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A B S T R A C T

motive: Heating and cooling systems are large contributors to en-
ergy consumption. In order to save energy and cost, the controls of
these systems must be optimised. This provides an opportunity for a
machine learning approach, which has the potential to provide fast
thermal predictions from measurements within a thermal environ-
ment. Unfortunately, state-of-the-art simulators are either too slow
or provide little resolution of the thermal environment. Furthermore,
the modelling of thermal systems is often approached differently de-
pending on the environment or sector. This thesis aims to bridge a
gap in the thermal modelling literature between sectors, namely the
automotive and residential sectors, and introduce a common, fast
approach for modelling various thermal aspects of an environment
using machine learning algorithms.

method: Two case studies are investigated. The first is a car cabin,
with data from 5 different experiments on the same vehicle in a con-
trolled environment (climatic wind tunnel). The second is a house,
which provides a larger dataset with real-world observations from 18

different houses, resulting in 18 models. The data used for analysis
is split into vectors of states and controls, which are measurable vari-
ables and do not include knowledge of the structure of the space, for
example, insulation levels and geometry. A range of machine learning
approaches are applied and compared for the two case studies, making
use of both hyperparameter search and cross validation methods.

results: The top performing models for both case studies were
found to be based on linear regression. The resulting linear regression
model for the car cabin is fast (0.007 milliseconds per predicted sec-
ond), and yields good accuracy (NRMSE 0.3%) for multi-step ahead
predictions, which exceeds the performance of the traditional physics-
based model. For the house, a regularised regression (lasso) model
provides a good accuracy across the 18 house models that were built
(average NRMSE 6.8%), again providing a fast result (average 0.0014
milliseconds per predicted second). Furthermore, the models are able
to differentially predict the thermal environment in various locations
(for example, footwell vs. head for the car and kitchen vs. bedroom
for the house).

conclusion: The resulting fast and accurate predictions based on
machine learning can be utilized to optimise thermal systems and its
controllers. Implementing a fast, accurate thermal model such as the
ones proposed in this thesis can accelerate the adoption of techniques,
such as deep reinforcement learning, for climate control in various
settings.
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1
I N T R O D U C T I O N

thesis in a sentence The implementation of a data-driven ma-
chine learning model for predicting the thermal aspects of an
environment, such as a car cabin and house, which does not
require detailed information about the physical space.

1.1 motivation

In 2020, the UK produced an estimated 405.5 million tonnes carbon
dioxide equivalent, contributing to around 1% of the global total
[BE&IS22]. The 2015 Paris Agreement aims to limit global warming to
well below 2, preferably to 1.5 ◦C, compared to pre-industrial levels
[CC]. In line with this goal, the UK has set a target to reduce emissions
by at least 80% by 2050 in the Climate Change Act of 2008 [Gov08]. It
is estimated that the transport, energy supply, business, and residential
sectors make up roughly 80% of the UK’s total net greenhouse gas
emissions. In order to reduce the energy use in these sectors, it is
important to first understand how energy is used.

Heating and cooling is a large contributor of the UK’s energy use
and in order to reduce this, the ability to accurately model the system
is essential. Heating, ventilation, and air conditioning systems (HVACs)
rely on a fast and accurate simulator for thermal data within an
environment to ensure correct decisions are made with regards to
heating and cooling, as well as to ensure that the environment is
appropriately constructed. Therefore, the benefit of these simulations
is twofold. First, the simulations will help to reduce the need for high
emission, real-time studies and enhance our understanding of how a
thermal environment is heated or cooled. Second, the simulations can
be utilised to form a better control system and, therefore, a reduction
in energy waste.

Although a few studies in thermal environments have examined
the use of machine learning methods for predictions of thermal as-
pects, such as temperature and relative humidity, there has been little
attention on how a simulator can be used in practice by making use
of existing data and, therefore, saving cost and energy during the
research and development (R&D) process. The focus of many of these
studies is on the thermal comfort of occupants or on optimizing the
control system itself. However, the performance of a simulator is in-
strumental in building an optimal control system. As such, this thesis
provides additional insight into how machine learning methods can
be implemented to simulate thermal variables within various envi-
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2 introduction

ronments. To provide this insight, this work will examine two case
studies: a car cabin and house. This thesis analyses the applicability
of machine learning methods in thermal predictions in order to im-
prove the current state-of-the-art methods and use the vast amounts
of data available for better learning and thermal predictions. This
chapter will detail the importance of modelling thermal environments
using machine learning methods and how this investigation will con-
tribute towards the goals of the UK, and the world at large, to reduce
greenhouse gas emissions.

1.1.1 Car cabin

Transport is the largest emitting sector accounting for approximately
27% of the UK’s total emissions in 2019, with 61% of that coming from
cars or taxis [Tra21]. The transport emissions saw a drop of 19.2%
in 2020, largely due to nationwide lockdowns during the COVID-
19 pandemic, bringing the sectors total emissions to 24% [BE&IS22].
Despite the decrease in emissions from 2019 to 2020, it is clear that
vehicle emissions remains an issue that needs to be addressed. To
accomplish these goals, the UK aims to ban the sale of new petrol
and diesel cars by 2030 [Cam20]. Therefore, it is an important time
for electric vehicles (EVs) in the market. In addition to being two- to
four-times more efficient than petrol and diesel vehicles, EVs can help
to reduce reliance on fuel and greenhouse gas emissions [IEA21]. In
over a year, just one electric car on the roads can save an average 1.5
million grams of CO2. Although the movement towards EVs has begun,
it is slow. In 2020, EVs accounted for just 4.6% of global car sales and
about 1% of global car stock [IEA21]. One barrier to adoption is range
anxiety, or the fear of running out of charge before arriving at the
destination. The HVAC is the largest auxiliary load and has a significant
impact on range, especially during very hot or cold weather [FR00].
However, the climate control system remains essential for maintaining
reasonable comfort and defogging the windshield. Thus, minimising
the energy cost of delivering climate comfort and windshield visibility
can not only save energy, but also contribute to the uptake of EVs.

The automotive industry is facing many new challenges, such as
increasing fuel economy of vehicles and autonomous driving. Vehicles’
sub-systems are becoming increasingly complex with rapid changes
in expectations and technology. With these new demands comes the
need for an abundance of testing during the R&D stages, which often
means high costs and potential delays in production. The high costs
are due to repetitive testing and experimental data collection from
concept to production, to the validation of improvements and the
assessment of performance. The world’s top 20 car manufacturers
spent $71.7 billion on R&D in 2019–20; Tesla alone spent $1.1 billion
[Aus21]. There is pressure on the automotive industry to develop
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sustainable, low-carbon vehicles at an affordable price. In order to
achieve this, industry could reduce the reliance on expensive, repetitive
testing. Certain variables of thermal systems, such as cabin humidity
and HVAC fresh air purge are difficult to capture using existing physics
based transient simulations [MN20]. This challenge, on the other hand,
can be seen as an opportunity for an accurate and robust thermal
model using artificial intelligence (AI) or machine learning (ML) to
learn from existing data, both saving production time and cutting
development costs.

The first step towards optimising a vehicle’s energy use is to accu-
rately model the system. The optimisation of a car cabin’s thermal
system requires computationally fast simulation for several key rea-
sons. One being a rigorous assessment requires diverse simulated
environmental conditions and the final optimised solution must work
in the full range of possible situations. Another key reason is the
duration distribution for simulations needs to align with the dura-
tion of typical car journeys (approximately 22min, according to the
Travel Survey (2020) [Tra20]). Optimisation approaches for the control
logic, such as Reinforcement Learning, must experience each possi-
ble environment for a typical journey many times to converge on a
solution. Furthermore, if the cabin configuration were to be optimised
(for example, changing the vent location or using a different type of
heating unit), the control logic may need to be re-optimised for each
new configuration. In summary, the viability of such optimisation
crucially depends on the performance of the simulator, as well as the
optimisation algorithm chosen.

1.1.2 Residential

The ability to accurately model the thermal aspects of a house room-
by-room can contribute towards occupants comfort and health, as
well as lead to energy and cost savings. There are two main sectors
that contribute to the emissions of houses: energy and residential.
The energy sector, which includes the production of electricity and
other energy, is responsible for 21% of UK greenhouse gas emission.
The residential sector is responsible for another 16%, with emissions
from the use of natural gas for heating and cooking being the greatest
contributor [BE&IS22].

Residential heating and cooling consumes more than 50% of resi-
dential energy consumption and, on top of this, much of that energy
is wasted. In present times, where energy costs are on the rise, this
is problematic for many. By understanding how the energy is used
and wasted in houses, ways to save energy can be discovered. In
particular, understanding the heat transfer in building can identify
opportunities for insulation, sealing leaks, and optimising residential
heating and cooling systems. Through the accurate forecast of thermal
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variables, such as temperature, buildings and homes could see an
increase energy savings.

Similar to the automotive industry, the regulations on homes have
also highlighted the importance of reducing emissions in line with
the Future Homes Standard, which will come into effect in the UK
in 2025. New homes must produce 70 to 80% less carbon emissions.
Additionally, new offices and shops will need to cut emissions by
27%.

Thermal predictions are important not only for energy savings, but
also aiding in the design of control systems. The ability to predict
temperatures in a house on a room-by-room basis can also ensure that
only rooms that are occupied are heated, and further, that the heated
rooms are able to maintain a comfortable temperature.

1.1.3 Aims

The intent of this thesis is to build a simulator for a thermal envi-
ronment using machine learning algorithms. The ML-based simulator
will be beneficial for building optimal control systems, such as using
reinforcement learning (RL) or model-based predictive control (MPC),
which can help to ensure thermal comfort is maintained and energy is
saved. The ML methods are used to predict various thermal aspects
of different locations within an environment without knowledge of
the structure of the space, for example, insulation levels and geom-
etry. Rather, the ML models are data-driven, making use of existing
data, such as state and control variables, to learn from experience.
In order to test if this model is generalisable, two case studies, a car
cabin and house, are investigated using the same modelling approach.
The resulting models can be used to optimise HVAC systems, making
use of existing data to model the thermal aspects of an environment.
Although numerous studies have identified that machine learning
could be used for thermal predictions, little analytical attention has
been paid to the comparison across differing thermal environments.
This issue is addressed by directly comparing the machine learning
method for a car cabin and a house, providing insight on features
that are most influential to the thermal predictions. Furthermore, this
thesis aims to build a simulator based on ML which can remain stable
for longer term predictions.

1.2 research questions

In response to the issues above, the key research questions (RQs) that
are investigated throughout this thesis are as follows:

1. Can a data-driven ML model, with little details about the physical
environment itself, be used to model thermal aspects of an
environment?
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a) Can the top performing ML model for a car cabin provide
faster and more accurate predictions than the industry stan-
dard? If so, to what extent?

b) Can the top performing ML model for a house provide a
fast and accurate prediction of thermal variables?

2. Which ML model provides the most accurate next step predic-
tions for the thermal aspects of various locations in different
thermal environments?

a) Which ML methods are the most accurate for a car cabin?

b) Which ML methods are the most accurate for a house?

c) Are the ML techniques that perform best for the two case
studies the same? If not, why are they different?

3. Can the top performing ML model a provide stable, long-term
prediction?

a) Is the model stable for a car cabin?

b) Is the model stable for a house?

4. What thermal and environmental features are most important in
achieving a high accuracy ML thermal model?

a) What features are most important for a car cabin?

b) What features are most important for a house?

c) What are the similarities and differences in the features for
the two case studies and why?

The following section will detail each of the research questions aims
and contributions.

1.3 contributions to knowledge

This thesis investigates the use of machine learning methods for pre-
dicting thermal variables within an environment, namely for a car
cabin and house. The research shows that data-driven, machine learn-
ing models are able to quickly and accurately model thermal aspects,
and through the two case studies, shows the potential for widespread
use of these models in thermal environments.

This thesis provides contributions to knowledge in the following
areas:

1. The first contribution of this thesis is to bridge a gap across
different sectors. Often, thermal environments are considered
and modelled using different approaches depending on the
environment in-hand. In order to answer RQ1, this research
adapts a similar approach to two different settings, a car cabin
and house, showing that a unified approach could be adopted
for thermal simulations.
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a) For the car cabin, the chosen ML model is compared to the
industry standard physics-based approach. This compari-
son provides a contribution to the field as it explores the
suitability of ML techniques as an alternative to the industry
standard, a physics-based simulator.

b) For the house, a simplified ML model is proposed. That is,
the model does not include details such as room geometry,
insulation levels, occupancy levels, etc. The approach taken
attempts to model this environment by simply learning
from observable data, using a vector of states (for example,
indoor temperature and relative humidity) and controls (for
example, weather and gas consumption) to predict the next
state. An examination of the speed and accuracy is done.

2. In response to RQ2, the results of various machine learning
methods are compared and discussed. Multiple ML methods
are tried, ranging from a simple linear regression to a more
complex multilayer perceptron (MLP), in order to fully examine
and conclude what model should be selected for the data at
hand.

a) This thesis not only provides an examination of two thermal
environments, a car cabin and a house, adapting the same
approach, but also has an analytical focus on making mul-
tiple thermal predictions for various areas within a space,
which provides another contribution to the field as a more
complete picture of how the thermal environment varies
across locations (for example, head vs foot in a car cabin or
the living room vs kitchen in a house) is obtained.

b) The discovered top model for the car cabin and house will
be compared, drawing upon similarities and differences
and discussing these results. This contribution again helps
bridge a gap across sectors by conducting a deep analysis
of how and why the chosen final models may differ for
various thermal environments as well as an examination of
the accuracy of these models.

3. After finding the top performing model for next step predictions,
RQ3 considers how stable the performance is for longer term
predictions. In particular, the car cabin should be able to simulate
the time of an average car journey, which is approximately 22

minutes, and the house should be able to simulate for a longer
period, for example for a full day or a week.

4. A further contribution of this thesis is an analysis of important
features for modelling thermal aspects of an environment, in
response to RQ4. This also connects back to the first contribution
as a gap is being bridged across sectors in terms of what features
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are most important to the models. The important features of
each individual model are described and then differences are
discussed.

a) The most important features for a car cabin and for a house
will be introduced and discussed.

b) The comparison between important variables is dependent
on the data available from each case study. Therefore, the
variables may not always have a directly comparable alter-
native, however, the general variables are discussed and
considered for each model and comparisons are made wher-
ever possible.

This contribution could also lead to quicker, cheaper R&D in manu-
facturing, helping to reduce the carbon footprint and speed up delivery
of new and improved HVAC systems for both cars and houses. Further-
more, if the techniques used here are applicable to both the thermal
aspects of a car cabin and a house, then the scope of use for machine
learning in thermal modelling could be widespread.

This study is important because the ML techniques are data-driven,
only needing previous state values and control values, not requiring
complex mathematical derivations or detailed knowledge of the phys-
ical space, to learn and make fast and accurate thermal predictions.
The application to two different thermal environments demonstrates
that the modelling techniques could potentially be generalisable.

1.4 publications

The following publication resulted from the work on which this thesis
is based:

• Jess B, Brusey J, Rostagno MM, Merlo AM, Gaura E, Gyamfi
KS. “Fast, detailed, accurate simulation of a thermal car-cabin
using machine-learning.” In: Frontiers in Mechanical Engineering
8. (2022). issn: 2297-3079. doi: 10.3389/fmech.2022.753169.

This journal article is based off the work in Chapter 4 and an open-
sourced copy can be found through the associated doi link [Jes+22].

1.5 thesis structure

Figure 1.1 shows the general layout of this thesis, in particular how
the ML pipeline is constructed and can be evaluated using a control
system. The remainder of this thesis is structured as follows:

• Chapter 2 will review the current literature and highlight gaps,
building a stage for the research done in this thesis. The topics
include thermal modelling, including the modelling approaches

https://doi.org/10.3389/fmech.2022.753169
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Chapter 1:
Introduction

Chapter 2:
Literature review

Chapter 3:
Methods

Chapter 4:
Car cabin case study

Data preprocessing

Model selection

Training and validation

Chapter 5: 
House case study

Model evaluation

Final top performing
model

ML models

Control system Feature extraction

Chapter 6:
Conclusion

ML pipeline

Model comparison

ML-based simulator

Figure 1.1: The structure of this thesis.

and applications, as well as an introduction to the existing meth-
ods from the literature. Methods cover a range of machine learn-
ing approaches, time series analysis, multi-output modelling,
and cross validation methods.

• Chapter 3 will detail the methods used for the analysis in this
thesis, including an outline of how analysis is done and what
new methods have been contributed. This chapter aims to build
a recipe for how analysis was conducted across both case studies.

• Chapter 4 includes the application of machine learning methods
to car cabin data from climatic wind tunnel (CWT) trials. In this
chapter, the thermal aspects of different areas within a car cabin
will be modelled using data from the same car in five different
experiments. The resulting top ML model will then be utilised in
a simulator to make longer term predictions. The model will also
be compared to a physics-based model, showing the potential
for ML models in practice.

• Chapter 5 examines the application of the models from Chapter 4

by applying a similar approach to data from multiple houses. For
this application, a model of the thermal aspects of various rooms
will be built for each of the 18 houses used. An evaluation of the
next-step, as well as a longer run predictions will be presented.
The resulting model will be compared with the car cabin case
study, including a discussion on the similarities and differences
in the models themselves, as well as the most important features.
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• Finally, Chapter 6 will summarise the findings, detail limitations,
and propose future avenues of research that have arisen from
this thesis.

1.6 acknowledgement of contributed work

This thesis is reliant on research conducted by other researchers,
namely:

• The Design OptiMisation for efficient electric vehicles based
on a USer-centric approach, or DOMUS, project provided the
basis for this research [BR20]. In particular, Centro Ricerche Fiat
S.C.p.A., or CRF, provided the climatic wind tunnel experimental
data used for the car cabin case study, as well as the results of
a physics-based modelling approach, which allowed for the
comparison to the model adopted in this thesis.

• The data used for the house case study is a publicly available
dataset, the REFIT Smart Home dataset [Fir+17].





2
L I T E R AT U R E R E V I E W

This chapter covers relevant literature on the modelling of thermal
aspects of environments. Specific models which have been used for
thermal environments will be analysed, including the details of the
models (that is, what variables are used and what is being predicted).
Furthermore, this chapter will also introduce and explain time series
and multi-output regression methods that have been used throughout
literature. This chapter will show the relationship of this work to
current literature and highlight gaps, problems, and shortcomings.

The literature review aims to provide an overview of current theories
and debates within the topic area. This will include explaining what
thermal models are, where they are used, what they include, and how
they are implemented. More specifically:

• An explanation of thermal modelling, including literature on
thermal modelling;

• An overview of the variables typically used to build thermal
models and why these are important;

• An analysis of where thermal modelling has been used in prac-
tice across the transport and residential sectors;

• An introduction of existing physics and machine learning-based
methods for thermal modelling, as well as the difference in
modelling choices for various sectors across relevant literature;

• Introduction to multi-output learning and why this is useful in
this domain;

• Discussion on time series analysis and how it is used for thermal
modelling;

• An overview of relevant cross validation methods with examples
of their use.

This chapter will provide a strong argument as to why this research
is needed and how it fills a gap in the current literature. One of the
major contributions of this thesis is to bridge a gap across thermal
modelling in different sectors and, by analysing the different uses per
sectors, builds a strong foundation for the remaining research done in
this thesis. This chapter also contributes to the idea of using machine
learning to provide fast, accurate thermal models by explaining in
detail why machine learning (ML) is appropriate in this application,
how these models have been applied to date, and how this could be
applied in practice to make advances in technologies.

11
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2.1 what are thermal models?

Thermal models are models relating to the dynamics of heating and
cooling, for example, heating, ventilation, and air conditioning sys-
tems (HVACs). The ability to model thermal environments is important
as it can inform the future choice of products and enable adjustments
to achieve peak performance, leading to improved energy efficiency.
The thermal environment involves anything that affects the thermal
exchange of the heat transfer between different systems. There are
various ways to model a thermal system. Thermal capacity is based
on a variety of factors that affect both internal and external environ-
ments and models have been developed to predict how a thermal
environment will change based on these variables.

2.1.1 Thermal variables

There are several aspects of a thermal environment that can affect heat
transfer, including:

• air temperature (AT),

• air velocity (AV): the rate of motion of the air in a given direction,

• mean radiant temperature (MRT): the average temperature of
surfaces surrounding a point, accounting for the ability to emit
and absorb heat (emissivity), and

• relative humidity (RH): the actual water vapour in the air relative
to the maximum water vapour the air can hold at the same
temperature.

2.1.2 Thermal comfort models

Many thermal comfort models, as well as some of the environment
variables mentioned previously, rely on personal variables (that is,
measurable, on-body parameters). Some of the most commonly used
standards for thermal comfort are the ISO 14505 [Isoa] based on work
by Nilsson [Nil04], as well as ISO 7730 [Isob] and ASHRAE 55 [Ash20],
which are both based on work by Fanger et al. [Fan+70]. ISO 14505

specifies a method for assessing thermal comfort in vehicles. ISO 7730

presents a method for calculating thermal sensation and discomfort
for those exposed to moderate thermal environments. ASHRAE 55

specifies the range of indoor environmental conditions necessary to
achieve acceptable comfort for occupants, specifically for buildings.
The intended goal of these standards is to improve the design, opera-
tion, and commissioning of thermal environments, with a particular
interest in car cabins and buildings.
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Although the focus of this thesis is on a machine learning simulator,
it is important to address how this could relate to thermal comfort
models. The ML simulator can provide an accurate forecast of ther-
mal conditions, which provides crucial insights that can be used to
optimize the car’s HVAC system for comfort. Through the simulation
of various scenarios, including changes in external conditions and
HVAC configurations, the simulator can help identify optimal settings
that prioritize comfort. Moreover, it can aid in the development and
testing of HVAC control algorithms, allowing for precise fine-tuning of
strategies to achieve the best possible comfort levels while ensuring
energy efficiency. While this simulator acts as a virtual testing envi-
ronment for exploring control strategies, it cannot be directly used
for evaluating changes to the physical environment, such as changes
to the seat materials, window configurations, or insulation levels. A
way that this might be done, however, is to use another modelling
tool, such as computational fluid dynamics (CFD), to derive sufficient
examples to train a new simulator. Alternatively, the modification can
be done to a prototype vehicle and then further experience data can
be obtained to train the new simulator.

2.1.3 Control systems

HVAC systems work by continuously monitoring and controlling the
temperature in an environment. An HVAC control system regulates
the operation of the HVAC. This is typically achieved by comparing
the actual state (for example, temperature) with the target state (for
example, set point temperature) and taking action as necessary (for
example, starting the blower).

A control system is a set of devices that directs or regulates either
itself or another system in order to provide a desired response. Two
key examples of control systems that are related to this work are
the thermostat controls in a house and in a car, which both control
an HVAC system. Control systems can be manual, such as an HVAC

that will continue to blow air at the same pace until it is adjusted or
switched off, or automatic, such as setting a thermostat temperature
to 22 ◦C where the system then adjusts the speed and distribution in
order to maintain the set temperature. In an automatic temperature
control system, a suitable sensor (for example, a thermocouple) is
used to measure the temperature. Thermal control systems usually
contain a heat source, a heat spreader, a temperature sensor, and
a controller. Control systems can also be open- or closed-loop. An
open-loop system means that the control action is independent of the
output, whereas a closed-loop control system is dependent and makes
adjustments based on the output.

There are various types of control strategies that can be utilised, from
a simple on/off to proportional, integral, derivative (PID) and model-
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based predictive control (MPC) controllers. PID controllers are the
simplest automatic controller that allows for the use of past, present,
and future error, and, therefore, are common controllers used in HVAC

systems [AM08, Chapter 10]. PID controllers allow for the adjustment
of a desired temperature through the use of a set point temperature. A
PID controller adjusts the control output based on the error, or, in this
case, the difference between the current temperature and the set point
temperature. The proportional component only relies on the error
between the set point and current temperatures. The integral com-
ponent integrates, or sums, the error over time, while the derivative
component is proportional to the derivative of the error, or the rate of
change of the error. Before a PID controller can be applied, the control
parameters (proportional, integral, and derivative gain/reset) must be
tuned. It is also possible to use a P or PI controller, which utilises the
proportional or proportional and integral parameters respectively. A
disadvantage of the PID controller is the reaction time for adjusting
the current temperature, in particular when the signal exceeds its
target (overshoot) as this can only be corrected slowly and cannot be
forced down. Lomas et al. [Lom+18] studied the energy efficiency of
these controls and found that the savings was often low quality or
non-existent.

