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COVENTRY UNIVERSITY

Abstract
Universality and Dynamical Behaviour in Pure and Disordered Spin-1 Models

by Alexandros VASILOPOULOS

The present thesis deals with the Monte Carlo study of models under dilution due to a single-
ion anisotropy, giving rise to a number of cross-over phenomena. The models considered are
the Blume-Capel and spin-1 Baxter-Wu in a crystal field, both possessing a rich phase transition
behaviour. Specifically, they tend to exhibit first-order-like traits, especially with the increase
of the strength of the crystal field. Thus, as one approaches their multicritical point, the study
becomes more complicated and elaborate, with finite-size effect appearing, especially for the
Baxter-Wu case due to the triplet interactions leading to strong first-order-like characteristics.

This work focuses on a number of interconnected topics. For the spin-1 Baxter-Wu model
under a crystal field, the aim is placed in elucidating the order of the transition and the uni-
versality class, a topic that is riddled by discrepancies in the literature. One would expect,
from the renormalisation group theory and phenomenological arguments utilising the similar
Blume-Capel model and dilute Potts models, that in the high-temperature regime the model
undergoes a continuous transition that falls into the universality class of the spin-1/2 Baxter-
Wu model. In fact, this is exactly the result recovered by the current work. Additionally, the
development of a possibly improved method to further study the aforementioned system is
attempted. Specifically, a hybrid algorithm is utilised and its dynamical scaling is thoroughly
studied in the model’s continuous-transitions regime. Such an approach could help in locating
and studying its pentacritical point.

Since the two-dimensional Blume-Capel model has been thoroughly studied, especially in
its pure form, in the current work it is considered under quenched disorder. Specifically, un-
correlated randomness is applied to the crystal-field strength, in the form of a bimodal distri-
bution. In addition, an external oscillating magnetic field drives the model out of equilibrium.
Studying this system in its multi-droplet regime, period averaged observables are calculated
and their susceptibilities are shown to scale like their counterparts on the pure equilibrium
model.

HTTPS://WWW.COVENTRY.AC.UK/
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1

Introduction

Complex Systems

Complex systems have at least as many definitions as there are scientific disciplines, but in gen-
eral they can be thought of as systems comprising of a very large number of individual agents
which, through interactions, give rise to a whole. Some examples are: the human brain, the
global economic market, societies, the global climate, transportations systems, cells, etc. Per-
haps, the most important characteristic of these types of systems is that they can demonstrate
collective behaviours. Usually, the individual units are content with acting only according to
what their immediate surrounding dictate. Every so often though, if the conditions are just
right, from these short range purviews can emerge long range collective phenomena. Conse-
quently, it is not difficult to imagine that these events are placed at the heart of contemporary re-
search in many fields, such as economics, biology, engineering, even philosophy, and of course,
physics. Some instances of these type of emergent events can be found in: changes in crystal
structures, ferromagnetism, critical opalescence at a gas-liquid transition, superconductivity
and superfluidity, etc.

Many of the examples given above exhibit collective behaviour as a result of a change in one
or more of the system’s parameters. In turn, this causes a shift from an initially short-range-
correlated state to a state with long-range correlations. Going in more depth with the examples,
certain species of grasshoppers, under specific environmental conditions, can transform in just
one generation from solitary entities to gregarious and nomadic beings [1, 2], even changing
their external characteristics, producing such devastation in their path as to be mentioned in
many ancient texts for the catastrophes they caused. Another similar example, stemming from
the animal kingdom, is a flock of starlings producing magnificent shapes while in flight. Even
though each bird can only perceive its immediate surrounding, the whole flock creates long
range patterns, known as murmurations, sometimes even resembling discernable structures.
Other paradigms include the human brain when experiencing a stroke [3], the global market
undergoing a crash [4], human interactions and virus spread [5], voting systems [6, 7], and
many more. All the above shifts can be classified as phase transitions.



2 Contents

Statistical Mechanics

The success of statistical physics is that it created a theoretical framework that allowed the
examination of many-body systems. Starting from the need to study the physical world, one
needs to consider that a small confine of space is expected to have a huge number of particles.1

Solving for example the equations of motion in this case is not only impossible, but also in-
tractable. Even supposing that the solution is known, it would be beyond the bounds of the
human brain to understand it. It becomes then necessary to describe such systems thermo-
dynamically, by their macroscopic properties.2 Under the lens of statistical mechanics, these
properties are defined by averages over microscopic states of the system.

Phase Transitions

This thesis deals with continuous and discontinuous phase transitions. In the latter, two (or
more) different states coexist, as happens for example to water when it freezes. In this case,
the states of matter involved coexist, until one is slowly reduced and the other prevails. These
transitions have many applications, especially in engineering. An instance of that are “phase
change materials” [9] that have the ability to absorb or release large amount of energy dur-
ing transitions, making them useful when there is need to heat or cool substances. The other
case of phase transitions to be discussed are continuous and are connected to the physics of
critical points. These are more inline with the examples discussed above, where long-range
correlations can derive from short-range interactions.

At the late 19th century, it was noted that phase transitions undergone by seemingly entirely
unalike systems present eerily identical characteristics. For example, physical quantities like
the magnetic susceptibility and the specific heat, can display the same diverging behaviour
across different systems [10–15], very close to the transition. Around the critical point, where
the phase changes, observables follow scaling laws of the form ∼ tx. In this expression, t =

(T − Tc)/Tc is the reduced temperature, Tc is the temperature of the transition, and x is called a
critical exponent.

These observations led to the establishment of the concept of universality, observed directly
by the critical exponents and universal ratios that uniquely characterise these events. Models
for whom these quantities coincide are said to fall in the same universality class. It is therefore
commonplace, instead of studying the system of interest directly, to probe critical properties by
investigating a simpler model of the same universality class.

Such considerations are regular, and perhaps easier realised, among many-body lattice sys-
tems with pairwise interactions. The most familiar and well researched example is the Ising
model (colloquially called the fruit-fly model of statistical physics). Due to their conceptual

1In general, a small confine of space is expected to have an Avogadro’s number of particles (approximately 1023).
2For a brief study of thermodynamics see [8].
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simplicity these magnetic models became the entry point to understanding phase transitions.
Starting with Pierre Curie [16], the first concrete theory of magnetic transitions was developed
to describe ferromagnetism. Later, around the 1920s, Wilhelm Lenz thought of a simple way of
modelling interactions occurring in a magnet, with the aim of creating a toy model for phase
transitions. He imagined a one-dimensional chain with equidistant molecules placed along its
length, able to interact only with their closest neighbours. Formally, this model is described by
the Hamiltonian

H = −J ∑
⟨ij⟩

σiσj, (1)

where the brackets ⟨. . . ⟩ indicate that the sum is over all nearest neighbours, J is the strength
of the exchange interactions, and the σi are binary variables able to take the values {−1,+1}.
Colloquially, the σi are called spins.3

The idea behind this construction was that with a high temperature each spin would point
randomly in any of the two directions, due to thermal fluctuations, thus creating a paramag-
net. By decreasing the temperature, interactions between nearest neighbours that reduce the
free energy could create long range order, possibly leading to the appearance of spontaneous
magnetisation. This was the problem that Lenz gave to one of his students, Ernst Ising, from
whom the name of the model is derived. Ising solved the model in one dimension and showed
that there is no phase transition for non-zero temperatures [17, 18].

Almost a decade later, Rudolf Peierls made an argument for the existence of ferromagnetic
order at finite temperatures for the two-dimensional Ising model [19, 20]. In 1944, Lars On-
sager solved the two-dimensional Ising model analytically, showing that it actually exhibits a
transition from a paramagnet to a ferromagnet [21]. This was a landmark event in the study
of phase transitions, because the Ising model critical exponents calculated by Onsager did not
agree with the ones predicted by theories trying to describe phase transitions [13]. It turns out
that the aforementioned theories, such as mean field and the Landau–Ginzburg theory, did not
capture fluctuations properly.

The most successful theory for describing phase transitions is that of renormalisation group,
developed by Kenneth Geddes Wilson [22–24]. In this framework, as we shall see further in
the thesis (Chapter 1), an understanding about how systems behave under different scales can
be established, giving the ability for a unified understanding of transition phenomena.

Several methods that allow to study models of statistical physics, like the Ising model have
been developed (see for example [25]). Unfortunately, even the simpler models do not yield
to analytic solutions in the vast majority of cases, and thus approximate methods have been
developed. In this work, the focus is placed on Monte Carlo methods to deal with the simulation

3Borrowing the nomenclature of quantum mechanics, these type of models are referred to as spin-1/2, due to
fermions with spin-1/2 only being able to be observed at states were their spin is either in the +1/2 or in the −1/2
state.
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of the magnetic system. The history of these methods dates back to the Los Alamos National
Laboratory, with the development of the most famous Monte Carlo algorithm, the Metropolis
algorithm [26, 27], commonly used in various forms in a large number of fields. The idea
behind this process is to perform ensemble averages instead of following the kinematics of
a system. These methods, along with the advancements in computer science and computer
power, have paved the way for the development of further, more elaborate, and case specific
approaches.

Scope of the Thesis

In the present work a number of interconnected two-dimensional problems will be tackled. The
main commonalities revolve around finite-size and cross-over phenomena, especially in the
case where a crystal-field anisotropy is introduced. This additional term in the Hamiltonian,
acting to dilute the system (see Chapter 3) is known to make things behave in a more first-
order-like manner, if one can say so, short of being rigorous. The main questions tackled are:
the dynamics of the pure and dilute Baxter-Wu model, especially as one approaches the mul-
ticritical point of the latter, while incorporating a cluster update. Additionally, the questions
of the order and universality of the phase transition of the aforementioned spin-1 Baxter-Wu
model will be answered, and the foundations for the accurate location of its multicritical point
will be laid. Lastly, the simpler but similar Blume-Capel model will be investigated under the
inclusion of quenched disorder and an external, time varying, magnetic field, that drives the
system out of equilibrium. This model undergoes a kinetic phase transition which, although
characterised by similar observables, stands on less solid foundation in terms of theoretical
understanding.

All the models mentioned above are conceptual derivatives of the Ising model, introduced
in Eq. (1). In their spin-1 form, they include a term that is equivalent to the fugacity, in a grand
canonical setting, making the number of spins a random variable around some mean, due to a
chemical potential, ∆. This term can simply be expressed as

∆ ∑
i

σ2
i . (2)

For the Baxter-Wu model, the nearest-neighbour interactions are between three spins, mak-
ing matters much more complicated, especially in the application of a cluster algorithm. The
Blume-Capel model, being much more thoroughly studied in the literature, is a fertile ground
to study the much richer and interesting case of quenched disorder. In a sense, due to its simi-
larity to the spin-1 Baxter-Wu model, this can be seen as paving the way for similar studies in
the latter, after resolving some essential questions for the Baxter-Wu first.
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These subjects are intricately related, since all exhibit some form of cross-over effects. The
Blume-Capel and spin-1 Baxter-Wu models’ phase diagrams consist of both first- and second-
order transition lines, connected by a multicritical point. Thus, by varying the system’s fields,
the behaviour changes from one regime to the other. For the Baxter-Wu model, as will be
shown, the continuous transition has first-order characteristics, and the finite-size system be-
haviour exhibits a cross-over from an apparent discontinuous to a continuous transition. A
naive interpretation of the behaviour of the smaller system sizes would thus lead to the in-
correct characterisation of the transition. Including quenched disorder to models with such
a phase diagram complicates things even further, since uncorrelated disorder is expected to
soften the discontinuous transition to a continuous one [28], at least in two dimensions. This
behaviour however is also riddled with finite-size effects [29].

Content Overview

After this short introduction, the rest of the text is structured as follows. Chapter 1 contains a
statistical physics primer, describing phase transitions and the renormalisation group. There,
the theory of transition phenomena will be discussed thoroughly, gathering the most impor-
tant results that will be used in the following chapters. Additionally, the study of systems of
finite sizes, in order to extrapolate results in the thermodynamic limit, is showcased. Also,
the renormalisation group will help provide a framework, through which the behaviour of
systems undergoing a phase transition can be inspected and understood. It will also provide
a language, allowing to discuss more precisely the phenomena, questions, and results of the
thesis.

In Chapter 2, the computational methods used by this work are described. These include
single-spin-flip algorithms, such as the Metropolis and heat-bath techniques, as well as cluster
algorithms, with the latter implemented in practice in hybrid applications later in the thesis.
Furthermore, generalised ensemble methods will be utilised, such as the multicanonical and
Wang-Landau approaches. All these algorithms were utilised, one way or the other, to produce
and test the results present in the following chapters. Chapter 2 concludes with a short pass
through additional methods, with which one can simulate similar models.

In Chapter 3, a study of the dynamical properties of the Baxter-Wu model is presented,
with an emphasis on the implementation of clusters and whether they can be of use when
studying the model towards the end of its second-order regime. The behaviour of the dynam-
ical properties of clusters in spin-1 models, implemented via some hybrid scheme, poses an
open questions in the literature. In fact, a cluster algorithm was never applied to the spin-1
Baxter-Wu model in any form before, and a cluster algorithm for the spin-1/2 case exists but
has been severely underutilised. Such an algorithmic scheme might help to identify and study
the multicritical point of the model.
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In Chapter 4, the transition properties as well as the critical behaviour of the spin-1 Baxter-
Wu model in a crystal field are considered. Past controversies with respect to the order of the
transition and the universality class of the model are resolved. Finally, the universal distribu-
tions are shown, for a qualitative discussion of the finite-size effects that plague the model in
the vicinity of the multicritical point. Specifically for the energy, these distributions will pro-
vide a simple paradigm for renormalisation-group concepts, highlighting the main ideas of
universality.

Chapter 5 contains an investigation on the Blume-Capel model, under a quenched random
crystal field. The application concerns uncorrelated disorder and will thus affect the behaviour
of the ex-first-order regime of the model. An additional periodically oscillating magnetic field
is included, and the model is studied in the multi-droplet regime, with many clusters forming
and expanding at any given time. Considerations about the behaviour and scaling of period
averaged observables showcase that the universality class of this kinetic model coincides with
the equilibrium one.

To conclude, a final chapter offers a summary of all the thesis as a whole, and opens the
discussion for future work. Lastly, the thesis has appendices, discussing subjects like data
analysis (Appendix A) and summarising results from least-square fits (Appendix B) which
would break the flow of the thesis were they placed in the main body of the text.
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Chapter 1

Theoretical Preamble

It is possible to formulate phase transitions by mathematical means, through the framework of
the renormalisation group. To discuss the complex phenomenon that is a phase transition, the
language of statistical mechanics is required. Additionally, to expand upon it computationally,
via Monte-Carlo methods, the concepts of phase spaces and statistical ensembles are necessary.
To this end, the focus of this chapter is placed on introducing the bare minimum theoretical
background necessary for the rest of the thesis. For thorough and detailed examinations of
these subjects, the reader is referred to the following sources [10–15, 25, 30–38].

This chapter’s structure is as follows: Section 1.1 includes an introduction to statistical
physics. A general approach to phase transitions and critical phenomena can be found in Sec-
tion 1.2. In Section 1.3, elements of the renormalisation group theory are given, while in Sec-
tion 1.4 finite-size scaling is discussed. Additionally, in Section 1.5 a survey of discontinuous
phase transitions can be found. Moreover, a discussion concerning disorder systems and the
Harris criterion can be found in Section 1.6. Furthermore, an overview of cross-over phenom-
ena that appear in computational studies of statistical physics systems is made in Section 1.7.

1.1 Statistical Physics Primer

1.1.1 Phase space

In a classical setting, to completely describe a system consisting of N particles, the knowledge
of all positions and momenta is required, qi and pi respectively with i = 1, 2, . . . 3N for a three-
dimensional space.1 This means that the system can be depicted by an abstract point, Γ(t) =

(q1(t), q2(t), . . . , q3N(t), p1(t), p2(t), . . . , p3N(t)), moving in a 6N-dimensional space, called the
phase space. The microstate of the system is defined by this point. In reality, only a certain number
of macroscopic variables can be observed at one time and an enormous amount of microstates
are in general compatible with this macrostate.

1In general N is a huge number, since in a small confine of space one can expect to find a number of particles of
the order of 1023.
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Following the trajectory of point Γ, a time average of any observable quantity Q(Γ, t) can
be calculated by

Q = lim
T→∞

1
T

∫ T

0
dtQ(Γ(t), t). (1.1)

Essentially, it would be impossible to accomplish the process implied by Eq. (1.1) for two rea-
sons: Firstly, it is unfeasible to know the positions and momenta of a large number of particles,
and secondly, it would be unworkable to follow their evolution through time. Thus, a more
accessible method of studying average properties of the system is necessary, and a way of
defining equilibrium and when it happens is also required. To surpass these difficulties, the
concept of statistical ensembles is needed, which will transpose the conversation from the time
evolution of one system to the distribution of microstates in phase space of an infinite amount
of similar systems.

1.1.2 Statistical ensemble

A key idea is that, given enough time, through the movement of the single system in phase
space, knowledge of the initial conditions would be totally lost, as a result of the complex inter-
actions [13, 32, 39]. In that sense, one can imagine starting with an ensemble of an infinite num-
ber of systems, in different initial conditions, and following their time evolution, {Γs(t)}∞

s=0.
The result would be some density, W(Γ, t), in phase space. Barring cases where a system ex-
hibits a very rugged energy landscape, which would force it to be stuck in some metastable
area of phase space, then it should be safe to assume that after an infinite amount of time the
ensemble would pass through every point of phase space. This is the crucial assumption of
ergodicity, which allows to pass from time to ensemble averages.2

More specifically, the fraction of copies in any particular infinitesimal volume of phase
space is W(Γ, t)dΓ, where dΓ = C ∏3N

i=1 dqidpi, defining an ensemble average for any observ-
able quantity Q(Γ, t) by

⟨Q(t)⟩ =
∫

W(Γ, t)Q(Γ, t)dΓ, (1.2)

where the integral is taken over the whole phase space. The constant factor C in the metric
needs to be included in the integration measure. Classically such a term cannot be justified,
but the quantum mechanical limit necessitates its existence.3 As will be discussed in the next
section, in thermodynamic equilibrium the two averages of Eqs. (1.1) and (1.2) should give
the same result. The next chapter will showcase why Monte Carlo methods can shine in this
framework.

2This assumption does not hold for example for glassy systems where certain volumes of phase space are un-
available, depending on the initial conditions [40]. Nevertheless, these are not systems that will be considered in
the current work.

3For further discussions on this matter see [13, 30, 32].
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1.1.3 Liouville’s theorem

Assuming that microstates cannot be created or destroyed, the flow of states through some
volume dΓ located around a point Γ can be calculated [32]

∂W
∂t

(Γ, t) = −W∇Γ · Γ̇ − Γ̇ · ∇ΓW = −∇Γ ·
[
WΓ̇

]
, (1.3)

where ∇Γ = ( ∂
∂q1

, . . . , ∂
∂q3N

, ∂
∂p1

, . . . , ∂
∂p3N

), and the dot on Γ̇ symbolises the derivative with re-
spect to time. Thus, a continuity equation can be defined

0 =
∂W
∂t

+∇Γ ·
[
WΓ̇

]
=

∂W
∂t

+∇Γ · J, (1.4)

where J = WΓ̇ is a current. This is Liouville’s theorem. Integrating Eq. (1.4) in a volume of phase
space, taking its limit to infinity, shows that W is conserved.

Since the total time derivative of W(Γ, t) is

dW
dt

=
∂W
∂t

+ Γ̇ · ∇ΓW, (1.5)

by combining Eqs. (1.3) and (1.5)

dW
dt

= −W∇Γ · Γ̇. (1.6)

Interestingly, for Hamiltonian systems, where it holds that q̇i = ∂H/∂pi and ṗi = −∂H/∂qi,
Eq. (1.6) is always equal to zero. In this case, the density W(Γ, t) can be thought of as an
incompressible fluid in phase space, where the density in phase space is conserved along a
trajectory, i.e.

dW
dt

= 0. (1.7)

From the above, an expression for the explicit time evolution of W is immediately available for
Hamiltonian systems

∂W
∂t

= −Γ̇ · ∇ΓW. (1.8)

For the distribution W to not explicitly change with time, implying thermodynamic equi-
librium, it is necessary that ∂W/∂t = 0. This then also implies that the flow of Eq. (1.4) is
steady. Then, the ensemble average of Eq. (1.2) does not explicitly depend on time and is thus
a stationary quantity. From the previous discussion it also follows that the density will not
depend explicitly on the qi and pi. This can readily be seen from Eq. (1.5), since if dW/dt = 0
and ∂W/∂t = 0, then also ∇ΓW is the zero vector.

Following the above discussion, there is a number of ways to define W, depending on the
constraints imposed on the system. Starting from the entropy and attempting to maximise it
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will give the appropriate distributions. More thorough discussion on the subject can be found
in references [13, 30–32].

1.1.4 Entropy, partition function, and free energy

The entropy is colloquially described as a measure of the disorder of a system. In general, it is
a quantity expressing how random a process is; the higher the entropy the less the knowledge
about the system and vice versa. It can be defined for a system at equilibrium although, if
a system out of equilibrium consists of a combination of subsystems, each very close to local
equilibrium, entropy can still be defined (see for example [13, 32]). The key property of the
entropy is that it cannot decrease in an isolated system. Given a probability distribution P,
which defines the likelihood of appearance of each microstate Γi, the entropy is defined as

S(P) = −∑
Γi

P(Γi) log P(Γi), (1.9)

where P(Γi) ≥ 0 and ∑Γi
P(Γi) = 1.

In principle, the probabilities P(Γi) can be deduced by maximising the entropy. For exam-
ple, assuming that the system is in some energy state in an interval [E0, E0 + ∆E], where ∆E is
a small quantity, then its microstate could be any as long as it has energy E ∈ [E0, E0 + ∆E].
Maximising the entropy, under the constraint that the sum of the probabilities of the accessible
microstates is equal to one, returns the microcanonical distribution, were Pi = 1/Ω. Ω is the
number of accessible microstates. Note that the maximal entropy is then equal to

S(E) = log Ω(E). (1.10)

Employing a different constraint, by assuming that the average energy of the system is
equal to E, the maximum entropy is achieved when

P(Γ) =
1
Z exp {−βH (Γ)}, (1.11)

where β = 1/T is the inverse of the temperature,4 and H(Γ) is the energy of configuration Γ.
Thus, the equilibrium system follows a Boltzmann distribution. This is the canonical ensemble.
The normalisation constant Z is the partition function, defined for a discrete energy system as

Z = ∑
Γ

exp {−βH (Γ)} = ∑
E

Ω(E) exp {−βE}. (1.12)

In the final equality, the summation in all the microstates was replaced by a sum in all energy
levels, with the addition of a density-of-states factor, Ω(E), which counts the degeneracy of

4The Boltzmann constant kB is set to be equal to unity, also defining the units. For example, the temperature
henceforth is measured in units of energy.
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each energy level. This term cannot usually be calculated, in all but the simplest of systems. If
it was known then, as will be shown in Section 1.1.5, any observable would be directly available
through the partition function.

It is interesting to note that different densities could return the same constraints for the
system, but not all would maximise the entropy. Meaning to say that the chosen distribution is
not only consistent with the available knowledge of the system, but is also the one containing
the least possible amount of information.

If on top of the energy of the system, the number of particles is allowed to vary around an
average value N, then the grand canonical ensemble corresponds to a maximum entropy, with

P(Γ) =
1
Z exp {−βH (Γ)− µN}, (1.13)

where µ is the chemical potential. This point of view will be useful when considering spin-1
systems in the next chapters. The term exp [−µN] of Eq. (1.13) defines the fugacity.

In general, for any number of constraints given from an observed macrostate, the entropy
can be shown to be a concave function of the constraints [13]. For the canonical ensemble
specifically, Eq. (1.11) maximises the entropy and substituting it to Eq. (1.9) results in S =

lnZ − β∂ lnZ/∂β, implying that the entropy is a Legendre transform of the logarithm of the
partition function. Directly then from the definition of the partition function in Eq. (1.12), S =

lnZ + βE. This last relation identifies the free energy, F , as

−βF = lnZ , (1.14)

indicating that the logarithm of the partition function is a valid thermodynamic potential. In
what follows, Z will be used extensively to derive observable quantities that will play a central
role in the analysis of systems.

