911
200 2.269048 0.000076 1.81 0.960 0.175 5 1.350 0.240 200 6.285843 28713 0.00 0.000 0.590 5 0.394 0.853
256 2.268967 0.000056 3.90 1.252 0.227 4 0.722 0.577 256 2.270558 0.007394 0.19 0.183 0.731 4 0.448 0.774
320 2.268934 0.000058 4.35 1.444 0.349 3 0.804 0.492 320 27.819646 2296940 0.00 0.000 1.122 3 0.490 0.689
400 2.269072 0.000240 0.47 0.839 0.580 2 0.294 0.745 400 2.269355 0.001369 0.12 0.589 1.346 2 0.182 0.833
512 2.268998 0.000258 0.73 1.108 1.192 1 0.514 0.473 512 2.269107 0.000752 0.10 1.095 2.692 1 0.310 0.578
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Table B.16: Estimates of T
(h)
c , ϵ [see Eq. (5.12)], number of degrees of freedom (d.o.f.), χ2 per

degree of freedom
(
χ2/d.o.f.

)
, quality-of-fit parameter Q, from non-linear fits of Eq. (5.12)

using the crossing technique for the wrapping probabilities of the hard constraint clusters, for
the 3-replica Ising model. ∆σ denotes the deviation of the estimates from the exact critical
temperature of the 1-replica Ising model, in multiples of their estimated statistical errors.

R
(h)
x or y R

(h)
x and y

Lmin T
(h)
c σ ∆σ ϵ σ d.o.f. χ2/d.o.f. Q Lmin T

(h)
c σ ∆σ ϵ σ d.o.f. χ2/d.o.f. Q

8 2.268158 0.000018 56.8 1.046 0.015 17 1.440 0.107 8 2.268165 0.000021 48.9 0.931 0.014 17 0.992 0.464
10 2.268173 0.000020 50.2 1.026 0.018 16 1.255 0.217 10 2.268166 0.000022 46.6 0.930 0.015 16 1.052 0.396
16 2.268182 0.000022 45.9 1.015 0.021 15 1.244 0.229 16 2.268163 0.000024 43.2 0.933 0.018 15 1.115 0.335
20 2.268173 0.000023 44.8 1.027 0.023 14 1.230 0.245 20 2.268150 0.000024 42.5 0.947 0.020 14 1.026 0.423
32 2.268167 0.000024 41.8 1.035 0.027 13 1.302 0.203 32 2.268171 0.000028 35.6 0.923 0.024 13 0.877 0.577
40 2.268180 0.000027 37.6 1.016 0.031 12 1.241 0.247 40 2.268160 0.000030 34.5 0.937 0.027 12 0.859 0.589
50 2.268180 0.000029 34.8 1.016 0.036 11 1.354 0.188 50 2.268168 0.000033 30.4 0.927 0.033 11 0.906 0.533
64 2.268167 0.000030 33.7 1.038 0.041 10 1.382 0.181 64 2.268177 0.000037 27.0 0.915 0.038 10 0.958 0.478
80 2.268195 0.000038 26.1 0.987 0.053 9 1.264 0.251 80 2.268187 0.000043 23.2 0.901 0.046 9 1.031 0.412
100 2.268178 0.000041 24.5 1.020 0.066 8 1.339 0.218 100 2.268168 0.000047 21.8 0.928 0.057 8 1.074 0.378
128 2.268171 0.000046 22.2 1.034 0.081 7 1.518 0.156 128 2.268155 0.000051 20.4 0.950 0.068 7 1.178 0.311
160 2.268154 0.000049 21.0 1.074 0.100 6 1.703 0.116 160 2.268111 0.000052 20.8 1.035 0.090 6 1.006 0.419
200 2.268185 0.000068 14.7 0.999 0.133 5 1.917 0.088 200 2.268057 0.000051 22.1 1.174 0.125 5 0.708 0.618
256 2.268292 0.000139 6.4 0.794 0.196 4 1.937 0.101 256 2.268076 0.000070 15.7 1.116 0.177 4 0.831 0.505
320 2.268347 0.000234 3.59 0.713 0.291 3 2.546 0.054 320 2.268134 0.000132 7.98 0.959 0.284 3 0.922 0.429
400 30.04553 1053418 0.00 0.000 0.490 2 0.811 0.444 400 2.268023 0.000095 12.17 1.359 0.440 2 0.622 0.537
512 24.98703 1260741 0.00 0.000 0.889 1 1.574 0.210 512 2.267954 0.000087 14.18 1.972 1.022 1 0.831 0.362

R
(h)
x R

(h)
x and y

Lmin T
(h)
c σ ∆σ ϵ σ d.o.f. χ2/d.o.f. Q Lmin T

(h)
c σ ∆σ ϵ σ d.o.f. χ2/d.o.f. Q

8 2.268183 0.000021 48.7 0.963 0.014 17 0.504 0.953 8 2.267922 0.000079 16.0 0.836 0.044 17 1.214 0.243
10 2.268188 0.000022 46.0 0.958 0.016 16 0.489 0.954 10 2.267908 0.000082 15.5 0.847 0.050 16 1.278 0.201
16 2.268192 0.000024 42.0 0.954 0.018 15 0.513 0.935 16 2.267888 0.000086 15.0 0.864 0.058 15 1.343 0.167
20 2.268185 0.000025 40.7 0.962 0.020 14 0.495 0.938 20 2.267846 0.000086 15.6 0.903 0.066 14 1.357 0.165
32 2.268199 0.000029 34.2 0.946 0.026 13 0.442 0.955 32 2.267940 0.000118 10.6 0.817 0.082 13 1.224 0.254
40 2.268186 0.000030 33.2 0.962 0.029 12 0.374 0.973 40 2.267957 0.000135 9.09 0.802 0.097 12 1.320 0.199
50 2.268187 0.000034 29.5 0.961 0.036 11 0.408 0.954 50 2.268063 0.000189 5.94 0.715 0.117 11 1.262 0.239
64 2.268182 0.000037 27.5 0.968 0.042 10 0.437 0.929 64 2.268192 0.000275 3.61 0.629 0.142 10 1.247 0.255
80 2.268202 0.000043 22.7 0.938 0.051 9 0.354 0.956 80 2.268131 0.000280 3.77 0.668 0.169 9 1.365 0.198
100 2.268194 0.000049 20.4 0.951 0.063 8 0.383 0.930 100 2.268065 0.000275 4.07 0.720 0.200 8 1.507 0.149
128 2.268190 0.000053 18.6 0.957 0.075 7 0.434 0.881 128 2.267984 0.000267 4.50 0.798 0.249 7 1.685 0.108
160 2.268167 0.000059 17.3 1.002 0.098 6 0.420 0.866 160 2.267837 0.000203 6.64 1.004 0.310 6 1.796 0.096
200 2.268128 0.000062 17.0 1.096 0.137 5 0.309 0.908 200 2.267695 0.000140 10.6 1.367 0.421 5 1.962 0.081
256 2.268102 0.000069 15.6 1.174 0.194 4 0.308 0.873 256 26.89330 908959 0.00 0.000 0.683 4 0.950 0.434
320 2.268123 0.000106 10.0 1.101 0.303 3 0.378 0.769 320 41.34264 4099963 0.00 0.000 1.100 3 0.921 0.430
400 2.268133 0.000157 6.72 1.069 0.472 2 0.564 0.569 400 34.79650 3401478 0.00 0.000 1.449 2 1.001 0.368
512 2.268048 0.000147 7.72 1.501 0.994 1 0.903 0.342 512 24.30552 1971289 0.00 0.000 2.075 1 0.938 0.333
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