The MPC controller is a control strategy based on numerical op-
timisation that uses a model of a system to predict future system
behaviour [RMD20]. MPC provides a cost effective approach and can
provide energy savings over the PID controllers [Ora+18]. Using predic-
tion, the MPC determines an optimal output by solving a constrained
optimization problem. A benefit of an MPC controller is that it is one
of the few control methods that has the ability to directly consider
constraints and uncertainties [RH11].

Common computer packages, such as LabVIEW [BMN06], SIMU-
LINK [Doc20], and Modelica [Mod00], are often used to construct and
test these complex physical systems.

Another approach to the HVAC control problem is reinforcement
learning (RL) [Ram+20]. RL is a sub-discipline of ML that tries to learns
an optimal mapping from situation to action given some reward
structure [SB18]. In the setting of HVAC models, an RL agent can
directly interact with the environment to learn the dynamics from raw
experience. The RL agent can then make decisions in order to achieve
a pre-defined goal, such as keeping a room in a house comfortably
heated, by using a defined reward function.

The control systems mentioned in this section all crucially rely on
an accurate model of the temperature to provide accurate control
functionality.
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2.2 thermal model applications

Thermal models have been used widely across literature for topics
including:

• weather [SW05];

• components in electrical devices [Bah+22];

• personal space heaters [Kat+18];

• high performance computers [Zha+18];

• water heating systems [KPD99];

• smartphone thermal management [Jai+21];

• heat shields on aerospace craft [RPM15];

• manufacturing of building materials [Mir+18];

• river temperature [RHNv15].

Two of the most frequently explored thermal modelling applications
include the HVAC systems in a car cabin and house, which are explored
in more detail in this section.

2.2.1 Car cabin

The primary aim of thermal models for car HVAC systems is to ensure
that components are sufficiently powerful to cope with the expected
range of conditions and to ensure that the cabin is cooled or warmed
sufficiently quickly. For this reason, relatively simple 0D or 1D thermal
models are commonplace in industry [DM19; Mar+14].

The energy cost of the climate system has become more important
in recent work [Laj17; KB14a], along with the realisation that air
temperature is not the only influence on occupants’ thermal comfort.
As a result, other measurements have been considered for thermal
modelling, such as mean radiant temperature [KK20] and air velocity
[Kam+13].

More recently, work using artificial neural networks in automotive
applications has been done, mainly focusing on the automotive air
conditioning system. Apart from modelling the temperature and other
thermal variables, work has also been done to predict the performance
of the system, as well as cooling capacity [HE06; DDM19; Kam+13].
Other work, such as that by Ng et al. [Ng+14b], made use of multilayer
perceptron (MLP) and radial basis network with experimental data to
predict the average air temperature in the car cabin. In order to use
the ISO 14505 model to estimate thermal comfort, 3 modalities are
required (air temperature, mean radiant temperature, and air velocity)
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for at least 3 locations (head, torso, and foot) for each passenger (a total
of 3× 3× 4 variables). Furthermore, for safety reasons the windscreen
may also need to be checked for fogging, which will require the relative
humidity inside the cabin and windshield temperature. Predicting this
many thermal variables is a big step up from simply predicting the
average air temperature.

2.2.2 House

In thermal modelling, there is an abundance of research conducted
for commercial or residential buildings [Afr+17; KXZ14]. Bastida et al.
[Bas+19] adapted a dynamic physics-based thermal model of a house
using Simulink and a PI controller, requiring detailed information,
including the thermal storage capacity (calculated through the house
geometry and properties of the materials). This model requires de-
tailed information about the environment that may not always be
readily available, for example, it may be unknown what type of or
how much insulation is inside a cavity wall.

Aguilera, Andersen, and Toftum [AAT19] used various measure-
ments, such as weather, occupancy levels, whether windows were
open, floor area, and construction year, to predict the indoor air tem-
perature of a house. The results showed that the heating set point
on the thermostatic radiator valve was the most important feature
in predictions, while building related data had less effect. However,
this model treated the prediction of air temperature as a classifica-
tion problem (a range of 2 ◦C per predicted class), which would not
provide the precision needed for some applications.

2.3 physics-based thermal models

Traditional approaches to thermal modelling are based on physical or
mathematical models. Thermal systems, when formulated as differ-
ential equations, are mainly linear with respect to their inputs. Given
a simple thermal system that involves a body (for example, a con-
tainer of water) with temperature y(t), an external environment that
maintains a uniform temperature y0, and some insulating barrier (for
example, the outer wall of the container) with coefficient k, the rate of
change of temperature of the body dy

dt is proportional to the difference
between the inside and outside temperature,

dy

dt
= −k(y− y0). (2.1)

This is known as Newton’s model and forms the basis for lumped
thermal models where the components parts, or lumps, are considered
to have a single uniform temperature. The coefficient k could poten-
tially be expanded to consider the surface area and the unit thermal
resistivity of the dividing layer.
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Throughout the literature, deterministic models are presented, (that
is, 0D, 1D, or 3D models). A 3D CFD model, solves fundamental flow
equations and can allow for simulations under various conditions,
including extreme conditions. The 3D models rely on heat transfer
processes, such as convection and conduction, as well as the thermal
storage capacity, calculated through geometry and materials informa-
tion. However, 3D CFD approaches are complex and computationally
expensive.

The 0D models, also referred to as a lumped parameter model, are
given by ordinary differential equations and are only dependent on
time, thus reducing the complexity and computational demands when
compared to a 3D model. Lumped parameter thermal models are
based on heat transfer and electric current flow theory and provide a
simplified state space, or model of the physical system. The 1D models,
in addition to a time dependency, also include a spatial dimension
and are solved through differential-algebraic equations. Throughout
the literature, 1D models are commonly used to represent a thermal
environment. This approach can determine the relative humidity and
temperature within the environment without the need for complex
CFD or experimental models. Despite the simplifications, the 1D model
is still complex due to the complexity of the environment and the other
components involved. For 0D and 1D models, physical variables of
properties are seen as grouped for elements of the model. While these
models offer a simpler and less computationally expensive approach,
they fail to provide detailed information about the flow and thermal
fields of the environment.

Cui et al. [Cui+18] built a physics-based model to predict a differ-
ence in temperature between an upstairs and downstairs in a house
using detailed information about thermal resistance, thermal capaci-
tances, and heat resources.

Although physics-based models can provide accurate models, they
may not be suitable for real-time predictions due to the computational
demand.

2.4 hybrid thermal models

In addition to the work on physics-based and ML-based models, work
has been done to adapt a hybrid approach to modelling, sometimes re-
ferred to as grey-box models. The hybrid models draw upon the knowl-
edge from physics-based approaches while using the data-driven tech-
niques from ML to aide in the process. For example, the coefficients
of the physics-based models can be estimated by learning from the
data itself, rather than being derived from mathematical equations.
Kirchgássner, Wallscheid, and Böcker [KWB21] proposed a hybrid
method where the ML model is used to estimate the partial differential
equations used in traditional lumped-parameter models. Singh and
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Abbassi [SA18] adapted a hybrid approach for the thermal modelling
of the cabin in machinery, which was based on CFD and artificial
neural network (ANN). Furthermore, Attoue et al. [Att+19] adapted a
hybrid approach for the short-term predictions of thermal aspects of a
building that produced an error of less than 0.2 ◦C for temperatures.

While hybrid approaches are able to encompass some benefit from
both physics-based and data driven models, the level of physics and
mathematical detail required is quite high. When comparing the per-
formance of each of these types of models separately, Shahdi et al.
[Sha+21] found that the ML predictions were comparable to, and
sometimes outperforming, the traditional physics-based model. This
indicates the potential for the simpler, data-driven models in thermal
modelling.

2.5 machine learning thermal models

This section introduces ML methods that have been utilised throughout
thermal modelling literature. ML is a branch of artificial intelligence (AI)
that uses algorithms involving gradual refinement to produce a clas-
sifier or predictor that aims to work well on data that has not been
seen during training. More recently, machine learning-based models
have been proposed for thermal modelling. ML models are particularly
suitable for problems where processes are not completely understood
or where it is infeasible to run the physical models at desired res-
olutions in space and time. These data-driven models can estimate
thermal variables of interest from readily available sensor data. The
ML models rely solely on empirical data as they do not incorporate any
thermodynamic theory, geometry, or material information. Therefore,
the ML thermal models aim to provide a model of the environment
that is derived without knowledge of the physical system but, rather,
is obtained entirely from measurement data.

Research in thermal modelling often makes comparisons amongst
multiple ML methods for the analysis. Shahdi et al. [Sha+21] made use
of several ML techniques for predicting subsurface temperatures at var-
ious depths, including ridge regression, random forest (RF), XGBoost,
and a neural network (NN), which resulted in the RF and XGBoost
as the top performing models. Panek and Włodek [PW22] used ML

methods, such as linear regression (LR), RF, and NN, to forecast the
gas consumption across a city based on metrological factors, such
as temperature, wind velocity, and humidity. Warey et al. [War+20]
made use of simulated CFD data in linear regression, random forest,
and ANN to predict temperature within a car cabin. Various thermal
modelling applications take differing approaches in terms of mod-
elling. This section will discuss in further detail the ML models used
across the literature for thermal environments and where they have
achieved promising results. The ML models range from a simple LR to
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regularised techniques, to neighbours- and tree-based approaches, to
gradient boosting and MLP.

2.5.1 Linear regression

Alongside the more complex models, such as MLP, a LR is considered.
In a simple LR model, for the input vector xT = (x1, x2, . . . , xp) with p

variables and a real-valued output y, we use the form

y =β0 +

p∑
j=1

xjβj, (2.2)

where β0 is the intercept parameter and βj is the jth coefficient. Typ-
ically the parameters β are estimated using a set of training data
(x1,y1) . . . (xN,yN), where each xi is a vector of feature measure-
ments.

In the least squares approach, the coefficients β = (β0,β1, . . . ,βp)
T

are chosen to minimise the residual sum of squares cost function

RSS(β) =

N∑
i=1

(yi − f(xi))
2 (2.3)

=

N∑
i=1

yi −β0 −

p∑
j=1

xijβj

2

, (2.4)

where yi is the actual value and f(xi) is the predicted value. The
residual sum of squares can be written as

RSS(β) = (y − Xβ)T (y − Xβ), (2.5)

where X is an N× (p+ 1) matrix where each row is an input vector
and y is a vector of N outputs in the training set. Using differentiation
and the assumption that (XTX) is positive definite, this can be solved
for ordinary least squares to obtain the solution β̂ = (XTX)−1(XTy).

The method of least squares provides closed form estimates for
the regression parameters whereas stochastic gradient descent (SGD)
optimises over the log-likelihood iteratively. SGD is commonly used in
other techniques, such as NN, and due to the iterative and approximate
nature can result in a performance advantage. LR uses a minimal set
of coefficients to model the system, which means that while overfitting
is unlikely, there is a slight possibility of underfitting, that is, the
model could not providing sufficient flexibility. Including interactions
and polynomial terms in a LR can lead to greater complexity and,
therefore, overfitting. The simplicity of LR tends to make it robust
to measurement noise although noise in sensor readings used as the
independent variables causes LR to underestimate the gradient, known
as regression dilution [DS98, Chapter 24]. Time series noise reduction
is used to reduce this effect for statistical inference.
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Other work on thermal modelling has seen promising results from
LR. Hintea, Brusey, and Gaura [HBG15] found LR to be the top per-
former in predicting car cabin temperatures in a comparison to other
ML models, while Cui et al. [Cui+18] found LR provided accurate air
temperature predictions for separate floors in a house.

LR models do not require a large amount of input data and are not
computationally expensive. Least squares estimates often have low
bias and large variance, which could negatively affect the prediction
accuracy of the model. This can sometimes be resolved by shrinking
or setting coefficients equal to zero, which increases the bias slightly
and reduces the variance.

2.5.2 Regularisation

Here the regularisation techniques of ridge, lasso, and elastic net
regression will be introduced [HTF01, Chapter 3]. Regularisation
techniques make slight adjustments to the learning algorithm to aide
in the generalisation of the model and the performance on unseen
data. Regularisation is often used as a solution to overfitting, which
could be caused by a small training data set relative to the number of
predictors.

Ridge regression, or L2 regularisation, imposes a penalty on the
size of the regression coefficients to reduce the complexity of the
model. In ridge regression, not only are the residual sum of squares
minimised, but the size of parameter estimates are also penalised. The
ridge estimates are defined as

β̂ridge = argmin
β


N∑
i=1

yi −β0 −

p∑
j=1

xijβj

2

+ λ

p∑
j=1

β2
j

 .

(2.6)

where λ ⩾ 0 is the complexity parameter where a larger λ results in
more shrinkage. An equivalent way of writing this is

β̂ridge = argmin
β

N∑
i=1

yi −β0 −

p∑
j=1

xijβj

2

(2.7)

subject to
p∑

j=1

β2
j ⩽ t, (2.8)

where there is a one-to-one correspondence between the parameters
λ and t. The coefficients can exhibit high variance and be difficult to
determine when there are a large number of correlated variable in a
linear model. Introducing a size constraint, such as the one above, this
can alleviate the problem. In matrix form, this can be rewritten as

RSS(λ) = (y − Xβ)T (y − Xβ) + λβTβ, (2.9)
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where the λ parameter is the regularisation penalty, X is the input
matrix, and y is the output vector. Solving for β̂ gives β̂ridge =

(XTX+ λI)−1(XTy) where I is the identity matrix. The ridge regression
solution is a linear function of y with the penalty chosen as βTβ. Ridge
regression will bring parameters near zero, but never actually zero.

Lasso regression, also known as L1 regularization, adds a penalty
for non-zero coefficients similar to ridge. The key difference is that
lasso penalizes the sum of the absolute values rather than the sum of
squared coefficients, which are penalized in ridge regression. There-
fore, lasso provides a built-in feature selection method as it has the
ability to shrink coefficients to zero. The lasso estimate is defined by

β̂lasso = argmin
β

N∑
i=1

yi −β0 −

p∑
j=1

xijβj

2

(2.10)

subject to
p∑

j=1

|βj| ⩽ t. (2.11)

This is similar to the ridge regression problem, but the L2 ridge
penalty

∑p
1 β2

j is replaced with the L1 lasso penalty
∑p

1 |βj|. The
lasso constraint makes the solution non-linear, therefore a closed form
solution does not exist.

Zou and Hastie [ZH05] introduced a new penalty suggesting a
compromise between the ridge and lasso regression, as well as for
computational tractability. This penalty is called the elastic net penalty,
which combines the penalties of ridge and lasso to give the following
penalty

λ

p∑
j=1

(
αβ2

j + (1−α)|βj|
)

. (2.12)

Elastic net adopts the selection of variables from lasso and the shrink-
age of the coefficients of correlated predictors from ridge and, in
addition, provides computational advantages over both methods. The
α parameter controls the mix of penalties. If α is 1, this would be a L1
lasso penalty, 0 would be a L2 ridge penalty, and any α value between
0 and 1 provides a combination of both. A possible advantage over
lasso is that when p > n, elastic net allows for more than N non-zero
coefficients.

Regularisation methods have been applied to various thermal envi-
ronments throughout the literature. Al-Obeidat, Spencer, and Alfandi
[AOSA20] utilised ridge and lasso regression for the prediction of
temperatures in buildings, finding that lasso was the top performer.
Karevan, Mehrkanoon, and Suykens [KMS15] found elastic net as a
useful feature selection technique for forecasting weather conditions.
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2.5.3 Neighbors-based models

Nearest-neighbors methods form estimates using observations in the
training set that are close in the input space. K-nearest neighbours
(KNN) is a non-parametric, supervised learning technique that uses
the similarity of features in the training set to predict the values of
any new data point. KNN fits Ŷ by

Ŷ(x) =
1

k

∑
xi∈Nk(x)

yi, (2.13)

where Nk(x) is the neighbourhood of x, that is, the k closest points
to xi in the training sample, using some distance, such as a uniform
or Euclidean distance. Therefore, the average of the corresponding
responses is calculated for k observations that are located where xi is
closest to x in the input space. KNN can be summarised then in three
steps:

1. Calculate the distance between the new point and each training
point,

2. Choose the k closest points, and

3. Average the k points.

KNN can be used for both classification and regression. In the regres-
sion setting, the output is an average of the k nearest neighbors, that
is, if k = 1 then the output would be equal to the value assigned
to the nearest neighbour. KNN retains all training data in memory,
unlike other ML methods, which do not rely on training data to make
predictions.

Badhiye, Sambhe, and Chatur [BSC13] used a KNN approach for
the prediction of weather data, such as temperature and humidity,
using airport weather data. The findings indicate that KNN provides
accurate results, with slightly better performance in terms of mean
squared error (MSE) for temperature prediction compared to humidity.

2.5.4 Regression trees

Tree-based methods are simple, but powerful methods that use a set of
rectangles to divide up the feature space, then fitting a simple model
to each. Regression trees are a variant of decision tree that use a binary
recursive partitioning to split the data into partitions or branches. Let
the data consist of p input features and a response for each feature,
that is, for 1 = 1, 2, . . . ,N with xi = (xi1, xi2, . . . , xip). A regression
tree automatically decides on the splits and the shape of the resulting
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tree. If the space is divided into M regions R1,R2, . . . ,RM and the
response of the model is a constant cm, this results in

f(x) =

M∑
m=1

cmI(x ∈ Rm). (2.14)

To minimize the sum of squares
∑

(yi − f(xi))
2, the best ĉm is the

average of yi in the region Rm

ĉm = avg(yi|X− i ∈ Rm). (2.15)

Finding the best partition in this way is not feasible, so a greedy
algorithm is often used. Using all of the available data, if we select a
splitting variable j and split point s, and the pair of half planes are
defined as

R1(j, s) = {X|Xj ⩽ s} and R2(j, s) = {X|Xj > s}, (2.16)

then we seek a j and s that solve

min
j, s

min
c1

∑
xi∈R1(j,s)

(yi − c1)
2 + min

c2

∑
xi∈R2(j,s)

(yi − c2)
2

 . (2.17)

For any choice of j and s, the minimizations are solved by

ĉ1 = avg(yi|xi ∈ R1(j, s)) and ĉ2 = avg(yi|xi ∈ R2(j, s)). (2.18)

For each choice of j, the determination of s can be done quickly so
this approach is viable. Having found the best split, the data can
then be divided into two regions and the process can be repeated in
each region. Regression trees benefit from easily interpretable results
and do not require the predictors relationship to the response to
be specified, for example, as a linear model does [KJ13, Chapter 8].
These models can also handle missing data effectively and are able to
conduct feature selection (that is, if a predictor is not used in a split).
However, a simple regression tree can be unstable and provide subpar
predictive performance due to the definition of rectangular regions
for the outcomes. To overcome these pitfalls, ensemble methods have
been developed, which can offer better predictive performance.

A random forest is an ensemble approach which combines multiple
decision trees using the technique of bagging. Bagging is a bootstrap
algorithm used to reduce the variance of a model, particularly suitable
for high variance, low bias methods, such as trees. In bagging, several
regression trees are fit to bootstrap samples of the training data in
parallel and the average result is taken across the trees. In the case
of random forest, a further step is taken to randomly select subsets
of features for each sample. The following steps are repeated for the
number of chosen models to build. For each bootstrap sample Z∗, a
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random forest tree is built and each node of the tree is minimized
by selecting a subset of predictors, picking the best split point, and
splitting into two daughter nodes. The output is an ensemble of trees
that predicts a new point x using

f̂Brf(x) −
1

B

B∑
b=1

Tb(x). (2.19)

A downfall of random forest is that it cannot extrapolate, or predict
values outside of the observed range, whereas a linear model can. It
is also difficult to understand the relationship between the predictors
and response due to the ensemble nature of random forests.

Adding another step to the random forest model, extremely ran-
domized trees, or extra trees, trains each tree on the whole training set,
rather than a bootstrap sample, and the splitting for the tree learner is
randomized. That is, rather than computing a local optimal cut point,
extra trees uses a random cut point instead. This adds another step
to the randomness, in addition to the random subsets of data and
random features for splits, thereby reducing the correlation between
trees in the forest. This approach often reduces the variance of the
model at a cost of an increase in the bias.

Ramadan et al. [Ram+21] examined several ML models for indoor
temperature forecasting, finding that the extra trees regressor was one
of the top performers, having also outperformed the hybrid, gray box
approach. Alawadi et al. [Ala+20] tested 36 different ML models for
the forecast of 3 hours of indoor temperature for a house, finding
that the extra trees models performed best in terms of R-squared and
root mean squared error (RMSE), and demonstrated robustness against
outliers and noise in the data. Other models that had good perfor-
mance included random forest, and gradient boosted machines with
regression trees, which will be introduced in the following section.

2.5.4.1 Boosting trees

Boosting is an ensemble algorithm that combines the outputs from
multiple weak learners to form a single stronger one. Originally, boost-
ing was designed for classification problems, but these methods can
also be used for regression. Gradient tree boosting is an approach
that creates new models that predict the errors of prior models and
combines these for a final prediction [Fri01; Mas+99]. As suggested
in the name, gradient boosting uses a gradient descent algorithm to
minimise the loss while adding new models. Boosting trees differ from
a random forest in how the trees are grown and combined.

XGBoost, short for extreme gradient boosting, is known for its
efficiency in terms of speed and memory resources, as well as its model
performance. XGBoost implements the gradient boosting decision tree
algorithm while providing parallel tree boosting to provide fast and
accurate solutions [CG16].
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In the application of thermal modelling, Liao et al. [Lia+20] found
gradient boosting regression had the best accuracy for multi-step
forecasting of inflow into a reservoir, when compared with ANN, sup-
port vector regression, and linear regression. Kaligambe, Fujita, and
Keisuke [KFK22] utilised an XGBoost model to predict temperature,
relative humidity, and CO2 levels in a smart home, showing the poten-
tial for making predictions within residences. However, this research
was conducted on just one single home with no comparison to other
ML model results.

2.5.5 Neural networks

In recent years, recurrent neural networks (RNNs) have become known
as a go-to method for time series data. An RNN processes time series
step-by-step, while preserving an internal state from step-to-step. Sri
Rahayu et al. [Sri+20] made use of RNN by implementing a long-short
term memory (LSTM) for predicting daily temperature. Despite the
strengths of this approach, the models will only accept inputs that are
sequential, or time dependent, so if the aim is to also include control
inputs, then these are not, by nature, handled by this approach. An
alternative would be an MLP, which is a class of feed forward ANN

where the connections between the nodes do not form a cycle, meaning
there are no loops or feedback connections. ANN is a common tool
for energy forecasting due to the ability to approximate non-linear
processes with high accuracy. ANN are often displayed as arcs and
nodes where each arc are associated with a weight wi,j. For example,
for 7 inputs and 4 outputs, the weights can be expressed as a matrix
W with dimensions 7× 4. For linear activation (or pass through) on
the output nodes, the general form is

y = Wx+ b. (2.20)

Other activation functions and the addition of hidden layers with
varying numbers of nodes per layer produce a non-linear function of
arbitrary complexity and expressiveness.

The number of neurons in the input layer corresponds to the number
of model inputs or predictors, while the neurons in the output layer
correspond to the number of outputs of target variables. The hidden
layers apply weights to the inputs and apply an activation function to
provide the output. Models which have more than one hidden layer
are considered Deep Neural Networks. Within each hidden layer, the
number of neurons or nodes must also be determined. The number
of hidden layers, and nodes within each of those layers, is often
found using a search strategy, such as random or grid search. Panchal
and Panchal [PP14] suggest the following criteria when selecting the
number of nodes in hidden layers, the number should be:

• Between the size of the input and output layers.
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• Two-thirds of the input layer size plus the output layer size.