1.1.5 Observables

The models that this work focuses on are magnetic lattice models, where spins are placed on
each site and communicate with their neighbours through multiplicative exchange interactions.
These models are built with an ensemble description in mind. In general, for non-disordered
systems, a blanket Hamiltonian can be written as

−βH =
n

∑
i=1

KiSi, (1.15)

where the {Si}n
i=0 are combinations of possible spin interactions and the {Ki}n

i=0 denote the
strengths of these interactions. For example, for the Ising model, only one of the K is non-zero,
and the accompanying S indicates a nearest-neighbour interaction, which can be written as
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S = ∑⟨ij⟩ σiσj, where σi can take the values ±1 and it denotes the spin on the ith lattice site,
defining the Ising model as

−βH = K ∑
⟨ij⟩

σiσj. (1.16)

In a sense, the objects S of Eq. (1.15) can be though of as functions of the spins {σi}, or even as
operators acting on the lattice and returning a number.

Moreover, note that Eq. (1.15) is able to indicate any possible interaction that exists between
the spins; from nearest- and next-nearest-neighbour interactions, to triplets and plaquettes,
or anisotropies and magnetic field terms. Writing the Hamiltonian as such, allows for a more
general discussion for observable quantities. For example, a system with nearest-, next-nearest-
, and square-plaquette-neighbour interactions, as well as a uniform magnetic field acting on
each lattice site can be expressed in terms of Eq. (1.15) as

−βH = K1 ∑
⟨ij⟩

σiσj + K2 ∑
⟨⟨ij⟩⟩

σiσj + K4 ∑
[ijkl]

σiσjσkσl − h ∑
i

σi, (1.17)

where the first term of the right-hand side indicates a sum over nearest and the second over
next-nearest neighbours. The third term is a four-spin nearest-neighbour plaquette interac-
tion. The last term is a uniform magnetic field of magnitude H = h/β. Thus, the interaction
strengths {Ki} of Eq. (1.15) span the parameter space, where each point describes the Hamilto-
nian as well as the conditions under which the system operates.

Having written down the Hamiltonian, it is now straightforward to express observables of
interest. Firstly, the average energy of the canonical ensemble can be written as a β derivative
of the partition function. Specifically,

⟨E⟩ = ∂(βF )

∂β
= − ∂

∂β
lnZ =

1
Z ∑

Γ
H(Γ) exp {−βH(Γ)}, (1.18)

which is evidently so, since the last expression is an average of the energy in the Boltzmann
distribution. The specific heat, C, can be defined from the energy as

C =
1
V

∂⟨E⟩
∂T

=
β2

V
∂2

∂β2 lnZ =
β2

V
(
⟨E2⟩ − ⟨E⟩2) = β2V

(
⟨e2⟩ − ⟨e⟩2) , (1.19)

where V is the volume of the system, and e the energy per spin. In the same fashion, the mag-
netisation, M, and the magnetic susceptibility, χ, can be expressed with the help of magnetic-
field derivatives. Respectively they are

β⟨M⟩ = ∂

∂H
logZ , (1.20)
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and

χ =
1
V

∂M
∂H

=
β−1

V
∂2

∂H2 lnZ =
β

V
(
⟨M2⟩ − ⟨M⟩2) = βV

(
⟨m2⟩ − ⟨m⟩2) , (1.21)

where m is the magnetisation per spin. Even in the case were no such field exists, a fabricated
field h can be used and in the end taken to the limit h → 0.

Notice that both the specific heat [Eq. (1.19)] and the magnetic susceptibility [Eq. (1.21)] can
be expressed as variances of the energy and the magnetisation, respectively. This is called the
fluctuation-dissipation theorem, since it connects the responses to changes of outside fields,
expressed by the derivatives, to the statistical variations around a mean of an observable quan-
tity. This fact will be of great importance in the following chapters, where there will be need to
measure these quantities by performing time-series analysis.

Another observable of great interest is the two-point correlation function, calculating the
covariance of two spins separated by some distance vector ri − rj. To accomplish expressing
this quantity in terms of the partition function, a term ∑i hiσi can be arbitrarily added to it.
Then, after all calculations are performed, this term can be turned off by taking the limit hi → 0,
for all i. Thus

Gc(ri − rj) = β−2 ∂2 logZ
∂hi∂hj

∣∣∣∣
hi ,hj=0

= ⟨σiσj⟩ − ⟨σi⟩⟨σj⟩. (1.22)

This function is often dubbed the connected correlation function.5 Away from a critical point and
at large distances, the correlation function decays exponentially [14, 41]

Gc(r) ∼ exp {−|r|/ξ}, (1.23)

where ξ defines the correlation length, which is an indication of the spatial span of correlations
in the system. It is also possible to define a characteristic correlation length for the system
by taking into account the correlation function as weighted average of the square of the dis-
tances [14]

ξ2 = ∑
r
|r|2Gc(r)/ ∑

r
Gc(r). (1.24)

Similarly to Eq. (1.22), one defines the disconnected correlation function as

Gd(ri − rj) = ⟨σiσj⟩. (1.25)

Note that in the high temperature regime, where due to the fluctuations ⟨σi⟩ = 0, the two
correlation functions coincide.

5The logarithm of the partition function can be described as the generator of connected correlation functions.
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A different but perhaps more workable definition of a characteristic length can be accom-
plished through the Fourier transform of the correlation function. For example, in a periodic
lattice of linear size L, the correlation function can be Fourier transformed as

Ĝ(k) = ∑
r

Gd(r) exp [−ik · r] =
1
V
⟨|σ̂(k)|2⟩, (1.26)

where σ̂(k) = ∑r σ(r) exp [−ik · r] is the Fourier transform of the spins. The correlation length
can be directly calculated from the first couple of moments [41], with

ξ =
1

2 sin (π/L)

(
Ĝ(0)
Ĝ(1)

− 1

)1/2

. (1.27)

The zero Fourier mode, Ĝ0, is the squared magnetisation while the first mode, Ĝ1, can be cal-
culated by averaging over the first k vectors in the Brillouin zone. Thus, for example in a
two-dimensional square lattice, the correlation length can be calculated directly from the mag-
netisation of the system and the average magnetisations of horizontal and perpendicular strips
of the lattice.

1.2 Phase Transitions and Critical Phenomena

As mentioned in the introduction, the focus of this work is placed on models which undergo
phase transitions, specifically of the continuous type. In these cases, the correlation length, ξ,
diverges and fluctuations appear on all length scales [38]. In essence, the short range inter-
actions, under the proper conditions, give rise to system-spanning correlations. Additionally,
quantities like the specific heat and the magnetic susceptibility diverge as the temperature T
approaches the critical temperature Tc. Also, the magnetisation scales with respect to T, when
the magnetic field is set to zero. Specifically, defining t = (T − Tc)/Tc as the reduced tempera-
ture, certain scaling laws are obeyed [12]:

ξ ∼ |t|−ν, (1.28a)

C ∼ |t|−α, (1.28b)

m ∼ (−t)β, (1.28c)

χ ∼ |t|−γ. (1.28d)

When t = 0, the magnetisation scales with respect to the magnetic field h as

m ∼ h1/δ. (1.29)
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The exponents ν, α, β, γ, δ are called critical exponents and describe the behaviour of observable
variables of interest in the vicinity to the phase transition.6

Similarly, the correlation function of Eq. (1.22) also behaves according to different laws,
depending on the proximity to a critical point. Away from criticality, |t| ≫ 0, the correlation
length will be finite and Gc will decay fast at large separations. Specifically, for r = |r| ≫ ξ [10]

Gc(r) ∼ exp {−r/ξ}. (1.30)

At the critical point the correlation length diverges, and the correlation function follows a
power law behaviour

Gc(r) ∼ 1/rd−2+η , (1.31)

where η is called the anomalous dimension [12]. To observe this behaviour though, the distance
should be in the regime r ≫ a, a being the lattice spacing.

As discussed with the general Hamiltonian of Eq. (1.15), the conditions under which the
system is placed are described by parameters {Ki}, and a phase transition will take place in
certain manifolds of parameter space. These manifolds split the parameter space, and the free
energy of the system should exhibit singularities on them. From the form of the free energy
[Eq. (1.14)], a divergence could only happen in the thermodynamic limit.7 What happens there
is that a symmetry of the Hamiltonian is no longer satisfied [25].

Arguably the simplest case to see this is that of the Ising model [see Eq. (1.16)], where there
exists an up-down symmetry. Simplifying the discussion, for high temperatures the system is
expected to be dominated by random excitations coming from the heat reservoir that is in con-
tact with it. Thus, the spins should behave as uncorrelated random variables, randomly taking
the value +1 or −1, resulting in a picture where the average magnetisation is zero. Indeed the
system then possesses a space inversion symmetry, as expressed by the Hamiltonian. At low
temperatures, at least in more than one dimension, ferromagnetic order emerges and the spins
orient themselves pointing in one direction. The system, in the thermodynamic limit, cannot
access its mirrored state, because it would require an infinite energy to flip all the spins. Thus,
the symmetry is lost.

In reality the picture is more complicated with domain walls forming depending on the
initial conditions. In the thermodynamic limit, the size of these non-parallel domains means
that a huge (infinite) amount of energy is required to flip them, making it impossible for them to
become parallel. The argument still remains though, since starting with a finite system, one can
turn on a small magnetic field, forcing the spins to orient parallel to it. Then the thermodynamic

6Unfortunately, the letter β is commonly used for the magnetic exponent, for historical reasons. It will be distin-
guished from the symbol for the inverse temperature purely by the context.

7The thermodynamic limit is defined as the limit where the system size tends to infinity. At the same time
however, the free energy per particle should remain finite [25].
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limit can be taken, and only afterwards may the field be turned off. The end result would be a
system with all the spins oriented in one direction and broken symmetry.8

Initially, experiments noted that seemingly very different systems can undergo continuous
transitions while exhibiting the same critical behaviour, i.e. they possess the same critical expo-
nents [Eq. (1.28)] and other renormalisation-group invariants, a concept termed as universality.
Since different systems can behave in the same manner, it is understandable that physicists are
interested in studying each universality class carefully.

On the other hand, discontinuous transitions are characterised by the coexistence of two or
more phases. Here, discontinuities appear in first-order derivatives of the free energy, such as
the energy and magnetisation. Thus, latent heat emerges as an energy barrier required to trans-
form the system from one phase to the other. Due to the discontinuities, the critical exponents
are readily available in the first order transitions (see Section 1.5).9

The contemporary point of view, under which to study and understand these phenomena
is that of the renormalisation group. The ideas of the renormalisation group were developed
by Kadanoff [43], as a way to pry into the properties of the Ising model near criticality, and
were further advanced with the works of Wilson [22–24]. In very general terms, this theory
offers a framework with which to view systems at different length scales. Taking advantage of
the diverging correlation length and the fluctuations that appear in the critical region allows to
extrapolate a number of general results.

1.3 Renormalisation Group

1.3.1 Introduction

When studying a system, it is important to not only accompany the discussion by internal
parameters and external fields, but also the scale under which the study is being conducted.
Changing the scale would not only change the units but also the effective theory that should
be utilised.10 To make the conversation more concrete, going back to Eq. (1.15), some system
with local interactions in contact with a bath of inverse temperature β can be described by the
parameters {Ki}n

i=1. Under a change of length scale a new effective theory would arise, causing
these parameters to be transformed. Thus, the initial Hamiltonian H, which describes a system
with local interactions, would transform in a coarser length scale as

−βH =
n

∑
i=1

KiSi 7−→
n′

∑
i=1

K′
iSi = −β′H′. (1.32)

8Reference [13] contains a very thorough conversation on the matter.
9For historical reasons, continuous and discontinuous transitions will sometimes be referred to as second- and

first-order transitions, respectively, in the text [42].
10A more thorough and general conversation about this matter can be found in references [14, 44].
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The new Hamiltonian that arises, H′, describes a system in contact with a bath at inverse
temperature β′, with parameters {K′

i}n′
i=1, in general different from the initial ones. When con-

sidering the new effective theory, it could be possible that additional terms should be consid-
ered for H′, hence in general n ̸= n′. It is also important to keep in mind that all distance units
have changed post transformation. The symmetries of the system however should still be up-
held by the new Hamiltonian. One general assumption is that since H was comprised of local
interactions, H′ should be local as well. Lastly, the transformation of the Hamiltonian defined
by Eq. (1.32) is very general, and allows even for a constant term in H′ appearing due to the
integration over short wavelengths that comes with the coarse graining. In that sense, writing
this constant as G, it can generally be said that

−βH = −β′H′ + G. (1.33)

Continuous transitions are particularly receptive to these considerations, due to the diverg-
ing correlation length. As alluded to in the previous section, critical systems possess scale
invariance. In other words, if the initial system was critical, then the two pictures, before and
after the transformation, would on average be the same. The only formal difference is in the
different units used in the two pictures. Thus, in order to be able to compare the pictures, if one
were to arbitrarily use the same units in the second system as in the first, the transformation
would not change anything. In essence, this step changes the units, but not the any number
accompanying them, “stretching” the picture in a sense, to make comparisons possible. For
non-critical systems however, changing the scale of the study would inadvertently be accom-
panied by a change in the effective theory that should be used. Changing back the units of
the transformed to those of the initial system would then reduce all distances. This process of
changing length scales, transforming the effective theory, and then arbitrarily using the units
of the initial system comprises a Renormalisation Group Transformation [12, 15].

Some quick initial observations can be made about this transformation, starting by assum-
ing that the system is described by the parameters {Ki}, has a lattice spacing a, and is nowhere
near a critical point. A change of scales that shrinks all distances by a factor of b > 1, would
move {Ki} to {K′

i}. Also, the initial spacing of 1 [a] (one in units of a) would become 1 [ba].
Additionally, an initial correlation length ξ in units [a] would become ξ ′ = ξ/b in units [ba].
To complete the renormalisation-group transformation, the units in the new system should be
made the same as the ones on the original. Thus the lattice spacing is the same as the initial
one, but the correlation length is ξ ′ = ξ/b < ξ.11 Since the transition happens when ξ = ∞,
if ξ ̸= ∞ the system is moved further away from criticality after the transformation. The only
fixed point solutions of the transformation ξ∗ = ξ∗/b are ξ∗ = 0 and ∞, with the former indi-
cating an infinite temperature stable fixed point, and the later a critical point. Note that ξ = ∞
will necessarily be unstable.

11This comparison makes sense since the units of ξ and ξ ′ are now the same.



18 Chapter 1. Theoretical Preamble

Starting from {Ki} with ξ = ∞ would mean that the system is on a critical manifold of
parameter space. After a renormalisation group transformation, the new point {K′

i} would
still have a diverging correlation length. After an infinite amount of transformations, all points
in the manifold should flow towards the critical points of the transformation, defining basins
of attraction [45]. It is what happens near a critical point that determines the critical behaviour
of a system [14], meaning that very different systems can have the same critical properties. This
readily explains the concept of universality.12

1.3.2 Properties

In general, performing two consecutive transformations of respective length scales b and b′

would be equivalent to performing a single transformation bb′. Or, denoting these transforma-
tions by Rb and Rb′ respectively, then

Rbb′ = RbRb′ = Rb′Rb. (1.34)

There is no unique way of defining R, and in fact many different coarse-graining approaches
can be formulated.13 In general, starting from a partition function of the form (1.12), a renormalisation-
group transformation of length scale b would group spins together in blocks of size bD, where
D is the dimensionality of the system. The partition function of the renormalised system, fol-
lowing Eq. (1.32), becomes

Z ′({K′}) = ∑
Γ′

exp
{
−β′H′(Γ′, {K′})

}
= ∑

Γ′
∑
Γ

P(Γ, Γ′) exp {−βH(Γ, {K})} , (1.35)

where the fact that the contraction of the initial system is used to obtain the renormalised one
was taken into account. To that end, a summation over the initial degrees of freedom, Γ, was
added and consequently a projection operator P was needed to establish that the new degrees
of freedom have their proper values. More generally, from Eq. (1.33) which includes the addi-
tional constant term of the transformation, Eq. (1.35) is generalised to

Z ′({K′}) = ∑
Γ′

exp
{
−β′H′(Γ′, {K′}) + G

}
= ∑

Γ′
∑
Γ

P(Γ, Γ′) exp {−βH(Γ, {K})} . (1.36)

Specifically, P(Γ, Γ′) projects the microstate Γ of the original phase space, to the new phase
space Γ′, and thus depends on the coarse-grain approach chosen. To give an example, keep-
ing things as simple as possible, in the one-dimensional spin-1/2 Ising model with N spins,

12Note that in this discussion there was no mention of possible limit cycles that might arise under the renormali-
sation transformations, and it was silently assumed that such cycles do not occur [12, 45].

13For a more precise approach see [12, 14, 15]. See also [22, 23, 43, 46, 47].



1.3. Renormalisation Group 19

choosing a transformation that contract three spins together with a majority rule, the projec-
tion would look like

P(Γ, Γ′) =
N/3−1

∏
i=0

Pb
(
σ3i+1, σ3i+2, σ3i+3; σ′

i
)

, (1.37)

where Pb now depicts the projection in one of the blocks, instead of the whole chain, a simpli-
fication that can be made because blocks do not overlap. The σ variable concern the spins in
the initial lattice and the σ′ are their post-transformation equivalent. It was assumed that N is
divisible by 3. The Pb projection behaves as follows:

Pb
(
σ3i+1, σ3i+2, σ3i+3; σ′

i
)
=

1, if (σ3i+1 + σ3i+2 + σ3i+3)/|(σ3i+1 + σ3i+2 + σ3i+3)| = σ′
i

0, elsewhere,
(1.38)

i.e. it is one if the majority of the spins in the ith block point in the same direction as σ′
i . The

important thing is that there is a unique σ′
i for any configuration of σ3i+1, σ3i+2, σ3i+3. Thus

∑σ′
i

Pb (σ3i+1, σ3i+2, σ3i+3; σ′
i ) = 1, for any configuration of the spins in the block i. This implies

that ∑Γ′ P(Γ, Γ′) = 1. This should be fact for any choice of projection. In general, if the blocking
method σ′

b = f ({σi}i∈bblock), then the projection operator will look like

P(Γ, Γ′) = ∏
b

δ
(
σ′

b − f ({σi}i∈bblock)
)

, (1.39)

and the same discussion as the simpler example holds.
As mentioned, a number of rules can be used to form this projection operator; from a major-

ity rule in a block of spins [48] (also given in the example), to more general transformations [49–
51], and even rules more akin to machine learning [52, 53], depending on the application. Gen-
erally, the new variables must be able to acquire the same values as the initial ones. Since
the exponentials that appear in Eq. (1.35) play the role of weight factors, they should be non-
negative, forcing P(Γ, Γ′) to be nonnegative as well. Additionally, the new system must have
the same symmetries as the initial one, which have to be encoded in the projection operator.
Lastly, an initial microstate Γ should have a unique projection to the Γ′ phase space, and thus

∑Γ′ P(Γ, Γ′) = 1. Then it directly follows from Eq. (1.35) that [38]

Z ′ = Z , (1.40)

or from the more general Eq. (1.36):

Z ′ exp (G) = Z . (1.41)
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The ground for calculating how the renormalisation group transforms the free energy is
now set. Specifically, the transformed system will have N′ = N/bD particles, where N is the
number of particles of the initial system, an inverse temperature β′ and a free energy F ′, hence,
starting from equation Eq. (1.14) and taking into account the constant term of the Hamiltonian
transformation, from Eq. (1.41) the free energy F transforms as

−β′F ′

N′ − β′G′

N′ =
bD

N
logZ ′ − g =

bD

N
logZ = −bD βF

N
, (1.42)

where, since G is a constant, the multiplicative factor of −β′/N′ was absorbed to define g.
Notice that only the singular part of the free energy scales, due to the constant terms that can

appear in the transformation of the Hamiltonian, making its transformation inhomogeneous.
Defining f = βF/N, the transformation is f = g+ b−D f ′, where g is an analytic function of the
pre-transformation parameters [14]. To study the critical behaviour of a system, it is enough to
consider the singular part of the free energy only. Defining the singular part as Fs, then

β′F ′
s

N′ = bD βFs

N
, (1.43)

or

f ′s = bD fs. (1.44)

Going bask to the correlation function Gc and its definition, Eq. (1.22), it is also feasible to
see how it changes under a transformation. The fact that the partition function does not change
leads to

G′
c = (β′)−2 ∂2 logZ ′

∂h′(ri)∂h′(rj)
= b2(D−yh)Gc. (1.45)

1.3.3 The vicinity of the fixed point

It is interesting to see how a point {Ki} of configuration space that is near a critical point {K∗
i },

transforms. Assuming δK = K − K∗ and δK′ = K′ − K∗, a renormalisation group transforma-
tion of scale b, denoted by Rb, would move the initial point to

K′ = RbK = K∗ + RbδK = K∗ + δK′. (1.46)

Assuming that the initial point was in very close proximity to the critical point, enough to
allow for a Taylor expansion only up to linear terms, then

K′
i = K∗

i + ∑
j

∂K′
i

∂Kj

∣∣∣∣∣
Kj=K∗

j

δKj + o
(
(δK)2) , (1.47)
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where in this regime one can define a linearised transformation as

δK′
i = ∑

j

∂K′
i

∂Kj

∣∣∣∣∣
Kj=K∗

j

δKj = ∑
j

M(b)
ij δKj. (1.48)

In the above it was assumed that the new parameters K′ are analytic functions of the old ones.
It is enough then to study the matrix M(b) of the transformation. In general, M(b) needs not
be symmetric and so a separation is necessary from left to right eigenvectors [12]. Writing the
eigenvectors and eigenvalues as ei and λ

(b)
i , respectively, then

M(b)ei = λ
(b)
i ei. (1.49)

By property of Eq. (1.34) (RbRb′ = Rbb′), it follows that M(b)M(b′) = M(bb′). This implies that
λ(b)λ(b′) = λ(bb′).14 In turn, this means that λ

(b)
i = byi , for some real yi [12].

Expanding δK in terms of the transformation matrix eigenvectors, δKi = ∑j aijej, and using
Eq. (1.48) implies that

δK′
i = M(b) ∑

j
aije

(b)
j = ∑

j
aijλ

(b)
j e(b)j = ∑

j
aijbyj e(b)j , (1.50)

indicating that under the transformation some components of δK grow, while others shrink,
depending on its eigenvalues. Directions that shrink should be accompanied by a negative
exponent yi and are called irrelevant, since after infinite transformations they fade away. On
the contrary, directions with positive exponents increase with consecutive applications of Rb

and are called relevant. Lastly, when yi = 0, the direction stays the same up to the linear
approximation that was used and is called marginal.

This demarcation can help distinguish basins of attraction. If a point starts outside a critical
manifold, then the relevant eigenvalues will keep increasing, driving it further and further
away from criticality. On the contrary, if all relevant directions are set to zero then the system
will, after infinite transformations, approach a point inside the basin.

1.3.4 Relevant directions

Assuming that the interactions of the system are such that the transformation matrix M(b) can
be diagonalised, meaning that the directions of the {Ki} do not mix when forming the eigen-
vectors, then it is easy to derive how the renormalisation-group transformation affects the sys-
tem.15 From Eq. (1.50), quantities would be transformed as

14Since it should not matter which scale transformation is performed first, that of b or b′, the two matrices should
commute.

15More generally, the M(b) will not be symmetric. Nevertheless, the left and right eigenvalues will be the same
and if they are not degenerate, the left and right eigenvectors will be orthogonal.
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K′
i − K∗

i = byi (Ki − K∗
i ) . (1.51)

These are quantities like the temperature, T or β, the external magnetic field, h, and others
similar, as long as they are accompanied by their own unique direction, so that Eq. (1.48) can
be written simply as Eq. (1.51).