• Less than twice the input layer size.

Depending on the application, the threshold mechanism, or acti-
vation function, can be varied. Commonly used activation functions
include linear, rectified linear unit (ReLU), sigmoid, and hyperbolic
tangent (tanh). ReLU is a relatively modern activation function that has
had success as a hidden layer activation function for problems such
as handwriting recognition. Sigmoid and tanh are commonly used,
smooth, differentiable functions, whereas linear activation merely
passes through the input without modification. Table 2.1 shows the
formulas for these common activation functions.

Table 2.1: Definition of some common NN activation functions

Activation function Formula

linear f(x) = x

ReLU f(x) = max(0, x)

sigmoid f(x) = 1
1+exp−x

tanh f(x) = tanh(x)

Research has been conducted on the performance of MLPs in thermal
environments. Rabi, Hadzima-Nyarko, and Šperac [RHNv15] used a
simple ML model to predict river temperature using only the mean air
temperature as an input, finding that the MLP model outperformed LR

and stochastic modelling.

2.6 multi-output modelling

In thermal modelling, we are often interested in modelling many
different variables, such as temperature and relative humidity. When
the regression outputs are not correlated, a simple solution would
be to build n independent models, that is, a model for each output.
Each of the n models could then be used to independently predict the
n outputs. However, it is likely that the output values related to the
same input are themselves correlated. Therefore, it is ideal to build one
regression model that is capable of simultaneously predicting all n
outputs. This approach is referred to as multi-output, or multi-target,
regression which maps the same set of inputs to multiple outputs
[Xu+20]. The goal is to learn a function f that maps a single input
sample to multiple outputs. For the case of linear regression, given
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multiple outputs y = y1,y2, . . . ,ym and inputs x = x0, x1, x2, . . . , xp
the equation is

ym = β0 +

p∑
j=1

xjβjm + ϵm (2.21)

= fm(x) + ϵm, (2.22)

where ϵm is an m-dimensional vector or error that are assumed to
be normally distributed with mean 0. In matrix notation, this can be
represented as

Y = Xβ+ ϵ, (2.23)

where Y is an N×m response matrix, X is an N× (p+ 1) input matrix,
β is a (p+ 1)×m matrix of parameters, and ϵ is an N×m matrix of
errors. Given this, the least squares estimates match the form given
before

β̂ = (XTX)−1XTY. (2.24)

In this case, multiple outputs do not affect other estimates, that is,
the coefficient of the kth outcome is the regression estimate for yk on
x0, x1, . . . , xp.

There are a few benefits of adapting this approach, first, the training
time is lower as only one estimator is being built. Second, the estimator
may also experience an increased generalization accuracy. Kocev et al.
[Koc+09] tested the difference between single- and multi-output mod-
els for decision trees and found no significant difference in predictive
power, however, the model was simpler and faster to learn for one
multi-output model versus many single-output models.

2.7 time series analysis

Time series analysis is a technique used for studying data generated
sequentially over time, which is usually evenly spaced. In time series,
the goal is often to make a forecast for the future. An assumption
for many time series models is that the data are stationary, meaning
the mean, variance, and autocorrelation do not change over time. In
most real-world data, however, these statistical properties vary. The
time series data could have systemic components, such as a trend or
seasonality. For example, due to the seasonal nature of our climate,
weather data would be non-stationary.

One approach to account for the non-stationary nature of data would
be to difference transform. This will remove the temporal dependence
of structures like trends or seasonality. The difference is calculated
between time stamps

xdiff = xt − xt−1. (2.25)
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If the conversion back to the original scale is necessary, such as in the
case of prediction, then the inverted differences can be used

xinv = xdiff + xt−1. (2.26)

A lag-1 difference takes the difference between consecutive time
stamps and can be adjusted for temporal components such as season-
ality.

2.7.1 Autoregressive models

Autoregressive models assume the current value zt is dependent on
the previous values (zt−1, zt−2, . . .). That is, a kth order autoregressive
model, or AR(k), is a multiple linear regression where the value of
the series at time t is a linear function of values at times t− 1, t−
2, . . . , t− k:

zt = β0 +β1zt−1 +β2zt−2 + . . .+βkzt−k + ϵt. (2.27)

Moving average models assume the current value zt is dependent on
the error terms, including the current error (ϵt, ϵt−1, . . .). In order to
assess the order of autoregressive and moving average models, we can
examine the autocorrelation and partial autocorrelation functions of
the time series data, assuming the underlying time series is stationary.

The stationary assumption means that the covariance between zt
and zt+k separated by lag k must be the same for all times t. This
gives us the autocovariance at lag k, defined as

γk = cov[zt, zt+k] (2.28)

= E[(zt − µ)(zt−k − µ)]. (2.29)

The autocorrelation function is a calculation of the correlation of
successive time observations in the same series. An autocorrelation at
lag k is

ρk =
E[(zt − µ)(zt+k − µ)]√

E[(zt − µ)2]E[(zt+k − µ)2]
(2.30)

=
E[(zt − µ)(zt+k − µ)]

σ2
z

. (2.31)

Note that γk = ρkσ
2
z, therefore knowledge of the autocorrelation

function {ρk} and variance σ2
k is equivalent to knowledge of the auto-

covariance function {γk}. For a stationary process, the variance σ2
z = γ0

is the same at time t and t+ k, therefore, the autocorrelation at lag k,
or the correlation between zt and zt+k, is ρk = γk

γ0
and ρ0 = 1. The

calculated correlation coefficient can range from −1 to 1, representing
a perfectly negative or perfectly positive relationship respectively. The
autocorrelation function plot, which shows the autocorrelation coef-
ficient ρk as a function of the lag k, is often used to assess whether
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Figure 2.1: Two examples of partial autocorrelation plots. The figure on the
left shows a strong negative partial autocorrelation at lag 1 only,
whereas the figure on the right shows a strong negative partial
autocorrelation at lag 2 only.

a time series model and the incorporation of lags is appropriate for
the data. For random data, the autocorrelations will be near zero, and
if the data is non-random there will be at least one significant lag.
Non-random data is a good indication that time series analysis is
relevant.

Partial autocorrelation, on the other hand, captures the relationship
between two observations in the time series after controlling for the
effects of the other variables. Essentially, the partial autocorrelation
function uses a regression model to get these “direct” correlations. For
an AR(p) process, the partial autocorrelations ϕkk will cut off after lag
p, that is the partial correlation will be non-zero for k ⩽ p and zero for
k > p. The partial autocorrelation ϕkk of the process {zt} at lag k is
equal to the partial correlation between variables zt and zt−k adjusted
for variables zt−1, zt−2, . . . , zt−k+1 [BJ90]. The partial autocorrelations
ϕk1,ϕk2, . . . ,ϕkk are the regression coefficients β1, . . . ,βk that min-
imise E[(zt − β0 −

∑k
i=1 βizt−i)

2] in the linear regression of zt on
zt−1, zt−2, . . . , zt−k.

One way to assess the partial autocorrelation function is to make
a plot and visualise how many autoregressive terms are needed to
explain the autocorrelation pattern in a time series. If the partial
autocorrelation is significant at only two lags and the remaining lags
are zero, this suggests using an autoregressive term of 2. Figure 2.1
shows two examples of partial autocorrelation plots. For the figure on
the left with a strong partial autocorrelation at lag 1 only, this means
to predict the next state xt+1 only one previous value is required, that
is, the current state xt. The figure on the right shows a strong partial
autocorrelation at lag 2 only and not at lag 1, so in order to predict
the next state variable xt+1 only the value from 2 time ago is required,
that is, xt−1.

The concept of lagged variables has been widely used across litera-
ture for thermal predictions. Hanoon et al. [Han+21] utilised an MLP
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with lag of 4 to predict monthly air temperature and relative humidity
which gave an improvement of 0.08 in the coefficient of determination
over the lag 1 model. Dadour et al. [Dad+11] introduced a lag of 2

to predicting the hourly air temperature in a parked vehicle. Manero,
Béjar, and Cortés [MBC19] implemented a lag in their deep learning
model to predict wind speed. Doolgindachbaporn [Doo21] used a time
lag to help to identify issues in the thermal data, such as unexpected
temperature rises.

In previous studies, variants of autoregressive models have been
used for thermal modelling. Two such models are the autoregressive
model with exogenous inputs (ARX) and autoregressive moving aver-
age model with exogenous inputs (ARMAX). Gustin, McLeod, and Lo-
mas [GML18] investigated ARX and ARMAX for the forecast of indoor
temperatures during a heatwave. The findings suggest that both mod-
els are able to provide accurate forecasts, with ARX providing more
consistent multi-step ahead predictions. Similarly, Saifizi et al. [Sai+13]
compared ARX and ARMAX models for thermoelectric refrigerator
systems, finding ARX showed better prediction results. Non-linear
autoregressive model with exogenous input (NARX) is a type of RNN

based on ARX. This model was investigated by Ng et al. [Ng+14b]
for both one- and multi-step ahead predictions of an automotive air
conditioning system, showing an MLP based NARX model provided
accurate predictions and was less influenced by noise in the data.
A further extension of these models is the non-linear autoregressive
moving average model (NARMA), or NARMAX when exogenous vari-
ables are included, which have the advantage of including information
about past errors to improve predictions. Palanthandalam-Madapusi
et al. [PM+07] found strong performance of NARMAX for the 27-day
prediction of solar wind conditions.

2.8 cross validation methods

Cross validation is a statistical method used to estimate the perfor-
mance of machine learning models on unseen data, often used to
evaluate the generalisability of a model and prevent overfitting. The
procedure for cross validation involves dividing the dataset into two
or more subsets, training the model on one subset, and evaluating it
on the other. The process is repeated a number of times, each time
using a different subset as the evaluation set and averaging the results.
It is important to follow a strict and correct procedure for cross valida-
tion when working with time series data, as highlighted by Nowotny
[Now14]. Careful interpretation of the results is also crucial.

When working with time series data, traditional cross validation
methods, such as k-fold cross validation, may not be ideal. This is
because time series data exhibits temporal dependencies, meaning
that the data at a given time point is dependent on the data that
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came before it. These dependencies must be taken into account when
splitting the data into training and evaluation sets. In addition, the
choice of test set should not be random, as this could introduce bias
into the evaluation.

2.8.1 Group k-fold

K-fold cross validation is a widely used resampling technique in
which the data is divided into k equal sized groups, or folds. Each
fold is used as a validation set once, and the model is trained on the
remaining k− 1 folds. The process is repeated k times, and the results
are averaged over all k iterations.

While k-fold cross validation is a simple and effective method for
estimating the performance of a model, it does not account for groups
within the data. Group k-fold cross validation is a variation of k-fold
cross validation that ensures a group is not represented in both the
training and validation sets, which can help to reduce bias in the
evaluation.

2.8.2 Time series split

K-fold assumes the samples are independent and identically dis-
tributed, but due to the autocorrelation in time series, this assumption
is often not met. To address this issue, time series cross validation is a
variation of k-fold cross validation that takes into account the temporal
dependencies of the data. This validation approach ensures that the
test indices are higher than the training indices and does not shuffle
the data, which can help to reduce bias. Time series cross validation
also restricts successive training sets to be supersets of the previous
folds, which helps to consider the temporal dependencies of the data.

According to Varma and Simon [VS06], a nested cross validation pro-
cedure, such as time series split, provides an almost unbiased estimate
of the true error. Bergmeir and Benítez [BB12] also discusses the appli-
cability of cross-validation methods on time series data, particularly
methods based on the last block, like time series split.

2.9 chapter summary

This chapter summarised some of the ideas in thermal modelling liter-
ature, ranging from applications in electrical components to weather
to car cabins and houses. The modelling approach also showed great
variety including physics-based models, ML models, or a combination
of both using hybrid approaches. Although different modelling ap-
proaches are taken depending on the environment and the data at
hand, there is promise for ML models across thermal modelling envi-
ronments. In particular, this chapter highlighted that various pieces
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of research have found different ML models were the top perform-
ing model, even when examining similar data. The next chapter will
detail the method adopted in this thesis to the problem of thermal
predictions within an environment.



3
M E T H O D S

3.1 chapter introduction

The chapter describes the methods used for modelling thermal aspects
of an environment. The aim of this chapter is to provide a “recipe”
that can be followed to reproduce this research. This chapter acts as
a guide as to why certain decisions and considerations were made
within this thesis. This involves explaining the entire data lifecycle
from the raw data, to preprocessing steps, to modelling approaches
and tuning, to validation. This chapter introduces methods that are
common across all analyses in this thesis, if variants are used, this is
clarified in the appropriate results chapters (Chapter 4, Chapter 5).

This chapter details the steps needed to reproduce the thermal
models used within this thesis. In particular, this includes:

• an outline of the methodological approach;

• an introduction to new algorithms used;

• arguments for why these methods were chosen for this work.

This thesis examines two case studies, a car cabin and house, which
will be discussed in detail in their relevant results chapters (Chapter 4

and Chapter 5), however, this section will provide a guide on how
decisions were made for the set-up and data preprocessing without
detailing the exact data and characteristics of the specific experiments.

3.2 experimental set-up

Despite the differing environments in the two case studies, both con-
cepts are focused on examining thermal aspects of the environment
and determining if a unified approach can be successful for both. The
aim is to build a machine learning model that can accurately predict
thermal aspects, such as temperature and relative humidity, for var-
ious areas within the environment. The first step is to explore what
thermal data is available and needed for modelling, as well as whether
to consider each input feature as a state or control variable.

3.2.1 Thermal variables

The first step in the methodology is extracting relevant variables
from the data as some of the data that has been collected during the
experiment may not be of interest for the chosen model (for example,
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if the geometry of the environment is measured but is not necessary
as a feature for the model being tested). As discussed in Section 2.1.1,
there are multiple different thermal variables that are used for thermal
modelling. In this thesis, the variables available will be dependent on
the experiments and data sources. However, the variables that are in
common and important for both environments are external climate
data, heating, ventilation, and air conditioning system (HVAC) inputs,
surface temperatures, and internal thermal data. The internal thermal
data consists of air temperature and relative humidity for various
areas within the environment.

3.2.2 State and control vector

In this thesis, the aim is to make use of the current (and possibly previ-
ous) state and control variables to predict the next state, as introduced
in Section 2.7.1. Therefore, in order to build a model, a decision must
be taken to classify variables as either a state x or a control u. State
variables are used to describe the “state” of an environment. The state
is defined as the observable variables that describe the behaviour of
an environment and can change during a specified process [LM01].
Control variables are considered to be exogenous inputs to the model
and are either controllable, uncontrollable but measurable, or indi-
rectly controllable. For example, although the weather may not be able
to be directly controlled, this can be measured, and in a controlled
environment could even be “controlled”.

Given this, the control variables must be defined based on this
criteria. In the data examined in this thesis, the state vectors include
the variables of interest, or those which a future prediction is required,
which are typically thermal variables, such as air temperature and
relative humidity in the environment being examined. On the other
hand, the control variables consist of external thermal variables, such
as climate data, and HVAC input data. Climate data includes variables
such as outdoor temperature and relative humidity, while HVAC input
variables include gas consumption readings in a house, which signals
if the heating is on, or the set point temperature of the HVAC in a
car. These variables will be listed in further detail for each thermal
environment case study within the relevant chapters (Chapter 4 and
Chapter 5), however this lays out the rationale for how variables
should be split between the state and control vectors.

3.2.3 Sampling rate for input data

A suitable sampling rate is crucial for minimise missing information
and capture fast-changing conditions. For the case studies examined,
it is important to consider the level of detail required, as well as the
responsiveness of the HVAC systems and computational resources.
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The car cabin data is sampled at either 1 or 10 second intervals,
whereas the house is captured in 30 minute intervals. In Section 4.5.2,
various time intervals will be considered and compared, to investigate
the effect of these choices on the selected models.

3.3 data pre-processing

Once the features have been identified as state or control variables,
the next step is to preprocess the data. This includes handling missing
data, scaling and transforming, and examining autocorrelation to
identify if one or more lag is required for time series data. A lagged
variable is a variable that is measured or calculated at a previous time
point. Lagged variables are used to capture the effect of a variable on
a current or future outcome, while accounting for any potential delays
or lags in the effect.

The data pre-processing steps introduced here are quick to imple-
ment, taking seconds to arrive at the result. However, the time spent
investigating how to handle missing data can take a researcher more
time as this is often less straightforward and will depend on the given
data.

3.3.1 Lagged variables

As introduced in Section 2.7.1, autoregressive models forecast the
variables of interest using a linear combination of the past values
of the variable. To give the model the ability to retain memory, an
autoregressive model is implemented, which includes the application
of lagged variables. In order to access what order model (that is, the
number of lags) is appropriate for the data, the autocorrelation and
partial autocorrelation plots can be analysed. Based on the findings
from the autocorrelation and partial autocorrelation functions, the
data can then be shifted to implement the appropriate lag. If a lag of
2 is deemed appropriate, that is, there is a strong correlation at both
lag 1 and 2, this represents a correlation between values that are 1

and 2 time periods apart from the current value. This implies that
the current value of a variable is dependant on its previous values,
therefore, introducing a lagged variable allows the model to capture
patterns within a variable itself and improve predictions. The data can
then by restructured for a lag of 2 such that at any time t, not only are
the current state xt and control ut used as inputs to predict the next
state xt+1, but also the previous time point, that is, the state variable
xt−1.

Figure 3.1 shows a simple example of a dataset with one state
variable (indoor air temperature) and one control variable (outdoor
air temperature) which has been transformed to include a lag of 1.
Note that during the data transformation for lagging as many rows
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time (t)
indoor air

temperature
(x)

outdoor air
temperature

(u)

0 18.5 9

1 18 9.5

2 17 9

3 17.5 10

outdoor air
temperature

(u1)

9.5

9

10

time (t)
indoor air

temperature 
 (x1)

indoor air
temperature 

 (x2)

1 18.5 18

2 18 17

3 17 17.5

Figure 3.1: An example of transforming data to have 1 lagged variable where
indoor air temperature is considered a state variable x and out-
door air temperature is considered a control variable u.

as there are lags will be dropped from the data. This is because there
is no previous data to fill, that is, in Figure 3.1 there is no indoor air
temperature reading prior to time t = 0 that could be used to fill the
data in the right table for the state x1. By introducing a lag into the
model, this brings the issue of multicollinearity, which is discussed in
the following section.

3.3.2 Multicollinearity in predictive models

With time series data, in particular data with lagged variables, the
presence of multicollinearity is expected due to the high correlation of
a variable to itself. Multicollinearity is when the independent variables
in the model are highly correlated. This can be problematic when
determining the true effect of the variables on the response. However,
multicollinearity in the data does not affect the models prediction
accuracy or goodness-of-fit [Kut+04, Chapter 7.6]. Therefore, as the
predictions are the main focus of this thesis, the multicollinearity
problem does not need to be directly addressed.

However, multicollinearity would be a problem when looking at the
feature importances of these models. This will be discussed further in
Section 3.9.

3.3.3 Missing data

An important step in pre-processing is considering how to handle
missing data. Ultimately, missing data must either be dropped or filled
using methods such as imputation. This could include approaches
such as linear interpolation or nearest neighbors imputation. If the
dataset is reasonably large, it may be acceptable to drop the missing
data. The decision of how to handle missing data depends on why
data is missing [Mol+14]. For the data in this thesis that is collected
in a controlled environment for a set period of time, missing data is
not an issue, but for real-world data, data loss can happen for many
reasons. If the missing data is not missing at random, then imputing
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data could potentially introduce bias into the machine learning (ML)
model. Due to the nature of sensor data, missing data could occur
as a result of power outages or connectivity issues. To address this
concern of introducing bias into the model, if a low proportion of data
is missing and the dataset is reasonably large, the entries with missing
data will be dropped. Dropping data is done after variables are lagged
to ensure that the correct previous timestamps are used.

3.3.4 Scaling and transforming

The scaling technique chosen normalises the data by subtracting the
minimum value of the feature from the current value, and dividing by
the range of the feature

yi =
xi − min(x)

max(x) − min(x)
(3.1)

where x is the data and xi is the ith observation. This scaler is chosen as
it preserves the original distribution of the data and does not reduce
the importance of any outliers. For the analysis in this thesis, the
data scaling is implemented using Python’s sklearn MinMaxScaler()

command and then using fit_transform() to transform over all of
the data [Ped+11].

Although some models do not require rescaling, others are very
sensitive to unscaled data, such as neural network (NN). Scaling is
necessary for numerical stability during the optimisation process
and allows parameter coefficients to become directly comparable.
Therefore, scaling and transforming is applied to the data for all
models for consistency. Scaling is performed prior to the handling
of missing data, however, due to the nature of the scaler this should
not produce any issues as the min-max scaling approach allows for
predictions outside the min-max range.

3.4 model selection

Given the current state y(t), a transient simulation must identify
y(t + ∆t) for some small increment in time ∆t, say 1 s. An Euler
simulation is a numerical approximation that assumes for a small ∆t,

∆y

∆t
≈ dy

dt
= −k(y− y0). (3.2)

Given this approximation,

y(t+∆t) ≈ y(t) +
∆y

∆t
·∆t (3.3)

= y(t) − k∆t · y(t) + k∆ty0 (3.4)

= (1− k∆t) · y(t) + k∆ty0 (3.5)
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xt

xt−1

ut

simulator xt+1

Figure 3.2: A model phrased as a recursive function, which is trained with
one-step examples.

which shows that y(t + ∆t) is a linear function of y(t). Therefore,
assuming ∆t is small, a simple linear regression between y(t) and
y(t+∆t) would yield the key coefficients in what otherwise appears
to be a complex relationship between the internal temperature, the
external temperature, and the thermal resistivity of the dividing wall.
In summary, the simple thermal problem can be modelled using a
linear correspondence between the current state y(t) and the next
state y(t+∆t). Finding the coefficients for such a dynamical system
is termed system, or model, identification.

Although a simple linear correspondence may be sufficient for a
simple system as the complexity of the model increases, non-linearities
will appear. Furthermore, some effects, such as radiative heat transfer,
are proportional to the difference in the fourth power of temperatures
and thus seem to demand a more flexible modelling method. As sug-
gested by work on non-linear autoregressive network systems, some
form of NN or recurrent neural network (RNN) may be appropriate
[Eng+19; Ng+14a].

A key insight in this work is the realisation that many physical
systems can be predicted using only the current state and control
inputs. In some cases, the prior state is also needed (for example, as
a proxy for the velocity of a moving object where the state contains
just its position). Therefore, the structure of the simulator is a transfer
function of the form

xt+1 = f(xt, ut, xt−1).

for a single previous state (time t− 1), corresponding to a network
structure as shown in Figure 3.2.

3.5 hyperparameter search

Many machine learning models have parameters that can be config-
ured, either regarding the model itself or the objective function. The
choices of configurations of the hyperparameter values is known as the
search space or hyperparameter space. The search space can contain
categorical, continuous, or conditional hyperparameters. Depending
on the model, these search spaces can become complex and have condi-
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tional hyperparameters, such as when several optimisation algorithms
could be configured which, in themselves, contain hyperparameters.

A hyperparameter search is important to select a well-performing
model. However, hyperparameters searches can often take a long time
and be computationally expensive.

There are multiple hyperparameter search methods used in practice.
One of these is a grid search, which is an exhaustive search through
manually specified hyperparameters. For each value added to a hyper-
parameter the number of evaluations increases exponentially, which is
especially problematic for models with many hyperparameters, such
as multilayer perceptron (MLP). An alternative is to try a random
search, which consists of applying random sampling to the search
space to select a chosen amount of models. A random search is useful
as it is simple to implement and is quicker than an exhaustive grid
search.

While grid and random searches are valid choices for hyperparam-
eter searches, they are often time consuming and can spend time
searching spaces that have generally poor performance. Another alter-
native is to use Bayesian optimisation, which makes informed decision
on where to search next in the hyperparameter space. The goal of
Bayesian optimisation approaches is to minimise - or maximise, de-
pending on the metric - the objective function using information from
past evaluations to inform the next hyperparameter values. One avail-
able tool is the hyperopt library in Python which adapts a Tree of
Parzen Estimators approach to Bayesian optimisation [BYC13].

Reproducibility is important not only to ensure correct results, but
also to aid in understanding and transparency. Adapting this approach,
this section will detail how each of the machine learning models used
throughout this thesis were implemented, including details of the
hyperparameter searches. The hyperparameter search is conducted
using hyperopt with a training set of 80% and testing set of 20%,
conducting 1000 evaluations of hyperparameter settings (or number
of models fit) [BYC13]. As the data within this thesis is time series, the
first portion of data is used for the training set and shuffling is applied,
then the subsequent data is used as the testing set. The models tested
include linear regression, regularisation techniques, neighbors-based
models, tree-based models, boosting methods, and MLP, which have
been detailed and introduced within the thermal modelling setting
in Section 2.5. The following sections detail how the hyperparameter
search is used to tune the parameters of each model. All models were
implemented using scikit-learn in Python [Ped+11].

3.5.1 Linear and regularisation methods

Linear regression and its related regularisation methods are fairly
straightforward models with minimal parameters to optimise. This
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section will detail the hyperparameters for linear, ridge, lasso and
elastic net regression.

Ordinary least squares linear regression simply finds the best fitting
line for the data. Therefore, linear regression does not have any hy-
perparameters to tune and the base LinearRegression() is used fit to
the data [Ped+11].

For the regularisation methods below, it is worth noting that scikit-
learn denotes the penalty parameter as alpha, rather than lambda λ,
and the ratio of penalties as L1 rather than alpha α. For clarification,
the sections below use the terms λ and α for the penalty and ratio
parameters, respectively, as defined in Section 2.5.2 not as scikit-learn
has defined them.

Ridge regression is implemented using the RidgeCV() function
[Ped+11]. For ridge regression, there are three hyperparameters to
optimise. The main hyperparameter of interest is the regularisation
penalty lambda, which controls the amount of shrinkage. When λ is
0, this is equivalent to a linear regression. The search space for the
parameter λ is a log normal distribution with mean 0.2 and standard
deviation 2, which constrains the value of λ to be positive and with
most values close to zero. Alongside this, the solver can also be var-
ied, with the chosen options including cholesky, least-squares (lsqr),
stochastic average gradient descent (sag), and the adjusted stochastic
gradient descent (saga). The cholesky solver uses linear algebra to
obtain a closed-form solution, whereas lsqr is a fast, iterative approach
that uses regularised least-squares. The sag solver utilises stochastic
average gradient descent, and saga provides an unbiased, improved
version of this. The final hyperparameter to be optimised is whether
to fit an intercept for the model or not.

Lasso regression is implemented using the MultiTaskLassoCV()

function [Ped+11]. For lasso regression, the main hyperparameter to
be optimised is the regularisation penalty, λ. The search space for λ

is a log normal distribution with mean 0.2 and standard deviation 2,
which is the same as for the ridge parameter. Lasso has the additional
benefit of acting as a feature selection method by shrinking some
coefficients to zero.

For elastic net regression, three hyperparameters can be optimised,
namely λ, the L1 ratio α, and whether to fit an intercept. Similar to
ridge and lasso, λ is selected from a log normal with mean 0.2 and
standard deviation 2 The α parameter is as described in Section 2.5.2,
where a value of 0 indicates that the penalty is an L2 penalty (ridge),
1 is an L1 penalty (lasso), and any value between 0 and 1 is a ratio
representing a combination of both. Therefore, in order to obtain this
ratio, the value for α is selected from a uniform distribution with
minimum 0 and maximum 1. Elastic net regression is implemented
using the MultiTaskElasticNetCV() function [Ped+11].
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3.5.2 K-nearest neighbours

K-nearest neighbours (KNN) is a non-parametric method which ap-
proximates by averaging over the K closest observations in the same
neighbourhood. The size of each neighbourhood is determined such
that the mean squared error (MSE) is minimised. For this thesis a KNN

regression is utilised, although this technique can also be used for
classification.

KNN is implemented using the KNeighborsRegressor() function
[Ped+11]. In this thesis, four KNN hyperparameters are tuned during
the search, including the choice of algorithm, the weight function,
the leaf size, and the number of neighbors. The algorithm to use for
computing the nearest neighbors is either ball tree, k-dimensional
tree, or a brute-force search. The weight function is chosen as either
uniform, giving equal weights to points in each neighbourhood, or
distances, where closer neighbors provide a greater influence. The leaf
size and number of neighbors are selected as an integer between 1

and 50.

3.5.3 Regression tree

A decision tree is a non-parametric supervised learning model that
makes predictions based on simple decisions rules that are inferred
from the data features. A decision tree is often referred to as a weak
learner and is susceptible to overfitting. When decision trees are used
for a regression problem, they are often referred to as regression trees.

The decision tree algorithm is implemented using the function
DecisionTreeRegressor() [Ped+11]. Regression trees have multiple
hyperparameters to optimise. The six hyperparameters being opti-
mised here are maximum depth, minimum number of samples re-
quired to split an internal node, minimum number of samples at a
leaf node, minimum weighted fraction of the sum total weights at a
leaf node, maximum number of features when finding the best split,
and maximum number of leaf nodes. The following search spaces are
used for the hyperparameters:

• max depth: integer between 1 and 50 or none

• min samples leaf: uniform with minimum 0.01 and maximum
0.49,

• min samples split: uniform with minimum 0 and maximum 1,

• min weight fraction leaf: uniform with minimum 0.01 and maxi-
mum 0.49,

• max features: base-2 logarithm or square root,

• max leaf nodes: an integer between 2 and 100 or none.
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3.5.4 Random forest

Random forest is an extension of decision trees which makes use of
bagging, or bootstrap aggregation, which is an ensemble learning
technique used to reduce the variance of a prediction model. Ran-
dom forest builds multiple decision trees in parallel and provides an
average estimation of the individual trees. During the ensemble con-
struction, random features are dropped to try to reduce the correlation
amongst trees.

Random forest is implemented using the RandomForestRegressor()

function [Ped+11]. Random forest has similar hyperparameters to
regression trees, adding one parameter for the number of estimators.
The six other hyperparameters are the same, including the maximum
depth, minimum number of samples required to split an internal
node, minimum number of samples at a leaf node, minimum weighted
fraction of the sum total weights at a leaf node, maximum number of
features when finding the best split, and maximum number of leaf
nodes. The following search spaces are used for the hyperparameters:

• n estimator: an integer between 10 and 100,

• max depth: integer between 1 and 50 or none

• min samples leaf: uniform with minimum 0.01 and maximum
0.49,

• min samples split: uniform with minimum 0 and maximum 1,

• min weight fraction leaf: uniform with minimum 0.01 and maxi-
mum 0.49,

• max features: base-2 logarithm or square root,

• max leaf nodes: an integer between 2 and 100 or none.

3.5.5 Extremely randomised trees

Extremely randomised (or extra) trees implements a meta estimator
that fits multiple randomised decision trees on various subsamples of
the data. The average is used to improve predictive accuracy and help
control over-fitting.

Extra trees is implemented using the ExtraTreesRegressor() func-
tion [Ped+11]. The hyperparameters for extra trees are the same as for
random forest, including the number of estimators, maximum depth,
minimum number of samples required to split an internal node, mini-
mum number of samples at a leaf node, minimum weighted fraction
of the sum total weights at a leaf node, maximum number of features
when finding the best split, and maximum number of leaf nodes. The
following search spaces are used for the hyperparameters:
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• n estimator: an integer between 10 and 100,

• max depth: integer between 1 and 50 or none

• min samples leaf: uniform with minimum 0.01 and maximum
0.49,

• min samples split: uniform with minimum 0 and maximum 1,

• min weight fraction leaf: uniform with minimum 0.01 and maxi-
mum 0.49,

• max features: base-2 logarithm or square root,

• max leaf nodes: an integer between 2 and 100 or none.

3.5.6 XGBoost

Boosting is an ensemble method that reduces bias and variance by
converting weak learners into strong ones. Gradient boosted decision
trees is a generalisation of boosting that allows for the optimisation of
arbitrary differentiable loss functions.

An extension of gradient boosting is extreme gradient boosting, or
XGBoost, which is an ensemble method where trees are sequentially
added into the model to improve the accuracy by adding a base learner
to correct shortcomings of the existing base learners. At each step of
the ensemble construction, the XGBoost algorithm adds a decision
tree and aims to improve upon any previous steps with each iteration.

The XGBoost algorithm is implemented using the xgboost() pack-
age in Python [CG16]. Eight hyperparameters are optimised, including
the learning rate (eta), maximum depth, minimum child weight, sub-
sample ratio, subsample ratio of columns when constructing a tree,
the minimum loss reduction gamma, the L1 regularisation term alpha,
and the L2 regularisation term lambda. The following search spaces
are used for the hyperparameters:

• eta: log uniform −7, 0,

• max depth: integer between 1 and 100,

• min child weight: log uniform −2, 3,

• subsample: uniform with minimum 0.5 and maximum 1,

• subsample of columns for tree: uniform with minimum 0.5 and
maximum 1,

• gamma: log uniform −10, 10,

• alpha: log uniform −10, 10,

• lambda: log uniform −10, 10.
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3.5.7 MLP

Having preprocessed the data, random hyperparameter search is used
to identify the best NN or MLP structure [Aur19]. The parameter space
to search over is:

• number of hidden layers (0−−4).

• activation for hidden layers (ReLU, sigmoid, tanh, linear).

• activation for final layer (linear).

• number of nodes in each hidden layer (64−−1024).

• whether a dropout regularisation, a technique where randomly
selected neurons are ignored during training [Sri+14], is used
(selected from the set 0.05, 0.75).

• batch size (28−−128).

• optimizer (Adadelta, Adam, or Adamax).

• epochs (50−−1500 by 10)

The final activation layer is chosen to be linear as this thesis examines
data that forms a regression problem with real-valued outputs.

The network is learnt using the Sequential class from TensorFlow
[Aba+15] and Keras [Cho+15] libraries with the Adam optimizer
[KB14b] aiming at minimising the MSE. From the hyperparameter
space given above, 200 variants are selected at random (with uniform
distribution for number of nodes). Input and outputs are rescaled to a
unit range using min-max rescaling, MinMaxScaler().

3.6 time series group split cross validator

Two considerations are made when performing cross-validation on
time series data presented in this thesis. First, whether the data comes
in the form of groups, or different trials/experiments. In the car cabin
data, which will be discussed in Chapter 4, there are five different
trials done on the same car in the same environment, but with different
settings, so each trial therefore represents a group within the data.
This will not be the same for the house data in Chapter 5, where rather
than considering houses as groups in the data, an individual model
will be built for each house as they are different structures.

A second consideration is that order is important for time series data
as autocorrelation is often present. Therefore, the selection of folds
for time series data should ensure the testing set is at a timestamp
following the training set. Shuffling can be done and in some cases,
such as for MLP, is necessary, but must be done with caution. The test
set is always selected to be after the training set in terms of the original
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Figure 3.3: Visualisation of the Time Series Group Split cross validation splits
on CWT trial data.

timestamps regardless of any shuffling performed In practice, this will
mean that the first timestamps will be assigned to the training set and
the following observations assigned to the test set. The training set is
then shuffled, the parameters are estimated, and predictions are made
on the test set.

In Section 2.8, Group K-fold and Time Series Split cross validators
were introduced, which address each of these considerations individu-
ally, but fail to address both aspects. In order to address this, a Time
Series Group Split cross-validator is developed, which is based on
the TimeSeriesSplit cross-validator function in scikit-learn [Ped+11].
This requires that each successive training set is a superset of those
before it within each of the groups. A similar approach to this has been
pursued as a scikit-learn feature request on GitHub [Gri19], although
an assumption of their approach is that groups are contingent, or to-
gether in a sequence. This does not support our data as the groups do
not form a sequence. A visualisation of how the developed Time Series
Group Split cross-validator works on the climatic wind tunnel (CWT)
trial data from Chapter 4 is shown in Figure 3.3.

The Time Series Group Split cross-validator with shuffling works as
follows:

• Split data into groups. In Figure 3.3, this is shown through
the bottom bar labelled group, which contains data from our 5

different groups.

• Repeat the following for each split. In the visualisation, 5 splits
are chosen (0–4).

– For each group, take the split portion of train and test
indices such that the test indices immediately follow the
training indices. The blue represents the training test within
each of our 5 groups followed by red which represents the
testing set for each group.
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– Shuffle the training indices within each group. There is no
need to shuffle the test set. This means the blue training set
is shuffled and the red testing set retains its order.

Model training is done in open loop, meaning the true output rather
than the predicted one is used for the next step predictions [MB08].

3.7 long-run simulator using machine learning

Once the model is chosen from the one-step analysis, then the per-
formance is evaluated over a longer period of time, for example, the
duration of the data available. As mentioned in Section 3.6, the training
is done in open loop, but for the longer term predictions closed-loop
is utilised. This means that the predicted value is used to predict the
next step, rather than the observed data.

3.8 evaluation metrics

In order to measure the performance of our model, various metrics
can be utilised that are applicable to regression problems, including
mean absolute error (MAE), mean squared error (MSE), root mean
squared error (RMSE), normalized root mean squared error (NRMSE),
and R-squared.

The MAE is a single-output method that computes the difference
between the predicted and actual output values. Given some set of N
measurements Y = y1,y2, . . . ,yN and some estimate of those values
Ŷ = ŷ1, ŷ2, . . . , ŷN,

MAEY,Ŷ =
1

N

N∑
i=1

|yi − ŷi|. (3.6)

The MSE is a measure of how close a fitted line is to data points, that
is, the smaller the MSE, the closer the fit is to the data

MSEY,Ŷ =
1

N

N∑
i=1

(yi − ŷi)
2. (3.7)

The MSE is more sensitive to outliers than the MAE. Alternatively, the
RMSE can be used, which is simply the square root of the MSE

RMSEY,Ŷ =
√

MSEY,Ŷ . (3.8)

The RMSE is often preferred because it has the same units as the
quantity being estimated, and can therefore be interpreted directly.
Further, the NRMSE or percentage error is the error in terms of the
possible range of values

NRMSEY,Ŷ =
RMSEY,Ŷ

ymax − ymin
· 100%. (3.9)
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The NRMSE can aid in the comparison between datasets or models
with different scales.

3.9 feature importance

As discussed in Section 3.3.2, the presence of multicollinearity af-
fect the interpretation of statistical models. If feature importance is
done when multicollinearity is present, this can cause inflated stan-
dard errors of the coefficients, making it difficult to determining the
contribution of a unique feature. One approach to interpret feature
importances when multicollinearity is present is regularisation.

Regularisation methods are often used to prevent overfitting and
improve the generalisability of a statistical model. In addition, lasso
and elastic net regression can also be used as feature selection methods.
Given this, these two approaches can be used to identify the most
important features in a dataset where multicollinearity is present,
although this should be done with caution as the standard errors
of the coefficients could be inflated. One way to mitigate this is to
scale the data before fitting the model, as described in Section 3.3.4,
which removes the scaling effects of multicollinearity and makes the
regularisation parameter more effective.

3.10 a machine learning framework

Throughout this chapter, a comprehensive array of machine learning
methods applied in data analysis has been introduced, encompassing
every step from handling raw data to evaluating models. The steps
given below can be combined to build a machine learning framework
for thermal modelling.

The experimental set-up and aspects of the data pre-processing
are not featured in this framework as they require some degree of
flexibility depending on the application or environment, as well as the
data at hand. For example, the data pre-processing steps for lagged
variables and missing data may not be the same and require human
input. As an example of this, in the following chapters, one uses a
lag of 1 while the other uses a lag of 2. In the same way, the missing
data could be handled in various ways depending on why the data is
missing and how much is missing. However, the other steps of this
process could be built into a framework to be applied across various
applications. More specifically, once the missing data is handled and
the number of needed lags has been calculated, the framework shown
in Figure 3.4 can be standardized. To determine the train/test set as
well as apply the ML models, it will nee to be specified whether the
data has groups present. If the data has groups, the time series group
split cross validator is used, otherwise the the time series split cross
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1. Lag data

2. Scale data

3. Split into
train/test sets

4. Run
hyperparameter

search

5. Identify top
ML model

6. Run long-term
simulation

7. Evaluate model
results

8. Calculate
feature

importances

Figure 3.4: Standardized ML framework used in this thesis.

validator is utilised. In this thesis, these steps are applied to both the
house and car cabin case studies.

3.11 chapter summary

This chapter has introduced the methods used in the experiments in
the following chapters. The process involves extracting the relevant
data and classifying variables into either a state or control vector.
The time series data is then analysed to determine whether lagged
variables are appropriate for the data at hand. Once the lag is im-
plemented, missing data is handled and scaling is applied. For the
ML models, there are several hyperparameters which can be tuned,
as laid out in this chapter. Chapter 2 showed promise for ML tech-
niques in thermal modelling, therefore various ML models are tried
and compared in this thesis. Once the ML hyperparameters are tuned,
the model is built and implemented using cross validation. Multiple
model metrics are calculated and compared, as well as an analysis of
feature importances.

Following this approach, two case studies are pursued in Chapter 4

and Chapter 5. The next chapter will present the application of these
methods to a car cabin.



4
T H E R M A L M L M O D E L F O R C A R C A B I N

4.1 chapter introduction

This chapter will introduce the experimental data for the car cabin
case study, detail the analysis performed, and examine the results.
More specifically the structure of this chapter is as follows:

1. An introduction to the climatic wind tunnel (CWT) experimental
data (Section 4.2), as well as the preprocessing steps (Section 4.3);

2. Details of the hyperparameter search results for the tested multi-
output machine learning (ML) models (Section 4.4);

3. A comparison of a variety of ML approaches, presenting the
results of the chosen model for both one-step and longer term
performance (Section 4.5 and Section 4.6 respectively);

4. A discussion on the most important features for the selected ML

model (Section 4.7);

5. A comparison of the selected ML model to a conventional lumped
thermal (0D) model, in particular examining the accuracy, speed,
and capability (Section 4.8).

4.2 climatic wind tunnel data

The car cabin data consists of five CWT trials that were conducted using
a Fiat 500e vehicle. Trials 1, 3, and 4 were done at one CWT testing
facility, while trials 2 and 5 were done at another. A CWT facility
can be used for development and testing of vehicles by simulating
realistic environmental conditions, such as outdoor temperature, wind
speed, and precipitation. By utilising such facilities, manufacturers
can simulate a variety of conditions without the need for on-road
testing. Furthermore, the use of CWT facilities allows for repetitive,
reproducible tests. The condition settings for each of the five trials
are shown in Section 4.2.1, where the following are configurable:
external ambient temperature (◦C), vehicle heating, ventilation, and
air conditioning system (HVAC) temperature (◦C), air distribution
(recirculation or fresh), vent (defrost/floor or neutral), moisture inside
the car cabin (g h−1), and car velocity (km h−1).

49
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Table 4.1: Condition settings for the 5 CWT trials. The starred recirculation or
fresh items denote trials where the setting was switched halfway
through.
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Figure 4.1: The average air temperature inside the cabin for each of the five
CWT trials.

4.2.1 CWT experimental settings

Table 4.1 defines the configurable settings for each of the 5 CWT trials.
The star (*) represents trials where the settings were varied during the
test, that is, after 30 minutes the air distribution was switched from
recirculated to fresh air for 30 minutes. In CWT trial 3, moisture is
introduced directly into the cabin as a means to reflect the moisture
typically generated by occupants, including that from respiration and
perspiration.

Figure 4.1 shows the average air temperature (AT) throughout the
5 CWT trials. This is calculated by averaging the AT at the driver
and passengers’ three sensor locations (head, torso, and foot). For
each trial, the HVAC runs for 60 minutes before the HVAC and car are
switched off. This shows the temperature changes within the cabin
during a time where the car sits in the external conditions without
any HVAC on, equivalent to leaving a car sit in a car park. CWT trial
2 shows an increase in the average temperature after the HVAC and
car are switched off. The observed response in this trial is a result
of the applied solar load, simulating the effect of sunlight heating
the vehicle’s surfaces and leading to an increased average interior
temperature.

In Figure 4.2, it is clear that there is a high correlation among many
of the features. Each of these features is important for the model, that
is, necessary for either thermal comfort modelling or safety measures.
The main goal of this analysis is to make accurate predictions and
these strong correlations will not affect the ML models capability to
make predictions.
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Figure 4.2: Triangular correlation matrix plot for the variables in the CWT
trials where −1 indicates a perfect negative correlation, 0 indicates
no correlation, and +1 indicates a perfect positive correlation.
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Table 4.2: Measurement variables that comprise the control vector u. The air
temperatures (u1 − u12) correspond to: vents at the side, central,
floor, and near duct for driver and front passenger; recirculation
inlet; and left, right, and central dashboard surface temperatures.

Control Description Units

u1 - u12 air and surface temperatures ◦C

u13 blower amperage A

u14 external roof temperature ◦C

u15 ambient air temperature ◦C

u16 ambient relative humidity %

u17 car velocity km h−1

u18 distribution setting

u19 vent setting

Table 4.3: Measurement variables comprising the state x. Personal variables
(air and mean radiant temperature and air velocity) are measured
at the head, torso, and foot locations for both driver (x1 − x3,
x7 − x9, x15 − x17) and passenger (x4 − x6, x10 − x12, x18 − x20).

State Description Units

x1 - x6 air temperatures ◦C

x7 - x12 mean radiant temperatures ◦C

x13 windshield temperature (driver’s side) ◦C

x14 relative humidity inside cabin %

x15 - x20 air velocities m s−1

4.2.2 State and control vectors

A total of 39 time series variables, measured at either 1 or 10 second
intervals depending on the test facility, are divided into control (Ta-
ble 4.2) and state (Table 4.3) vectors. The control variables here are
either controllable (e. g., blower amperage), uncontrolled but measur-
able (e. g., external roof temperature), or indirectly controlled (e. g.,
vent temperatures). State variables include personal temperatures to
allow estimation of thermal comfort (for example, via ISO 7730 [Isob]
or ISO 14505 [Isoa]) and estimation of windshield fogging for safety.

In order to keep the variables names easy to interpret and meaning-
ful, where the variables are not fully named, the following shorthand
has been used throughout this chapter:

• d: driver

• p: passenger

• c: central
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L Defrost

R Defrost

L Side
Defrost

L Side
Vent

L Central
Vent

R Side
Defrost

R Side
Vent

R Floor
Vent

L Floor
Vent

R Central
Vent

Figure 4.3: Vent outlets on instrument panel and in footwell for the CWT

trials.

• l: left

• r: right

• ext: external

Figure 4.3 and Figure 4.4 show the locations for the vents and cabin
sensors, respectively, that were used during the CWT trials.

Note that the data does not include the solar load. However, by in-
cluding other related thermal variables such as surface and windshield
temperatures, we indirectly account for the effects of solar irradiance.
These variables serve as proxies for solar load. It is important to rec-
ognize that while indirect measurements help capture some aspects
of solar irradiance’s influence, they may not fully replicate the intri-
cate dynamics of direct solar radiation. Thus, the model’s predictions
might have limitations in scenarios with significantly varying solar
conditions, such as sudden changes in cloud cover or seasonal varia-
tions in solar intensity. Nevertheless, this practical approach simplifies
implementation, using alternative data sources to capture some of the
effects of solar load.

4.3 data pre-processing

There was no missing data for any of the CWT trials, possibly because
the experiments were performed in a well-controlled environment by
experienced technicians. Two CWT trials (2 and 5) were sampled at 1
second, whereas the others (1, 3, and 4) were sampled at 10 seconds.
To account for this, rolling means of window 50 and 5 were applied to
the 1 and 10 second interval data, respectively, and then the 1 second
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Head

Torso

Foot

Figure 4.4: Sensors at the head, torso, and foot locations for the CWT trials.

data was subsampled to 10 second intervals. Furthermore, noise was
present in some of the data so the data is smoothed using a rolling
average. The smoothing is applied prior to subsampling as this is
likely to be more accurate. Finally, the features are normalised from
their various ranges to a common scale (that is, between 0 and 1).