By defining the reduced quantities

ki =
Ki − K∗

i
K∗

i
, (1.52)

Eq. (1.51) becomes

k′i = byi ki, (1.53)

where

yi =
1
b

log

∂K′
i

∂Ki

∣∣∣∣∣
Ki=K∗

i

. (1.54)

Consecutive transformations would change the ki according to Eq. (1.53). After n transforma-
tions one can generally write

k(n)i = bnyi ki. (1.55)

On the same note, the correlation length would change by a factor of bn, or ξ(n) = ξ/bn,
allowing to write

ξ({ki}) = bnξ({bnyi ki}). (1.56)

Setting all ki = 0 except for the temperature would show how ξ transforms when only the T
is a free parameter. Specifically, writing the reduced temperature as t = (T − T∗)/T∗, which
implies t(n) = bnyt t, gives

ξ(t) = bnξ(bnyt t). (1.57)

The choice of b thus far in the discussion has been arbitrary. Setting b = (c/|t|)1/yt ,16 where c
is a constant, gives the result [12]

ξ(t) = (|t|/c)−1/yt ξ(c). (1.58)

16Equivalently, a more physical picture can be painted if this choice of b is thought of as repeating the renormali-
sation process enough times until bnyt t ∼ 1 is reached [14].
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Since ξ(c) is a constant – it is the correlation length at some temperature –, it can be seen that ξ

scales like

ξ ∼ |t|−1/yt . (1.59)

Comparing with the scaling relations from the start of the Chapter, Eq. (1.28a), then implies
that

ν =
1
yt

. (1.60)

It should be noted that these considerations apply close to the critical point, t = 0, but
not on it. In that sense, the variable c is a large positive number. So, the constant ξ(c) is the
correlation length at some large temperature, and the scaling factor b can still arbitrarily be
expressed by (c/|t|)1/yt .

On the same note, if the only ki parameter not set equal to zero is the external field h, instead
of the temperature, then a similar choice of b would show that

ξ(h) ∼ |h|−1/yh , (1.61)

diverging as h → 0.
A similar discussion can be made for the free energy and Eq. (1.44). A scaling relation of

the form

f ({ki}) = b−nD f ({bnyi ki}), (1.62)

will be obeyed. Replacing b = (c/|t|)1/yt results in

f (t, h, . . . ) = |t|D/yt c−D f (c, h/|t|yh/yt , . . . ). (1.63)

Thus, another success achieved by the renormalisation-group theory is that it reproduces the
static scaling hypothesis [12, 31, 43]. By setting ∆ = yh/yt, Eq. (1.63) becomes

f (t, h) = tD/yt c−D f (c, h/|t|∆), (1.64)

or

f (t, h) = tD/yt F(h/|t|∆), (1.65)

where F is the function defined by F(x) = c−D f (c, x).
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1.3.5 Scaling laws

Making all ki except for the temperature equal to zero, means that f ∼ tD/yt . Since the second
derivative of f with respect to T is the specific heat [see Eq. (1.19)], which scales like C ∼ t−α

[see Eq. (1.28)], a scaling law follows immediately from Eqs. (1.60) and (1.63),

νD = 2 − α, (1.66)

known as Josephson’s scaling law.
Similar considerations for the magnetisation, the magnetic susceptibility, and the response

of the magnetisation to the external magnetic field at t = 0 give the following scaling laws [14]

β = (D − yh)/yt, (1.67a)

γ = (2yh − D)/yt, (1.67b)

δ = yh/(D − yh). (1.67c)

Note that all the critical exponents could be expressed in terms of the eigenvalue exponents
yt and yh. So, by combining the above equations and Eq. (1.60), more scaling relations, similar
to Joshephson’s law, can be deduced. For example:

α + 2β + γ = 2 (Rushbrooke scaling relation), (1.68a)

β(δ − 1) = γ. (1.68b)

Another scaling law can be obtained from the transformation of the correlation function of
Eq. (1.45), by iterating the transformation until r/bn = r0, where r0 is some distance much
larger than the interaction range. Using Eq. (1.31), the following relation can be proved [14]

η = D + 2 − 2yh. (1.69)

1.3.6 Irrelevant directions and corrections to scaling

Following Eqs. (1.62) and (1.63), for the general scaling of the singular part of the free energy,
the terms that were omitted are essentially of the form kit−|yi |/yt . To ease the notation, all
variables are set to zero with the exception of only the temperature and one irrelevant variable
k. Assuming that a Taylor expansion around t = 0 is possible,17 then

f (t, k) = |t|D/yt
(

c1 + c2k|t|−|yk |/yt + . . .
)

, (1.70)

17See [12, 14] for discussions on when this is not the case.
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where c1, c2 are constants from the expansion. Thus, the irrelevant variable gives rise to corrections-
to-scaling of the free energy. Specifically, there is an exponent ωk = |yk|/yt which gives rise to
the behaviour

f (t) ∼ tD/yt
(
1 + ct−ωk

)
, (1.71)

up to first order, with c being some arbitrary constant.

1.4 Finite-Size Scaling

The application of the renormalisation-group theory for an infinite system in order to study
a phase transition is not usually a feasible task. Specifically for Monte Carlo simulations, but
also for many numerical methods, only the study of finite systems if feasible. In the end, the
infinite-limit behaviour of a system can be extrapolated from finite sizes, by performing the
process of finite-size scaling.

By construction, the transformations performed in the above section are all local, and thus
they could have been applied to a finite system of linear size L, instead of an infinite system.
To this end, all quantities considered will in general also be functions of L. Thus, Eq. (1.62) can
be rewritten for a finite system as

f ({ki}, L−1) = b−nD f ({bnyi ki}, bnyL L−1). (1.72)

The reason for writing the above equation as a function of L−1 and not of L is the expectation
that the phase transition will occur only when L → ∞, or L−1 = 0, similarly to the other
reduced relevant directions.

In general, like all other quantities, L−1 should transform like
(

L−1)′ = byL L−1, but by
construction the renormalisation group scales all lengths by b−1, and so yL = 1. In that sense,
L−1 is a relevant direction in parameter space and a phase transition can only occur when
L−1 = 0, as expected, making the argument for Eq. (1.72) consistent. When L−1 > 0, replacing
b = (c/|t|)1/yt to Eq. (1.72) gives

f (t, L−1) ∼ |t|D/yt f
(

L−1|t|−1/yt , . . .
)

. (1.73)

Directly then from Eq. (1.59), concerning the scaling of the correlation length,

f (t, L−1) ∼ |t|D/yt f
(

L−1ξ(t, L = ∞) . . .
)

, (1.74)

where ξ(t, L = ∞) is the correlation length of the infinite system at the same temperature. As
discussed, the infinite-system critical behaviour is seen only when L−1 = 0. In that sense, the
thermodynamic properties of the infinite system are returned when L ≫ ξ(t, L = ∞), i.e. when
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the correlation length is not affected by the boundaries of the system. On the contrary, when
L ≪ ξ(t, L = ∞), the correlation of the finite system cannot actually surpass L as t → 0, and
the critical behaviour cannot be observed [12, 14]. For this reason, as shall be seen in the results
of the last chapters of the thesis, the peaks of observables are rounded and shifted.

Near a critical point, ξ ∼ L, and thus the shift will be governed by

tL ∼ L−1/ν, (1.75)

where tL is the location of the peak of the finite system. Particularly, quantities of interest like
the specific heat and the magnetic susceptibility will exhibit a scaling behaviour of the form [12]

C ∼ L−α/ν, (1.76)

χ ∼ L−γ/ν, (1.77)

and other observables will follow suit.18

The correlation length is the quantity that is most directly affected by the finite size of the
system. Including the system size in Eq. (1.56), then

ξ(t, L−1) = bξ
(

byt t, bL−1
)
= (c/|t|)1/yt ξ

(
c, |t|−1/yt L−1

)
, (1.78)

again with the transformation b = (c/|t|)1/yt . For an infinite L and t → 0 (i.e. |t|−1/yt L−1 → 0),
the expected critical behaviour is recovered (ξ ∼ |t|−ν). For finite L and t ∼ 0, the correlation
length of the finite system cannot expand beyond L, and so the right hand side of Eq. (1.78)
tends to a constant. Thus, ξ

(
c, |t|−1/yt L−1) goes to zero as |t|1/yt . Expanding around t = 0

gives a first term that is a constant and a second term that is proportional to L−1 [12]

ξ(t, L−1)

L
= c1 + c2tL−yt + o(t2), (1.79)

So, up to first order, the curves ξ(t, L−1)/L for different L overlap at t = 0, giving an estimate
for the location of the critical point. This quantity defines a universal ratio, indicative of a
universality class, but also dependent on the lattice type and boundary conditions.

1.5 Discontinuous Transitions

First order transitions are characterised by the coexistence of phases and they exhibit latent
heat. In essence, the system requires energy, or has to dispose of it, in order to change its

18To extrapolate the effective critical exponents standard least-square fits were performed, using the gnuplot
plotting program, which implements the Levenberg-Marquardt algorithm [54–57].
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structure. For this reason, quantities like the energy and the magnetisation, that display dis-
continuities, become rounded in finite systems. The coexistence of two phases necessitates the
appearance of double peaks in the distributions of the aforementioned observables, indicating
a barrier connected to the surface tension between states.

The two peaks will be located in the energies eo and ed of the energy per particle in the
ordered and the disordered phase, respectively. The distance of the two peaks indicates the
latent heat of the system, ∆e = ed − eo. On the other hand, the height of the peaks relative to
that of the suppressed states between them is an indication of the free-energy barrier between
the states.

Following [58–60], the free energy of a D-dimensional finite system, FL, can be thought of
as comprising of two terms: one accounting for the bulk and the other for the surface. For an
energy per particle e, one can then write

FL(e) = LDϕ(e) + LD−1ϕσ(e), (1.80)

where ϕ(e) is the bulk free energy per particle and ϕσ is the corresponding surface one. Also
for finite systems, a new pseudo-critical temperature can be defined, where the heights of the
two peaks are equal, FL(eo) = FL(ed). In this set-up, the states in the valley, emin, between the
equal-height peaks are suppressed due to the surface term as

∆FL = FL(ed)−FL(emin) ∼ LD−1. (1.81)

An interface tension can be defined by dividing the barrier with the surface, as Σ(L) =

∆FL/LD−1, which has a non-zero value at L → ∞. This barrier is readily available from a
simulation which accumulates the distribution of e. Specifically, the surface part of the weight
of a state can be accounted for by a term of the form Pσ(e) ∼ exp[−βLD−1ϕσ(e)] [59, 61]. So, at
the temperature where the distribution exhibits equal-height peaks, a comparison between the
states at the peaks e = eo = ed and the minimum e = emin, with probability densities Pmax and
Pmin respectively, yields

Σ(L) =
1

βLD−1 log
[

Pmax

Pmin

]
. (1.82)

Following the same arguments, there should also be a difference in the order parameters
of the two phases. To keep the discussion simple, assume that the order parameter is the
magnetisation [Eq. (1.20)]. The magnetisation per particle is defined by m = ∂ f

∂h . Under a
renormalisation-group transformation, assuming that after the rescaling by a factor of b the
free energy becomes f ′ and using Eq. (1.62), the magnetisation will transform as [12]

m =
∂ f
∂h

= b−D ∂ f ′

∂h
= b−D ∂ f ′

∂h′
∂h′

∂h
= b−D ∂h′

∂h
m′. (1.83)
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At one phase the magnetisation will be equal to mo, and at the other md. The difference
between the two magnetisations, due to the discontinuity, is defined as ∆m = mo − md ̸= 0,
and so at least one of the magnetisations has to be different than zero, say mo. In that sense,
after n transformations, mo = m(n) ∏n

i=1 b−D ∂h(i)
∂h(i−1) . So, each of the partial derivatives has to be

non-zero. Taking the limit of n → ∞, indicates that limn→∞ b−D∂h(n+1)/∂h(n) ∼ 1, or that for
the fixed point of the transformation yh = D.

Analogously, for the energy defined in Eq. (1.18), the energy per particle is equal to e = ∂ f
∂β ,

transforming in a similar fashion to Eq. (1.83). Using the same arguments, it is deduced that
yt = D. From yt and yh, using the scaling relations Eqs. (1.66) and (1.67), all the critical
exponents are available.

First-order transitions are in a sense more straightforward, due to their lack of versatility.
Specifically, the critical exponent yt is always equal to the dimensionality of the system, D,
unlike continuous transitions, where it can take any value less that D.

1.6 Disorder

Since real systems are always impure, disorder is of central importance to contemporary re-
search, both from a theoretical point of view, due to their ability to test and expand the theory
of critical phenomena [14, 62, 63], but also due to experimental and engineering applications.
To try and keep the conversation somewhat broad, a general Hamiltonian is introduced in the
form

H = ∑
⟨ij⟩

Jijθiσiθjσj + ∑
i

hiθiσi + . . . , (1.84)

where the {Jij} and {hi} are random variables that can follow any specified distribution, and
the {θi} can take the values {0, 1} to indicate the absence or the presence of a spin in the lattice,
respectively. The dots are there to show that more random interactions could be considered.

There are many possible ways to include disorder to a system, with some examples being:
(i) Site dilution, where Jij = J for all neighbouring i, j and the {θi} dictate whether a site will be
populated or not. (ii) Bond dilution, where θi = 1 for all i and the {Jij} are either equal to some
constant J or are set to zero, effectively severing some bonds. (iii) Bond disorder, where the
{Jij} are drawn from a random distribution and all {θi} are unity. (iv) Random fields, where
the {hi} are random variables. (v) Any combination of the above or any other way of adding
disorder to the system.

Arguably, the most famous type of disorder system is that of spin glasses, where the {Jij}
are able to take positive and negative values. That way, depending also on the geometry of the
lattice, some bonds will not be able to be satisfied, giving rise to the phenomenon of frustration.
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These problems are notoriously hard,19 and are riddled with free energy barriers and local
minima [40, 64].

Still, randomness gives rise to very interesting phenomena, even for disorder that disallows
frustration. These problems are ridden with a rugged free-energy landscape and obscure finite-
size effects, which makes their simulation a laborious endeavour and their analysis a non-trivial
task.

1.6.1 The Harris criterion

Since quenched disorder is so important, the central question of how it affects critical behaviour
needs to be elaborated. In the language of renormalisation group, it has to be identified whether
a specific quenched disorder is a relevant or an irrelevant variable. The argument followed in
this Section was first introduced by Harris [28]. Assuming that a quenched disorder is de-
scribed by some variable p, indicating its strength, the disordered system will undergo a tran-
sition at a new temperature, Tc(p), that depends on p. In general, Tc(p) will be different from
the original transition temperature, Tc. One can imagine a huge system split into different sub-
systems, still large enough to make surface interactions between subsystems small compared to
the energy of the bulk [65]. Locally then, in these subsystems, the realisation of disorder would
imply that the transition temperature would vary spatially, defining local variations from the
transition temperature of the whole system, δTc(r), given by

δTc(r) = Tc(r)− Tc(p). (1.85)

The mean of δTc(r) should be zero, in order for the critical temperature to be Tc(p). The two-
point connected correlation [Eq. (1.22)] of the local variations over some region with volume V
is equal to

⟨δTc(r)δTc(r′)⟩V =
∫

V

dr
V

∫
V

dr′

V
δTc(r)δTc(r′). (1.86)

If the fluctuations decay fast with the distance, or the initial distribution from where the
disorder was drawn does not allow for spatial correlations between random variables, then
⟨δTc(r)δTc(r′)⟩V ∼ V−1. So, on a volume confined by a correlation length ⟨δTc(r)δTc(r′)⟩ξD ∼
ξ−D, where D is the dimensionality of the system. According to Eqs. (1.28) and (1.59) the
correlation length will scale like ξ ∼ |T − Tc(p)|−ν(p), where the critical exponent ν is expressed
in terms of the disorder strength p. Substituting the scaling relation back to the fluctuations
leads to ⟨δTc(r)δTc(r′)⟩ξ ∼ |T − Tc(p)|Dν(p).

From a physical perspective, the Harris criterion states that if close to Tc(p) the correlation
is small in comparison to |T − Tc(p)|, then the disorder will not affect the stability of the critical

19NP-hard to be exact.
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point [28]. That happens when
√
⟨δTc(r)δTc(r′)⟩ < |T − Tc(p)|. From the above discussion,

over a volume confined by a correlation length, this implies that

|T − Tc(p)|Dν(p)/2 < |T − Tc(p)|. (1.87)

In the limit where the disorder vanishes, then the above relation implies that Dν/2 > 1 or
more clearly ν > 2/D. Equivalently, using the Josephson scaling relation of Eq. (1.66), then
α < 0. So, when α < 0 the disorder is irrelevant and the fixed point will be stable. On the
other hand, α > 0 implies that the disorder is relevant, and the system is led to a new set of
critical exponents. The case were α = 0 is a marginal one, with a characteristic example being
the two-dimensional Ising ferromagnet, where logarithmic corrections are known to be present
in the scaling forms [66].

This argument is not necessarily robust, and has been known to break. For example, even
though this argument has been shown to be precise in two dimensions even for an infinitesi-
mal disorder strength [67–69], in more than two dimensions quenched disorder is expected to
be relevant only beyond a threshold strength [68–71]. An interesting example was found by
Nvsen Ma et al., where relatively strong quenched disorder was applied in a two-dimensional
quantum spin Heisenberg model, and the Harris criterion was found to be violated [72].

1.6.2 Finite-size scaling and disorder

Following the discussion of Section 1.4, the question of how to reconcile finite-size scaling with
quenched disorder systems arises. Assume that an observable quantity Qi has been sampled
from n random systems, each one being a different realisation of some quenched disorder. This
quantity can be something like the susceptibility, the specific heat, etc. The disorder average of
Q will be equal to

[Q(T)] = lim
n→∞

1
n

n

∑
i=1

⟨Qi(T)⟩. (1.88)

Here, the square brackets, [. . . ], indicate an average over the disorder realisations, while the
angular brackets, ⟨. . . ⟩, indicate the usual thermal average of a specific realisation.

There are two conceivable ways of averaging for the maximum of the observable Q. One is
by finding the maximum of [Q(T)], defined as [Q]⋆, i.e.

[Q]⋆ = max {[Q(T)]}. (1.89)

The other is by first finding the maxima in the individual realisations, ⟨Qi⟩⋆ = max {Qi(T)},
and then taking the disorder average, i.e.

[Q⋆] =
1
n ∑⟨Qi⟩⋆. (1.90)
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To distinguish which of the two should be used, the concept of self averaging is needed.
In a nutshell, averaging over the realisations and then finding the peak is a process that can
be, at least in principle, improved by increasing the number of samples. In essence, the more
disorder realisations used, the less the variance of the location and value of the peak [Q]∗ will
be. On the other hand, first locating the peaks of each individual realisation and then averaging,
is a process that does not necessarily improve by adding more realisations, due to the large
variations from realisation to realisation.

Nevertheless, from each of the two processes a pseudo-critical temperature can be defined.
First averaging over the realisations and then locating the peak results in a value T[Q]⋆ . By locat-
ing the peaks in each realisation first and then averaging over the realisation gives an estimate
[T⋆]. It is expected that these temperatures should scale, in their simplest form, according to
Eq. (1.75) with an exponent ν and a critical temperature Tc.

1.6.3 Self averaging

In essence, a singular observable Q will have different values under different realisations of the
disorder. Thus it can be considered as a random variable, which in principle can be described
by a distribution P(Q; L), L indicating the size of the finite system. The distribution will have an
average, [Q], defined by averaging over the disorder realisations, and a variance [Q2]− [Q2] =

(∆Q)2. Then, self-averaging is exhibited in the thermodynamic limit if (∆Q)2/[Q]2 → 0. In
that sense, if a quantity is self-averaging, then the more samples that are added in the average,
the smaller the relative fluctuations will be. The following definition will be useful for a system
of linear size L:

RQ(L) = (∆Q)2/[Q]2. (1.91)

An argument made by Brout [65] was to separate a system far from criticality into n sub-
systems, much larger than the average correlation length, ξ. Assuming that surface effects
are insignificant compared to the bulk, then the couplings of the neighbouring subsystems are
negligible and the subsystems can be regarded as independent. It is then expected that for an
extensive quantity, averaging over the whole system will coincide with the average over the
different subsystems. The latter, according to the central limit theorem should follow a Gaus-
sian distribution [73]. Hence, the variance is expected to decrease like (∆Q)2 ∼ n−1 ∼ L−D,
where D is the dimensionality of the system. Meaning that RQ(L → ∞) → 0 [74]. Thus, for the
case of ξ ≪ L, self-averaging is to be expected.

On the other hand, near a critical point, the case becomes more complicated. Two cases
can be distinguished, following the Harris criterion [28]. First, when the disorder is irrelevant
(ν > 2/D or α < 0), it is expected that RQ(L) ∼ Lα/ν [74, 75]. Thus, since α/ν < 0, in this
case the property of self-averaging still exists, only with RQ(L) decreasing with a slower rate.
Second, when disorder is relevant (ν < 2/D or α > 0), there is no self-averaging [75]. This
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result was also confirmed computationally, via simulations of the site-dilute Ising model in
three dimensions [76].

1.7 Cross-over Phenomena

In many studies, especially when dealing with data obtained from Monte-Carlo simulation on
finite-size systems, it is often the case that a system does not fall in its expected scaling regime.
This can happen due to many reasons. It is possible, for example, that small system sizes
in conjunction with strong corrections to scaling can result in a perceived different asymptotic
scaling behaviour than the actual one. As the system size increases however, a cross-over in the
behaviour appears, resulting in the expected scaling. Such an example will be seen in Chapter 4
where, by including small system sizes in the analysis, leads to the belief that the system under
study exhibits a first-order transition, while in reality it undergoes a continuous transition.

Another example of a cross-over behaviour can be found in the Blume-Capel and Baxter-Wu
models that will be studied in Chapters 3 – 5. Specifically, their phase diagrams consist of a line
of continuous and a line of discontinuous transitions. The two regimes meet at a multicritical
point. These systems exhibit a change in scaling from one set of exponents to another, upon
crossing the multicritical point.

Another way for cross overs to appear is that of disorder, already discussed in (Section 1.6).
Here the transition might or might not be affected by the disorder. This case can be ridden
with finite-size effects as well. As per the Harris criterion, whether or not the critical behaviour
changes under the application of uncorrelated disorder has to do with the value of the ν expo-
nent, and if it is larger than 2/D.

For first-order transitions, where ν = 1/yt = 1/D, the Harris criterion suggests that disor-
der is always relevant. Thus, uncorrelated disorder should soften the discontinuous transition
to a continuous one [77]. This has been established in two-dimensional systems even for the
case of infinitesimal disorder [67]. As shall be seen in Chapter 5 however, due to finite-size
effects, one would need to show special care when handling systems of smaller sizes. The
same arguments do not necessarily apply in three-dimensional cases, where there might be a
finite disorder strength required to soften the transition. In that case, it is even more arduous
to establish the thermodynamic behaviour of the system.
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Chapter 2

Simulation Methods

In general, the choice of a Monte Carlo algorithm to simulate a statistical physics system is
application based, and knowledge of the post-processing of data is necessary to design an
experiment. The essential theory required for the data analysis of Monte Carlo experiments
can be found in Appendix A. Many pedagogical and thorough texts have been written on the
subject of Monte Carlo simulations, see for example [41, 78, 79], and so, in the rest of this
chapter, the focus is solely placed on the methods that were applied in this thesis.

Monte Carlo simulations sample microstates in accordance to some probability distribution.
The analysis of the data stringently depends on the Monte Carlo method chosen. The sampling
distribution could in theory be flat, choosing microstates at random with a constant probability,
but in general it is better to use a Boltzmann probability distribution in the sampling process,
which can be achieved via importance sampling. Other more general distributions could be
used as well.

Some of the most straightforward Monte Carlo algorithms, and all methods used in the
current thesis, fall under the Markov-chain family [39]; meaning that the simulation procedure
will lack memory of past events. Thus, when modifying a microstate, only the current state of
the system will be taken into account. This, of course, is not the only method to accomplish
the simulation of a system. For example there are cases where it might be necessary to use
non-Markovian methods [80].

The rest of the chapter is structured as follows: Firstly, a general discussion of Monte Carlo
experiments and the reason as to why a variety of methods exist is given in Section 2.1 and 2.2,
respectively. Then, in Section 2.3 single-spin-flip algorithms are presented, like the Metropolis
and heat-bath methods. In Section 2.4, multi-spin-flip cluster updates are presented. The Wang-
Landau and multicanonical algorithms are described in Section 2.5, alongside the reweighting
process necessary for the analysis of their data. A discussion about the dynamical scaling of
the autocorrelation times with the system size is given in Section 2.6. Lastly, Section 2.7 gives
an overview of different computational methods used extensively in the literature for probing
similar systems to the ones under study in this work.
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2.1 Markov-Chain Monte Carlo

Conceptually, to sample the phase space of a model, one can start from an initial configuration
and in each step pick, at random, a new candidate state. The acceptance of the choice is carried
out via some probability that depends only on the current and candidate configurations. This is
the essence of a Markovian process. Since this work mostly deals with spin systems in equilib-
rium and in contact with a bath of temperature T, it is natural to describe them by a canonical
Boltzmann probability distribution [Eq. (1.11)]. Using the spin configuration to represent the
phase point of the system, this distribution can be written as

P({σi}N
i=1) =

1
Z exp

[
−βH

(
{σi}N

i=1

)]
. (2.1)

In the above expression, P({σi}N
i=1) is the probability of finding the system in the microstate

{σi}N
i=1. This state has energy E = H({σi}N

i=1), where H is the Hamiltonian that describes the
system and β = 1/T is the inverse temperature of the bath.

Considering two possible states of the system, µ and ν, the flow towards state µ should be
equal to the flow outwards, as was discussed in Section 1.1. If p(µ → ν) is the probability for
the system to transition from state µ to ν and P(µ) the probability for the system to be at state
µ, then

∑
ν

P(µ)p(µ → ν) = ∑
ν

P(ν)p(ν → µ), (2.2)

where the left hand side expresses the flow out of state µ and into any other state, while the
right hand side expresses the flow to µ from any other state. Since the system has to end up in
a state, ∑ν p(µ → ν) = 1, and so

P(µ) = ∑
ν

P(ν)p(ν → µ). (2.3)

One simple way of achieving the requirement of Eq. (2.2) is through the condition of de-
tailed balance [79], which states that the flow from µ to ν is the same as the flow in the opposite
direction. Thus,

P(µ)p(µ → ν) = P(ν)p(ν → µ). (2.4)

Using Eq. (2.4) and the fact that the system should follow the Boltzmann distribution, the con-
dition for the transition probability is given by

p(µ → ν)

p(ν → µ)
=

P(ν)
P(µ)

= exp {−β [E(ν)− E(µ)]}. (2.5)
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An issue that needs to be addressed when choosing the transition probabilities is fulfilling
the condition of ergodicity. In general, it is conducive to most applications that the simulation
should be able to reach any point in the phase space of the system in a finite number of steps.

2.2 The Need for Different Simulation Methods

There are many heuristic algorithms that can be constructed from the above discussion [78,
79]: Single-spin-flip algorithms, where one spin is flipped at each iteration, cluster algorithms,
where whole groups of spins are flipped at one time, entropic sampling algorithms, where
the entropy of the system is sampled at an infinite temperature [81], and a plethora of other
methods. Unfortunately, there is no panacea when it comes to simulating with Monte Carlo al-
gorithms, and there is a number of elements that need to be taken into account before deciding
which algorithm to implement.

One important consideration should always be the autocorrelation time of the resulting
data set (see Section 2.6 and Appendix A). In a nutshell, when a sample consists of highly cor-
related data, then the statistics is reduced. There is then a need to know how many independent
measurements will be produced from the simulation. Different algorithms have different au-
tocorrelation times, rendering their statistics better or worse. This has to be taken into account
alongside with how difficult an algorithm is to implement or how slow it is to run. For ex-
ample, cluster algorithms have much smaller autocorrelation times around the critical region,
compared to single-spin-flip algorithms, but they are also more difficult to implement and gen-
erally more demanding computationally. The increased computational demands however can
be compensated by the need for smaller data samples. Considerations about the efficiency of
some of the methods utilised in the current work are made in Chapter 3.

In some models, high energy barriers might prevent the proper sampling of configuration
space. For example, if two very likely areas of energy space are separated by a very improb-
able region, then the system will have a hard time tunnelling between the two regions. This
could have adverse effects in the sampling process. Generalised-ensemble methods can fix
this problem by incorporating different sampling distributions, thus increasing the tunnelling
rate between such regions. However, this necessarily means that the data analysis will not
be straightforward, and that the sampling process is more intensive and delicate compared to
simpler methods. On the other hand, one simulation is enough to extrapolate results in a large
range of field values, at least in theory.
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2.3 Single-Spin-Flip Algorithms

2.3.1 The Metropolis algorithm

The first conceptual leap that lead to the general application of Monte Carlo methods came with
the invention of the Metropolis algorithm [26]. The novelty of this process was that instead
of trying to evolve a many-body system according to its dynamics, sampling was performed
directly from its phase space.

At each iteration of the algorithm, a candidate state is proposed and accepted or rejected
based on a transition probability. It makes sense then to expand the probabilities that appear
on the left hand side of Eq. (2.5) into the probabilities of two separate events: the choice of a
new state and the acceptance of that proposal. Writing C(µ → ν) and A(µ → ν) respectively
for these two probabilities, then Eq. (2.5) becomes

C(µ → ν)A(µ → ν)

C(ν → µ)A(ν → µ)
= exp {−β [E(ν)− E(µ)]}. (2.6)

This gives a lot of freedom in the choice probabilities C(µ → ν), the simplest one being going
from the starting state µ to the new one ν via a single-spin flip. For a system with N spins,
picking one spin to flip to a new state would have a probability equal to 1/N. Then the number
of possible states a spin can take needs to be considered. Usually, the current state of the spin is
excluded from the choice pool, in order to sample the phase space of the model faster, avoiding
being stuck in a state for too long. For a spin- 1

2 model, where the choice of a new spin state is
unique, C(µ → ν) = 1/N. In models where more that two states are allowed, such as the spin-
1 models that will be studied in later chapters, then a site and a new state for the spin need to be
picked. In these cases, if Ns is the number of possible spin states, C(µ → ν) ∼ 1/(N(Ns − 1)).
Due to the old state, µ, and the new one, ν, only differing by a single spin value, the probabilities
C(µ → ν) and C(ν → µ) are equal. Hence, the acceptance probability of the newly proposed
state should follow the rule

A(µ → ν)

A(ν → µ)
= exp {−β [E(ν)− E(µ)]} = exp {−β∆E}, (2.7)

where ∆E is the energy differences of the two states.
A way to pick the acceptance probabilities would be to choose A(µ → ν) ∝ exp {−βE(ν)}

and A(ν → µ) ∝ exp {−βE(µ)}. Since the two probabilities have the same normalization con-
stant, there is no need to consider it. In order to facilitate a larger acceptance of new states, the
Metropolis algorithm suggests a different approach, namely to make the transition probability
equal to 1 if ∆E ≤ 0. Then, using Eq. (2.7) the acceptance probability becomes

A(µ → ν) =

1, if ∆E ≤ 0,

exp {−β∆E}, elsewhere.
(2.8)
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For conciseness, an iteration of the algorithm can be summarised as follows:

1. Pick a random spin, σi.

2. Pick a new candidate state for the spin, σ′
i .

3. Calculate the energy difference of the candidate state from the current state, ∆E = E(σ′
i )−

E(σi).

4. If ∆E ≤ 0, accept the proposed state.

5. Else, pick a random number r ∈ [0, 1), and if r < exp [−β∆E], accept the proposed state.

6. Go back to step 1.

For a two-level system, the second step can be skipped, since the choice of a new candidate
state is unique.

2.3.2 The Heat-Bath algorithm

The heat-bath (HB) algorithm [82] differs from the Metropolis in how the choice and acceptance
probabilities of Eq. (2.6) are picked. When proposing a new candidate state for the system, this
algorithm suggests picking a spin at random and choosing a candidate state not by equally
distributed probabilities, but according to the likelihood of occurrence. Conceptually, the cal-
culation of these probabilities is carried out by treating the rest of the lattice, around the picked
spin, as a constant bath. This defines a local partition function, by taking into account only the
possible states of the selected spin. If, for example, the spin i is chosen, the whole system’s en-
ergy will be a function E(σi). This notation was used to reiterate that the only possible change
in the energy can be made through the chosen spin, σi. A local partition function for this spin
is

Z (i)
HB = ∑

σi

exp {−βE(σi)}. (2.9)

Starting from an initial state σi = σ, picking a new state σi = σ′ for the i-th spin can be
carried out with the weight

C(σi = σ → σi = σ′) =
1
N

exp {−βE(σ′)}
Z (i)

HB

, (2.10)

where the factor 1/N comes from the equal-probability choice of one of the N spins. This choice
for the probabilities of picking a new state automatically satisfies the condition of detailed
balance of Eq. (2.6), and thus a trivial acceptance probability can be picked for the proposed
move. A(µ → ν) = 1 would then be the best choice for moving to new states faster.
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However, it is useful to define a proposal scheme that excludes the current spin value. This
defines the restricted heat-bath (RHB) algorithm [82]. Specifically, for the initial value of σ for
the σi spin, the restricted local partition function is defined as

Z (i)
RHB(s) = ∑

σi ̸=σ

exp {−βE(σi)}. (2.11)

Then, the probability of choosing a spin value σi = σ′ ̸= σ is

C(σi = σ → σi = σ′) =
1
N

exp {−βE(σ′)}
Z (i)

RHB(σ)
. (2.12)

Accounting for detailed balance using Eq. (2.6), the choice C(µ → ν) of going from the old
state to the new becomes

C(µ → ν) = C(σi = σ → σi = σ′) =
1
N

exp {−βE(σ′)}
Z (i)

RHB(σ)
, (2.13)

while the opposite choice, of proposing the backwards move, becomes

C(ν → µ) = C(σi = σ′ → σi = σ) =
1
N

exp {−βE(σ)}
Z (i)

RHB(σ
′)

. (2.14)

Putting together Eqs. (2.6), (2.13), and (2.14), the detailed balance condition for the accep-
tance probabilities reads

A(σi = σ → σi = σ′)

A(σi = σ′ → σi = σ)
=

exp {−βE(σ)}
exp {−βE(σ′)}

Z (i)
RHB(σ)

Z (i)
RHB(σ

′)
exp

{
−β

(
E(σ′)− E(σ)

)}
, (2.15)

where there is an obvious simplification that can be made on the right hand side; the first
fraction and the rightmost exponential cancel each other out. Then, there is a simple choice of
acceptance probabilities, since the remaining fraction on the right-hand side is either greater or
not greater than unity,

A(σi = σ → σi = σ′) = min
{

1,
∑σi ̸=σ exp {−βE(σi)}
∑σi ̸=σ′ exp {−βE(σi)}

}
. (2.16)

A further simplification is straightforward, considering that most of the terms that appear in
the energies of the two exponentials are the same.

An iteration of the restrictive heat-bath algorithm would then look like the following:

1. Pick a random spin, σi.

2. From the choice probabilities of Eq. (2.12) pick a candidate state for the spin, σ′
i .
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3. From the acceptance probabilities of Eq. (2.16) accept or reject the proposed move.

4. Go back to step 1.

2.4 Cluster Algorithms

Although single-spin-flip algorithms are very straightforward to implement and versatile to
apply, they fall short in terms of the critical slowing down that appears near critical points [79].
The application of methods with faster dynamics is in many cases necessary, and cluster algo-
rithms offer exactly this benefit.

Rather than updating a single component of the system at each iteration, one can update a
whole cluster of connected spins [78, 79]. To achieve this, bonds between spins are categorised
into active and inactive, through a random process. Connected active bonds form a cluster,
whose spins will be flipped simultaneously according to a single acceptance probability. Effec-
tively, this procedure takes advantage of the correlations between neighbouring spins.

In essence, starting from an initial randomly picked seed spin, a random cluster is grown
around it. For ferromagnetic systems, the cluster is confined to only include spins of the same
orientation. If the probability to add a neighbouring spin to is equal to Padd, one would go from
neighbour-to-neighbour checking if a spin will be added. After adding spins to the cluster, the
new members’ neighbours are checked. This process would eventually end when either all
spins are added to the cluster or there are no new spins whose neighbours to test.

In general, this cluster forming procedure will take the initial state of the system, µ, to a new
one, ν, after the cluster is flipped. The opposite process of going from ν to µ can be performed
in a number of different ways; in general by starting from a different seed and growing the
same cluster in a different series of moves. However, the probability of adding a spin to the
cluster would be the same in the two processes. The only difference would be in the number
of bonds that will be broken at the edges of the cluster. Assume that in the forward process,
µ → ν, m bonds at the edges of the cluster are broken with probability (1 − Padd)

m, since the
probability to not add a spin is (1 − Padd). In the opposite process, ν → µ, n bonds are broken,
with a probability of (1 − Padd)

n. All other moves made to form the two cluster are essentially,
probabilistically the same and thus cancel each other out, when considering detailed balance
[Eq. (2.6)]. The probability of adding a spin to the cluster can then be inferred, since

(1 − Padd)
m−n A(µ → ν)

A(ν → µ)
= exp {−β [E(ν)− E(µ)]}. (2.17)

For pure ferromagnetic spin-1/2 systems, each broken bond will result in a +2J energy
increase. So E(ν)− E(µ) = 2J(m − n). Substituting this to Eq. (2.17) results in

A(µ → ν)

A(ν → µ)
= (exp {2βJ}(1 − Padd))

m−n . (2.18)
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Choosing Padd = 1 − exp {−2βJ} is a very convenient choice, since it makes the right-
hand side equal to 1, forcing the acceptances for both the forward and backward movements
to be equal to 1, for a maximal acceptance of the proposed move. Note that for very high
temperatures, β → 0, the probability to add a spin becomes zero, implying that the correlations
between the spins are non-existent for an infinite temperature, and very short range for high
temperatures. On the other hand, for very low temperatures, β → ∞, Padd = 1, implying
that the cluster become geometric and not stochastic, i.e. spins are added with certainty in the
cluster as long as a path of spins of the same orientation can be formed between them.

The above discussion explains the formulation of the Wolff cluster algorithm [83]. Due to
the random selection of the seed spin, the cluster grown will be a subset of the largest geometric
cluster more often than any other geometric cluster. This makes the algorithm very effective at
studying the system in its critical region. Another way to implement the above cluster growing
process is through the Swendsen-Wang cluster algorithm [84]. In this process, the whole system
is populated by clusters formed with the above procedure. In the end, each of the clusters is
flipped with a 1/2 probability. This process still upholds the condition of detailed balance.
Specifically, if c clusters are formed in the system, then the acceptance probabilities would be
(1/2)c for both the forward, µ → ν, and the backward, ν → µ, moves. Additionally, due to the
choice of Padd = 1 − exp {−2βJ} detailed balance is directly satisfied.

A benefit of the Swendsen-Wang approach compared to the Wolff cluster algorithm, is that
an iteration of the the first performs a whole sweep of the lattice, thus making its artificial time
step directly comparable with a sweeps of a single-spin-flip algorithm. As a drawback though,
the benefit of picking on average one of the larger cluster is lost. This generally slows down
the dynamics of the algorithm. More on this will be discussed in Section 2.6.

Algorithmically, a Wolff cluster can be developed as follows:

1. Pick a seed spin and add it to an empty array which holds the spins in the current cluster.

2. Move one memory position forward in the current cluster array, thus choosing a current
spin.

3. If there is no spins left, flip the spins in the cluster and exit.

4. Check the neighbours of the current spin and, if they are not already in the cluster array
and are also parallel to the current spin, add them to the array with probability Padd.

5. Go to step 2.

In this process it is also useful to keep track of which spins already belong in a cluster, in
order to avoid considering testing them more than once. A generalisation for the Swendsen-
Wang cluster is readily available with minor modifications.
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It is worthy to point out that cluster algorithms are predicated on the Hamiltonian symme-
try of spin models, and in general are expected to work well for Potts models [85], because of
their O(n) symmetry. Potts models are defined by the Hamiltonian

HPotts = −J ∑
⟨ij⟩

δσi ,σj , (2.19)

where spins are allowed to take the values 1, 2, . . . , q. To give the simplest example, follow-
ing the Fortuin-Kasteleyn representation [86–88], the partition function of the two-state Potts
model at an inverse temperature β can be written as [41]

Z = ∑
{σ}

exp

βJ ∑
⟨ij⟩

δσi ,σj

 = ∑
{σ}

∑
{nij}

∏
⟨ij⟩

exp {βJ}
[
(1 − p)δnij,0 + pδnij,1

]
. (2.20)

In the above equation, nij indicates whether a bond is active or inactive (unity or zero respec-
tively), and p = 1 − exp{−2βJ} is the probability to activate a bond. Equation (2.20) readily
gives the same algorithm as the one discussed above, making clearer the role of symmetry as
well. In the following Chapter, the efficacy of a cluster algorithm for a model in the 4-state
Potts universality class that possesses three-spin interactions will be put into question. As will
be seen, upon approaching a multicritical point, the efficacy of the algorithm also decreases.

2.4.1 Hybrid algorithms

There are many models were a cluster algorithm would simply be inadequate. An example of
this are spin-1 models, whose spins can take the value zero. Such systems can be thought of as
trying to mimic vacancies that can move around in a material, following the grand canonical
ensemble [Eq. (1.13)]. If one of the spins that enter into an exchange interaction is zero, then
the energy would not change regardless of the values of the rest of the spins in the exchange.
For that reason, cluster algorithms can be chosen to either ignore the existence of zero spins,
treating them as vacancies, or always expand on them, but never be able to flip them. Since
however these zeros can also appear and disappear, a cluster algorithm cannot work to sim-
ulate such models. For this reason, in many studies [89–91], a cluster is often paired with a
single-spin-flip algorithm. That way the efficiency of the multi-spin-flips of the cluster is still
taken advantage of. At the same time, the single-spin flips guarantee that ergodicity is upheld
and the state of the zero spins can still be modified.

2.5 Generalized Ensemble Sampling

Both single-spin-flip and cluster algorithms have the drawback of only allowing to extract re-
sults for a system in specific values of the field variables, i.e. temperature, external magnetic
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field, etc. Then, in order to study a system whose behaviour is unknown, a large number of
simulations is necessary. There is a group of algorithms though that offer the versatility of
being able to give results for any value of the field variables, at least in principle. These are
generalised ensemble methods. Here, focus is placed only on the Wang-Landau [92, 93] and
multicanonical [94] algorithms.

2.5.1 Wang-Landau algorithm

As mentioned in Section 1.1.4, the main issue with analytically solving statistical physics sys-
tems is the inability to calculate the density of states, Ω(E) (see Eq. (1.12)). If the degeneracy
Ω(E) was known then the partition function would directly allow to solve the system analyti-
cally. The Wang-Landau process [92, 93] is an iterative recipe for calculating the density. After
Ω(E) is known, results can be extracted for any value of the external fields. The description
of this scheme will be given for a single parameter system, with the generalisation to more
parameters being easy to extrapolate.

To iteratively estimate the density of states, the Wang-Landau method accepts new candi-
date states with a probability proportional to the reciprocal of Ω(E). The process which sug-
gests a new candidate state is not important for this discussion, but in most applications new
states are produced by considering single-spin flips. That way, beginning with an initial state
with energy E, a new state with energy E′ would be accepted with probability Ω(E)/Ω(E′).
For that reason, if the exact energy density was used, in the end a flat histogram in energy
space would be sampled. However, since Ω(E) is unknown, an initial guess is needed. The
usual choice is Ω(E) = 1 for all energy levels.

After every proposed spin flip, Ω(E) is updated for the current energy of the system, using
a modification factor f . Specifically, in the ith iteration, Ω(E) becomes fi × Ω(E) for the cur-
rent energy. Additionally, an energy histogram is stored. When it is flat enough, using some
criterion to test the flatness, the modification factor is changed by the rule fi+1 =

√
fi, where i

indicates the number of times f has been modified. The initial value of f can be arbitrary, but
usually is chosen to be f0 = e. After each modification of f the energy histogram is reset.

It should be noted that due to the acceptance rate, the density of states is actually defined
up to a multiplicative constant. Additionally, by construction and unlike the previous algo-
rithms, nowhere in this discussion did the temperature appear. The Wang-Landau algorithm
essentially tries to emulate a random walk in energy space and measure the geometric factor
of how many microstates can produce a specific energy state.

Note that the factor f approaches unity very fast, with each modification. Thus, the longer
the simulation runs for, the smaller the modifications to the density of states will be. In the end
Ω(E) saturates and cannot actually reach the desired density of states. Lastly, since the weights
are modified in every step, no detailed balance can be achieved [95]. Nevertheless, a number
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of important soft-matter and biophysics applications have used this method successfully [96–
102].

To avoid the aforementioned issues, the final density measured can be used in a production
run at the end of the simulation. The time series produced thusly, together with the weights
proportional to 1/Ω(E), can be used to extract results for any value of the temperature. Since
in this latest run the weights are unchanged, the issue of their constant modification is circum-
vented. Additionally, the reweighting process will make sure that each measurement is taken
into account using a proper weight factor.

For two- or higher-parametric models, with more than one field, the energy of the system
will be equal to E = E1 + E2 + . . . , where for example E1 might come from nearest- and E2 from
next-nearest-neighbour interactions. The Wang-Landau algorithm can be applied to calculate
the multi-parametric density of states. Due to the increased size of the energy space, this will
only allow the simulation of relatively small system sizes, which are not necessarily useful due
to finite-size effects. For that reason, the random walk process can be applied only in one of the
energies. The general method remains the same, and only the acceptance probabilities change.
In a two dimensional energy space for example, starting from a point (E1, E2), a move (E′

1, E′
2)

is accepted with probability P(E1, E2 → E′
1, E′

2) equal to

P(E1, E2 → E′
1, E′

2) =
exp (−βE′

1)

exp (−βE1)

Ω(E2)

Ω(E′
2)

, (2.21)

where Boltzmann weights were used for the E1 parameter and the Wang-Landau process was
used for the E2.

Modifications and improvements on the Wang-Landau algorithm

One useful modification is to separate the energy-space into subranges and use different simu-
lations to sample each of them [92, 93, 103]. Then, a concatenation process can be applied using
the overlap in the ends of the ranges.

Another modification is to place a restriction on the energy-space, a practice that has been
successful in studying pure [104, 105] and disordered [106–108] spin systems. In this approach,
entries in the beginning and the end of the energy histogram are disallowed, as they are ex-
pected to play a small role in the averaging process. Specifically, to study the peak of an ob-
servable like the specific heat, only a relatively small range of energies is required. This critical
minimum energy subspace can be defined [104, 105], depending on the necessary accuracy of the
application.

Start by assuming that in a particular system at a temperature T, Ẽ is the energy that pro-
duces the maximal term of the partition function of Eq. (1.12). For a finite system of linear size
L, the interest lies in locating the maxima of thermodynamic observables and their location,
or pseudocritical temperature T∗

L . Starting from Ẽ = Ẽ(T∗
L), an energy subspace

(
Ẽ−, Ẽ+

)
is
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defined, with Ẽ± = Ẽ ± ∆Ẽ. The practicality of this method is based on the expectation that
∆Ẽ ≪ (Emax − Emin), where Emax and Emin are the maximum and minimum values the energy
can take, respectively.

From the definition of the free energy in Eq. (1.14), in the microcanonical ensemble one can
define the distribution f (E; T∗

L) ∼ exp {S(E)− βE}. Then, a simple way of defining the sought
after energy subspace would be to try and reduce the quantity

f (E; T∗
L)/ f (Ẽ; T∗

L) = exp
{
(S(E)− βE)−

(
S(Ẽ)− βẼ

)}
< r, (2.22)

where r is some predefined parameter, setting the precision. However, the precision requested
of the critical minimum energy subspace method should be better than the errors arising from
the Monte Carlo simulation.

It is expected that ∆Ẽ will be of the order of the standard deviation of the energy [104, 105].
Using the definition of the specific heat in Eq. (1.19), then

∆Ẽ ∼ Ẽ+ − Ẽ− ∼ σE ∼
√

NT2C. (2.23)

A scaling law can be deduced for the range ∆Ẽ, from the scaling law for the specific heat
[Eq. (1.76)],

(
∆Ẽ
)2 /LD ∼ Lα/ν. (2.24)

It should be noted that the above assumptions are based on the fact that the mean of ther-
modynamic observables is expected to follow a Gaussian distribution, as per the central limit
theorem (see Appendix A). The energy subspace then will have, from Eq. (2.23), a size of the
order of

√
N. However, at the critical point, where the correlation length diverges, the distri-

bution will not be Gaussian (see Section 1.6.3). It is expected though that the difference will not
disallow the application of the method. In fact, the method has been applied with success in
the past, measuring the critical exponent ration α/ν with adequate precision [104, 105].