Figure 4.5 shows the data from CWT 1, as an example of what the
CWT data can look like. The data is split into six graphs showing
different types of measurements (that is, air temperature (AT), relative
humidity (RH), mean radiant temperature (MRT), surface temperature
(ST), vent temperature, and air velocity (AV)) at various locations.
Similar plots for the other four CWT trials can be found in Appendix B.

To test how many lags would be appropriate, as discussed in Sec-
tion 2.7.1, the autocorrelation and partial autocorrelation are examined
for the time series data, as shown in Figure 4.6. The autocorrelation
and partial autocorrelation function plot shows that a lag 1 is best for
the CWT data, meaning that only one previous time point (that is, the
current value) is correlated with the next one.

After applying a lag of 1 to the data, the resulting time series data
shapes are shown in Table 4.4. This is the final data that will be used
during modelling.

4.4 hyperparameter search results

This section shows the results of the hyperparameter search, as laid out
in Section 3.5, for the CWT data. Figure 4.7 provides an overview of the
results from the hyperparameter search for the multilayer perceptron
(MLP) where the final activation layer is linear. The main results shown
here are that for those network structures that perform poorly, dropout



56 thermal ml model for car cabin

0 2000 4000 6000 8000 10000
Time (s)

10

0

10

20

30

Ai
r t

em
pe

ra
tu

re
 (d

eg
. C

)

CWT trial 1
Outdoor ambient
Drivers head
Drivers torso
Drivers foot
Passengers head
Passengers torso
Passengers foot

0 2000 4000 6000 8000 10000
Time (s)

10

20

30

40

50

60

70

Re
la

tiv
e 

hu
m

id
ity

 (%
)

CWT trial 1

Outdoor amibent
Cabin

0 2000 4000 6000 8000 10000
Time (s)

5

0

5

10

15

20

25

30

M
ea

n 
ra

di
an

t t
em

pe
ra

tu
re

 (d
eg

. C
)

CWT trial 1
Drivers head
Drivers torso
Drivers foot
Passengers head
Passengers torso
Passengers foot

0 2000 4000 6000 8000 10000
Time (s)

10

0

10

20

30

40

Su
rfa

ce
 te

m
pe

ra
tu

re
 (d

eg
. C

)

CWT trial 1
External roof
Drivers side windshield
Drivers side dashboard
Middle dashboard
Passengers side dashboard

0 2000 4000 6000 8000 10000
Time (s)

10

0

10

20

30

40

50

60

Ai
r t

em
pe

ra
tu

re
 (d

eg
. C

)

CWT trial 1
Drivers left vent
Drivers central vent
Passegners central vent
Passengers right vent
Drivers floor vent
Passegners floor vent
Near HVAC recirculation
Near drivers HVAC vent
Near passengers HVAC vent

0 2000 4000 6000 8000 10000
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Ve

lo
cit

y 
(m

/s
)

CWT trial 1
Drivers head
Drivers torso
Drivers foot
Passengers head
Passengers torso
Passengers foot

Figure 4.5: Measurements from CWT trial 1, smoothed using a rolling aver-
age with a window of 5 seconds. From left to right, top to bottom
this includes air temperatures, relative humidities, mean radiant
temperatures, surface temperatures, vent air temperatures, and
air velocities.

Table 4.4: The dimensions of the CWT data by trial.

CWT trial No. rows No. columns

1 1086 39

2 1315 39

3 594 39

4 1074 39

5 1201 39

Total 5270 39
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Figure 4.6: Autocorrelation and partial autocorrelation function plots for the
air temperature sensor at the drivers head.
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Figure 4.7: Overview of hyperparameter search showing the loss (mean
squared error (MSE)) for with and without dropout and sepa-
rated for each hidden activation function. For better visualisation,
8 data points are removed as their loss was between 0.1 and 0.7.

helps considerably. Dropout is a regularisation technique that disables
connections in the network with a fixed probability. This approach is
often helpful in dealing with large, highly correlated inputs by making
the network less reliant on individual inputs and thus more robust to
noise in individual inputs or missing values.

The top 10 performers of the hyperparameter search for the MLP are
shown in Table 4.5. The MSE is given as mean plus or minus the stan-
dard deviation over the Time Series Group Split cross-validation, with
a lower value indicating a better fit model. One of the top performers
is a simple perceptron system (single layer of linear activation). This
is equivalent to a linear function between inputs and outputs, which
thus suggests that linear regression (LR) may also be effective.

The hyperparameter search for each model resulted in the following
best parameters. Note if the parameter is not defined below then the
default parameter for the model was used.
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Figure 4.8: Overview of hyperparameter search showing the increase in
epochs generally minimises the loss (MSE). For better visuali-
sation, 8 data points are removed as their loss was between 0.1
and 0.7.

Table 4.5: The top 10 MLP models from the hyperparameter search results
where Adamax is the optimizer.

Activation batch size dropout epochs layers MSE

none 30 True 1480 0 0.000 049

none 41 True 1160 0 0.000 050

none 86 True 830 0 0.000 050

none 27 False 62 0 0.000 051

none 3 False 92 0 0.000 051

none 50 True 1190 0 0.000 052

none 112 True 620 0 0.000 053

relu 24 False 110 1 0.000 053

none 9 False 134 0 0.000 053

none 41 False 58 0 0.000 053
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• linear : no hyperparameters.

• lasso : λ = 0.000016 .

• ridge : λ = 0.0014 using the cholesky solver.

• elastic net : λ = 0.000016 and an α ratio of 0.99.

• knn : Brute algorithm with leaf size of 13, 4 neighbors, and
using the distance as weights.

• decision tree : using the square root method for max features
with a max depth of 6, max leaf nodes of 87, min samples leaf of
0.0102, min samples split of 0.0211, and min weight fraction leaf
of 0.0111.

• random forest : using the square root method for max fea-
tures with a max depth of 17, max leaf nodes of 94, min samples
leaf of 0.0178, min samples split of 0.0353, min weight fraction
leaf of 0.0249, and 16 estimators.

• extra trees : using max features equal to the number of fea-
tures with a max depth of 33, max leaf nodes of 58, min samples
leaf of 0.0106, min samples split of 0.000 12, min weight fraction
leaf of 0.0106, and 27 estimators.

• xgboost : α = 0.0010, γ = 0.000046, λ = 0.000086, 0.97 column
sample by tree, learning rate of 0.2287, min child weight of 6.72,
max depth of 83, and subsample of 0.8352.

• mlp : 0 hidden layers with a linear final activation, no drop out,
using the Adamax optimizer, a batch size of 91, and 610 epochs.

4.5 comparison of multi-output model results for next-
step predictions

The top performer is LR with a mean RMSE of 0.003 98 and a mean
MAE of 0.002 59 for next step (10 s) predictions of min-max rescaled
data, as shown in Table 4.6. The numbers in parentheses represent the
standard deviation, for example the linear models RMSE 0.003 98(44)
could also be rewritten as 0.00398± 0.00044. The RMSE and MAE scores
are both close to zero, indicating that the LR model has high accuracy.
The R2 value indicates that 99.5% of the variability observed in the
response is explained by the LR model. The LR model has the lowest
RMSE, although this is not significantly different from the results for
ridge regression. Lasso and elastic net both provided a slightly higher
RMSE of 0.004 84. The results for elastic net and lasso regression are
similar because of the optimised hyperparameters. The elastic net
and lasso regression lambda penalty parameters were both found to
be 0.000 016, and the α parameter, which represents the L1 ratio, for
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Table 4.6: A comparison of the 10 multi-output ML models for the car cabin.
The computation time is given as total seconds both train the model
and make predictions. The metrics include root mean squared
error (RMSE), mean absolute error (MAE) and the coefficient of
determination (R2), which are averaged across the last 3 folds of the
5-fold cross validation on the scaled data. The results are arranged
by mean RMSE, with the standard deviation in parentheses.

Model Time (s) RMSE MAE R2

Linear 0.1 0.003 98(44) 0.002 59(41) 0.995(2)

Ridge 0.0 0.003 99(42) 0.002 58(39) 0.995(1)

Lasso 76.0 0.004 84(49) 0.003 10(44) 0.996(1)

Elastic net 90.0 0.004 84(49) 0.003 10(44) 0.996(1)

MLP 120.0 0.0071(14) 0.0051(11) 0.993(2)

XGBoost 870.0 0.0192(35) 0.0114(20) 0.982(6)

KNN 0.2 0.027(11) 0.0178(68) 0.954(27)

Extra trees 0.8 0.0311(79) 0.0221(54) 0.937(38)

Decision tree 0.1 0.041(13) 0.0274(88) 0.815(135)

Random forest 0.5 0.063(15) 0.0418(82) 0.549(455)

elastic net was found to be 0.99, meaning the elastic net model is 99%
L1 lasso penalty and 1% L2 ridge penalty. These hyperparameters
result in virtually identical models for lasso and elastic net regression.
The MLP is less accurate with a mean RMSE of 0.0071. The tree-based
and neighbours-based models have significantly less accurate results
than the linear, regularised, and MLP models.

Furthermore, the LR model is fast with a total computation time to
train the model and make predictions of 0.1 seconds, the time to make
predictions only being 0.0003 seconds of the total time. The ridge
regression model is slightly quicker with a total computation time
of 0.04 seconds. The XGBoost is the most computationally expensive
with a total computation time of over 870 seconds. Note that the
prediction error for several hours of predictions, that is, multi-step
ahead predictions, is likely to be larger than the results shown here,
which are for one-step predictions.

Despite the similar time and loss results, the LR is preferred over
the ridge regression model as LR is a more robust model. Due to this
and the fact that thermal systems are mainly linear, LR is chosen as
the model for this data.

4.5.1 Comparison of smoothed and unsmoothed data

The previous analysis in this chapter was conducted using smoothed
data, that is, a rolling mean with a window of 5 seconds. In order
to investigate the effect that this smoothing had on the results, this
section will examine the accuracy of the machine learning model on
smoothed data against its unsmoothed counterpart.
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Table 4.7: A comparison of smoothed and unsmoothed data for the LR multi-
output model of the car cabin. The metrics include RMSE, MAE and
the coefficient of determination (R2), which are averaged across
the last 3 folds of the 5-fold cross validation on the scaled data.

Smoothed? Time (s) RMSE MAE R2

Yes 0.1 0.003 98(44) 0.002 59(41) 0.995(2)

No 0.2 0.015 70(67) 0.010 16(97) 0.876(13)

The results in Table 4.7 show that smoothing the data improves the
predictive performance of the linear regression model. The smoothed
model has an RMSE of 0.003 98 while the unsmoothed model has an
RMSE of 0.0170, showing that the smoothed model has a significantly
lower RMSE compared to the unsmoothed model. The smoothed model
has smaller errors, on average, between the predicted and actual values,
suggesting that smoothing the input data may increase accuracy and
be able to better capture the underlying patterns in the data.

Unsmoothed data is able to provide fine-grained details, which can
be especially useful when real-time responses are required, but can
also amplify noise signals. On the other hand, smoothed data reduces
noise, providing a more stable model and easier interpretability, how-
ever smoothed data may also lead to delayed responses to changes.
The decision to use smoothed or unsmoothed data in the modelling
process is a balance of trade-offs. Smoothed data is chosen in this
thesis as it provides a more stable model for making both short and
long-term predictions, with increased performance in terms of RMSE,
MAE, and coefficient of determination.

4.5.2 Comparison of various time intervals

This chapter has examined the car cabin data for a 10 second time
interval between data points. In this section, various time intervals,
including 20, 30, and 60 seconds are tested and compared, as shown
in Table 4.8. Due to the limited time frame available for the data,
resampling at these intervals means the sample size of the data will
be smaller for longer time intervals. In particular, recall that the 10

second interval contains 5270 samples, reducing the sample size to
2635 for 20 seconds, 1755 samples for 30 seconds, and 875 samples for
60 seconds.

4.6 long-run predictions

Figure 4.9 shows a comparison of prediction output with measurement
data for the AT at the driver’s head position during CWT1 trial. The
correspondence is remarkable since there is no divergence between
two curves, that is, there is only a small error between them, even
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Table 4.8: A comparison of the 10, 20, 30, and 60-second time intervals for the
LR multi-output model of the car cabin. The metrics include RMSE,
MAE and the coefficient of determination (R2), which are averaged
across the last 3 folds of the 5-fold cross validation on the scaled
data.

Time interval (s) RMSE MAE R2

10 0.003 98(44) 0.002 59(41) 0.995(2)

20 0.006 86(94) 0.004 71(75) 0.983(5)

30 0.009 46(140) 0.006 73(106) 0.961(13)

60 0.014 11(183) 0.010 35(126) 0.893(47)
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Figure 4.9: Comparison of prediction produced curve for the air temperature
at the driver’s head versus measurement data from CWT1 trial
(without smoothing)

over the extended period of the test (around 3h). Furthermore, the
temperatures vary over a large range during the trial from almost 0 ◦C
at the beginning to a peak of nearly 30 ◦C.

Other sensor modalities are reproduced with similar accuracy. Again,
this is striking as the RH varies over a wide range during the trial. The
model manages to track it almost perfectly just on the basis of the
initial state and the control inputs.

The AV measurements tend to vary considerably. These measure-
ments are smoothed during processing and thus the model produces a
smooth estimate of the AV. The correspondence here is quite consistent
through the whole period.

4.6.1 Differences between head, torso, and foot temperatures

A key benefit of the ML-based predictions is the ability to differently
estimate different parts of the cabin space. For example, the tempera-
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Figure 4.10: The ML model based on LR correctly and independently tracks
driver’s head, chest, and foot temperatures over a 3h trial (CWT2)
with only small errors

ture at the head may be much hotter than the footwell, which can have
an effect on a passengers thermal comfort. Therefore, it is interesting
to see whether the model is able to independently and differently
track the AT (for example) at the head, torso and foot. Figure 4.10 and
Figure 4.11 demonstrate that the predictions are very close tho the
actual values.

In Figure 4.10, for example, the AT in the footwell is higher than at
the head and torso locations during the first part of the trial. During
the long term progression, where the HVAC was turned off after ap-
proximately 400 seconds, temperatures for all three locations (head,
torso, and foot) differed and were closely predicted by the ML model.
The temperature predictions in the footwell are not quite as accurate
as the predictions for the head and torso during the beginning of the
trial (0 s to 4000 s). A reason for this may be that the model has not
captured some characteristics of the footwell, such as the fact that the
area is more enclosed and therefore may be more insulated. This may
not be detrimental as a perfect prediction may not be needed [HS18].

4.6.2 Examples showing room for improvement

Figure 4.12 shows some response differences for AT at the driver’s
head in the predictions compared to the data from CWT3 trial. Note
that the vertical range is small and this may appear to magnify errors.
A striking aspect of this result is that the final temperature converged
upon is very close to the true final temperature.

Another example is the windshield temperature predictions for
CWT3 trial, shown in Figure 4.13. Here the temperatures are quite
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Figure 4.11: Passenger side air temperatures are reasonably accurately
tracked with clear differences during the early phase between
head, torso, and foot for CWT1 trial
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Figure 4.12: Comparison of measurement and simulated data for CWT3 trial’s
air temperature at the driver’s head
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Figure 4.13: Comparison of measurement and simulated data for CWT3 trial’s
windshield temperature driver’s side

stable during the CWT trial but vary considerably in the predictions.
Again, the vertical range is small but the error is up to 3K.

For Figure 4.12 and Figure 4.13, recall that CWT3 is the only trial
with moisture added into the cabin. The average normalized root mean
squared error (NRMSE) across all sensors for the full trial duration is
0.16 (or 16%) for CWT3, whereas the other four CWT trials are in the
range of 0.041 (4.1%) to 0.082 (8.2%). It is possible that providing more
CWT trial data where moisture is added into the cabin to train the
model on may help to improve these predictions.

4.6.3 NRMSE results

Rather than trying to understand the accuracy of the predictions based
on examining individual graphs, it is generally more appropriate to
summarise the error in terms of the RMSE or NRMSE. Table 4.9 shows
results obtained by producing predictions through the entire duration
of each of the CWT trials using the LR model. The RMSE and NRMSE

shown here is the mean alongside the standard deviation over the
5 trials. Note that NRMSE is shown as a proportion rather than a
percentage. For example, an NRMSE of 0.003 corresponds to 0.3%. The
RMSE and NRMSE values here are for the full trials (around 3h) and
thus will be somewhat larger than the 10 second prediction RMSE

or corresponding MSE used during training. The units for the RMSE

depend on the sensor, as specified in Table 4.3. Note that the displayed
decimal places are adjusted according to the standard deviation.

The average NRMSE performance over all sensors over the full trial
duration is 0.011 (or 1.1%), which is comparable but slightly larger
than the 10 second NRMSE (0.8%). The average AT RMSE is 0.25 ◦C or
0.5%.
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Table 4.9: Performance of ML model in terms of error for each sensor, includ-
ing surface temperature (ST), mean radiant temperature (MRT), air
temperature (AT), relative humidity (RH), and velocity (V). The
table is arranged by mean NRMSE with the standard deviation in
parentheses. The average air temperature (AT) is based on compar-
ing the average of head, torso and foot air temperatures for driver
and front passenger with that of the predicted values.

Sensor RMSE NRMSE

ST - drivers windshield 0.19(7) 0.003(1)

MRT - passengers torso 0.26(9) 0.004(1)

MRT - passengers foot 0.20(7) 0.004(1)

MRT - drivers head 0.3(1) 0.004(2)

AT - drivers torso 0.25(8) 0.004(1)

MRT - drivers torso 0.28(9) 0.005(1)

MRT - passengers head 0.3(1) 0.005(2)

average AT 0.25(9) 0.005(2)

MRT - drivers foot 0.24(5) 0.0049(9)

AT - passengers torso 0.28(10) 0.005(2)

AT - drivers head 0.3(1) 0.006(2)

AT - passengers head 0.4(1) 0.006(2)

AT - passengers foot 0.27(6) 0.007(1)

AT - drivers foot 0.28(7) 0.007(2)

RH - cabin 0.5(3) 0.012(7)

AV - drivers head 0.012(9) 0.02(2)

AV - drivers torso 0.011(3) 0.022(5)

AV - passengers torso 0.010(1) 0.023(3)

AV - drivers foot 0.011(3) 0.024(6)

AV - passengers head 0.014(3) 0.025(5)

AV - passengers foot 0.016(3) 0.025(4)



68 thermal ml model for car cabin

4.6.4 Compute performance

Calculating a single time step (10 s) with the LR model developed in
this thesis is extremely fast. The reason for this fast performance is that
the calculation can be performed with a single matrix multiplication.
Also, LR, unlike the neural network, does not require rescaling of
inputs and outputs. On a PC with Intel(R) Core(TM) i7-4790 CPU,
3.60GHz processor, 1000× 3 hour predictions were calculated in 76.5
seconds. This corresponds to 0.007ms s−1 (elapsed time per predicted
second).

Compute performance becomes critical when attempting to use
machine learning to optimise a control algorithm. In past work, around
9 years of simulated time was required to find the optimal control
strategy. The time to compute 9 years of simulated time using this
proposed LR approach is around 33 minutes.

4.6.5 Discussion

These results show high accuracy for the long-run predictions using
the LR model over all the sensors. The smallest errors are less than
the expected error in the thermocouple sensor while the largest errors
(around 0.04m s−1 or 4% of the range) are within 5% of the accuracy
of the high-level model. The results reflect that short-term errors tend
to disappear over time. This is surprising because, in many predictions,
small errors accumulate when producing a prediction that runs over
an extended period. This reflects the relative simplicity of the model
causing it to be extremely robust. Possible threats to validity of the LR

prediction results are as follows:

• These results are specific to the range of parameters varied
during the CWT trials. For example, only 2 distribution modes
were switched between during the experiments, therefore it
would not be possible to use this model to make predictions for
other distribution modes.

• If new components, such as radiant panels, are added, this may
impact the thermal dynamics of the car cabin, therefore the cur-
rent model would not support predictions of an environment
with such features. In order to provide predictions for this en-
vironment, real-world or computational fluid dynamics (CFD)
based data is required. Given a sufficient amount of training
data, this approach could then be applied to environments with
these additions.

• A better estimate of the performance on unseen data might be
possible using k-fold cross-validation. Since the full data-set
was used to both learn the linear regression coefficients and
to assess performance, the true performance on unseen data
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may be slightly worse than estimated here. Note, however, that
overfitting is unlikely for this method.

When applying the proposed ML thermal model to a real car en-
vironment, distinct challenges arise compared to the controlled CWT

environment. External factors, such as sunlight, wind, and ambient
temperature changes, have dynamic effects on the car cabin’s ther-
mal conditions in real-world scenarios. Dealing with uncertainties
and variations becomes crucial since real-world conditions are less
predictable than controlled settings. A robust model is essential to
handle unforeseen events that might affect prediction accuracy. Addi-
tionally, occupant behavior, like opening windows or adjusting HVAC

controls, significantly impacts the car cabin’s thermal state. To account
for these human-driven factors, the model needs to accommodate
such actions. Understanding and addressing these challenges will
determine how effectively the ML thermal model predicts thermal
variables in real-world car cabin conditions.

4.7 feature importance

Feature importance is performed using the regularization method
of elastic net to examine how each input feature contributes to the
model predictions. For models based on linear regression, as elastic
net is, feature importance can be interpreted through the coefficients
of the model. Elastic net regression allows for coefficients to be shrunk
to zero, therefore, this can act as a feature selection method. Note
that the coefficients were found using standardized data. Due to
the multi-output structure of the model, 39 coefficients are given for
each of the 20 outputs. Therefore, an average is calculated for each
feature, resulting in 39 feature importance scores. Here it is chosen
to visualise the elastic net results only as the lasso results are very
similar, with the elastic net ratio heavily favouring the lasso penalty
(0.99). In Figure 4.14, only one variable is shrunk all the way to 0, that
is the MRT at the passenger’s torso.

The feature importance can also be filtered based on variables of
interest. Figure 4.15 shows the feature importances for predicting the
AT at the drivers head using elastic net regression. As expected, the
most important feature for predicting the current AT at the drivers
head is the previous AT at the same position. The next most important
values include the AT at the passengers head and drivers torso, as
well as the MRT at the drivers head and passengers foot. Although the
importance for many of the variables is very small, the only value that
is shrunk all the way to zero is for the MRT at the passengers torso.
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Figure 4.14: Feature importance for elastic net model on the car cabin data
across the predictions of all output variables.
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Figure 4.15: Feature importance for elastic net regression model on the car
cabin data for predicting only air temperature at the drivers
head.
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4.8 comparative performance of physics and machine

learning-based models

To allow for a comparison of the ML model results, the experimental
results from a physics-based simulation model have been provided by
experts in the field via the DOMUS project [BR20]. This section will
explain the basics of the physics-based model that was implemented
in order to obtain the results, making comparisons to the LR model in
terms of accuracy, speed, and capability.

4.8.1 Physics-based model

The physics-based model uses AMESim version 17 software [Sie18]
to model the North America Fiat 500e BEV climate system. AMESim
is a programming environment developed for the object-oriented
modelling of complex physical systems. The libraries that were used
to simulate the thermal aspects of the car cabin include: thermal,
thermo-hydraulic, two-phase flow, heat, and air-conditioning.

The model of the car cabin climate system includes three main
sections that are connected together, that is:

1. the HVAC system, including an evaporator, air ducts, and positive
temperature coefficient (PTC) heater;

2. a two-phase flow loop, including a compressor, heat exchangers,
and thermal expansion valves;

3. two coolant loops, which provide battery and power train ther-
mal management.

Geometry and material data is required for the AMESim model, which
was provided by the data sheet for each component, such as the
evaporator, to ensure that the virtual components are identical to the
physical ones. Furthermore, some of the parameters were calibrated
using information on the data sheets, such as the heat exchange
coefficient, which was derived from the Nusselt number, similar to
the work done by Ciacci [Cia19].

Two separate models are produced for the different air modes: one
is tri-level for heating and the other is vent only for cooling. For each
of these models, the heat exchange coefficient is calibrated (that is, for
warm-up and cool-down). No pressure drop is considered from the
HVAC to the car cabin and the air flow rate is variable depending on
the adopted strategy.

In summary, the DOMUS project provided results from the physics-
based models that include average air temperature in the cabin and
simulation compute time results [BR20].

A 1D physics-based model may have limitations in capturing local-
ized temperature variations compared to a CFD model, which offers a
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more detailed discretized representation of the air within a car cabin.
However, to achieve faster simulation results and provide a simplified
representation of the car cabin’s thermal behavior, a 1D model was
chosen over CFD. This choice also reduces the data and assumptions
required for modelling, aligning with the approach used in the ML

thermal model to achieve efficiency and practicality in capturing the
thermal environment.

4.8.2 Accuracy

The average NRMSE over all sensors being estimated for the LR-based
model is 1.1%. The best estimated sensor (ST at drivers’ windshield)
has an NRMSE of 0.3% while the worst (AV at passenger’s foot) has a
2.5% NRMSE. The error of the estimate of the average AT over the front
bench of the car cabin is 0.25 ◦C (0.5%).

The physics-based model NRMSE is 1.5% for the average cabin air
temperature. When the air conditioning (AC) loop is on, the model
performs about 3% for the high pressure and 6% for the low pressure.

4.8.3 Computational speed

To compare the computational speed, the amount of elapsed time to
compute 1 second of predicted time is calculated. The results for the
physics-based models are:

• 7.6ms s−1 in warm up protocol.

• 250ms s−1 in cool down protocol.

The result for the ML model is:

• 0.007ms s−1.

Note that the ML-based model does not attempt to make predictions
for the cooling loop, but is able to model different parts of the car
cabin (driver and passenger’s head, torso and foot).

Based on the above results, the speed-up for the LR-based model
compared with the physics-based model (during warm up) is 1400-
fold.

4.8.4 Capability

The two models have different sets of capabilities and this should be
taken into account when considering other performance aspects.

The LR-based model has certain capabilities that are not available in
the physics-based model:

• The ability to provide properties needed to make use of a holistic
comfort model for both front bench occupants. Specifically, the
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ML model estimates temperature, MRT, and AV at the head, torso,
and foot positions for both occupants.

• The ML model is able to estimate windshield glass temperature
and RH within the cabin, which allows for the estimation of
safety in terms of windshield fogging.

The physics-based model, on the other hand, has capabilities not
available in the LR-based model:

• It simulates the HVAC system more fully, including the AC loop,
rather than requiring the air vent temperature as input. Note
that the ML model does simulate the blower.

• It is a physics-based approach and thus is likely to generalise
more readily to circumstances not seen in the CWT trials.

• It supports additional components, such as the radiant panels.

Due to these differences in capabilities, the choice of model will
depend on the application.

4.9 chapter summary

The key results are:

1. The ML cabin model has an average NRMSE over all sensors of
1.1%. The RMSE for the average AT for the front two occupants
is 0.25 ◦C (0.5%) over all trials.

2. The ML cabin model computes a second of predicted time in
0.007ms.

The chosen ML model is based on LR and gives an average RMSE

of 0.003 98 for next step predictions. The LR model is able to closely
track AT, RH, and AV dynamics over multi-step predictions within the
cabin clearly demonstrating the viability of the method. This model
provides a solid basis for work where it is not necessary to add com-
ponents, such as radiant panels. Furthermore, this work is remarkable
in that it provides a model that is capable of accurately simulating
the thermal dynamics at multiple car seating positions and to do
so with a compute performance that is much faster than traditional
physics-based approaches. This opens the way for numerical opti-
misation approaches that were previously considered infeasible to
build car cabin HVAC controllers and redesign the car cabin features.
Future work is required to provide data that can enable the prediction
of optional components including radiant panels, heated seats, and
special glazing.

In order to make use of the ML-based model, additional work is
needed, as follows:
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1. A separate model of the HVAC system is needed to provide vent
outlet temperatures.

2. To properly simulate components, such as the radiant panels,
further experimental data is needed with this added. This data
might be produced based on the CFD simulation, for example.

3. More information could also be included in the model such as
contact heat (that is, heated seats) and the accumulation of CO2

in the cabin [Ang+19].

Minimising unnecessary energy consumption is central to the design
of modern electric vehicles, with the heating and cooling system
is the largest auxiliary load. However, personal comfort depends
on this HVAC system and is critical to customer satisfaction, while
some of this functionality is also needed for safety (for example,
defogging the windscreen). Therefore, it is important to minimise
energy use under the constraint of maintaining acceptable comfort
and safety. The methods presented in this paper model the thermal
environment within a car cabin to help identify whether comfort and
safety requirements can be met and at what energy cost.

The key comparisons between the physics- and LR-based model
results are:

1. The physics-based cabin model predicts the cabin average AT

within ±1K (1.52%).

2. The physics-based cabin model predicts AC pressure with an
average error less than 0.6 bar (3%) at high pressure and 0.1
bar (6%) (steady state) at low pressure. The physics-based cabin
model computes a second of predicted time in 0.25 s (worst case
- when the AC compressor is on) or 0.0076 s (AC compressor off).

The LR-based model is sufficiently fast and accurate to suggest that
this is a promising method. The physics-based model, being physics-
based, may still be preferred for some applications.
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T H E R M A L M A C H I N E L E A R N I N G M O D E L F O R A
H O U S E

5.1 chapter introduction

In this chapter, a second case study is pursued to predict the thermal
aspects of houses. In contrast to the car cabin case study, this case
study includes data collected from various rooms within different
houses in Loughborough, UK, resulting in a model being built for
each individual house. The aim of this case study is to investigate
whether the machine learning (ML) models used in Chapter 4 could be
generalisable to other thermal environments, and, in addition, allows
the approaches to be tested on a larger, real-world dataset.

Overall this chapter will include the following:

1. An introduction to the REFIT dataset (Section 5.2), as well as a
description of the preprocessing steps (Section 5.3);

2. The results of the hyperparameter search for the tested multi-
output ML models (Section 5.4);

3. A comparison of several multi-output ML approaches, including
the results of the chosen model for both one-step and longer
term performance (Section 5.5 and Section 5.6 respectively);

4. An analysis of the most important features for the selected ML

model (Section 5.7);

5. A comparison of the selected ML model for the house to the
selected model for the car cabin, including a comparison of the
most important features (Section 5.8).

5.2 refit smart home data

The REFIT Smart Home data [Fir+17] is a publicly available dataset
from researchers at Loughborough University, the University of East
Anglia, and University of Strathclyde. Contained in the REFIT dataset
are 20 houses within the East Midlands region of the UK, near Lough-
borough [Fir+15]. For each house, a building survey was performed,
which involved the collection of data regarding the houses’ building
geometry, construction materials, occupancy, and energy services. In
addition, multiple sensors and devices were installed to monitor total
energy usage, gas consumption, and multiple temporal variables, such
as temperature, humidity, light level, motion, and individual appli-
ance energy usage. Alongside this data, which was collected from

75
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September 2013 to April 2015, the climate data during this period was
also available from a local weather station.

From the data collected, the following variables collected at each
house that are of interest to this research:

• Gas consumption for the whole house,

• Air temperature (AT) for various rooms or spaces in the house,

• Relative humidity (RH) for various spaces in the house,

• Radiator valve surface temperature (ST) for various spaces in the
house,

• Outdoor AT,

• Outdoor RH,

• Outdoor wind speed,

• Outdoor total rainfall.

For AT, RH, and radiator ST in each house, the number of sensors
varies depending on the size of the house and the data available.
For this analysis two houses were excluded: house 2 due to a large
portion of missing data and house 5 as gas consumption data was not
available. For the sake of this thesis, the houses are then renumbered
where house 3 becomes house 2, house 6 becomes house 4, etc.

From the remaining 18 houses, sixteen of the single family dwellings
were detached and two were semi-detached. The houses were built
during various periods: 1850-99 (1), 1919-44 (2), 1945-64 (2), 1965-74 (6),
1975-80 (1), 1981-90 (3), 1991-95 (1), or after 2002 (2). Most dwellings
were two-stories (16) while only two were three-stories. In terms of
the number of rooms, these included two (1), three (12), four (3), and
five (2) bedrooms with either one (11), two (4), or three (3) bathrooms.
Note that the houses used in this case study are mainly detached
dwellings, which is not representative of the UK housing stock, and
because these dwelling types have the most exposed walls, they may
also lose more heat than other dwelling types. Other factors, such as
the time period homes were built, could also have an effect on heat
transfer within the homes as the standards for building materials has
varied throughout the years.

5.2.1 State and control vectors

For the analysis, all variables must be classified into either the control
u or state x vectors, as defined in Section 3.2.2. The selected control
vector u and state vector x are shown in Table 5.1 and Table 5.2
respectively. The number of AT, RH, and ST variable available depend
on the house and are therefore represented by the lengths a, r, and s,
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Control Description Units

u1 outdoor air temperature ◦C

u2 outdoor relative humidity %

u3 outdoor wind speed m s−1

u4 outdoor total rainfall mm

u5 gas consumption m3

u5+1 radiator surface temperature ◦C

u5+2 radiator surface temperature ◦C
...

...
...

u5+s radiator surface temperature ◦C

Table 5.1: Measurement variables that comprise the control vector u, where
s is the number of radiator surface temperature sensors available
and the vector contains one gas consumption reading and four
weather variables.

State Description Units

x1 room air temperature ◦C

x2 room air temperature ◦C
...

...
...

xa room air temperature ◦C

xa+1 room relative humidity %
...

...
...

xa+r room relative humidity %

Table 5.2: Measurement variables comprising the state x, where a is the
number of air temperature sensors and r is the number of relative
humidity sensors available.

respectively. For the house, the aim to keep the variables that are most
similar to those used in the car cabin model in Chapter 4.

Table 5.3 details the final count of the state x and control u variables
for each of the 18 houses. The number of rooms with air temperature,
relative humidity, and surface temperature sensor readings vary by
house. Furthermore, some rooms where the air temperature is mea-
sured are either heated, but the radiator surface temperature is not
measured, or are simply unheated (for example, a garage). Rather than
using only the rooms where all three sensor readings are available, it
is chosen that all available data will be used in the models.
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House x xa xr u us

0 15 11 4 13 8

1 10 7 3 12 7

2 12 8 4 16 11

3 15 11 4 21 16

4 16 12 4 20 15

5 12 9 3 14 9

6 10 7 3 17 12

7 11 8 3 13 8

8 14 10 4 15 10

9 8 6 2 15 10

10 15 10 5 18 13

11 12 8 4 12 7

12 15 11 4 21 16

13 13 9 4 15 10

14 10 7 3 16 11

15 11 9 2 14 9

16 12 9 3 14 9

17 12 8 4 12 7

Table 5.3: The size of the state vector x and control vector u for each house.
The state vector is made up of a air temperatures (xa) and r

relative humidities (xr), while the control is made up of s radiator
surface temperatures (us), four climate variables (u1−4), and one
total gas consumption (u5) for the house. For example, house
0 has 15 state variables comprised of 11 air temperatures and 4

relative humidities, and 13 control variables comprised of 8 surface
temperatures, as well as the 5 variables consistent across each
house (u1−5).
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5.3 data pre-processing

This section details the pre-processing steps taken for the house data,
as introduced in Section 3.3, after defining the state and control vec-
tors. The REFIT data comes from houses within the community, and
due to the nature of sensors (for example, a loss of connection or
hardware damage), there are various missing data points that need
to be addressed. First, a calculation is done to check how many data
points are missing per house. To prepare the data for analysis, the
data is then resampled to every 30 minutes using the mean value.
Some of the sensors needed to be replaced after a period of time,
in order to account for this, the sensors were grouped by room and
measurement type (such as, air temperature or relative humidity) and
the average reading was taken. This resulted in, for example, only
one air temperature reading per room. The next step is to scale and
transform the data, as described in Section 3.3.4, yielding a normalised
form of the data.

Once the data is normalised, the variables of interest are extracted
from the data. The aim is to build a simple model for each house based
on easily measurable data. Therefore, the main variables of interest in-
clude room ATs, room RHs, radiator STs, and total gas consumption for
each house. These variables are extracted and joined with the climate
data, specifically the outdoor AT, outdoor RH, wind speed, and total
rainfall. These can be divided into state and control vectors, as defined
in Table 5.1 and Table 5.2. The AT and RH readings from various rooms
comprise the state vector x, while the climate, radiator STs, and gas
consumption comprise the control u. The next step in pre-processing
is to examine the autocorrelation and partial autocorrelation functions
to determine how many lags are appropriate for the state variables, as
described in Section 2.7.1 and represented in Figure 3.1. A represen-
tative example of how the autocorrelation plots look is selected and
shown in Figure 5.1. The figure shows the autocorrelation and partial
autocorrelation functions for the air temperature in space 287 in house
15, which indicates a strong partial correlation at both 1 and 2 lags.
Therefore, the data is converted to a form which has a lag of 2 for the
state vector.

Table 5.4 shows the final dimensions of the data for each house
after pre-processing, including combining the house data with climate
data and introducing the lag. In total, across all 18 houses used for
analysis there are 267 761 rows of data. The number of columns for
each house depends on multiple factors, including the size of the
house, the number of sensors actually installed, and the availability
of the sensor data, as explained in Table 5.3. The number of rows per
house ranges from 5036 to 20845, again depending on the sensor data
available for the house.
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Figure 5.1: Autocorrelation and partial autocorrelation function plots for the
air temperature in space 287 within house 15, which is represen-
tative of the other spaces.
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House ID No. rows No. columns

0 17843 43

1 11148 32

2 5036 40

3 13570 51

4 12952 52

5 18684 38

6 16236 37

7 20845 35

8 12643 43

9 15988 31

10 14364 48

11 14465 36

12 8190 51

13 14371 41

14 21950 36

15 15604 36

16 20776 38

17 13096 36

Table 5.4: The dimensions of the pre-processed house data for the final 18
houses used for analysis, after being combined with the relevant
weather data.
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Figure 5.2: Visualisation of data from house 0 in January 2015. The figure on
the top left shows the gas consumption readings. The top right
figure shows air temperature readings, bottom left shows relative
humidity, and bottom right shows radiator surface temperature,
which all show four different spaces within the house, namely the
kitchen (space 6), living room (space 9), bedroom (space 13), and
en suite bathroom (space 15). See Figure 5.3 for a zoomed view.

Figure 5.2 shows a sample of the data from house 0. The plot shows
January 2015, which saw an average outdoor temperature of 5.0 ◦C,
ranging from −3.6 ◦C to 15.9 ◦C. Therefore, it is likely that the heating
would have been utilized during this month. The sensors readings
show four rooms, which are the only rooms in the house where AT,
RH, and radiator ST were all collected. Figure 5.2 shows a difference
in the sensor readings by room, for example the bedroom (space 13)
appears to be cooler and more humid than the other rooms. A baseline
gas usage may be contributed from cooking using a gas hob if it is
available in the house, however, the main contribution to an increase
gas consumption is for heating purposes. Therefore, any upward spike
for gas consumption can be seen as an indication that the house has the
heating turned on. Similarly, an increase in radiator ST demonstrates
when the heating is turned on for that specific radiator in a room.

For the living room (space 9) radiator ST, Figure 5.3 also shows that
the radiator does not have much variation in the ST, signalling that
either the radiator does not get warm or is not turned on in this room.
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Figure 5.3: Visualisation of data from house 0 on 16 January 2015. The figure
on the top left shows the gas consumption readings. The top right
figure shows air temperature readings, bottom left shows relative
humidity, and bottom right shows radiator surface temperature,
which all show four different spaces within the house, namely
the kitchen (space 6), living room (space 9), bedroom (space 13),
and en suite bathroom (space 15).

Examining the corresponding ATs shows that the temperature in space
9 is quite high compared to the rooms where the radiator ST is warmer.
This could be due to the home having a secondary heating source,
such as an electric heater or fireplace. The bedroom (space 13) exhibits
the highest radiator ST, highest humidity, and lowest air temperature.
This could be due to a variety of reasons, such as damp clothes being
placed on the radiator to dry, causing an increase in humidity and a
lower air temperature.

Once we have pre-processed the house data, a hyperparameter
search for the selected ML models can be conducted, as described in
Section 3.5. For the house data, rather than considering each house to
be a group, a separate model will be built for each of the 20 homes
because the underlying structures would vary considerably across
houses. As such, for each house the Time Series Split cross validator
is used, as introduced in Section 2.8.2.
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5.4 hyperparameter search results

For the house case study, a separate model was built for each of
the 18 houses. A hyperparameter search is, therefore, done for each
house with the proposed ML models, following the procedure from
Section 3.5. Due to the computational demand of the XGBoost and
multilayer perceptron (MLP) models, the hyperparameter searches
were done on a subsample of the data using every fourth row of
data. The remaining models used the full data for the hyperparameter
searches. A summary of the best parameters for the 18 models are
presented here. Note if the parameter is not defined below then the
default parameter for the model was used.

• linear : no hyperparameters.

• lasso : λ was found to be small, with a minimum of 3.3× 10−22

and maximum of 7.4× 10−5. The mean value is 2.6× 10−5 and
standard deviation 2.4× 10−5.

• ridge : λ had a minimum value of 1.6× 10−34 and maximum
of 0.34. The mean λ was 0.042 with standard deviation 0.10. The
Cholesky solver was used for 9 models, lsqr for 4, saga for 3,
and sag for 2.

• elastic net : λ minimum 1.0× 10−21, maximum 7.5× 10−5,
mean 2.6× 10−5 standard deviation 2.3× 10−5. The α ratio was
above 0.5 for 15 models, with 13 of these having a value over
0.90 and a further 11 models having a value of over 0.99. The
mean α ratio is 0.82 with a standard deviation of 0.31.

• knn : every model was found to use using distances as weights.
The brute algorithm was used for 8 models, kd tree for 8 and
ball tree for 2. The leaf sizes were in the range of 1 to 48 with an
average leaf size of 21 and standard deviation of 16, while the
number of neighbors was in the range of 4 to 25 with an average
leaf size of 13 and standard deviation of 6.

• decision tree : the majority of the models (16) used the num-
ber of total features for the number of features considered for
the best split, while 2 use the log2 method. The maximum depth
of the tree had values in the range of 8 to 49 with an average
max depth value of 29 and standard deviation 14. The maximum
leaf nodes had values from 3 to 94 with an average of 69 and
standard deviation of 20. The minimum number of samples re-
quired at a leaf node ranged from 0.010 to 0.212 with mean 0.033
and standard deviation 0.060. The minimum number samples
required to split an internal node were between 4.6× 10−5 and
0.89 with a mean 0.63 and standard deviation 0.20. Lastly, the
minimum weighted fraction of the sum of all inputs samples
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requires at the leaf node had values between 0.010 and 0.490
with a mean 0.038 and standard deviation 0.110.

• random forest : the number of features considered for the
best split was done using the total number of features for 3

models, the square root for 10 models, and the log2 for 4 models.
The maximum depth of the tree had values in the range of 8 to 48

with an average max depth value of 31 and standard deviation
12. The maximum leaf nodes had values from 42 to 95 with
an average of 71 and standard deviation of 15. The minimum
number of samples required at a leaf node ranged from 0.010
to 0.011 with mean 0.010 and standard deviation 2.3 × 10−4.
The minimum number samples required to split an internal
node were between 7.2× 10−5 and 0.23 with a mean 0.011 and
standard deviation 0.009. Lastly, the minimum weighted fraction
of the sum of all inputs samples requires at the leaf node had
values between 0.010 and 0.020 with a mean 0.014 and standard
deviation 0.004.

• extra trees : for the number of features considered for the
best split, 16 models used the total number of features and 2

used the square root. The maximum depth of the tree had val-
ues in the range of 8 to 49 with an average max depth value
of 31 and standard deviation 13. The maximum leaf nodes had
values from 39 to 93 with an average of 71 and standard devia-
tion of 15. The minimum number of samples required at a leaf
node ranged from 0.010 to 0.019 with mean 0.011 and standard
deviation 0.0027. The minimum number samples required to
split an internal node were between 9.2× 10−5 and 0.039 with a
mean 0.015 and standard deviation 0.012. Lastly, the minimum
weighted fraction of the sum of all inputs samples requires at
the leaf node had values between 0.010 and 0.018 with a mean
0.011 and standard deviation 0.003.

• xgboost : alpha ranges from 4.6× 10−5 to 0.28 with mean 0.018
and standard deviation 0.066, gamma ranges from 4.6× 10−4 to
0.0015 with mean 2.8× 10−4 and standard deviation 3.6× 10−4,
lambda ranges from 7.9× 10−5 to 68 with mean 5.5 and standard
deviation 16, column sample by tree ranges from 0.71 to 1 with
mean 0.93 and standard deviation 0.085, learning rate ranges
from 0.047 to 0.30 with mean 0.11 and standard deviation 0.072,
min child weight ranges from 0.97 to 20 with mean 8.6 and
standard deviation 6.7, max depth ranges from 1 to 98 with
mean 45 and standard deviation 34, and subsample ranges from
0.50 to 0.93 with mean 0.72 and standard deviation 0.13.

• mlp : 4 models had 0 hidden layers, 8 had 1 layer, 4 had 2, 1 had
3, and 1 had 4. 3 models used the Adam optimizer, while the
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Table 5.5: Mean and standard deviation of the computation time in seconds
to train the model, RMSE, MAE, and coefficient of determination
(R2) of different multi-output ML models across all 18 houses for
the last 3 folds of the 5-fold cross validation on the scaled data.
The values are arranged by mean RMSE.

Model Time (s) RMSE MAE R2

Ridge 11(19) 0.017 11(440) 0.010 31(288) 0.948 87(2601)

Lasso 21(8) 0.017 47(427) 0.010 71(285) 0.949 59(2468)

Elastic net 21(8) 0.017 48(425) 0.010 71(284) 0.949 54(2468)

Linear 0.13(6) 0.017 72(467) 0.010 28(286) 0.944 03(3492)

MLP 300(410) 0.021 16(641) 0.013 89(496) 0.924 27(6502)

XGBoost 100(97) 0.024 44(877) 0.015 10(533) 0.907 27(5576)

KNN 2.2(14) 0.057 70(1231) 0.043 92(983) 0.562 55(17896)

Extra trees 3.6(17) 0.069 09(1940) 0.054 15(1637) 0.318 47(40155)

Random forest 4.6(40) 0.071 05(1844) 0.055 69(1530) 0.293 84(36027)

Decision tree 0.67(36) 0.082 57(2276) 0.065 12(1999) 0.055 32(74937)

remaining all utilised the Adamax optimizer, 2 of these having
0 layers and 1 having 1. Of those models with hidden layers, 5
used a linear activation, 5 used tanh, and 4 used ReLU.

5.5 comparison of multi-output models for next-step

predictions

Table 5.5 shows results for the various ML models applied to the house
data. The results shown here are averaged across all 18 houses, the full
results per house can be found in Appendix C. Table 5.5 includes the
mean and standard deviation of the root mean squared error (RMSE),
mean absolute error (MAE), and R2 for all 18 houses in the analysis.

Table 5.5 shows that the methods based on linear regression (LR)
(including regularised methods) are the top performers for next step
(30min) predictions. Ridge regression has a mean RMSE of 0.0171 and
mean MAE of 0.0103, which is slightly lower than lasso (RMSE 0.0175,
MAE 0.0107), elastic net (RMSE 0.0175, MAE 0.0107), and linear (RMSE

0.0177, MAE 0.0103) regression. There is quite a large disparity between
the quickest and slowest models with an average computation time to
train the model and make predictions of 0.13 s for LR and of 300 s for
MLP. For LR, the average time taken to make predictions only was 0.39
milliseconds with a standard deviation of 0.06 milliseconds across the
18 houses. Due to LR being the fastest and simplest model, this is the
model selected for the house data.