2.5.2 Multicanonical algorithm

The multicanonical process [94] is similar in spirit and application to the Wang-Landau method.
It also consists of using modified weights to simulate the system in order to produce flat his-
tograms in energy space.1 For a general discussion, the case of a multi-parametric energy space
will be considered, and the multicanonical algorithm will be applied only to part of the energy
space.

Let a system be described by an N dimensional energy space {Ei}Ni=1. A generalised parti-
tion function for this system can be written, where the Boltzmann weights of M of the energies

1In general, it is not necessary to use the energy histogram, and the method could be implemented centred
around other parameters, like the magnetisation.
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have been generalised to W({Ei}Ni=N−M+1). For the rest of the energies nothing changes, so
the multicanonical partition function is defined as

ZMUCA = ∑
{E}

Ω({E}) exp

(
−β

N−M
∑
i=1

Ei

)
W
(
{Ej}Nj=N−M+1

)
, (2.25)

where {E} was used for brevity to represent all the energies, {Ei}Ni=1. The probability for a
system to be in a specific energy {E} is

PMUCA =
Ω({E}) exp

(
−β ∑N−M

i=1 Ei

)
W
(
{Ej}Nj=N−M+1

)
ZMUCA

. (2.26)

In order to produce a flat histogram in the manifold {Ei}Ni=N−M+1 of the energy space
the marginal probability, obtained after summing out all other energies, should be constant.
Solving for the modified weights then implies that

W
(
{Ej}Nj=N−M+1

)
∝ ZMUCA

 ∑
{E}N−M

i=1

Ω({E}) exp

(
−β

N−M
∑
i=1

Ei

)−1

. (2.27)

These weights can be calculated in an iterative fashion, starting from an initial guess, which
is usually unity for all possible combinations. At the nth iteration, spins are flipped from state
{Ej}Nj=1 to state {E′

j}Nj=1 using the weights

g(n)
(
{E′

j}Nj=1

)
/g(n)

(
{Ej}Nj=1

)
, (2.28)

where

g(n)
(
{Ej}Nj=1

)
= exp

(
−β

N−M
∑
i=1

Ei

)
W(n)

(
{Ej}Nj=N−M+1

)
, (2.29)

with the superscript (n) indicate the number of iterations. At each step, a histogram is accu-
mulated, H(n)({Ej}Nj=N−M+1), of the energies for which the algorithm is used. This histogram
will have the property

H(n)
(
{Ej}Nj=N−M+1

)
∝ P(n)

(
{Ej}Nj=N−M+1

)
=

1
ZMUCA

∑
{E}N−M

i=1

Ω({E}) exp

(
−β

N−M
∑
i=1

Ei

)
W(n)

(
{Ej}Nj=N−M+1

)

∝
W(n)

(
{Ej}Nj=N−M+1

)
W
(
{Ej}Nj=N−M+1

) .

(2.30)
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The last proportionality indicates how to iteratively approach a flat histogram in the sub-
space {Ei}Ni=N−M+1 of the energy space by updating the weights using the scheme

W(n+1) =
W(n)

H(n)
, (2.31)

where writing the argument {Ej}Nj=N−M+1 for each function was skipped. After the weights
are updated, the histogram is emptied and resampled.

In the beginning of the simulation, the sampled histograms are not flat at all. After many
iterations though, a flat histogram would be approached. When the desired flatness is reached,
a final production run can be performed using the latest weights. The time series, together
with the weights that produced it, can be used to extract results for any value of the fields that
are coupled with the conjugate variables {Ej}Nj=N−M+1, where the multicanonical process was
applied. More on the reweighting method required to do so can be found in the following
Section and in Appendix A.

For the simplest case, where the energy space is one-dimensional, then simply replace in
the above discussion N = M = 1. For the case of a two-parametric model, like the Blume-
Capel and Baxter-Wu models, where the multicanonical method is going to be applied in the
following chapters, N = 2 and M = 1.

Modifications and improvements on the multicanonical algorithm

The most commonplace modification made to the multicanonical algorithm, probably used in
every implementation, is to save the logarithms of the weights W(n) instead of their actual
value, since the latter always appear in ratios when it comes to the acceptance probability (see
Eq. (2.28)). Sometimes this is necessary to be able to represent large weights at all in machine
precision. One can also separate the order parameter range of interest into overlapping win-
dows and work in a parallel fashion for these, stitching the results together self consistently
using histogram reweighting. Nevertheless, this technique was not applied in the current work

A large benefit of the multicanonical algorithm is that it is highly parallelisable, specifically
during the histogram sampling process. A relatively simple modification is to use many par-
allel systems with the same multicanonical weights, each sampling its own energy histogram,
and each having a different random number generator.2 The individual histograms may then
be accumulated into a global histogram which could be used to modify the weights. This pro-
cess keeps communication between the parallel workers minimum, something highly sought
after in parallel applications [111].

This parallelisation can be performed on Graphical Processing Units (GPUs), taking advan-
tage of their architecture. This however complicates the application of the algorithm, mostly

2The one chosen for the particular applications in this thesis was the Philox generator [109], which has been
tested for parallel applications on GPUs in the past [110].
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in the realm of memory access. First of all, GPUs usually possess much less memory, VRAM,
compared to that available to a CPU, through RAM. So, memory intensive application might
need to be modified to be performed on a GPU. Additionally, the way memory is accessed by a
GPU works much differently than on RAM. For that reason, it is faster for an application to try
to access adjacent memory locations as much as possible, in contrast with the random access
memory of a CPU. A straightforward way to accomplish that is to place the lattice sites of the
different systems running in parallel next to their counterparts. It is preferable for all lattices to
be saved in an array where the first entry is the first spin of the first system, the second entry is
the first spin from the second system, the third entry is the first spin of the third system and so
on. Also, the same random number for choosing a spin would be used for all parallel systems.
That way, only adjacent memory locations would need to be accessed during one implementa-
tion of the algorithm, and delays due to fetching random spin positions from memory for all
lattices can be avoided. However, the random number for the choice and acceptance probabil-
ities should still differ from system to system. Moreover, different types of memory available
to the GPU could be utilised for different tasks. For example, texture memory could be used
for arrays that are by construction accessed randomly, such as the weight W(n). For a thor-
ough conversation on the subject, as well as discussions on performance and benchmarking
see reference [111].

2.5.3 Reweighting process

In both Wang-Landau and multicanonical simulations, at least concerning the current thesis
applications, a final production run is performed using modified weights. These weights can
then be used to reweight the results in order to extract estimations of physical quantities for
any value of the fields, at least theoretically. Specifically, for a particular observable quantity
O = O({σ}), where {σ} indicates the configuration of the system, an average for any value of
a desired field can be extrapolated from the results of one simulation. Using the terminology
from the previous multicanonical section, and defining a set { fi}Ni=N−M+1 as the desired values
of the fields conjugate to the energies {Ej}Nj=N−M+1, the the mean is given by (see Appendix A)

⟨O⟩{ fi}Ni=N−M+1
=

〈
O({σ})W−1

(
{Ej}Nj=N−M+1

)
∏N

i=N−M+1 exp {−β fiEi({σ})}
〉

MUCA〈
W−1

(
{Ej}Nj=N−M+1

)
∏N

i=N−M+1 exp {−β fiEi({σ})}
〉

MUCA

.

(2.32)
The subscript “MUCA” is there to indicate that the averaging happens over the data sam-

pled from the multicanonical simulation. Essentially this process counterbalances the weights
W that produced the time series and averages with the proper equilibrium Boltzmann weights.
At the same time it changes the normalisation, as seen by the denominator. This process then
gives the ability to decide on the values of the fields post simulation.
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Equation (2.32) is not useful only for the generalised ensemble methods. Arguably, it is
used more often in conjunction with on of the algorithms discussed in the beginning of this
Chapter. By performing a simulation at a constant value of the temperature T0 for example,
one can extrapolate results for additional values of T, close to T0, by using the same time series
and applying Eq. (2.32). Specifically, using the same concept of weighted averaging, the mean
of an observable like the energy or the magnetisation at T will be given by

⟨O⟩β =
∑i Oi exp {(β0 − β)Ei}

∑i exp {(β0 − β)Ei}
(2.33)

where β0 = 1/T0 and β = 1/T, and the sums run over the whole time series. A thorough
discussion concerning the reweighting range |T − T0| that can still produce accurate results,
or how this process can utilise the data of simulations at many different temperatures, can be
found in reference [41].

2.5.4 Testing for flatness

An important test to perform in these generalised ensemble methods is to test the flatness of the
histogram. In the Wang-Landau method this is clearly so, since when the histogram becomes
flat, the modification factor is decreased. It is less evident however why testing for flatness can
be useful in the case of the multicanonical algorithm. Since the simulations performed are in
equilibrium, any weights utilised would give a correct answer. However, demanding that the
weights be flat both in the iteration and the production processes can be a good extra test to see
if indeed the system was in equilibrium during the iteration step of the algorithm. If this fails,
it could indicate that different equilibration and sampling times should be used.

The most straightforward way to test for the flatness of the aforementioned histograms is to
measure the relative deviation of the sample from a flat histogram. This method was applied
for the Wang-Landau simulations of Chapter 4.

A more elaborate way that shows how distant two distributions are is the Kullback–Leibler
divergence [112]. Given two distributions, P and Q, this metric is defined by the expectation
value of difference of the logarithms of the distributions

DKL(P||Q) = −∑
x

P(x) log
Q(x)
P(x)

, (2.34)

which can also be seen as the relative entropy. Q is the test distribution, i.e. the flat one,
while P is the sampled. That way, if for some x, P(x) → 0, then P(x) log P(x) → 0 as well.
This test can be very sensitive to very small values of Q, which seldom appear at the tails of
distributions. Since however Eq. (2.34) is meant to be applied to test against a flat distribution,
this problem does not arise here. The Kullback–Leibler divergence has already been applied in
multicanonical simulations with success [111].
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2.6 Dynamical Behaviour of Algorithms

The quintessential step after most Monte Carlo simulations concerning phase transitions of
statistical physics models is to perform a finite-size scaling analysis, as discussed in Chapter 1.
To accomplish this, the study of the behaviour of a system around a transition point for many
different sizes is needed. It is then integral to have an estimate of how the resources needed by
each algorithm increase with the system size, in order to know if the study undertaken is even
feasible.

To answer the above question, the behaviour of the correlations within a time series can
be calculated. If these correlations are large, then the simulation would need to run for longer
in order to produce enough uncorrelated measurements. On the other hand, if the system
decorrelates quickly, then even small runs could be adequate. The integrated autocorrelation
time τint is a measure of how correlated a data set is. Specifically, for a time series {xi}N

i=1, as
discussed in Appendix A, the variance of the average is given by

σ2(x) =
σ2(xi)

N
2

[
1
2
+

N

∑
k=1

A(k)
A(0)

(
1 − k

N

)]
, (2.35)

where A(k) is the autocorrelation function, A(k) = ⟨x1x1+k⟩ − ⟨x1⟩2, k being the lag between
two measurements. The quantity in the brackets defines the integrated autocorrelation time

τint =
1
2
+

N

∑
k=1

A(k)
A(0)

(
1 − k

N

)
. (2.36)

For large N and after some value of k, the fraction A(k)/A(0) would become very small.
Usually, after an initial decay, this fraction will decay exponentially [79]. Additionally, for
smaller values of k, the term in the parenthesis, which counts the frequency of appearance of
each of the correlations, would be approximately equal to unity. These arguments justify the
approximation of τint [41], by

τint ≈
1
2
+

N

∑
k=1

A(k)
A(0)

. (2.37)

Characteristic curves of the autocorrelation function A(t)/A(0) and of the function

I(t) =
1
2
+

t

∑
k=1

A(k)
A(0)

(2.38)

can be seen in Fig. 2.1. Note that after the plateau is reached, a systematic cut-off can be in-
corporated to extrapolate the value of τint. This figure is extracted from the results of the next
chapter.

The integrated autocorrelation time will increase with the linear system size L, scaling like
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FIGURE 2.1: Characteristic curve of the autocorrelation function (see Eq. (2.35))
and of Eq. (2.38), showcasing how the integrated autocorrelation time can be de-

fined using a cut-off.

τint ∼ Lz, (2.39)

where z is called the dynamical critical exponent [78]. Similar to other critical exponents it is
expected to be universal when it comes to the model studied, i.e. one expects that to depend
on the spatial dimensionality of the system, the symmetries of the model, and the range of
interactions. It should not be a surprise however that is also depends on the choice of the
algorithm. See for example Section 2.3 and Section 2.4 where the differences and benefits of a
cluster algorithm in comparison to a single-spin-flip method were discussed.

There are a number of works that have measured the z exponent in different cases. Gen-
erally, cluster algorithms have a much smaller z exponents compared to single-spin-flip algo-
rithms. For example, in the two-dimensional Ising model, the dynamical critical exponents z
of the Wolff cluster algorithm, calculated from the integrated autocorrelation time is 0.26(2) for
the energy (E) and 0.13(2) for the magnetic susceptibility (χ) [83]. The same quantity for the
Swendsen-Wang algorithm has the respective values 0.27(2) and 0.20(2) [83]. In three dimen-
sions, the Wolff cluster yields z = 0.28(2) for E and 0.14(2) for χ, while for the Swendsen-Wang
z = 0.50(3) for both E and χ [41]. The smaller exponent z for the Wolff algorithm can be at-
tributed to the fact that the seed spin chosen in the first step of the development of a cluster is
more likely to be a member of the largest geometric cluster of the system than any other smaller
cluster. So, on average, it is expected that a certain amount of Wolff cluster proposed flips will
decorrelate the system more than an equivalent amount of flips proposed by the Swendsen-
Wang algorithm.

Single-spin-flip algorithms however tend to have a value of z a bit above 2, meaning that
they scale a bit worse than a random walk. Specifically, using the Metropolis algorithm, for the
pure Ising model z = 2.1667(5) (two-dimensions) [113] and z = 2.055(10) (three-dimensions) [114].
The above stated results are not necessarily consistent and directly comparable with each other,
since some were from equilibrium and some from non-equilibrium studies. However, it is
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evident that the dynamical scaling of the clusters is an order of magnitude better than what
single-spin-flip algorithms can achieve.

2.7 Related Methodology

As far as the current discussion of statistical physics is concerned, Monte Carlo simulations
go hand-in-hand with the concepts of renormalisation group. Many works in the past have
focused on performing the renormalisation-group transformation with the aid of Monte Carlo
simulations. This process began with the ideas of Shang-keng Ma [115], and was further de-
veloped in the following years [48, 50, 116–121]. In more resent times, with machine learning
being at the forefront of contemporary research, there have been successful applications com-
bining it with renormalisation-group ideas [122]. Additionally, Monte Carlo renormalisation
group has been combined with neural networks [53], leaving it up to the neural network to
decide on the blocking method. Since many ideas are common in both fields, there is room for
development of both disciplines in a combined approach.

Another method, useful in the study of complex systems possessing rough free energy land-
scapes, is that of simulated tempering [123]. In this approach, an initial array of temperatures
is set, and the system randomly changes its temperature during the simulation. Taking ad-
vantage of the fluctuations at large temperatures, this allows the system to move out of local
minima. In this approach, parallelising the computer code is a major asset [124]. Studies of
this form need to take into account the distribution of temperatures chosen and the number of
Monte Carlo steps before each temperature change.

Population annealing [125–127] is another simulation scheme used in similar studies. There,
an ensemble of system replicas is set at some initial temperature. From this set of copies, the
ensemble is resampled, using Boltzmann weights, and each copy is evolved using a Monte
Carlo algorithm. The temperature is then reduced, until the target has been reached. At each
step, observables can be estimated directly from the ensemble. This method is suitable for
parallelisation and there are a number of parameters that can be optimised, such as the num-
ber of replicas, temperature step, and number of Monte Carlo sweeps before each ensemble
resampling.

On a different note, the development of quantum mechanics methods, such as the the den-
sity matrix renormalisation group [128–130], have led to further progress in classical applica-
tions as well, specifically, the concept of tensor-network renormalisation group [131–133] and
corner transfer matrix renormalisation group [134, 135]. Since calculations with tensors have
become much easier to perform due to software related to machine learning, it is expected that
this area of research has still more room for further development.
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Chapter 3

Dynamical Scaling in the Dilute
Baxter-Wu Model

The dynamical critical scaling behaviour of the spin-1/2 and spin-1 Baxter-Wu models in a
crystal-field ∆ is investigated, employing a set of methods: a cluster and a single-spin-flip
for the spin-1/2 case and a single-spin-flip and a hybrid algorithm for the spin-1 case. The
latter method combines a cluster and a single-spin-flip update. Specifically, the equilibrium
properties of the models are examined, with the aim being to implement and study the scaling
of the cluster algorithm proposed by Novotny and Evertz [136]. Given the underutilisation of
this cluster method in the past, its application holds promise for exploring the vicinity of the
multicritical point of the spin-1 model. A finite-size scaling analysis provides the dynamical
critical exponent z. For the spin-1 model, as ∆ crosses to positive values it renders the hybrid
update almost as inefficient as the single-spin-flip approach.

The rest of the Chapter is structured as follows: Section 3.3 provides a discussion on how
to define an autocorrelation time, how to measure it, and how to extract the dynamical criti-
cal exponent z from a finite-size-scaling analysis. The pure and dilute Baxter-Wu models are
introduced in Section 3.1, while the cluster algorithm is described and its correctness is tested
against other simulation methods in Section 3.2. Results are shown in Section 3.4. Specifically,
estimations of z for the cluster and Metropolis algorithms in the spin-1/2 model are performed
in Section 3.4.1. In Section 3.4.2, the dynamical critical exponent z of the hybrid and heat-bath
algorithms is calculated for the spin-1 Baxter-Wu model in the presence of a crystal field ∆, for
various values of ∆ along the critical transition line.

3.1 The Baxter-Wu Model

The Baxter-Wu model was first introduced by Wood and Griffiths [137] as a system which does
not exhibit invariance under a global inversion of all spins. It is defined on a triangular lattice
(see Fig. 3.1) by the Hamiltonian
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H = −J ∑
⟨xyz⟩

σxσyσz, (3.1)

where the exchange interaction J is positive, the sum extends over all elementary triangles of
a lattice with N = L × L sites, and σx = ±1 are Ising-like spin-1/2 variables. The triangular
lattice can be divided into three sublattices, A, B, and C, as shown in Fig. 3.1, so that any
triangular face contains one site of each sublattice. The ground state of the model is four-fold
degenerate: there is one ferromagnetic state, with all spins up, and three ferrimagnetic states,
with down spins in two sublattices and up spins in the third sublattice. Also, the model is self-
dual [137, 138], having the same critical temperature as the spin-1/2 Ising model on the square
lattice, i.e. Tc/J = 2/ ln (

√
2 + 1) = 2.269185 . . ..

To distinguish the paramagnetic from the ferromagnetic state, an order parameter can be
defined. This cannot be the magnetisation, due to the ground state degeneracy. If the mag-
netisation per spin of each sublattice is defined as mA, mB, and mC, an order parameter can
be

mop =
√(

m2
A + m2

B + m2
C

)
/3. (3.2)

Since in all ground states, m2
A = m2

B = m2
C = 1, then mop > 0 in the ordered phase. On the

contrary, in the disorder phase, the average magnetisation of each sublattice is equal to zero,
resulting in mop = 0, making mop an adequate order parameter.

The exact solution of Baxter and Wu dates back to 1973 and provided the critical exponents
α = 2/3, ν = 2/3, and γ = 7/6 [34, 139]. Later, it was shown that the critical behaviour of
the model corresponds to a conformal field theory with central charge c = 1 [140, 141]. As
was first pointed out by Domany and Riedel, the q = 4 Potts model should belong to the
same universality class as the Baxter-Wu model, as both have the same symmetry and degree
of degeneracy in the ground state [142, 143]. However, although the leading critical exponents
are the same, one should note that these two models have different corrections to scaling: while
the 4-state Potts model presents logarithmic corrections with the system size, as expected for
the marginal case before the transition becomes first-order for q > 4 [143], the Baxter-Wu model
has power-law corrections with a correction-to-scaling exponent ω = 2 [140, 141]. This rather
large value of ω allows for a safe determination of the asymptotic scaling behaviour even when
dealing with systems of moderate size, see for instance reference [144]. As will be seen in the
later sections, the accuracy of the results does not allow for the calculation of omega, and thus
the value calculated by Alcaraz et al. was utilised.

An interesting extension of the Baxter-Wu model arises when one considers spin values
σx = {−1, 0, 1} and includes an extra crystal field (or single-ion anisotropy) ∆, so that the
resulting Hamiltonian reads
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FIGURE 3.1: Representation of the Baxter-Wu triangular lattice as a superposi-
tion of the three sublattices A, B, and C. Each sublattice corresponds to spins of

different color. The spins are shown in the ferromagnetic ground state.

H = −J ∑
⟨xyz⟩

σxσyσz + ∆ ∑
x

σ2
x = EJ + ∆E∆. (3.3)

Unfortunately, there exists no exact solution for this model, and therefore approximation meth-
ods need to be employed. Note, however, that when ∆ → −∞, only configurations with
σx = ±1 are allowed and the pure Baxter-Wu model is recovered.

The model of Eq. (3.3) resembles the well-known Blume-Capel model [145–148], which ex-
hibits a phase diagram with ordered ferromagnetic and disordered paramagnetic phases sepa-
rated by a transition line with first- and second-order segments (the latter in the Ising universal-
ity class) connected by a tricritical point. More details about the phase diagram and universality
aspects of the general Blume-Capel model can be found in references [149–156]. In analogy to
these findings, one might expect for the model defined in Eq. (3.3) a similar phase diagram
but a different universality class. Nienhuis et al. [157] first discussed the analogy between the
Baxter-Wu and diluted Potts models and pointed out that the general phase diagram will ex-
hibit a line of continuous transitions that connects to a regime of first-order transitions through
a multicritical point. Kinzel et al. [158] instead, using a finite-size scaling method, conjectured
that a continuous transition only occurs for ∆ → −∞ (the pure Baxter-Wu model). More recent
works has favoured the existence of a multicritical point at finite values of ∆ [159]. In refer-
ence [160] the location of the pentacritical point was estimated as (∆pp, Tpp) ≈ (0.8902, 1.4).
This point refers to the coexistence of three ferrimagnetic and a ferromagnetic configuration,
along with that of zero spins. The results of reference [160] for the critical exponents ν ≈ 0.63
and η ≈ 0.23 point to the universality class of the pure spin-1/2 Baxter-Wu model where
ν = 2/3 and η = 1/4. Additional results exist [161–163] and allow for a very good picture of
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the phase diagram (see Fig. 3.2).
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FIGURE 3.2: Phase diagram of the two-dimensional spin-1 Baxter-Wu model.
The black dashed and continuous lines correspond to first- and second-order
transitions. The black rhombus marks an estimation of the pentacritical point
(∆pp, Tpp) ≈ (0.8902, 1.4) [160]. The black triangle marks another estimation at
(1.68288, 0.98030) [162]. Several transition points are given including those ob-

tained in the current work [163–165].

The next Chapter will focus on the continuous phase-transition properties of the spin-1
Baxter-Wu model in a crystal field. There, it will become apparent that the phase diagram
looks indeed like the one depicted in Fig. 3.2. In the present section, a hybrid update will be
implemented for the first time in the spin-1 model. Section 3.2 introduces said algorithm for
the spin-1/2 model, following the work of Novotny and Evertz [136].

3.2 The Baxter-Wu Cluster Algorithm

3.2.1 The spin-1/2 case

A cluster algorithm for the spin-1/2 Baxter-Wu model was first proposed in 1993, see refer-
ence [136]. Because this algorithm has been underutilised, an overview of the cluster construc-
tion process is given in this Section. Its basis rests on the fact that the triangular lattice consists
of three sublattices and that the triplets that appear in the Hamiltonian of Eq. (3.1) contain one
spin from each sublattice, as shown in Fig. 3.1. The main idea is to freeze one sublattice at each
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iteration of the algorithm and then grow the cluster in the other two sublattices. A picture of
this mapping at a local scale can be seen in Fig. 3.3. There, a pair of spins and the two ele-
mentary triangles that they both belong to are shown. By freezing one of the sublattices, these
spins now interact pairwise, but their exchange-interaction strength is affected by the constant-
sublattice spins. It is then straightforward to apply one of the cluster algorithms discussed in
Section 2.4.

J′ = J(σ1 + σ2)

σ1

σ2

FIGURE 3.3: Mapping of the three-spin into two-spin interactions. In this specific
picture the “blue” sublattice is frozen and its spins are absorbed in the effective

spin-spin exchange-interaction strength.

The steps of the algorithm are as follows:

1. Pick at random one of the three sublattices, which is to remain constant during the itera-
tion.

2. Grow a cluster on the other two sublattices, absorbing the spins of the constant sublattice
in the interaction strength coefficients (see Fig. 3.3).

3. Go back to step 1 and repeat.

Essentially, what this algorithm does is to transform the triangular lattice into an hexagonal
one. At the same time, the constant strength J of the three-spin interactions of the Hamiltonian
[Eq. (3.1)] transforms into effective strengths for two-spin interactions. Any two spins of the
initial lattice participate in two common elementary triangles (see Fig. 3.3). Locally, the energy
due to these two triangles is −Jσ1σσ′ − Jσ2σσ′, where the spins σ1, σ2 belong in the sublattice
that will be frozen, while the spins σ, σ′ each belongs in one of the two other sublattices. Fac-
toring the local energy, J′σσ′ = J(σ1 + σ2)σσ′, defines an effective interaction of two spins with
strength J′ = J(σ1 + σ2). Since the spins can take the values ±1, these new interactions can
have strengths J′ ∈ {−2, 0,+2}.

There are two interesting properties of this proposed update: firstly, there is no frustration
due to the geometry of the hexagonal lattice. Secondly, the developed clusters are either solely
ferromagnetic or antiferromagnetic, and cannot be of mixed interactions. This is because of the
values that J can take and the positions of the spins of the frozen sublattice. Figure 3.4 shows
comparative results for the specific heat (main panel) and the magnetic susceptibility (inset),
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FIGURE 3.4: Comparison of the specific heat (main panel) and magnetic suscep-
tibility (inset) for the spin-1/2 Baxter-Wu model for various values of the tem-
perature, for a system size of L = 48, using the Metropolis and Swendsen-Wang

cluster algorithms. The results agree nicely, within error bars.

between this scheme, using the Swendsen-Wang algorithm [84], and a simple Metropolis up-
date, for a system of linear size L = 48, at various temperatures around the critical point. The
agreement between the results is evident, proving the validity of the algorithm.

3.2.2 The spin-1 case

A hybrid algorithm was implemented to study the spin-1 Baxter-Wu model, comprised of two
parts: one cluster and one single-spin update. For the former, a Swendsen-Wang cluster algo-
rithm was utilised. The single-spin-flip algorithm was chosen to be a restricted heat-bath (HB)
protocol (see references [82, 166] and Chapter 2), which is known to work better for spin-1
models compared to the Metropolis update [82].1 Thus, every Monte Carlo step consists of one
lattice sweep applying the Swendsen-Wang algorithm to all the non-zero spins, and another
sweep using the heat-bath method. The success of hybrid schemes in similar models, such as
the Blume-Capel model, has already been established [89, 91, 156]. The reason behind prefer-
ring the Swendsen-Wang over the Wolff algorithm is that the first makes it straightforward to

1Specifically, even though the two algorithms scale with the same dynamical exponent z, the autocorrelation
time itself is generally smaller for the heat-bath algorithm, at least for models that have more than two possible
states.
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FIGURE 3.5: Upper panel: Comparisons of the specific heat (main panel) and
the susceptibility (inset) of results for the spin-1 Baxter-Wu model at ∆ = −10
for various values of the temperature and a system size of L = 48, using the
Metropolis, hybrid (Swendsen-Wang and heat bath), and Wang-Landau [164] al-
gorithms. Lower panel: Similar to the upper panel, but for ∆ = 0 and L = 96.

Notice the agreement within errors

define time units, which can be useful in an application where the interest lies in measuring
autocorrelation times.
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In the spin-1 model, when a sublattice is chosen to be frozen, the effective interactions aris-
ing can take the values {−2,−1, 0,+1,+2}. Due to the existence of zero spins, the clusters can
now be ferromagnetic, antiferromagnetic, but also of mixed interactions, unlike the spin-1/2
case. Nevertheless, there is still no frustration due to the geometry. In the following, reduced
units will be used, where J = 1.2

Comparisons utilising different simulation methods can be seen in Fig. 3.5, where the spe-
cific heat and the magnetic susceptibility for a system of L = 48 at ∆ = −10 are compared
using a Metropolis update, the hybrid algorithm, and results from Wang-Landau simulations
taken from reference [164]. All results are in agreement with each other. Furthermore, since for
strongly negative ∆ the system is very close to its spin-1/2 counterpart, results much closer to
the multicritical point are presented in in the bottom panel of the same figure. There, results
around the pseudocritical point of a system L = 96 at ∆ = 0 are presented, using the heat-bath
and the hybrid update. Again, the results are in agreement within errors. Additionally, follow-
ing the same arguments from Section 2.4, with the additional move of choosing one sublattice,
it is straightforward to see that detailed balance is adhered to. Lastly, the algorithm allows
in principle the system reach any possible microstate, making it ergodic. All these indicate
that the hybrid algorithm can actually be used to simulate the spin-1 Baxter-Wu model in the
presence of a crystal field.

It is important to note that as ∆ increases, so does the density of the zero spins, possibly
rendering the cluster algorithm less-and-less useful. Additionally, the lack of zero spins in the
small values of ∆ causes the clusters formed to be mostly ferromagnetic or antiferromagnetic,
but not of mixed type, possibly stunning the growth of clusters. These will be studied in the
following sections. Finally, the reason for the various comparisons, using different algorithms,
is to establish that all the implemented methods agree with each other, in order to make more
concrete the correctness of the cluster update and of the hybrid scheme overall.

3.3 Scaling of Autocorrelation Times

As mentioned in Chapter 2, Section 2.6, the integrated autocorrelation time, τint, and especially
its finite-size scaling, play an important role in characterising the efficacy of a Monte Carlo
algorithm. From Eq. (2.37), τint is defined as

τint =
1
2
+

n

∑
k=1

A(k)
A(0)

, (3.4)

with n being the sample size and A(k) = ⟨x1x1+k⟩ − ⟨x1⟩2 is the reduced autocorrelation
function. In this context, the parameter k is often referred to as lag. In general, the quantity
A(k)/A(0) starts from unity and decays. Due to the finiteness of the sampled time series,

2As a reminder, the Boltzmann constant kB has been set to unity throughout the thesis, and temperature will be
measured in units of energy given by [J].
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given enough time, A(k)/A(0) eventually fluctuates around zero. For this reason, when per-
forming the summation in Eq. (3.4), the estimation of τint increases until it reaches a plateau,
around which it fluctuates.

A self consistent method for the calculation of the integrated autocorrelation time is usually
defined by implementing a large enough integration cut-off [167]. In the past, a lot of success
has been garnered when the numerical integration was stopped using the condition kmax ≥
aτint, where 3 ≤ a ≤ 10 [168]. The integrated autocorrelation time relation would then become

τint ≈
1
2
+

kmax

∑
k=1

A(k)
A(0)

. (3.5)

This method guarantees that τint will have saturated but also that autocorrelations separated
by very large time steps, for which the finite time series does not have enough information,
will not be taken into account. Hence, for large enough samples, the fluctuations of A(k)/A(0)
that appear after some value of k are not being taken into account.

As mentioned in Section 2.6, the time τint will scale like

τint ∼ Lz, (3.6)

or including corrections-to-scaling [168]

τint = cLz(1 + c′L−ω). (3.7)

Here, c and c′ are non-universal constants, to be determined from a fitting process, and ω is a
universal corrections-to-scaling exponent.

On the other hand, in models were τint, and by extension kmax, become very large, there
might be a need to sample a huge time series, in order to make sure that the precise calcula-
tion of τint is possible. This can lead to arduous simulations and unwieldy time series, due to
the complexity that enters in the calculation of A(k). To avoid summing up to a large kmax,
Hasenbusch et al. [169] suggested a somewhat different-in-spirit approach for calculating z,
and successfully applied it for the three-dimensional Ising model with dilution. This method
does not deal with τint directly, but instead calculates times τx that scale with the same law,
i.e. τx ∼ Lz. The advantage of this approach is that calculation for smaller lags are required in
order to estimate τx, compared to τint, leading to faster as well as more precise estimations.

To define this time τx in the current case, the function I(t) is necessary, with

I(t) =
1
2
+

t

∑
k=1

A(k)
A(0)

. (3.8)

Reference [169] proved quite generally that the solution of the equation
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τx = I(xτx) (3.9)

scales like Lz, where x is a real positive number. It can be shown that τx exists and that it scales
like τint.

Firstly, to see that a solution τx exists it is enough to define the function hx(t) = t − I(xt).
Since I(t) is defined only for integer values of t, an interpolation to all positive values of t is
required. In what follows, a linear interpolation was chosen. It holds that hx(0) = −1/2 and
also that hx(t → ∞) → ∞. Since hx(t) is continuous and differentiable, there exist at least one
root τx > 0 such that Eq. (3.9) is fulfilled.

Secondly, it can be proven that this solution scales like the integrated autocorrelation time
τint. Starting from the inequality 0 < k < kmax, for some very large value kmax, it follows that
1/2 < I(k) < I(kmax), since I(t) is a continuous, positive, and increasing function. Without loss
of generality, writing k = xτx implies that 1/2 < I(xτx) < I(kmax). Then, from Eq. (3.9), 1/2 <

τx < I(kmax). Dividing with τint, which for finite systems is also finite, results in 1/(2τint) <

τx/τint < I(kmax)/τint. Since for finite systems 1/(2τint) > 0, then 0 < τx/τint < I(kmax)/τint.
Lastly, taking the limit kmax → ∞ implies that 0 < τx/τint < 1. The last set of inequalities
suggests that τx is positive, smaller and also proportional to τint. Thus, τint and τx obey the
same scaling law. So, for finite systems, the scaling relation τx ∼ Lz holds.

Note that if x is chosen to be very large, then this method coincides in spirit with the cut-
off discussed in the beginning of this section. This is due to the saturation of I(t), for large
arguments. However, the power of this approach can be seen when the choice of x is relatively
small. Then, there is no need to calculate the autocorrelation function A(k)/A(0) for large
values of k.

3.4 Results

3.4.1 The spin-1/2 Baxter-Wu model: a dynamical scaling study for a cluster update

To calculate the dynamical exponent z of the cluster algorithm for the spin-1/2 Baxter-Wu
model, simulations at the critical point Tc = 2.269185314 . . . [34, 139] were performed. Specif-
ically, a Swendsen-Wang cluster algorithm was implemented, whereas the original study of
Novotny and Evertz [136], as well as a study by Velonakis and Martinos [170] used Wolff clus-
ters. The value of z was measured using the methods discussed in Section 3.3, specifically for
the order parameter of the model [Eq. (3.2)]. For the numerical summation of the autocorrela-
tion functions, Eq. (3.5), a cut-off of kmax = 6τint was used throughout this Chapter. The linear
system sizes studied were L = {12, 15, 18, 24, 30, 36, 48, 60, 72, 96, 120, 144}. As can be seen, the
system size is always a multiple of three, to make sure that all the ground states of the infinite
system have the same energy in the finite systems. The simulation length was 106 Monte-Carlo
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sweeps for the smallest system of L = 12, with an additional one-tenth of those sweeps used
for equilibration. For the rest of the systems, these numbers were increased by a factor L2/122.
From the autocorrelation times calculated, it is safe to assume that the system had reached
equilibrium. Periodic boundary conditions were used and the corrections to scaling exponent
is taken to be equal to ω = 2 [140, 141]. Lastly, concerning the fitting procedure, similarly to all
the previous chapters, the standard χ2 goodness of fit test was employed [171]. The probability
Q of finding a larger value for χ2, compared to the one calculated from the process, was consid-
ered to be fair if 10% ≤ Q ≤ 90%. This is the standard practice followed also in the remainder
of the thesis.

The upper panel of Fig. 3.6 shows τint versus L, for the Swendsen-Wang and Metropolis
algorithms. The errors were calculated using the jackknife method (see Appendix A). Specifi-
cally, the time series was separated into 50 bins, each bin being much larger than the autocor-
relation time. That way, 50 virtually uncorrelated estimates of τint were calculated. From there
it is straightforward to apply the jackknife method and estimate the mean τint and its error.
Some tests, performed mostly for the smaller system sizes considered, indicated that varying
the number of bins up to 100 did not really change the estimations of the means or the errors.

The lower panel of Fig. 3.6 shows results from fits performed on the τint estimations, each
time using a different system size, Lmin, as the smallest size of the fitting process. Both fits with
and without corrections were considered. The results without corrections [Eq. (3.6)] suggest
that z = 1.164(7), with Q = 0.60 and χ2/do f = 0.84, with Lmin = 12, for the Swendsen-Wang
cluster, and z = 2.158(28) with Q = 0.37, χ2/do f = 1.08, and Lmin = 24 for the Metropolis.
Although these values depend on the Lmin chosen, varying it does not change the results, at
least for the cases where the quality of the fitting process is acceptable. Including corrections,
the best estimate indicates z = 1.143(14) for the Swendsen-Wang algorithm, with a fair quality
of fit Q = 0.86 and χ2/do f = 0.52, with Lmin = 24. For the Metropolis scheme, z = 2.179(42),
with Q = 0.43 and χ2/do f = 1.01, with Lmin = 15. Again, variations of Lmin do not change the
result significantly, at least for the cases were Q and χ2/do f are acceptable. The similarity of the
results and the large error bars in the correction terms for the cluster, as well as the relatively
worse quality of fit, indicate that corrections do not play a large role in the spin-1/2 cluster case,
at least for the precision of the current simulations. Appendix B.1.1 has a detailed breakdown
of all the fits performed.

On a similar note, the more recent method of reference [169] gave estimates on the time
τx, for various values of x, for the Swendsen-Wang algorithm, as shown in the upper panel of
Fig. 3.7. Both panels are plotted in full analogy to Fig. 3.6. Notice how smaller τx is compared
to τint (of Fig. 3.6) for the cases of x considered. Results for z versus Lmin are shown in the lower
panel of Fig. 3.7. Another change that comes with x is the accuracy of the estimation. This is
due to the need to calculate A(k)/A(0) for larger values of k, when x is increased. The values
of z for the cluster method for different x, using the best fit in each case, are:
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FIGURE 3.7: Upper panel: Autocorrelation time τx from solving Eq. (3.9), for the
spin-1/2 Baxter-Wu, using various values of x. Note how smaller τx is compared
to τint from Fig. 3.6. Lower panel: The dynamical critical exponent z, following
fits of the form Eq. (3.6) vs the minimum length of the fit. Only some x values are

shown, to make to plot more legible.

(i) x = 1, z = 1.149(8), with Q = 0.39, χ2/do f = 1.00, and Lmin = 60.
(ii) x = 2, z = 1.155(3), with Q = 0.47, χ2/do f = 0.97, and Lmin = 15.
(iii) x = 3, z = 1.161(4), with Q = 0.39, χ2/do f = 1.06, and Lmin = 12.
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(iv) x = 6, z = 1.159(5), with Q = 0.48, χ2/do f = 0.95, and Lmin = 15.
(v) x = 10, z = 1.167(6), with Q = 0.50, χ2/do f = 0.93, and Lmin = 12.

These values are compatible with the result for the z estimations from τint, without errors
and with each other. Since corrections seem to not play a large part in the cluster case for the
spin-1/2 model, as a quoted end result the value z = 1.164(7) is offered, which arose from the
better-established in the literature τint fits. For the single-spin-flip algorithm, corrections seem
to improve the results, although marginally. Additionally, the fits including and not-including
corrections are very similar. In the end, the value z = 2.18(4) is given for the Metropolis.

The above values are a bit smaller that the result given by Novotny and Evertz [136], where
z = 1.37(10), and Velonakis and Martinos [170], with z = 1.272(3), both using the Wolff clus-
ter. This discrepancy can possibly be attributed to the use of larger system sizes by the current
study, reaching 144× 144, compared to 96× 96 in reference [136], and 102× 105 in [170]. Never-
theless, it is evident that the cluster works better than a single-spin-flip algorithm. Specifically,
previous studies have put the value of z for the latter algorithms in the range from 2.10(10) [136]
to 2.30(11) [170], compatible with the value found in the current work , which is around the
equivalent estimation for the Metropolis on the Ising model, z = 2.1667(5) [113]. However, the
gain is not as large as one might anticipate from a cluster algorithm.

3.4.2 The spin-1 Baxter-Wu model: a dynamical scaling study for a hybrid update

In full analogy to the previous section, the same study is carried out for the spin-1 Baxter-Wu
model in a crystal field of strength ∆ (see Eq. (3.3)), for various points along the second-order
phase transition line. Specifically, the critical points considered were (∆ = −10, T = 2.2578),
(∆ = −1, T = 1.8503), (∆ = 0, T = 1.6606), (∆ = 0.5, T = 1.5301) (see Fig. 3.2 and ref-
erences [164, 165]). Additionally, the multicritical point estimate with the smallest value of
∆ in the literature was also considered, with (∆ = 0.8902, T = 1.4) [160]. For ∆ = −10
and −1, due to the large separation from the multicritical point, linear system sizes L =

{12, 15, 18, 24, 30, 36, 48, 60, 72, 96, 120, 144} were used. Near the multicritical point, larger sys-
tem sizes were also simulated, with the addition of L = 192 and 240, in order to reduce finite-
size effects. The algorithm followed is the same as the one described Section 3.2.2. Each itera-
tion consists of one heat-bath sweep and one Swendsen-Wang iteration. Some tests were also
performed implementing the heat-bath algorithm, for ∆ = −1 and L up to 120, just to have
a sense of comparison with the hybrid algorithm and the Metropolis algorithm in the spin-
1/2 case. The length of each simulation follows the same scheme as in the spin-1/2 case and
again periodic boundary conditions were used. Least square fits were considered fair when
0.10 ≤ Q ≤ 0.90 and χ2/do f should be near the value of 1.

Figure 3.8 shows estimates of the integrated autocorrelation time (upper panel) and for the
dynamical critical exponents (lower panel) for various values of the crystal-field strength ∆.
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FIGURE 3.8: Upper Panel: Integrated autocorrelation time for various values
of ∆, along the critical transition line of the spin-1 Baxter-Wu model, using the
hybrid algorithm. One set of results concerns simulations at the critical point
∆ = −1, using the heat-bath algorithm, indicated by “(HB)” in the legend. As the
multicritical point is approached, the integrated autocorrelation time increases
for the hybrid algorithm. Additionally, the largest times belong to the heat-bath
method. Lower Panel: Dynamical critical exponent z for the spin-1 Baxter-Wu
model, following linear fits of the form of Eq. (3.6) for the integrated autocorrela-
tion time τint, and a cut-off of kmax > 6τint. Different values of Lmin are considered
in the fits. This figure is the equivalent of the lower panel of Fig. 3.6 for the spin-
1/2 case. For the hybrid algorithm different regimes appear as ∆ changes sign.
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These estimates were calculated by fits according to Eq. (3.6) of the results for the integrated
autocorrelation time, τint, as a function of the linear system size, L. Thus, corrections were not
included in the figure. In the upper panel, two heat-bath iterations were taken as a time step, to
make time comparisons with the integrated autocorrelation times from the hybrid simulations
fairer. More on that subject will be discussed in the following subsection. The heat-bath simu-
lation at ∆ = −1 is indicated by “(HB)” in the legend of the figures. Since all other simulation
were of the hybrid update, they do not require special indication.

In the lower panel, each point was produced by modifying the Lmin from where the fit
starts, in essence removing each time the smaller system sizes, which makes it possible to see
if finite-size effects were strong. The results indicate a value around z ≈ 1.2 for ∆ ≤ 0, while
for values ∆ > 0, z appears to increase. Specifically, the best linear fits (without corrections)
indicate the following:
(i) At ∆ = −10, z = 1.172(10), with Q = 0.47 for χ2/do f = 0.91, and Lmin = 48.
(ii) At ∆ = −1, z = 1.260(6), with Q = 0.33 and χ2/do f = 1.14, for Lmin = 15.
(iii) At ∆ = 0, z = 1.276(7), with Q = 0.33 and χ2/do f = 1.14, for Lmin = 30.
(iv) At ∆ = 0.5, z = 1.435(15), with Q = 0.41 and χ2/do f = 1.01, for Lmin = 60.
(v) At ∆ = 0.8902, z = 1.786(35), with Q = 0.38 and χ2/do f = 1.05, for Lmin = 72.
(vi) The value of z = 2.31(9), with Q = 0.37 and χ2/do f = 0.99, for Lmin = 60 is recovered for
the single-spin-flip heat-bath algorithm at ∆ = −1. However, for Lmin = 12, then z = 2.145(18)
with Q = 0.42 and χ2/do f = 1.03.
It should be noted that varying Lmin, at least for the hybrid case, does not change the results. All
these fits are presented exhaustively in Appendix B. Additionally, when including corrections,
the following results are found (also see Appendix B for a more thorough breakdown):
(i) At ∆ = −10, z = 1.202(40), with Q = 0.40 and χ2/do f = 1.00, for Lmin = 48.
(ii) At ∆ = −1, z = 1.234(27), with Q = 0.45 and χ2/do f = 0.95, for Lmin = 36.
(iii) At ∆ = 0, z = 1.262(9), with Q = 0.42 and χ2/do f = 1.02, for Lmin = 18.
(iv) At ∆ = 0.5, z = 1.494(33), with Q = 0.37 and χ2/do f = 1.09, for Lmin = 48.
(v) At ∆ = 0.8902, z = 1.837(79), with Q = 0.46 and χ2/do f = 0.90, for Lmin = 54, although
here the results for L = 240 were not included.
(vi) For the heat-bath at ∆ = −1, z = 2.140(38), with Q = 0.31 and χ2/do f = 1.17, for
Lmin = 12. These fits, for the single-flip case, do not show the large discrepancy as Lmin changes,
which was seen in the case where no corrections were used.

Notice that all results, including or excluding corrections, are in agreement with each other,
almost always within error bars. This is arguably due to the small corrections-to-scaling ex-
ponent ω = 2. This is also the reason why the lower panel of Fig. 3.8 is plotted against L−2

min,
showcasing that no corrections can be seen, except for the results at ∆ = 0.5 and the heat-bath
case. In the former, it seems that the dynamical critical exponent might continue to increase
and larger L are needed to give a good estimate. Also, the large error bars of the correction
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coefficients might indicate that corrections are not necessary, at least for the current results’
accuracy. For a detailed reporting see Appendix B.1.2.
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FIGURE 3.9: The dynamical critical exponent z for the spin-1 Baxter-Wu model,
following the fits of the form Eq. (3.7) for the autocorrelation time τx. This figure
is the equivalent of Fig. 3.7 of the spin-1/2 case. The results presented are for
x = 2. Notice the similarity to Fig. 3.8, as well as the different regimes for positive

and negative ∆. Other values of x tested showed similar results.

The method of solving Eq. (3.9) was also implemented. Specifically, after τx was calcu-
lated as described in Section 3.3, fits were performed using different smallest system sizes. See
Fig. 3.9 for the case of x = 2. The results there agree with those of Fig. 3.8. Different values of x
were also in agreement and so, to avoid unnecessary clutter in the figures, it was chosen not to
show all of them. However, a breakdown of the results can be found in Appendix B.1.3.3 After
fits, not including corrections, the results for z were found to be the following:
(i) At ∆ = −10, z = 1.155(3), with Q = 0.24 and χ2/do f = 1.29, for Lmin = 24.
(ii) At ∆ = −1, z = 1.195(3), with Q = 0.57 and χ2/do f = 0.84, for Lmin = 24.
(iii) At ∆ = 0, z = 1.229(8), with Q = 0.36 and χ2/do f = 1.08, for Lmin = 96.
(iv) At ∆ = 0.5, z = 1.442(9), with Q = 0.36 and χ2/do f = 1.06, for Lmin = 96.
(v) At ∆ = 0.8902, z = 1.826(11), with Q = 0.40 and χ2/do f = 1.03, for Lmin = 48.