Figure 5.4 shows the boxplot of RMSE for linear regression over the
last 3 folds of the 5 fold Time Series Split cross validation. The boxplot
shows there is a significant difference between the RMSE score for
different houses, such as house 0 and 1. House 15 has the smallest
average loss while house 17 has the largest.
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Figure 5.4: Boxplot of the RMSE results for all 18 houses over the final 3 folds
of the 5 fold cross validation for linear regression.

Table 5.6: Mean and standard deviation of the computation time in seconds
to train the model, RMSE, MAE, and coefficient of determination (R2)
of the multi-output LR models with and without average horizontal
solar irradiance (Wh/m2) across all 18 houses for the last 3 folds
of the 5-fold cross validation on the scaled data.

Solar irradiance? Time (s) RMSE MAE R2

No 0.13(6) 0.017 72(467) 0.010 28(286) 0.944 03(3492)

Yes 0.11(4) 0.017 69(474) 0.010 24(287) 0.944 11(3534)

5.5.1 Addition of solar irradiance

The missing solar data can be considered important as solar irradiance
can significantly influence indoor temperatures and humidity levels.
While the model could potentially indirectly capture some of the
effect of solar irradiance through the outdoor air temperature, relative
humidity, and wind speed, the direct impact of sunlight on indoor
temperatures and heat gain is not fully accounted for without explicit
solar data. Further, the solar load can cause heating of indoor surfaces,
such as walls and windows, which in turn radiate heat into the room,
leading to localized temperature variations and an effect on the overall
thermal comfort inside a room. Radiators that are fixed to walls could
indirectly capture some aspects of the solar load in the room as the
sunlight heats the walls and the radiator may absorb some of this heat.

Table 5.6 presents the results of adding the average horizontal solar
irradiance into the LR model. This data comes from the same source
as the other climate data, which was collected at the Loughborough
University campus weather station. The results are averaged across
all 18 houses showing very similar RMSE, MAE, and coefficient of
determination results for the models with and without the addition of
solar irradiance.
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Figure 5.5: The observed and predicted values for the air temperature in
space 200 within house 10 over the time period for all available
data.

Thermal comfort modelling often depends on solar irradiance as
comfort is a complex phenomenon influenced by various factors, in-
cluding thermal variables, personal factors, activity levels, and psycho-
logical factors. Therefore, comprehensive thermal comfort assessments
may benefit from incorporating other variables and considering the
subjective nature of comfort. However, a simplified thermal model
can still provide benefits, including being able to identify potential
discomfort zones, areas with high or low temperatures, or humidity
levels outside a defined comfort range.

In the subsequent sections of this chapter, the thermal model does
not include the average horizontal solar irradiance to maintain sym-
metry with the car cabin model. There is also a lack of information
regarding the exposure of each individual room to direct sunlight,
such as the location within the house and potential shading from
external factors like trees.

5.6 long-run predictions

Figure 5.5 and Figure 5.6 show the long term, multi-step ahead predic-
tions for the AT and RH in space 198, respectively, which represents the
living room in house 10. These figures show that the predictions are
able to closely follow the observed data over a longer period of time,
which is just short of a full year. It is difficult to see the step-by-step
predictions in these plots, however, it can be seen as an indication
that the predictions are close to the observed values. The time taken
to predict over the full length of each experiment was on average
4.8× 10−8 seconds, or 0.048µs, per predicted second with a standard
deviation of 0.008µs.

In order to see more closely what occurs in the day-to-day predic-
tions, Figure 5.7 shows the AT predictions for four different rooms
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Figure 5.6: The observed and predicted values for the relative humidity in
space 198 within house 10 over the time period for all available
data.

in house 0 throughout January 2015, which corresponds to the plots
in Figure 5.2. The rooms include the kitchen, living room, bedroom,
and bathroom. Figure 5.7 shows that the LR model is able to track
the variations in each of the rooms, for example, the model is able to
capture that the kitchen tends to have a higher temperature than the
bedroom. The errors also tend to be a bit larger when the temperature
is lower than average, for example, at the beginning of January 2015,
for almost a week, the temperatures in the house are much lower
than the remainder of the month. The shape and profile of the plots
is similar, but the values are sometimes shifted. Possible reasons for
the shift down in the temperature could be because of the number of
occupants in the room or because of missing factors, such as a layer of
snow on the roof.

Recall that the observed sensor data was collected every 30 minutes,
therefore it may be of interest to look closer at a specific day to better
visualise the error given by the predictions. Figure 5.8 shows the
observed and predicted AT for the living room in house 0 on the 16th
of January 2015. This shows that the predictions are able to follow
the peaks and valleys of the AT throughout this day, but the error is
relatively large, particularly in the early hours of the day. This could
possibly be related to the occupancy of the living room.

5.6.1 NRMSE results

For each house, the normalized root mean squared error (NRMSE) was
calculated per input feature. Table 5.7 shows the top and bottom 5

NRMSE values for the features across all 18 houses. The average RMSE

across all sensors is 1.82 and the average NRMSE is 0.068. TheNRMSE

values range from 0.034 to 0.123 (3.4% to 12.3%), which is quite a
large range of errors. The lowest NRMSE is for the air temperature in
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Figure 5.7: The observed and predicted values for the air temperature in four
rooms of house 0 throughout January 2015. The rooms depicted
in the top row are the kitchen (space 6) and living room (space 9),
and in the bottom row is the bedroom (space 13) and bathroom
(space 15).

00:00
16-Jan

03:00 06:00 09:00 12:00 15:00 18:00 21:00

Time

18

19

20

21

22

23

Ai
r t

em
pe

ra
tu

re
 (d

eg
. C

)

Space 9 - Living room
Predicted value
Observed value

Figure 5.8: The observed and predicted values for the air temperature in the
living room (space 9) of house 0 on the 16th of January 2015.
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Table 5.7: Top 5 and bottom 5 NRMSE values for the house sensors, along with
the RMSE across all 18 houses, arranged by NRMSE.

Sensor RMSE NRMSE

Space 237 Air temperature 0.384 442 0.033 761

Space 233 Air temperature 0.463 957 0.034 213

Space 311 Air temperature 0.476 685 0.034 282

Space 214 Air temperature 0.586 675 0.037 899

Space 66 Air temperature 0.589 714 0.038 221
...

...
...

Space 184 Air temperature 1.542 609 0.111 468

Space 124 Relative humidity 7.892 841 0.112 395

Space 108 Relative humidity 5.403 345 0.112 467

Space 229 Air temperature 2.048 509 0.122 960

Space 104 Relative humidity 4.272 015 0.123 234

space 237 at 3.4%. The corresponding RMSE shows that the predicted
values are, on average, within 0.38 ◦C of the actual value. The highest
NRMSE is for the relative humidity in space 104, with a NRMSE of
12.3%. The difference between the lowest and highest error is quite
large.

In addition to looking at the RMSE and NRMSE averages across all
responses, an analysis for the prediction of just air temperatures is
examined. The average AT was calculated for each house by averaging
the RMSE and NRMSE across the available AT variables. Table 5.8 shows
the results for the average air temperature predictions in each house.
The average RMSE and NRMSE across all 18 houses are 1.8 ◦C and
6.8%, respectively. The errors for the multi-step predictions are larger
than for the next-step predictions, which is expected, especially when
predicting for nearly a year worth of data. The standard deviations for
RMSE are also quite large, showing that for some predictions the error
is close to zero, while others could be closer to 3 ◦C.

5.7 feature importance

Figure 5.9 shows the feature importance across the prediction of all
next states for space 10, which is a bedroom, in house 0. In this model,
the coefficients for two climate variables were shrunk to zero, wind
speed and total rainfall. Twelve other houses had a coefficient of zero
for the wind speed and eight others had a coefficient of zero for total
rainfall. Despite the low importance in these models, other models
saw wind speed to be in the top four most important variables. This
could be due to a characteristic of the house, that is, it is possible the
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Table 5.8: The average air temperature RMSE and NRMSE values for each house,
with the standard deviation in parenthesises.

House RMSE NRMSE

0 1.982(1405) 0.070(13)

1 2.325(1930) 0.082(16)

2 1.492(1205) 0.068(12)

3 1.309(1034) 0.062(10)

4 1.647(1539) 0.067(27)

5 1.991(2170) 0.061(21)

6 1.911(1014) 0.078(9)

7 1.971(1683) 0.073(15)

8 1.723(1430) 0.063(16)

9 1.764(1086) 0.073(21)

10 1.679(1404) 0.058(14)

11 1.988(1531) 0.073(18)

12 2.079(1769) 0.074(26)

13 2.287(2150) 0.065(20)

14 2.062(1721) 0.071(14)

15 1.372(1055) 0.066(15)

16 1.408(1551) 0.056(19)

17 1.927(1397) 0.069(15)
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Figure 5.9: Feature importance for elastic net regression model on the data
from house 0 across the predictions of all output variables.
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Figure 5.10: Feature importance for elastic net regression model on the data
from house 0 for predicting only the air temperature in.

house where the feature was deemed importance has poor insulation
or is positioned with little protection, such as that provided by trees
or other houses.

In Figure 5.10, the feature importances are shown for house 10

when predicting only the AT in space 10, a bedroom. For all rooms,
from hallways to kitchens to living rooms, it was found that the most
recent state of the variable being predicted was the most important for
predicting the next state. The second most recent state had a varying
effect on the prediction of the next state, that is, it was second most
important for six models, between second and tenth most important
for nine models, and eleventh and onwards for another three models.
This shows that the importance of the lag 2 is less certain than the
importance of lag 1.

5.8 comparison with car cabin results

There are multiple aspects of the car cabin and house case studies
which differ. First, the car cabin data comes from a controlled en-
vironment, therefore it may experience less unexpected events (for
example, a large gust of wind) and therefore may not be symbolic
of a real world setting. In this aspect, the house data provides an
application in the real world as the data is from houses within the
community. Another difference is the sampling rate of the data, with
the car cabin having a 10 second time interval and the house having
a 30 minute interval. The variable time intervals allow us to see if
the same approach can make predictions for differing gaps between
time points. These considerations must be taken into account when
comparing the results from the models.
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The car cabin analysis in Chapter 4 found that the top performing
models were based on linear models with linear regression producing
very similar results to the regularisation techniques (ridge, lasso, and
elastic net regression). A similar result is produced for the house case
study. Both case studies were able to produce a reasonable accuracy
in terms of both next-step and multi-step ahead predictions.

5.8.1 Feature importance comparison

The car cabin and house are different environments with a different
set of variables, however comparisons can be made about the influence
certain variables have on a predicted value. For example, the hypoth-
esis is that due to the time series nature of the data, it is believed
that the previous values will be the most important in predicting
the next value. The analysis of feature importances for both the car
cabin (Section 4.7) and house (Section 5.7) confirmed this hypothesis.
Although the house implemented a lag of 2 and the car cabin used
a lag of 1, a common theme amongst feature importances is that the
most recent value of the variable being predicted is found the most
important for predicting the next value.

5.9 chapter summary

In this chapter, the REFIT Smart Home data was introduced and
pre-processed for the use in a ML thermal model. A lag of 2 was
implemented for this data and a range of ML models were fit using
Time Series Split cross validation. The LR model was the chosen model
for this data, showing that the LR model could capture the temperature
changes within various rooms of each house. The errors for next-step
(RMSE 0.017) were smaller than for the longer term predictions (RMSE

1.82). Furthermore, the hypothesis that the current value of any feature
would be the most important for predicting the next value has been
confirmed. This case study provided another setting to adapt the same
modelling approach the car cabin case study in Chapter 4, which was
introduced in Chapter 3.
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C O N C L U S I O N S

6.1 discussion

In this thesis, two case studies were pursued to develop a thermal
modelling approach using machine learning. The case studies were
conducted in a car cabin and house, both using the same methodolog-
ical approach. The research questions that were investigated are listed
below, including an answer to the question and a brief summary of
the key results.

6.1.1 Research questions

1. Can a data-driven, machine learning model, with little details
about the physical environment itself, be used to model thermal
aspects of an environment?

a) Can the top performing machine learning (ML) model for a
car cabin provide faster and more accurate predictions than
the industry standard? If so, to what extent?

b) Can the top performing ML model for a house provide a
fast and accurate prediction of thermal variables?

To address these questions, a comparison of the chosen ML model
based on linear regression was compared to a physics-based 0D model
for the car cabin, both in terms of accuracy and speed, as shown in
Section 4.8. For the physics-based model, the normalized root mean
squared error (NRMSE) was 1.5% for the temperature compared to an
NRMSE of 0.5% for the average air temperature in the ML model. The
average NRMSE for the ML model over all sensors, including tempera-
tures, velocities, and humidities, is 1.1%. Comparing the physics-based
and ML models in terms of temperature, showed that the ML model
can indeed provide more accurate predictions over the physics-based
model. Furthermore, for the physics-based model when the air condi-
tioning (AC) loop is on, the model performed about 3% for the high
pressure and 6% for the low pressure. The linear regression (LR) shows
an improvement over this with the best feature (surface temperature
at driver’s windshield) having an NRMSE of 0.3% and worst feature
(air velocity at passenger’s foot) having an NRMSE of 2.5%.

In terms of the amount of elapsed time to compute 1 second of simu-
lated time, the physics-based model resulted in speeds of 7.6ms s−1 for
warm-up mode and 250ms s−1 for cool-down mode. Comparing the
warm-up speed to the speed of the ML model, which is 0.007ms s−1,

95
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shows a 1400-fold speed up in predictions. Therefore, the chosen ML

model is able to outperform the physics-based model.
Furthermore, Section 5.5 built an ML model for a house using the

same approach. The results for the house show a good accuracy, with
an average NRMSE of across all sensors of 0.068 and a very fast average
prediction speed of 0.048µs s−1.

2. Which machine learning model provides the most accurate next
step predictions for the thermal aspects of various locations in
different thermal environments?

1. Which ML methods are the most accurate for a car cabin?

2. Which ML methods are the most accurate for a house?

3. Are the ML techniques that perform best for the two case
studies the same? If not, why are they different?

For both the car cabin and house case study, a LR was chosen to
model the data, although the results were comparable to other models,
such as ridge, lasso, and elastic net regression. The LR was selected as
the model is simple, but robust, and thermal systems are mainly linear
with respect to their inputs. The next-step predictions were found
using normalised data.

In the car cabin case study, the LR model resulted in an root mean
squared error (RMSE) of 0.0040 and R2 value of 0.995. The house case
study found that the LR model produced an RMSE of 0.017 and R2

value of 0.950. The R2 values for the car cabin and house indicate
that most of the variability in the response can be explained by the
selected regression models (99.5% or 95.0%, respectively). In both case
studies, the LR model showed a similar result could be achieved using
the regularisation methods, while the tree- and neighbours-based
methods showed poor performance on the data, and the multilayer
perceptron (MLP) results were in between.

3. Can the top performing machine learning model a provide stable,
long-term prediction?

1. Is the model stable for a car cabin?

2. Is the model stable for a house?

Both case studies examined a multi-step, longer term prediction
using the respective LR models. These results showed that the LR

model was able to provide open loop predictions with good accuracy.
Figure 4.10 showed the multi-step ahead predictions for a climatic
wind tunnel (CWT) trial. The model is able to closely and differentially
predict the head, torso, and foot air temperature for the driver. The
long run predictions achieved an NRMSE of 1.1%, showing a stable
model for the car cabin.
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For the house case study, Figure 5.8 showed an example of the
predicted versus observed values in a day. It is striking that the model
is able to capture the peaks and dips in temperature throughout a
day, however the error is relatively large across long term predictions
across all houses (NRMSE 6.8%). Despite the larger error in the house
case study, this is still a promising method for the long run prediction
of thermal variables.

4. What thermal and environmental features are most important in
achieving a high accuracy machine learning thermal model?

1. What features are most important for a car cabin?

2. What features are most important for a house?

3. What are the similarities and differences in the features for
the two case studies and why?

When using the full set of features to predict all possible outputs, the
results show that the individual importances for features are similar
and have small importance score. However, when isolating an output
of interest, it is found that the current value of that feature is the
most important in predicting the next value. In Section 4.7, it is shown
that the air temperature at the drivers head is the most important
for the prediction of the next air temperature at the drivers head.
Similarly, in Section 5.7, the results show that the most recent value
of air temperature in space 10 (a bedroom) is the most important for
predicting the next value of the same feature. In the house case study,
a lag of 2 was used for modelling, therefore, a previous value of the
air temperature is also used for prediction. The importance of this
previous value varied depending on the room and house.

6.1.2 Limitations

To produce meaningful results that can be applied to real world prob-
lems, models require appropriate, robust data that reflect everyday
experiences and events. For example, the car data had only one exper-
iment with moisture present inside the cabin, which meant that the
model had minimal data to train on for that type of condition inside
the cabin. Similarly, the house case study mainly included detached
houses, which is not representative of the UK housing market and
may experience more heat loss. Therefore, further testing is required
on houses that are not detached, such as terraced or semi-detached
houses, to ensure the approach is suitable for these cases.

6.1.3 Advances to current understanding

The advancements made in this thesis are potentially beneficial to a
wide range of thermal environments, ranging from the temperature of
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a swimming pool to the humidity in a space craft. This thesis adapted
a common approach to two different thermal environments in order
to examine if a unified approach was suitable. Not only did this
thesis adapt a common approach, but it also aimed to simplify what
could often be seen as complex modelling, for example, physics-based
models that require detailed and sometimes unavailable data, such
as geometry and material information. This thesis has shown that a
simplified process can speed up the predictions of thermal variables
without necessarily compromising the quality of the results. A further
contribution is that one single model is built to predict the thermal
variables multiple locations. In the car cabin, this is done through
the prediction of thermal variables at the head, torso, and foot of the
occupants, and for the house, this is through the prediction of various
rooms. Adapting this approach leads to fast predictions that are able
to differentiate between these various locations.

6.2 future work

The long-term vision for this work is that we can design, build, and
control thermal environments (including houses and vehicles) more
optimally based on virtual experiments. While virtual environments
or simulation models have been feasible, using them for optimisation
is difficult as they are hard to construct and often too computationally
slow. Given this work, future work can now go ahead including:

1. optimising the control logic for vehicles to reduce energy cost
while maintaining comfort;

2. optimising the control logic for houses in the same way;

3. optimising the physical design of both vehicles and houses to-
wards the same goal.

6.3 summary

The work in this thesis adapted a machine learning approach to
thermal modelling. The aim was to simplify the modelling process
while providing fast and accurate predictions of various thermal
variables. Two case studies, namely a car cabin and a house, were
investigated and modelled using LR. The resulting thermal predictions
for various spaces showed promise for a ML approach, specifically
using a linear model such as LR. Furthermore, this modelling approach
shows a great opportunity for use in a wide range of other thermal
environments.
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B
C W T T R I A L M E A S U R E M E N T D ATA P L O T S

This appendix provides plots of the measurement data collected dur-
ing the car cabin CWT experiments 2 through 5, similar to Figure 4.5
that shows data for CWT 1. From left to right, top to bottom this
includes air temperatures, relative humidities, mean radiant tempera-
tures, surface temperatures, vent air temperatures, and air velocities.
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Figure B.1: Measurements from CWT trial 2. From left to right, top to bottom
this includes air temperatures, relative humidities, mean radiant
temperatures, surface temperatures, vent air temperatures, and
air velocities.
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Figure B.2: Measurements from CWT trial 3. From left to right, top to bottom
this includes air temperatures, relative humidities, mean radiant
temperatures, surface temperatures, vent air temperatures, and
air velocities.
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Figure B.3: Measurements from CWT trial 4. From left to right, top to bottom
this includes air temperatures, relative humidities, mean radiant
temperatures, surface temperatures, vent air temperatures, and
air velocities.
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Figure B.4: Measurements from CWT trial 5. From left to right, top to bottom
this includes air temperatures, relative humidities, mean radiant
temperatures, surface temperatures, vent air temperatures, and
air velocities.
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M L M O D E L P E R F O R M A N C E P E R H O U S E

This appendix shows the full results of the machine learning models
per house (0–17). A summary of these results was provided in Table 5.5.
The computation time is given in seconds and measures both the
model training and prediction time. The mean squared error (MSE),
RMSE, mean absolute error (MAE), and the coefficient of determination
(R2) are averaged across the last 3-folds of the 5-fold TimeSeriesSplit
cross validation.

Table C.1: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 0.

Model Time MSE RMSE MAE R2

Linear 0.2 0.000 33± 0.000 13 0.016 09± 0.002 75 0.009 68± 0.002 29 0.967 68± 0.018 33

Ridge 0.1 0.000 31± 0.000 11 0.016 01± 0.002 61 0.009 74± 0.002 14 0.969 05± 0.015 91

Lasso 32.0 0.000 24± 0.000 03 0.014 28± 0.001 12 0.008 49± 0.000 32 0.978 24± 0.003 08

Elastic net 32.0 0.000 24± 0.000 03 0.014 28± 0.001 12 0.008 49± 0.000 32 0.978 24± 0.003 08

K-neighbors 2.2 0.003 76± 0.001 07 0.057 48± 0.008 78 0.043 45± 0.006 35 0.641 65± 0.114 28

Decision tree 1.3 0.006 04± 0.001 69 0.073 18± 0.012 27 0.056 03± 0.007 40 0.428 28± 0.086 88

Random forest 13.7 0.005 38± 0.001 66 0.068 38± 0.012 77 0.051 94± 0.007 46 0.495 31± 0.087 90

Extra trees 1.8 0.005 11± 0.001 34 0.065 71± 0.011 76 0.050 10± 0.007 19 0.500 38± 0.101 72

XGBoost 365.6 0.001 27± 0.000 74 0.030 19± 0.008 93 0.019 39± 0.003 79 0.913 55± 0.003 12

MLP 71.2 0.001 36± 0.001 40 0.029 57± 0.015 52 0.018 73± 0.010 37 0.839 42± 0.181 57

Table C.2: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 1.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 64± 0.000 07 0.023 30± 0.001 44 0.013 71± 0.001 11 0.929 73± 0.024 86

Ridge 0.7 0.000 64± 0.000 07 0.023 35± 0.001 38 0.013 75± 0.001 10 0.929 35± 0.025 67

Lasso 10.0 0.000 64± 0.000 07 0.023 37± 0.001 34 0.013 81± 0.001 06 0.929 42± 0.025 33

Elastic net 11.1 0.000 64± 0.000 07 0.023 37± 0.001 34 0.013 81± 0.001 06 0.929 42± 0.025 33

K-neighbors 5.2 0.003 62± 0.001 26 0.058 01± 0.009 44 0.042 46± 0.007 24 0.671 34± 0.035 05

Decision tree 0.7 0.005 79± 0.002 20 0.073 46± 0.014 07 0.054 78± 0.009 55 0.470 98± 0.067 90

Random forest 15.3 0.005 32± 0.002 57 0.069 38± 0.017 13 0.050 28± 0.012 21 0.539 40± 0.061 63

Extra trees 2.3 0.004 64± 0.002 00 0.064 26± 0.014 10 0.046 21± 0.010 94 0.598 88± 0.029 63

XGBoost 9.5 0.000 81± 0.000 12 0.026 43± 0.001 94 0.015 34± 0.001 04 0.918 01± 0.015 13

MLP 130.7 0.000 78± 0.000 02 0.026 08± 0.000 17 0.017 08± 0.000 58 0.917 06± 0.026 50
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Table C.3: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 2.

Model Time MSE RMSE MAE R2

Linear 0.2 0.000 51± 0.000 12 0.017 28± 0.002 17 0.009 84± 0.001 56 0.939 97± 0.017 72

Ridge 0.0 0.000 52± 0.000 12 0.017 28± 0.002 18 0.009 83± 0.001 56 0.939 95± 0.017 77

Lasso 6.6 0.000 52± 0.000 13 0.017 48± 0.002 25 0.009 96± 0.001 59 0.939 40± 0.018 34

Elastic net 7.2 0.000 52± 0.000 13 0.017 47± 0.002 25 0.009 95± 0.001 59 0.939 41± 0.018 34

K-neighbors 0.3 0.002 14± 0.000 63 0.043 60± 0.005 46 0.032 08± 0.003 69 0.648 13± 0.148 49

Decision tree 0.0 0.005 25± 0.000 95 0.070 39± 0.006 37 0.056 73± 0.005 25 0.077 56± 0.338 76

Random forest 4.4 0.002 58± 0.000 67 0.047 60± 0.004 74 0.035 76± 0.003 30 0.583 29± 0.161 13

Extra trees 2.2 0.002 27± 0.000 65 0.043 89± 0.005 17 0.032 96± 0.003 17 0.639 45± 0.151 87

XGBoost 48.0 0.000 74± 0.000 19 0.021 60± 0.003 42 0.013 08± 0.001 26 0.909 84± 0.029 13

MLP 71.8 0.000 64± 0.000 15 0.020 94± 0.002 72 0.014 42± 0.001 31 0.916 77± 0.028 66

Table C.4: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 3.