Note the similarity with the results quoted above, but at the same time how consistently
smaller the errors are. For all the above results x = 1.5 was used except for ∆ = 0.8902, where

3Note that the plot includes results only for the hybrid algorithm, which is the case of interest, and the more
elaborate analysis of solving for Eq. (3.9) was not applied for the heat-bath data.
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x = 3, which produced better fit qualities than smaller values of x tested. Moving on to the
results from fits that include correction-to-scaling:
(i) At ∆ = −10, z = 1.149(4), with Q = 0.34 and χ2/do f = 1.12, for Lmin = 12.
(ii) At ∆ = −1, z = 1.187(5), with Q = 0.47 and χ2/do f = 0.95, for Lmin = 18.
(iii) At ∆ = 0, z = 1.231(7), with Q = 0.38 and χ2/do f = 1.06, for Lmin = 36.
(iv) At ∆ = 0.5, z = 1.460(15), with Q = 0.41 and χ2/do f = 0.99, for Lmin = 60.
(v) At ∆ = 0.8902, z = 1.856(13), with Q = 0.15 and χ2/do f = 1.51, for Lmin = 24.

For the case of τx it seems that including corrections might be more important. Neverthe-
less, results are in good agreement with each other and show that there is an increase of z with
∆, which renders the algorithm less useful in the vicinity of the multicritical point.

As a last comment for all the above different fits, there is a case to be made that, for ∆ ≤ 0,
the dynamical exponents are very close to each other, and perhaps a joint fit could reveal that
for small ∆ only one regime for z exists. However, after performing the relevant tests, it was
revealed that such a fit is not possible, with or without corrections. Thus, the current results
are sensitive enough to spot the dependence of z on ∆.

Equivalent times

The previous section highlighted results for the dynamical scaling of a hybrid algorithm ap-
plied in the spin-1 Baxter-Wu model. Since in any actual application measurements are taken
every few iterations, and since an iteration of the hybrid algorithm consists of one heat-bath
sweep and a Swendsen-Wang cluster, it made sense to not take into account the fact that due to
finite-size effects, the Swendsen-Wang cluster does not consistently perform the same number
of steps on average for each system size.

Since the number of zero spins increases with ∆, the above analysis does not really use
the same time units, and due to finite-size effects, even for the same ∆ the time step was not
consistent for different L. For the Swendsen-Wang algorithm, for different ∆ and L, a different
percentage of the total spins is flipped every time, due to the cluster disregarding the zeros.
This means that one iteration of the hybrid algorithm is not equal to two lattice sweeps, as one
might naively expect. Specifically, the heat-bath iteration performs one whole lattice sweep,
updating N = L × L spins, while the cluster only updates E∆ spins. Thus, a time step consists
of N + E∆, and not 2N, spin updates. For that reason, even though the comparisons made in
the previous section make sense from a programmer’s point of view, physically they are not
fair, since there is no consistency in the time units.

The upper panel of Fig. 3.10 shows how the density of the σ = 0 spins is affected with ∆; As
expected, the number of zeros increases with increasing ∆. Additionally, the lower panel shows
the average cluster size over the system size versus L for the values of ∆ considered. There are
two forces in play when growing a cluster in the spin-1 model: the increased number of zeros,
begotten from large ∆-values, causes a cluster to have less room for growth. At the same time
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FIGURE 3.10: Upper Panel: Fraction of zero spins versus the linear system size
for various values of the crystal-field strength ∆ for the spin-1 Baxter-Wu model.
Lower Panel: Similar as the upper panel, but now depicting the average cluster

size over the system size, L2.
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however, lower values of ∆ basically suppress the zero spins. This is strikingly evident from
the results for ∆ = −10, shown in Fig. 3.10 (upper panel), where basically zero spins are non-
existent. In this regime the model mimics its spin-1/2 counterpart. Then, due to the lack of
zeros, a cluster is restricted to only include ferro- or antiferro-magnetic interactions and cannot
be of mixed type. This also posses a restriction to the growth of a cluster, that might not be
evident from a first read of the problem. The lower panel of Fig. 3.10 depicts this conflict that
takes place when a cluster grows with the Novotny-Evertz proposed method. There, it can be
seen that the average cluster size over the whole system size is not that different for the various
∆, especially as the system size increases.

To reconcile the different times of the hybrid and heat-bath implementations, the time for
the heat-bath algorithm was contracted by a factor of two, defining a time step by two lattice
sweeps, while a factor of 2N/(N + E∆) was used for the Swendsen-Wang cluster, making for
the same definition across the board. The upper panel of Fig. 3.11 shows how these changes
of time scales affect the integrated autocorrelation time. To distinguish this “equivalent times”
representation, the integrated autocorrelation time thus defined was denoted by τ∗

int. The result
is that τ∗

int is a bit smaller than the τint measured in the upper panel of Fig. 3.8. The lower panel
of Fig. 3.11 shows how this affects the exponent z. Since time units were change by a factor
of ∼ (N + E∆)

−1, and E∆ is affected by the size of the system, changes to z can be expected.
Specifically, excluding corrections (see Appendix B.1.4):
(i) At ∆ = −10, z = 1.172(10), with Q = 0.47 and χ2/do f = 0.91, for Lmin = 48.
(ii) At ∆ = −1, z = 1.172(6), with Q = 0.36 and χ2/do f = 1.10, for Lmin = 15.
(iii) At ∆ = 0, z = 1.241(13), with Q = 0.34 and χ2/do f = 1.13, for Lmin = 72.
(iv) At ∆ = 0.5, z = 1.431(15), with Q = 0.40 and χ2/do f = 1.02, for Lmin = 60.
(v) At ∆ = 0.8902, z = 1.801(29), with Q = 0.46 and χ2/do f = 0.90, for Lmin = 60.

Including one correction term:
(i) At ∆ = −10, z = 1.201(40), with Q = 0.40 and χ2/do f = 1.00, for Lmin = 48.
(ii) At ∆ = −1, z = 1.232(27), with Q = 0.45 and χ2/do f = 0.94, for Lmin = 36.
(iii) At ∆ = 0, z = 1.260(9), with Q = 0.44 and χ2/do f = 1.00, for Lmin = 18.
(iv) At ∆ = 0.5, z = 1.492(33), with Q = 0.36 and χ2/do f = 1.09, for Lmin = 48.
(v) At ∆ = 0.8902, z = 1.806(78), with Q = 0.45 and χ2/do f = 0.93, for Lmin = 54.

Again, the similarity of the results in the presence or absence of a correction term is robust.
The values of z thus calculated do not differ much from the previous estimates, and are actually
equivalent with them within errors. Note the dependence of z on ∆, with a large increase
appearing in the regime ∆ > 0.5, i.e. near the multicritical point.
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FIGURE 3.11: Upper Panel: Integrated autocorrelation times of the spin-1 Baxter-
Wu model under different values of ∆ and for various system sizes. Here equiv-
alent times are taken into account for each simulation, equivalent to two lattice
sweeps, indicated by τ∗

int. Lower Panel: Dynamical critical exponent z, obtained
from fits performed on the data shown in the upper panel (with no correction
terms). Each time the minimum size from where the fit starts is varied. If correc-
tions exist, they are relatively small, or they cannot be picked up by the current

results.
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3.5 Discussion and Outlook

In this section, the dynamical exponent z of a Swendsen-Wang cluster algorithm for Baxter-
Wu models was calculated, alongside some estimations of z for single-spin-flip algorithms.
Specifically, for the spin-1/2 case, the cluster performed better than Metropolis, as was already
expected from past works on the model [136, 170]. The gain in z is however relatively smaller
from what one might anticipate looking at similar results for the Ising model (Section 2.6).
The reason behind this relatively large value of z is ingrained in the construction of the clus-
ter, where one third of the spins are frozen and not taken into account. On the contrary, the
frozen spins create effective interactions, which might result in a zero effective-bond strength,
hindering the cluster growth.

Appendix B contains an exhaustive list of all the results from fits on the integrated auto-
correlation time τint, and autocorrelation time τx, as well as the equivalent time τ∗

int considered.
In this Chapter only the best fits were quoted, however, all the results with an acceptable fit
quality agreed with each other.

A generalisation that immediately follows is applying a hybrid scheme on the spin-1 Baxter-
Wu model with a crystal field. In this model there are difficulties in characterising the univer-
sality class in the vicinity of the multicritical point (see [164] and Chapter 4), whose location
is strongly disputed (see Fig. 3.2). The idea behind this Chapter was that a cluster algorithm
might come a long way in resolving these issues. After showing, in Section 3.2, that such an al-
gorithm can be used, the dynamical critical exponent z was studied along the line of continuous
transitions of the model. A summary of results for the spin-1 case can be found in Appendix B,
for z derived from τint, τx, and the more physical τ∗

int, which makes sure that the time units are
equivalent for all simulations, across all ∆ and L simulated.

The results showed that the gain experienced in the spin-1/2 counterpart of the model
persists, but only for values of ∆ that are non-positive. For ∆ > 0, the gain compared to a single-
spin-flip algorithm is minimal, especially approaching the multicritical point. Certainly, further
scrutiny is required to be able to express with certainty the value of the exponent z, but the
current results indicate that z is an increasing function of ∆, with a large increase as ∆ passes to
positive values. Also, additional results are required for ∆ ≥ 0.8902 ≈ ∆pp, to see if the hybrid
algorithm approaches asymptotically the scaling of the heat bath – although such an endeavour
requires better knowledge of the location of the multicritical point. Certainly, a thorough study
of the percolation properties of the cluster algorithm is missing, following for example the work
of Picco et al. [172]. All that said, since the implementation of the cluster is a laborious task,
and the current results show quite clearly that in the vicinity of the multicritical point even
the hybrid algorithm struggles, it is safe to assume that this hybrid scheme will not be useful
in locating and studying the multicritical point. Perhaps other cluster implementations can be
thought of, where one does not need to freeze one of the sublattices each time, for example by
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starting with two neighbouring seed spins and each time completing a triangle when a spin is
added to the cluster.

It would be interesting to understand this behaviour of z and how the increased number of
zero spins or the geometry of the interactions interfere with the dynamical scaling. The much
simpler Blume-Capel model, which possesses two-spin interactions, and qualitatively has an
identical phase diagram to the spin-1 Baxter-Wu model (Fig. 3.2), might be a good starting point
to understand if this is something shared among models that implement dilution through the
inclusion of a quadratic term, or if it is because of the more complicated three-spin interactions
that appear in the Baxter-Wu case.

3.5.1 Some preliminary results for random Ising models in two dimensions

The method of calculating the dynamical critical exponent from the characteristic times τx

could be applied to different models. Recently, a lot of interest has been garnered by the dynam-
ical behaviour of Ising models: from the pure system in two and three dimensions studied with
Glauber dynamics at equilibrium [173], to using the improved Blume-Capel model to study the
exponent z of the three-dimensional Ising universality class [168], as well as the bond-diluted
Ising model [174].

Here, some preliminary results are gathered, regarding the dynamical exponent of two-
dimensional Ising models, simulated using the Metropolis algorithm. Specifically, the Ising
model is studied in its pure, bond-diluted, and random-bond form. Firstly, the pure model is
defined by

Hpure = −J ∑
⟨ij⟩

σiσj, (3.10)

where J is the exchange interaction strength, set to one in what follows. The bond-diluted
Ising is describe by the same nearest-neighbour two-spin interactions, only some bonds can be
absent. In that sense, the bond strength is generalised to

H = −∑
⟨ij⟩

Jijσiσj, (3.11)

where Jij is able to take the value 1, as well as 0, drawn from a bimodal distributions, defining

P(Jij) = pδ(Jij − 1) + (1 − p)δ(Jij). (3.12)

Implying that a bond, Jij, takes the value 1 with probability p, while a bond is broken, Jij = 0,
with probability 1 − p. The percolation threshold of the model is pc = 0.5 [175, 176].

Lastly, the random-bond model will also be considered briefly, defined by the Hamiltonian
of Eq. (3.11), but this time the interaction strengths are not ones and zeros. For the current
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purposes, the simple case where Jij can take the values J1 and J2 will be considered, keeping
J1 + J2 = 2, defining the distribution

P(Jij) =
1
2

δ(Jij − J1) +
1
2

δ(Jij − J2), (3.13)

with J1, J2 > 0. The relative strength r is also defined as

r = J1/J2. (3.14)

If r = 1 the pure model is recovered, while if r = 0 the bond-diluted model with p = 0.5 [see
Eq. (3.13)].

To estimate the dynamical critical exponents of these models Metropolis simulations were
performed. Here, preliminary results are shown, which however still show why these calcu-
lations have gathered so much interest in recent years. Specifically, for the pure case, results
regarding the integrated autocorrelation time, τint, from one realisation were considered. For
the bond-diluted system however, one thousand realisations of disorder were simulated for
each system size, the average I(t), Eq. (3.8), curve was estimated by averaging the individual
curves from the realisations, and subsequently, τint was estimated by this one curve. For the
random-bond case, the same protocol was followed, but with five hundred disorder realisation
simulated for each system size. The smallest system size of 10× 10 was simulated for 105 equi-
libration sweeps, followed by an additional 106 sweeps where data were gathered. Simulation
times were increased by a factor L2/102, depending on the system size. For the pure case sys-
tems of linear size L ∈ {10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120} were sim-
ulated. The same goes for the random-bond case, with simulations taking place at r = 1/4,
making J1 = 0.4 and J2 = 1.6. For the bond-diluted with p = 0.8, simulations included the
sizes L = {140, 160, 180, 200}, while for p = 0.8 simulations were halted at L = 100.

Figure 3.12 shows preliminary results regarding the dynamical critical exponents from all
these models. Specifically, the slopes between pairs of points (L, ln [τint(L)]), (L′, ln [τint(L′)]),
with L′ = 2L, were calculated each time, defining an effective exponent zeff as [169]

zeff(L) =
ln [τint(2L)/τint(L)]

ln 2
. (3.15)

The scaling of zeff follows the form [169]

zeff = z + cL−ω, (3.16)

z being the dynamical critical exponent, and only keeping corrections-to-scaling up to first
order (ω = 1.75 [177]). Fitting the results of Fig. 3.12 to Eq. (3.16) gives in the following:
(i) Pure model: z = 2.162(12), with Q = 0.44 and χ2/do f = 0.98, and Lmin = 20.
(ii) Bond diluted p = 0.8: z = 2.517(4), with Q = 0.54 and χ2/do f = 0.88, and Lmin = 15.
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(iii) Bond diluted p = 0.9: z = 2.308(10), with Q = 0.10 and χ2/do f = 1.72, and Lmin = 10.
(iv) Random bond r = 1/4: z = 2.537(5), with Q = 0.48 and χ2/do f = 0.95, and Lmin = 10.

The above preliminary results indicate that z changes as the disorder strength of the model
is increased, with all the results for different types of disorder and strengths indicating a dif-
ferent value for the exponent z. Further simulations are required to elaborate this dependence,
especially as one approaches smaller values of p or r for the bond-diluted and random-bond
version of the model respectively.
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Chapter 4

Universality of the Dilute Baxter-Wu
Model

This chapter contains work that was published in [163–165].

This Chapter studies the question of universality in the two-dimensional spin-1 Baxter-Wu
model in the presence of a crystal field ∆. Complementary results are provided by employing
extensive numerical simulations of two types: (i) Wang-Landau sampling at fixed values of ∆
and (ii) a parallelised variant of the multicanonical approach performed at constant tempera-
ture T. A detailed finite-size scaling analysis in the regime of second-order phase transitions
in the (∆, T) phase diagram indicates that the transition belongs to the universality class of the
spin-1/2 Baxter-Wu model ( and thus of the 4-state Potts model). This work resolves previous
controversies in regards to the nature of the transition, attributing them to strong finite-size
effects upon approaching the pentacritical point of the model.

The remainder of the Chapter is structured as follows: Section 4.1 introduces the model that
will be studied and discusses the issue of its universality at length. In Section 4.2 the Wang-
Landau and parallel multicanonical simulation methods that were used to study the problem
are outlined, and the observables investigated are introduced. The numerical results and the
relevant finite-size scaling analysis are presented in Section 4.3. In this Section, universal prob-
ability distributions are also produced. Finally, in Section 4.4 all the findings are summarised
and an outlook is provided.

4.1 Introduction

As discussed in Chapter 3, the Baxter-Wu model is defined on a triangular lattice by the Hamil-
tonian

HBW = −J ∑
⟨xyz⟩

σxσyσz, (4.1)
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with J > 0 positive, and the sum extending over all elementary triangles of the N-site lattice
(Fig. 3.1). The nearest-neighbour interactions are between the three spins residing in an elemen-
tary triangle. Each of these spins belongs to one of the three different sublattices composing the
whole lattice. The spin values can be σx = ±1. The analytical solution of the model provided
the exponents α = 2/3, ν = 2/3, and γ = 7/6 [34, 139]. Furthermore, the central charge of the
conformal field theory has been calculated to be c = 1 [140, 141], and the correction-to-scaling
exponent ω = 2 [140, 141]. Additional aspects of the spin-1/2 model have been considered re-
cently, from short-time dynamics [178], Monte Carlo studies of critical amplitude ratios [179],
longitudinal [180], and transverse [181] magnetic fields.

The spin-1 Baxter-Wu model, where σx = {−1, 0, 1}, in a crystal field ∆ is a generalisation
of Eq. (4.1), defined by the Hamiltonian

H = −J ∑
⟨xyz⟩

σxσyσz + ∆ ∑
x

σ2
x = EJ + ∆E∆. (4.2)

Here, the spins can have the additional value of zero. The energy is broken into two part, one
having to do with the spin interactions, EJ , and another with the crystal field, E∆. ∆ can be seen
as controlling the density of the zero spins, with the second term of the Hamiltonian giving rise
to the fugacity in a grand canonical ensemble setting. In what follows, as usual, reduced units
will be used, where J = 1 as well as kB = 1. No exact solution exists for this case, but note that
for ∆ → −∞ the pure spin-1/2 Baxter-Wu model is recovered.

As was briefly mentioned in Chapter 3, the phase diagram of the model is expected to look
like the one depicted in Fig. 4.1. Reference [157] agrees with this picture, by making an analogy
with dilute Potts models. However, reference [158], conjectured, using a finite-size scaling
method, that a second-order transition occurs only at the limit ∆ → −∞. Contemporary works
have favoured the existence of a multicritical point at a finite ∆ [159, 162]. However, the location
of the pentacritical point is still a bone of contention (see Fig. 4.1).

Somewhat surprisingly, the question with regards to the universality of the spin-1 Baxter-
Wu model is still open. Results from reference [159], via renormalisation group, conventional
finite-size scaling, and conformal invariance techniques, seem to indicate that the critical ex-
ponents vary continuously with ∆, all along the continuous transition line. This is in stark
contrast to the expected behaviour of the 4-state Potts model. Qualitatively, in reference [182],
using using importance sampling Monte-Carlo simulations for ∆ = 0, where no crystal-field
energy exists, a similar conclusion was drawn, since the critical exponents were calculated to
be ν = 0.617(3), α = 0.692(6), and γ = 1.13(1). Additional Monte Carlo studies at ∆ = −1
and 1 further corroborated this picture [183]. Conversely, the work of Dias et al. [160], sug-
gested that along the critical line, the conformal anomaly c and the exponents ν and η should
coincide with those of the pure spin-1/2 Baxter-Wu and the 4-state Potts models. However,
some variation was observed, possibly attributed to strong corrections-to-scaling. Finally, the
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FIGURE 4.1: The phase diagram of the two-dimensional spin-1 Baxter-Wu model
in a crystal field of strength ∆. The black dotted and continuous lines corre-
spond to discontinuous and continuous transitions. The black rhombus marks
an estimate of the pentacritical point (∆pp, Tpp) ≈ (0.8902, 1.4) [160], while the
black triangle indicates another, (∆pp, Tpp) ≈ (0.98030, 1.68288) [162]. A small
part of the transition line is left undrawn, due to the lack of agreement in re-
gards to the location of the pentacritical point. Several transition points are
given, including those obtained in the current thesis. Blue and red dotted ar-
rows indicate the numerical approaches used in the present work, namely Wang-
Landau and multicanonical methods at fixed values of ∆ = {−10, −1} and

T = {2.2578, 2.1, 1.8503, 1.6605, 1.5301}, respectively.

recent study of Jorge et al. [161], performing Wang-Landau sampling at ∆ = 0, showed that the
model exhibits an indeterminacy in regards to the order of phase transition; Their analysis was
consistent for both continuous and discontinuous types of transitions. For the former case, the
values ν = 0.6438(10) and γ = 1.1521(13) were computed.

In the present work, a resolution of these controversies is provided, by the use of extensive
numerical simulations (see Section 4.2 below). The critical properties of the spin-1 Baxter-Wu
model in a crystal-field were scrutinised, covering a large extent of the second-order transition
line. Particularly, in order to identify the correct scaling behaviour, taking proper account of
the role of finite-size effects, Wang-Landau simulations are performed at two fixed values of the
crystal field, ∆ = −10, far away from the multicritical point, and ∆ = −1, in its vicinity. The
blue vertical dashed arrows in the phase diagram of Fig. 4.1 indicate these simulations. Addi-
tional multicanonical simulations at the temperatures T = {2.2578, 2.1, 1.8503, 1.6603, 1.5301}
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were performed to complement the Wang-Landau ones. Particularly, these cross the phase
boundary at ∆ ≈ {−10,−3.5,−1, 0, 0.5}, respectively. The multicanonical simulations are indi-
cated by the red horizontal arrows in Fig. 4.1.

4.2 Numerical Methods and Observables
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FIGURE 4.2: Comparative curves of the specific-heat of the spin-1 Baxter-Wu
model, at ∆ = −10, for a simulations of a system with linear size L = 24. Re-

sults were obtained via Wang-Landau and Metropolis simulations.

Two simulations methods were used in a complementary strategy: the Wang-Landau and
multicanonical algorithms. This combined scheme allowed the crossing of the phase boundary
in two perpendicular directions (see Fig. 4.1) and to probe the critical properties of the model
effectively. These two methods are described below, along with the observables that were mea-
sured. For a more thorough description of both the reader is referred to Chapter 2.

4.2.1 Wang-Landau simulations

The Wang-Landau simulation [92, 93] performs a random walk in the energy space, with pro-
posed spin configurations being accepted with a probability that is proportional to the recip-
rocal density of states, 1/Ω(E). The estimate of Ω(E), for the current energy of the system, is
each time modified by the rule Ω(E) → f ·Ω(E), where f is a modification factor. Additionally,
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an energy histogram is accumulated during the simulation. When it is flat enough, the factor
is adjusted by f j+1 =

√
f j, where the index indicates the iteration number. In the beginning,

f1 = e. For the present study, a flatness of 90% was used to indicate if the histogram has become
flat, and the final iteration was chosen to be jfinal = 24. Lastly, to increase statistical accuracy,
averaging over several independent samples was performed, typically ∼ 32.

A single-range implementation of the algorithm was utilised, instead of the more efficient
multi-range approach, which splits the energy space in sub-intervals whose estimates for Ω(E)
can be joined in the end. In general, the multi-range implementation is a necessity for very
large lattices and can produce high accuracy results [92, 93]. However, the many subtleties
in terms of boundary effects [103], especially where first-order transition characteristics ap-
pear [107], justify the current choice. The simulations were facilitated by the use of restricted
energy spaces, a practice that has been quite successful in many cases, including pure and dis-
ordered models [104–108]. Care should be taken however, when estimating these ranges from a
chosen pseudo-critical temperature, since one needs to account for the shift behaviour of other
important pseudo-critical temperatures, extending the subspace appropriately both from low-
and high-energy sides, so as to achieve an accurate estimation of all finite-size anomalies. See
Section 2.5 for more details. Preliminary tests, for comparative reasons, were performed at the
initial stages of this work to provide a benchmark, using the Metropolis algorithm [26, 78], see
Fig. 4.2.