Model Time MSE RMSE MAE R2

Linear 0.3 0.000 35± 0.000 01 0.015 36± 0.000 21 0.009 08± 0.000 15 0.954 81± 0.016 74

Ridge 0.1 0.000 35± 0.000 01 0.015 26± 0.000 18 0.008 90± 0.000 07 0.955 11± 0.016 68

Lasso 31.2 0.000 35± 0.000 02 0.015 66± 0.000 11 0.009 36± 0.000 13 0.954 25± 0.016 65

Elastic net 33.2 0.000 35± 0.000 02 0.015 66± 0.000 11 0.009 36± 0.000 13 0.954 26± 0.016 67

K-neighbors 2.0 0.002 79± 0.000 78 0.049 59± 0.007 06 0.037 83± 0.005 38 0.638 76± 0.076 11

Decision tree 1.1 0.005 43± 0.000 74 0.070 39± 0.004 84 0.055 62± 0.003 85 0.302 46± 0.204 38

Random forest 2.0 0.004 40± 0.000 76 0.060 55± 0.003 95 0.048 55± 0.004 42 0.337 40± 0.357 18

Extra trees 6.9 0.003 76± 0.000 41 0.056 70± 0.002 86 0.044 83± 0.002 84 0.459 97± 0.232 61

XGBoost 39.2 0.000 41± 0.000 06 0.016 37± 0.000 76 0.009 90± 0.000 63 0.941 58± 0.030 37

MLP 60.1 0.000 46± 0.000 02 0.018 49± 0.000 25 0.012 56± 0.000 12 0.940 79± 0.020 29

Table C.5: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 4.

Model Time MSE RMSE MAE R2

Linear 0.2 0.000 38± 0.000 09 0.015 38± 0.002 23 0.008 66± 0.001 13 0.955 26± 0.011 22

Ridge 62.9 0.000 37± 0.000 08 0.015 32± 0.002 12 0.008 63± 0.001 07 0.955 96± 0.010 27

Lasso 37.1 0.000 34± 0.000 02 0.015 24± 0.000 92 0.008 87± 0.000 75 0.959 33± 0.004 56

Elastic net 35.8 0.000 34± 0.000 02 0.015 24± 0.000 92 0.008 87± 0.000 75 0.959 33± 0.004 56

K-neighbors 1.1 0.005 15± 0.001 91 0.067 08± 0.014 27 0.050 55± 0.010 63 0.423 86± 0.156 98

Decision tree 0.6 0.009 32± 0.003 54 0.090 36± 0.019 26 0.069 90± 0.014 49 −0.071 97± 0.328 85

Random forest 1.9 0.008 68± 0.002 99 0.086 29± 0.018 00 0.066 83± 0.013 73 0.023 32± 0.293 68

Extra trees 1.2 0.009 77± 0.003 97 0.090 68± 0.022 35 0.071 72± 0.017 92 −0.069 70± 0.368 88

XGBoost 224.6 0.001 74± 0.001 29 0.034 30± 0.016 51 0.019 85± 0.009 31 0.818 01± 0.121 51

MLP 69.0 0.000 40± 0.000 08 0.017 06± 0.002 72 0.010 28± 0.001 01 0.951 43± 0.012 73
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Table C.6: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 5.

Model Time MSE RMSE MAE R2

Linear 0.2 0.000 52± 0.000 09 0.017 45± 0.002 00 0.008 24± 0.001 32 0.952 88± 0.009 23

Ridge 28.9 0.000 40± 0.000 10 0.015 19± 0.002 16 0.008 20± 0.001 39 0.963 89± 0.013 37

Lasso 18.0 0.000 42± 0.000 11 0.016 10± 0.002 35 0.009 02± 0.001 62 0.961 11± 0.015 47

Elastic net 18.4 0.000 42± 0.000 11 0.016 11± 0.002 35 0.009 02± 0.001 62 0.961 10± 0.015 47

K-neighbors 2.0 0.003 85± 0.001 74 0.057 55± 0.014 58 0.043 65± 0.011 43 0.636 61± 0.164 10

Decision tree 0.7 0.009 56± 0.005 91 0.089 80± 0.028 97 0.070 53± 0.023 79 0.138 89± 0.418 35

Random forest 2.3 0.009 88± 0.007 29 0.086 17± 0.035 41 0.068 26± 0.030 07 0.216 96± 0.485 34

Extra trees 5.1 0.008 84± 0.006 41 0.081 96± 0.033 36 0.064 23± 0.028 00 0.284 84± 0.426 73

XGBoost 103.2 0.000 96± 0.000 69 0.025 81± 0.011 56 0.015 16± 0.007 16 0.924 47± 0.046 68

MLP 218.4 0.000 51± 0.000 05 0.018 23± 0.001 61 0.009 16± 0.001 46 0.954 34± 0.009 14

Table C.7: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 6.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 28± 0.000 11 0.015 17± 0.003 20 0.007 72± 0.000 63 0.969 67± 0.005 92

Ridge 0.1 0.000 19± 0.000 03 0.012 64± 0.000 92 0.007 60± 0.000 59 0.975 26± 0.009 25

Lasso 14.9 0.000 20± 0.000 02 0.013 16± 0.000 65 0.008 52± 0.001 03 0.975 97± 0.006 92

Elastic net 15.1 0.000 21± 0.000 02 0.013 18± 0.000 66 0.008 53± 0.001 05 0.975 95± 0.006 91

K-neighbors 1.4 0.003 90± 0.001 98 0.057 41± 0.014 92 0.043 83± 0.011 32 0.634 14± 0.123 37

Decision tree 0.6 0.007 16± 0.003 26 0.077 99± 0.017 73 0.061 52± 0.013 24 0.270 74± 0.342 36

Random forest 1.2 0.007 98± 0.004 45 0.076 80± 0.024 06 0.061 53± 0.018 98 0.114 44± 0.599 56

Extra trees 3.9 0.007 48± 0.004 22 0.074 64± 0.023 63 0.059 65± 0.018 56 0.177 99± 0.532 37

XGBoost 67.4 0.000 62± 0.000 41 0.021 09± 0.007 96 0.013 14± 0.004 37 0.940 81± 0.027 64

MLP 206.7 0.000 30± 0.000 11 0.016 31± 0.003 25 0.010 20± 0.001 41 0.966 67± 0.006 62

Table C.8: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 7.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 32± 0.000 12 0.014 96± 0.002 93 0.008 20± 0.001 91 0.970 99± 0.012 58

Ridge 44.8 0.000 20± 0.000 07 0.012 14± 0.002 35 0.007 99± 0.001 76 0.981 19± 0.007 98

Lasso 18.4 0.000 24± 0.000 11 0.013 22± 0.003 10 0.008 69± 0.002 20 0.978 34± 0.010 67

Elastic net 19.0 0.000 24± 0.000 10 0.013 43± 0.002 93 0.008 81± 0.002 12 0.977 99± 0.010 22

K-neighbors 2.4 0.005 27± 0.003 33 0.061 47± 0.016 04 0.048 21± 0.014 36 0.457 12± 0.382 98

Decision tree 0.9 0.008 05± 0.003 31 0.080 59± 0.017 01 0.064 09± 0.015 06 0.090 25± 0.578 05

Random forest 5.9 0.007 17± 0.003 14 0.070 64± 0.014 65 0.056 73± 0.013 99 0.230 04± 0.510 35

Extra trees 5.2 0.007 35± 0.003 21 0.071 92± 0.014 78 0.058 11± 0.014 45 0.173 91± 0.559 88

XGBoost 298.9 0.001 07± 0.000 79 0.023 66± 0.008 06 0.015 06± 0.005 60 0.897 38± 0.082 73

MLP 1799.3 0.000 39± 0.000 14 0.017 43± 0.003 10 0.011 12± 0.002 91 0.962 28± 0.015 55
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Table C.9: A comparison of the 10 multi-output ML models. The computation
time is given as seconds to train the model and the metrics include
MSE, RMSE, MAE, and the coefficient of determination (R2), which
are averaged across the last 3-folds of the 5-fold cross validation.
The results here are for house 8.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 25± 0.000 07 0.012 58± 0.001 23 0.007 09± 0.000 35 0.966 78± 0.003 79

Ridge 0.1 0.000 25± 0.000 07 0.012 58± 0.001 23 0.007 09± 0.000 35 0.966 78± 0.003 79

Lasso 26.6 0.000 27± 0.000 07 0.013 98± 0.001 13 0.008 07± 0.000 35 0.965 03± 0.003 70

Elastic net 27.0 0.000 27± 0.000 07 0.013 98± 0.001 13 0.008 07± 0.000 35 0.965 03± 0.003 70

K-neighbors 1.1 0.003 44± 0.000 32 0.054 09± 0.003 14 0.041 46± 0.001 59 0.381 01± 0.126 15

Decision tree 0.5 0.007 14± 0.001 01 0.078 80± 0.004 76 0.062 03± 0.004 21 −0.117 17± 0.168 47

Random forest 4.6 0.005 49± 0.000 37 0.065 96± 0.001 76 0.052 95± 0.001 80 −0.008 07± 0.168 46

Extra trees 3.1 0.005 01± 0.000 24 0.063 37± 0.001 20 0.050 20± 0.001 36 0.093 87± 0.163 13

XGBoost 114.5 0.000 57± 0.000 07 0.018 80± 0.000 72 0.011 94± 0.000 34 0.910 61± 0.013 91

MLP 94.6 0.000 30± 0.000 08 0.014 69± 0.001 22 0.009 17± 0.000 49 0.957 76± 0.003 48

Table C.10: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 9.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 21± 0.000 03 0.013 71± 0.001 32 0.008 89± 0.001 12 0.975 89± 0.002 20

Ridge 0.0 0.000 21± 0.000 03 0.013 71± 0.001 32 0.008 89± 0.001 12 0.975 89± 0.002 20

Lasso 11.5 0.000 22± 0.000 04 0.013 79± 0.001 42 0.008 92± 0.001 17 0.975 62± 0.001 99

Elastic net 11.1 0.000 22± 0.000 04 0.013 79± 0.001 42 0.008 92± 0.001 17 0.975 62± 0.001 99

K-neighbors 2.6 0.003 47± 0.001 14 0.054 81± 0.008 73 0.041 98± 0.007 07 0.530 79± 0.142 63

Decision tree 0.4 0.006 35± 0.002 25 0.073 79± 0.013 09 0.058 09± 0.010 40 0.222 60± 0.214 94

Random forest 4.4 0.005 32± 0.002 09 0.065 38± 0.012 81 0.052 03± 0.010 17 0.279 83± 0.301 78

Extra trees 2.5 0.004 70± 0.001 83 0.062 03± 0.011 93 0.049 10± 0.009 84 0.376 98± 0.245 86

XGBoost 48.0 0.000 28± 0.000 07 0.015 59± 0.002 25 0.010 07± 0.001 74 0.966 35± 0.007 71

MLP 419.8 0.000 24± 0.000 04 0.014 71± 0.001 52 0.010 16± 0.001 83 0.972 88± 0.002 00

Table C.11: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 10.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 45± 0.000 09 0.018 02± 0.002 10 0.011 05± 0.001 52 0.937 79± 0.013 71

Ridge 0.1 0.000 46± 0.000 09 0.018 08± 0.002 13 0.011 08± 0.001 55 0.936 51± 0.014 02

Lasso 32.3 0.000 48± 0.000 10 0.019 29± 0.002 51 0.011 99± 0.001 79 0.934 71± 0.014 61

Elastic net 33.3 0.000 48± 0.000 10 0.019 29± 0.002 51 0.011 99± 0.001 79 0.934 71± 0.014 61

K-neighbors 3.7 0.003 72± 0.001 58 0.056 94± 0.009 44 0.043 84± 0.008 68 0.532 58± 0.156 67

Decision tree 0.0 0.024 97± 0.014 42 0.139 40± 0.034 35 0.119 44± 0.033 11 −2.283 71± 1.615 70

Random forest 2.1 0.007 77± 0.005 03 0.076 65± 0.018 92 0.061 40± 0.018 71 −0.008 79± 0.591 10

Extra trees 1.8 0.010 08± 0.006 40 0.086 57± 0.020 66 0.071 12± 0.020 58 −0.345 38± 0.747 89

XGBoost 50.1 0.001 03± 0.000 68 0.025 26± 0.006 07 0.015 28± 0.005 25 0.880 26± 0.067 73

MLP 86.3 0.000 47± 0.000 08 0.019 02± 0.002 09 0.012 16± 0.001 52 0.936 89± 0.013 62
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Table C.12: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 11.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 43± 0.000 06 0.015 24± 0.001 20 0.008 15± 0.001 04 0.950 51± 0.005 76

Ridge 31.9 0.000 43± 0.000 06 0.015 30± 0.001 22 0.008 19± 0.001 06 0.950 51± 0.005 77

Lasso 18.5 0.000 45± 0.000 05 0.016 46± 0.001 02 0.009 11± 0.000 95 0.948 74± 0.005 89

Elastic net 18.3 0.000 45± 0.000 05 0.016 46± 0.001 02 0.009 11± 0.000 95 0.948 74± 0.005 89

K-neighbors 1.1 0.005 32± 0.002 52 0.062 08± 0.012 51 0.048 72± 0.010 80 0.497 63± 0.176 66

Decision tree 0.5 0.010 36± 0.003 64 0.090 82± 0.014 60 0.074 17± 0.013 63 −0.002 82± 0.224 92

Random forest 5.0 0.007 85± 0.003 34 0.072 72± 0.014 16 0.059 800±0.013 120 0.275 49± 0.232 61

Extra trees 4.8 0.007 32± 0.003 18 0.069 96± 0.013 32 0.057 33± 0.012 32 0.319 33± 0.219 72

XGBoost 54.1 0.000 97± 0.000 42 0.022 71± 0.005 89 0.013 32± 0.004 42 0.910 18± 0.026 94

MLP 94.1 0.000 46± 0.000 06 0.016 76± 0.001 46 0.009 53± 0.001 22 0.947 71± 0.007 17

Table C.13: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 12.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 89± 0.000 48 0.022 92± 0.003 93 0.013 72± 0.001 92 0.893 53± 0.058 08

Ridge 0.8 0.000 69± 0.000 23 0.022 82± 0.003 49 0.014 40± 0.002 11 0.916 93± 0.029 22

Lasso 17.2 0.000 55± 0.000 07 0.020 35± 0.001 31 0.012 86± 0.000 92 0.934 76± 0.010 96

Elastic net 18.9 0.000 54± 0.000 08 0.020 22± 0.001 35 0.012 75± 0.000 91 0.934 32± 0.011 63

K-neighbors 2.8 0.004 26± 0.000 64 0.061 75± 0.002 89 0.047 78± 0.002 49 0.476 60± 0.041 05

Decision tree 0.4 0.007 63± 0.002 16 0.083 62± 0.010 78 0.064 85± 0.006 82 0.008 43± 0.218 26

Random forest 0.9 0.007 08± 0.001 58 0.079 53± 0.007 38 0.062 36± 0.005 12 0.134 62± 0.135 55

Extra trees 0.6 0.006 68± 0.001 94 0.077 09± 0.009 85 0.060 25± 0.007 27 0.163 20± 0.176 21

XGBoost 106.4 0.001 11± 0.000 51 0.028 24± 0.004 73 0.018 71± 0.003 44 0.880 41± 0.044 16

MLP 280.6 0.001 08± 0.000 20 0.029 61± 0.002 87 0.020 94± 0.002 27 0.868 33± 0.021 56

Table C.14: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 13.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 82± 0.000 04 0.021 37± 0.001 12 0.012 63± 0.001 08 0.926 60± 0.002 52

Ridge 0.0 0.000 82± 0.000 04 0.021 32± 0.001 09 0.012 52± 0.001 03 0.927 07± 0.002 58

Lasso 22.8 0.000 84± 0.000 05 0.022 28± 0.001 44 0.013 44± 0.001 31 0.924 53± 0.003 19

Elastic net 23.8 0.000 84± 0.000 05 0.022 28± 0.001 44 0.013 44± 0.001 31 0.924 53± 0.003 19

K-neighbors 12.4 0.004 11± 0.001 00 0.059 95± 0.007 03 0.045 94± 0.006 59 0.565 19± 0.111 16

Decision tree 0.8 0.007 88± 0.001 73 0.084 52± 0.009 89 0.065 91± 0.007 58 0.167 70± 0.187 25

Random forest 2.6 0.007 04± 0.001 23 0.074 50± 0.007 58 0.059 85± 0.007 09 0.299 26± 0.119 45

Extra trees 5.3 0.006 91± 0.001 34 0.074 18± 0.008 22 0.059 34± 0.007 56 0.314 05± 0.125 55

XGBoost 71.7 0.000 98± 0.000 11 0.024 58± 0.002 43 0.014 92± 0.001 85 0.911 71± 0.007 74

MLP 125.3 0.000 85± 0.000 05 0.022 64± 0.001 54 0.013 85± 0.001 06 0.923 09± 0.003 42
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Table C.15: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 14.

Model Time MSE RMSE MAE R2

Linear 0.2 0.000 71± 0.000 16 0.020 35± 0.001 87 0.011 62± 0.000 92 0.933 93± 0.022 56

Ridge 0.0 0.000 72± 0.000 16 0.020 39± 0.001 85 0.011 68± 0.000 90 0.933 79± 0.022 42

Lasso 18.2 0.000 73± 0.000 16 0.021 35± 0.001 78 0.012 45± 0.000 74 0.932 19± 0.023 12

Elastic net 18.4 0.000 73± 0.000 16 0.021 35± 0.001 78 0.012 45± 0.000 74 0.932 19± 0.023 12

K-neighbors 21.8 0.005 21± 0.001 12 0.069 77± 0.007 76 0.052 10± 0.007 07 0.533 02± 0.027 02

Decision tree 1.4 0.008 10± 0.001 93 0.086 42± 0.011 69 0.067 02± 0.009 42 0.285 15± 0.028 61

Random forest 4.5 0.006 52± 0.002 17 0.075 21± 0.014 66 0.058 42± 0.012 78 0.438 38± 0.099 83

Extra trees 2.9 0.005 92± 0.001 84 0.072 03± 0.013 62 0.055 31± 0.011 82 0.502 58± 0.082 51

XGBoost 103.2 0.000 86± 0.000 04 0.023 67± 0.000 36 0.014 42± 0.000 62 0.919 24± 0.014 19

MLP 246.9 0.000 88± 0.000 11 0.024 81± 0.000 96 0.015 49± 0.000 86 0.918 26± 0.019 37

Table C.16: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 15.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 22± 0.000 01 0.010 99± 0.000 25 0.007 51± 0.000 18 0.961 38± 0.016 12

Ridge 0.5 0.000 21± 0.000 02 0.011 50± 0.000 64 0.008 13± 0.000 32 0.961 34± 0.016 70

Lasso 17.9 0.000 21± 0.000 02 0.011 39± 0.000 81 0.008 04± 0.000 42 0.961 69± 0.016 42

Elastic net 19.0 0.000 21± 0.000 02 0.011 39± 0.000 81 0.008 05± 0.000 42 0.961 67± 0.016 43

K-neighbors 3.1 0.001 87± 0.000 24 0.040 11± 0.004 32 0.031 25± 0.002 99 0.703 39± 0.072 14

Decision tree 0.8 0.003 37± 0.000 53 0.052 52± 0.005 15 0.041 43± 0.003 63 0.442 86± 0.176 74

Random forest 7.6 0.003 04± 0.000 65 0.049 11± 0.007 06 0.038 14± 0.004 94 0.513 12± 0.150 13

Extra trees 4.7 0.002 56± 0.000 60 0.043 77± 0.006 95 0.033 89± 0.004 74 0.596 45± 0.128 33

XGBoost 5.6 0.000 62± 0.000 43 0.021 06± 0.009 16 0.013 67± 0.004 65 0.918 02± 0.029 44

MLP 775.1 0.000 82± 0.000 36 0.022 39± 0.004 56 0.019 50± 0.005 19 0.847 03± 0.111 87

Table C.17: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 16.

Model Time MSE RMSE MAE R2

Linear 0.1 0.000 86± 0.000 21 0.021 70± 0.002 27 0.012 86± 0.001 46 0.937 14± 0.012 65

Ridge 23.5 0.000 85± 0.000 21 0.021 72± 0.002 25 0.012 88± 0.001 45 0.937 31± 0.012 71

Lasso 21.5 0.000 85± 0.000 19 0.022 58± 0.001 94 0.013 86± 0.001 48 0.936 30± 0.013 42

Elastic net 23.0 0.000 85± 0.000 19 0.022 58± 0.001 94 0.013 86± 0.001 48 0.936 30± 0.013 42

K-neighbors 8.1 0.003 77± 0.001 17 0.057 94± 0.010 28 0.044 16± 0.009 38 0.687 10± 0.072 87

Decision tree 0.7 0.008 02± 0.002 31 0.086 52± 0.013 97 0.066 81± 0.011 53 0.301 68± 0.145 70

Random forest 3.4 0.006 20± 0.002 04 0.074 38± 0.014 47 0.057 86± 0.012 58 0.493 30± 0.125 20

Extra trees 6.0 0.005 48± 0.001 75 0.069 35± 0.013 42 0.053 76± 0.011 82 0.547 96± 0.107 37

XGBoost 153.5 0.001 10± 0.000 24 0.024 64± 0.002 91 0.015 28± 0.002 94 0.920 96± 0.019 04

MLP 543.1 0.000 99± 0.000 19 0.025 11± 0.002 47 0.015 87± 0.001 96 0.926 00± 0.004 40
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Table C.18: A comparison of the 10 multi-output ML models. The computa-
tion time is given as seconds to train the model and the metrics
include MSE, RMSE, MAE, and the coefficient of determination (R2),
which are averaged across the last 3-folds of the 5-fold cross
validation. The results here are for house 17.

Model Time MSE RMSE MAE R2

Linear 0.1 0.001 52± 0.000 35 0.027 00± 0.003 71 0.016 34± 0.000 35 0.867 95± 0.047 55

Ridge 0.8 0.001 19± 0.000 10 0.023 42± 0.001 68 0.016 14± 0.000 72 0.903 82± 0.003 34

Lasso 17.9 0.001 20± 0.000 08 0.024 48± 0.001 27 0.017 29± 0.000 43 0.902 98± 0.003 32

Elastic net 17.7 0.001 20± 0.000 08 0.024 48± 0.001 27 0.017 29± 0.000 43 0.902 98± 0.003 32

K-neighbors 2.1 0.004 85± 0.000 19 0.066 97± 0.000 25 0.049 84± 0.001 56 0.519 71± 0.114 09

Decision tree 0.5 0.007 44± 0.000 36 0.083 63± 0.002 07 0.063 30± 0.000 73 0.263 78± 0.185 96

Random forest 1.0 0.007 18± 0.000 63 0.079 58± 0.004 50 0.059 74± 0.000 19 0.331 84± 0.070 62

Extra trees 4.8 0.006 36± 0.000 77 0.075 55± 0.004 73 0.056 53± 0.000 26 0.397 66± 0.080 88

XGBoost 8.3 0.001 94± 0.000 53 0.036 00± 0.007 77 0.023 28± 0.003 55 0.849 54± 0.028 55

MLP 80.9 0.001 33± 0.000 05 0.026 98± 0.001 24 0.019 80± 0.001 09 0.890 10± 0.007 63
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