For the present purposes, instead of employing the final estimate of the density of states
to compute thermodynamic averages, Ω(E) was used in a final production run as the weight
function. Sampled observables included the energy E, and the order parameter, m, estimated
from [161, 182, 183]

m =

√
m2

A + m2
B + m2

C
3

, (4.3)

where mA, mB, and mC are the respective sublattice magnetisations per site. Additionally, cal-
culations included the specific heat

C =
[
⟨E2⟩ − ⟨E⟩2] /(NT2), (4.4)

and the magnetic susceptibility

χ = N
[
⟨m2⟩ − ⟨m⟩2] /T, (4.5)

where N = L2 is the number of lattice sites. The specific-heat and magnetic-susceptibility
curves, for the case ∆ = −10, obtained via the Wang-Landau method, can be seen in Fig. 4.3.
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FIGURE 4.3: Specific heat (main panel) and magnetic susceptibility (inset) curves
for the spin-1 Baxter-Wu model at ∆ = −10. Results obtain via Wang-Landau

simulations.

4.2.2 Multicanonical simulations

In the multicanonical (MUCA) approach [94], a correction function is used in place of the
canonical Boltzmann weight ∼ e−βE, with β = 1/T. The purpose behind this generalisation is
to produce a flat histogram in some observed quantity. In the current study, this method was
imposed to the crystal-field energy E∆, meaning that the temperature is fixed and results can
be extrapolated to arbitrary values of ∆ [154]. Specifically, the partition function

Z = ∑
{EJ ,E∆}

Ω(EJ , E∆)e−β(EJ+∆E∆), (4.6)

is generalised to

ZMUCA = ∑
{EJ ,E∆}

Ω(EJ , E∆)e−βEJ W (E∆) , (4.7)

with Ω(EJ , E∆) being the two-parametric density of states.
Thus, the equilibrium probability distribution, in the multicanonical ensemble, is

PMUCA(EJ , E∆) =
Ω(EJ , E∆)e−βEJ W(E∆)

ZMUCA
. (4.8)
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To produce a flat histogram in the E∆ energy space, the modified weight should be given by
carrying out a summation with respect to EJ

W(E∆) ∝ ZMUCA

[
∑
EJ

g(EJ , E∆)e−βEJ

]−1

. (4.9)

The weights W(E∆) can then be estimated iteratively starting with some initial value, W(E∆) =

1, for all E∆. Each time, the histogram of the crystal-field energy needs to be sampled as well.
After n iterations, spins will be flipped following the weights ∼ e−βEJ W(n) (E∆), and the his-
togram H(n)(E∆) will be accumulated. After a pre-specified amount of spin-flip attempts, the
weights are recalibrated using W(n+1) (E∆) = W(n) (E∆) /H(n)(E∆). In general, at each itera-
tion, the histogram H(n)(E∆) will satisfy the equation

⟨H(n)(E∆)⟩ ∝ P(n)(E∆) =
1

ZMUCA
∑
EJ

g(EJ , E∆)e−βEJ W(n)(E∆) ∝
W(n)(E∆)

W(E∆)
, (4.10)

justifying the update scheme [41]. When a sufficiently flat histogram has been sampled, the
weight calculation process is completed and production runs can be performed.
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As was discussed in Section 2.5, multicanonical simulations have a lot to gain from paral-
lelised implementations [111, 184], as can be seen by past applications concerning the Blume-
Capel model in two and three dimensions [29, 154, 156]. So, instead of sampling the histogram
sequentially, parallel workers can use the same weights but different random number gener-
ators, producing an aggregated histogram which can be used to recalibrate the weights. The
current simulations utilised an Nvidia K80 GPU, giving the capability to optimally run 26 624
systems at a time, 4 992 of which run in parallel. Finally, the histogram flatness was tested using
the Kullback-Leibler divergence [111, 112] (also see Section 2.5 for a more thorough description
of the process).

Since the multicanonical algorithm allows to continuously reweight the results to any value
of the crystal-field strength ∆, canonical expectation values can be obtained by directly by
reweighting. For instance, given an observable O = O({σ}), its expectation value at ∆ can
be calculated from

⟨O⟩∆ =
⟨O({σ})e−β∆E∆({σ})W−1(E∆)⟩MUCA

⟨e−β∆E∆({σ})W−1(E∆)⟩MUCA
. (4.11)

Instead of computing T-derivatives of observables, it is then more physical to compute ∆-
derivatives. For example, a ∆ derivative of the energy can be calculated in place of the usual
specific heat (4.4), defining a specific-heat-like quantity [154]

C∆ =
1
N

∂EJ

∂∆
= − [⟨EJE∆⟩ − ⟨EJ⟩ ⟨E∆⟩] /(NT), (4.12)

which possesses the same shift behaviour as the specific heat (see the main panel of Fig. 4.4).
Furthermore, to obtain estimates of the critical exponent ν from finite-size scaling, the logarith-
mic derivatives of the order parameter can be calculated [185, 186], defined as

∂ ln ⟨mn⟩
∂∆

= −
[
⟨mnE∆⟩
⟨mn⟩ − ⟨E∆⟩

]
/T, (4.13)

Curves of the logarithmic derivatives for n = 1 can be seen the inset of Fig. 4.4.
Additionally, the magnetic susceptibility χ [Eq. (4.5)] as a function of ∆ can be estimated, as

well as the the fourth-order Binder cumulant of the magnetisation

Um = 1 −
〈
m4〉

3 ⟨m2⟩2 . (4.14)

4.2.3 Simulation parameters

The above described simulation methods were applied on the spin-1 Baxter-Wu model on a tri-
angular lattice with periodic boundary conditions. To accommodate for all the ground states,
the linear system size L was always chosen to be a multiple of three [183], making sure that the
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crystal field values are shown, obtained via multicanonical simulations.

one ferromagnetic and three ferrimagnetic states all have the same energy. Specifically, the con-
sidered L were within the range 12 ≤ L ≤ 120. Wang-Landau simulations were performed at
two values of the crystal-field strength, namely ∆ = −10 and −1. Additionally, multicanonical
simulations were conducted at the temperatures T = {2.1, 1.8503, 1.6603, 1.5301}. Preliminary
simulations were carried out at T = 2.2578 in order to provide an understanding for the tran-
sition order.

4.3 Results

4.3.1 Order of the transition

As discussed Section 4.1, recent studies have indicated towards discontinuous transition fea-
tures along the putatively continuous part of the transition line [161]. To provide clarity re-
garding the order of the transition, the probability density function of the crystal-field energy,
P(E∆), was studied, obtained via reweighting the results of the multicanonical simulations.
In many cases, a double-peak structure in the density function of a finite system is a precur-
sor of the two δ-peak structure occurring for a discontinuous phase transition [187, 188]. This
however does not imply that the a double peak necessitates a first-order transition.
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Figure 4.5 depicts the probability density function of the crystal-field energy, for a system
of linear size L = 96, at the temperature T = 2.2578, corresponding to ∆ = −10 (see Fig. 4.1).
Around the transition point, no sign of a double-peak structure can be observed. On the other
hand, looking at the upper panel of Fig. 4.6, lowering the temperature to T = 1.8503 (cor-
responding to ∆ = −1), first-order-like characteristics start to appear in agreement with the
results of reference [161] for the case ∆ = 0. It is interesting to note that for the case of T = 2.1
very shallow double peaks appear [163], but for the cases of T = 1.6603 and 1.5501 deeper
double peaks appear, similarly to the upper panel of Fig. 4.6.

The existence of these structures calls for a systematic analysis of the relevant surface ten-
sion of the transition, as suggested by Lee and Kosterlitz [58, 59]. In fact, the multicanonical
method is instrumental for this purpose as it allows the direct estimation of the barrier associ-
ated with the suppression of states during a first-order phase transition. Considering distribu-
tions with two peaks of equal height (eqh) [189], allows to extract the free-energy-like barrier
in the E∆ energy space,

∆F(L) =
1

2β
ln
(

Pmax

Pmin

)
eqh

, (4.15)

Pmax and Pmin being the maximum and local minimum of the distribution P(E∆), respectively.
The barrier between the peaks connects a spin-0 rich phase, where E∆ relatively small, and a
spin-±1 dominated regime, with large E∆. The arising surface tension – in two dimensions
Σ(L) = ∆F(L)/L – is expected to scale as Σ(L) = Σ∞ + c1L−1 +O

(
L−2), possibly with higher-

order corrections [190–192]. Similarly, the latent heat ∆e∆(L), where e∆ = E∆/L2, can be defined
as the distance of the two peaks in energy space.

The lower panel of Fig. 4.6 illustrates the scaling behaviour of the surface tension (main
panel) and the latent heat (inset). Note the existence of a crossover for T = 1.8503, at a
length scale of L∗ ≈ 30, where the surface tension curve changes its upward trend, indi-
cating strong finite-size effects and possibly accounting for misleading previous conclusions
concerning the order of the transition. The dashed lines in the main panel are fits, including
third-order corrections terms, using a minimum system size L ≥ L∗. The fits indicate towards
a practically zero value of Σ for all the temperatures: Σ(T = 1.8503, L → ∞) = −0.00005(11),
Σ(T = 1.6603, L → ∞) = −0.0003(9), Σ(T = 1.5301, L → ∞) = 0.0003(3). A similar, although
slower downward trend can be observed for the latent heat.

4.3.2 Finite-size scaling and universality

With the second-order nature of the transition having been established, a detailed finite-size
scaling analysis of the simulation data can be performed, in order to probe at the universality
principles of the transition. In this Section, results obtained both complementary simulation
methods are shown, in support of the expectation that the spin-1 Baxter-Wu model in a crystal
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1/2 Baxter-Wu model. In both panels the black solid lines are joint fits of the

form (4.16). Data produced with the Wang-Landau algorithm.

field belongs to the same universality class as the spin-1/2 Baxter-Wu and the 4-state Potts
models.

To extract the critical temperatures Tc(∆) of the system, as well as to make a first estimate of
the correlation-length critical exponent ν, the shift behaviour of suitable pseudocritical temper-
atures, T∗

L , is presented in Fig. 4.7. These temperatures are the peak locations of the specific-heat
and magnetic susceptibility curves of Fig. 4.3. The main panel depicts results corresponding to
∆ = −10, while for the inset ∆ = −1. For each ∆, the solid lines correspond to joint fits of the
expected power-law behaviour (see Section 1.4 )

T∗
L = Tc + bL−1/ν(1 + b′L−ω). (4.16)

The correction-to-scaling exponent takes the value ω = 2 [140, 141, 160, 183] and is fixed here-
after. With Lmin = 12 the values Tc(∆ = −10) = 2.2578(5) and Tc(∆ = −1) = 1.8503(9) are
produced, which agree with the values 2.2578(116) and 1.8503(94) reported in reference [160].
More importantly, the estimates ν = 0.655(17) for ∆ = −10 and ν = 0.652(18) for ∆ = −1 are
in nice agreement with the 4-state Potts universality class result of ν = 2/3.
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Likewise, Fig. 4.8 presents the shift behaviour of several pseudocritical fields, ∆∗
L, defined

as peak locations of the multicanonical observables of Section 4.2. An analogous joint fit of the
form

∆∗
L = ∆c + bL−1/ν(1 + b′L−ω), (4.17)

with Lmin = 15 produces the estimates ∆c(T = 1.8503) = −1.002(2) and ν = 0.68(2), in
good agreement with the Wang-Landau results presented above. Similarly, with Lmin = 15,
∆c(T = 2.1) = −3.436(3) and ν = 0.67(1). With Lmin = 24, ∆c(T = 1.6606) = 0.0008(7)
and ν = 0.63(5). Finally, with Lmin = 48, ∆c(T = 1.5301) = 0.4999(2) and ν = 0.66(3).
Additionally, the main plot of the lower panel of Fig. 4.8 depicts typical curves of the fourth-
order Binder cumulant Um [Eq. (4.13)], where the location of the crossing point also agrees
nicely with the value ∆ = −1. A summary of all results can be found in Table 4.2 at the end of
the Chapter.

The exponent ν can also be obtained from the scaling of the logarithmic derivatives of the
order parameter maxima [Eq. (4.13)]. Being dimensionless quantities, the scaling behaviour
follows [185] (

∂ ln ⟨mn⟩
∂∆

)∗
∼ L1/ν(1 + b′L−ω). (4.18)

The numerical data for n = 1 and n = 2, estimated from multicanonical simulations, can be
seen in Fig. 4.9. The solid lines are power-law fits of the form [Eq. (4.18)]. At T = 2.1, Lmin = 18
retrieves ν = 0.668(6) and 0.677(9), respectively for n = 1 and n = 2. At T = 1.8503, Lmin = 18
produces ν = 0.669(5) and 0.673(6). For T = 1.6606, with Lmin = 36, ν = 0.651(15) and
0.652(14). T = 1.5301, with Lmin = 36, returns ν = 0.654(28) and 0.653(25). These results also
point towards the expected the spin-1/2 Baxter-Wu model universality class, where ν = 2/3.

Turning to the scaling behaviour of the maxima of the specific heat [C∗ and C∗
∆, respectively

for Wang-Landau and multicanonical simulations] and magnetic susceptibility (χ∗), the critical
exponent-ratios α/ν and γ/ν can be estimated. Figure 4.10 depicts results from the Wang-
Landau simulations (upper panel, ∆ = −10 and −1) and the multicanonical approach (lower
panel, T = 1.8503, 1.6606, and 1.5301). In all cases the solid lines are fits of the form

C∗
(∆) ∼ Lα/ν(1 + b′L−ω), (4.19)

with the subscript distinguishing between C∗ and C∗
∆, and

χ∗ ∼ Lγ/ν(1 + b′L−ω). (4.20)

The estimates obtained for α/ν and γ/ν are listed in the panels (see also Table 4.1 and
Table 4.2 below). For most cases, the results are clearly compatible with the exact values of
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(main panel) and 2 (inset) of the order parameter at various values of T. The solid
lines are fits of the form (4.18). Results obtained via multicanonical simulations.

α/ν = 1 and γ/ν = 7/4 of the spin-1/2 Baxter-Wu universality class [139]. However, for the
multicanonical simulations at T = 1.6606 and T = 1.5301, small deviations start to appear,
especially in the specific heat critical exponent.

At this point, a remark should be made about the additional correction term b′L−ω appear-
ing in the fits of Figs. 4.7 – 4.10. Although in the work of Jorge et al. for the spin-1/2 model
critical exponents were obtained with very good accuracy and without the need for corrections
to scaling [144], the situation here is rather different. In particular the values of scaling ampli-
tudes b and b′ in Eqs. (4.16) – (4.20) are comparable and in particular the values of b′ fluctuate
about the range 1 − 100 for the various observables and cannot be neglected. Additionally,
from the overall comparative tests, it is safely concluded that the fitting quality measured in
terms of the probability Q is indeed improved when the correction term is included.

A universality class is characterised by a range of universal quantities which, apart from
critical exponents, also include certain universal amplitude ratios g [29, 179, 194–199]. These
amplitudes, in stark contrast to the exponents, also depend on system properties, lake the lat-
tice geometry or boundary conditions. In this study, two of these universal ratios were studied:
the Binder cumulant g = Um value at the crossing of the curves, and the ratio of the correlation
length over the linear system size, g = ξ/L. Characteristic curves of ξ/L at ∆ = −10 can be
seen in Fig. 4.11 (main panel). To estimate ξ, the second-moment definition was used [29, 200,
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of the 4-state Potts model, as taken from Ref. [193].

201]. From the Fourier transform of the spin field, σ̂(k) = ∑x σx exp(ikx),

F =
〈
|σ̂(2π/L, 0)|2 + |σ̂(0, 2π/L)|2 + |σ̂(2π/L, 2π/L)|2

〉
/3 (4.21)

can be determined. The correlation length can then be calculated from [201]

ξ ≡ 1
2 sin(π/L)

√
⟨m2⟩

F
− 1. (4.22)

Applying the quotients method was employed [113, 194–197, 202], the crystal field (or re-
spectively the temperature) where the curves of Um (respectively ξ/L) of the sizes L and 2L
cross, defines finite-size pseudocritical points. There g2L/gL = 2. These estimates are depicted
in the lower panel of Figs. 4.8 and 4.11. Denoting by g∗ the value at these crossings, a scaling
of the form

g∗ = g∞ +O(L−ω) (4.23)
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can be expected, where g∞ is universal.
The inset of Fig. 4.8 provides an estimate for the universal Binder cumulant (Um)∞, as ex-

tracted from the sequence of the finite-size crossings U∗
m. A second-order polynomial fit in L−ω,

yields Um,∞ = 0.596(6), in excellent agreement to the graphical estimate 0.595 of Capponi et
al. [181]. In the same manner, the inset of Fig. 4.11 depicts the infinite-size extrapolation of the
values (ξ/L)∗, using the four largest pairs of system sizes considered. A linear fit in L−ω led to(

ξ

L

)
∞, spin−1 BW

= 1.00(4). (4.24)

For the two-dimensional q = 4 Potts model, the respective value, calculated with periodic
boundary conditions from the seminal work of Salas and Sokal [193], is(

ξ

L

)
∞, q=4 Potts

= 1.02(3). (4.25)

These results are in good agreement with each other, and consist the final universality check
performed in this work, accurate within a ∼ 2% margin.

4.3.3 Universal distributions

Other than using critical exponents and universal ratios to characterise a universality class,
probability distributions can also be utilised. In this Section, focus is placed on understanding
the results concerning universal distributions from the multicanonical simulations at (∆ ≈
0.0008, T = 1.6606), for both the magnetisation, sublattice magnetisation, and for the energy.
Extra focus is placed on the energy, where by performing field mixing in the fields conjugate to
EJ and E∆, the phase diagram was crossed from different angles, in order to see if the universal
distributions will be the same for all the cases considered. To calculate the distributions at the
critical point, all results were reweighted at the critical value of the crystal field ∆.

For a system of linear size L, an observable Q will follow a probability distribution PL(Q).
Then, its per-site equivalent quantity q = Q/LD will obey the distribution PL(q), D being the
dimensionality of space. A rescaled version of this distribution can provide another indication
of universality. Specifically, a universal distribution can be defined for large L by [203, 204]

PL(q) = cLxP∗(cLyq). (4.26)

Models in the same universality class will follow the same distribution P∗. Starting from
PL(q), moments of q can be defined by

⟨qn⟩ =
∫

qnP(q)dq = cnLx−y−ny
∫
(q∗)nP(q∗)dq∗, (4.27)
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where a simple change of variables, q∗ = cLyq, was used. This discussion assumed that the
quantity q was a continuous variable, even though that is not the case for a finite system, but
this can be reconciled by the use of very large system sizes. The quantity q is usually the energy
or the magnetisation per lattice site. Thus, the value of the exponents x and y can be found
directly from the variance of q and the scaling relation of Eqs. (1.76) or (1.77), respectively. It
turns out that x = y. However, knowledge of the critical exponents or the value of x is not
necessary in order to calculate the universal distribution.

Assuming that the random variable Q can take the values Qi for some finite system L,
and that the corresponding distribution PL(Qi) is known, at least approximately, from some
analytic calculation or a simulation, then the following normalisation condition should hold

1 = ∑
i

P(Qi) = ∑
i

P(Qi)

(
∆Q
LD

)−1 (∆Q
LD

)
. (4.28)

Here, ∆Q is the difference between two consecutive Qi. For a very large system, ∆q = ∆Q/LD

can be manipulated as a continuous variable, defining the continuous distribution PL(q) =

PL(Qi)/
(
∆Q/LD). Combining this definition with the moments of Eq. (4.27) and the univer-

sal distribution of Eq. (4.26) means that the variance of the distribution, σ2
q , and that of the

universal distribution, σ2
q∗ , are connected via

σ2
q = σ2

q∗/(c2L2x). (4.29)

Thus, the scaling factors cLx that appear in Eq. (4.26) can be estimated from the standard devi-
ation of q. Also centring around the zero moment q0 = ⟨q⟩ implies that

P∗ (σq(q − q0)
)
= σqPL(q − q0). (4.30)

Since the distribution PL(q) was divided by σ2
q , according to Eq. (4.29), the universal distribu-

tion P∗ estimated by Eq. (4.30) is of unit variance.

Magnetisation and energy universal distributions

The universal probability distributions for the magnetisation per particle and the sublattice
magnetisation per particle at the critical point (∆ = 0.0008, T = 1.6606), as predicted by the
different system sizes, are shown in Fig. 4.12. The total magnetisation distributions, defined
with m = mA + mB + mC, are depicted in the left panel, while the the sublattice magnetisation
is shown on the right. The two plots indicate that as the system size increases, the univer-
sal distributions approach each other, exactly as expected, since in the limit of very large L
distributions should converge to the universal behaviour. The errors are calculated using the
jackknife method (see Appendix A).
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FIGURE 4.12: Left panel: Universal distribution of the magnetisation per particle
m for the spin-1 Baxter-Wu model, at the critical point where T = 1.6606, for dif-
ferent system sizes. Right panel: Similar plot but for the sublattice magnetisation

per particle, mj.

The universal distribution for the energy per particle is shown in Fig. 4.13. It is evident,
even just by inspection, that the energy distributions are in a sense better behaved than the
magnetisation ones, showing faster convergence as the system size increases.

Field-mixed universal distributions

In cases like the spin-1 Baxter-Wu and Blume-Capel models it is perhaps more physically intu-
itive to study the model under a linear transformation of the fields (∆, T). The new fields can
be defined in such a way that varying them would lead to crossing the transition line in two
perpendicular directions. This approach of mixing fields [205] has been applied in the past,
especially for the case of locating multicritical points [155, 204, 206], by approaching them from
the first-order transition line. In these cases, one of the field is chosen to be tangent to the tran-
sition line at each point. Here, the method of field-mixing is applied to the continuous line of
transitions, specifically in order to see the universal distributions that arise from the energies
conjugate to the new fields. In that sense, from renormalisation group arguments, the direction
of the new fields does not matter for the universal behaviour. Such a transformation can be
seen in Fig. 4.14.
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The idea of field mixing, at least in the current general case, is the following: to study a
critical point move the reference frame on top of it by applying a linear transformation to the
fields. For the spin-1 Baxter-Wu model, a general transformation would produce two new
fields, fq and fg, defined as

fq = (µ − µc) + r(β − βc), (4.31)

fg = (β − βc)− s(µ − µc). (4.32)

In the above, instead of working directly with (∆, T), the new fields were expressed using
the equally valid variables β = 1/T and µ = β∆. The reason behind this choice is that the
field-conjugate variables are easier to express. The r and s are the slopes of the newly defined
reference frame in comparison to the old one. The conjugate variables then are straightforward
to calculate as

Q =
∂logZ

∂ fq
=

1
1 + rs

(E∆ + sEJ), (4.33)

and
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G =
∂logZ

∂ fg
=

1
1 + rs

(EJ − rE∆), (4.34)

so in the end, mixing the two fields results in conjugate variables that simply mix the energies.
By sampling these quantities, universal distributions can be estimated in the same manner

as before. Note that the constant (1 + rs)−1 in the front is unimportant since it can be absorbed
by the normalisation of the distributions. Figure 4.15 compares the universal distributions of
the mixed energies of Eqs. (4.33) and (4.34) with that of the total energy of the system [Eq. (4.2)],
only for the largest sizes considered, and for the simulation at temperature T = 1.6606. The
choice of the slopes s and r was such that the new fields are perpendicular to each other.1

Different choices gave similar results, with all the distributions seemingly being on top of each
other, as expected.

1Note that in the definitions of the new coordinates in Eqs. (4.33) and (4.34), s appears with a minus, to conve-
nience the definitions of Q and G.
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4.4 Summary and Outlook

In this Chapter, an extensive numerical study of scaling and universality in the phase diagram
of the diluted Baxter-Wu model was presented. Employing a combination of Wang-Landau
simulations that cross the transition at constant crystal field ∆ and multicanonical simulations
operating at constant temperature T, a range of the transition points was covered. Clear evi-
dence was provided for the second-order nature of the transition in this regime. The previously
reported first-order-like signature of the transition on approaching the pentacritical point are
also seen here from the simulations at ∆ ≤ −1, but a careful finite-size scaling analysis showed
that they are a mere finite-size effect. Everywhere in the second-order regime the analysis
clearly showed consistency with the universality class of the spin-1/2 Baxter-Wu model. From
the accuracy in the determination of the critical exponents one may conclude that logarithmic
corrections-to-scaling are indeed minimal. A comparative overview of the results is provided
in Tables 4.1 and 4.2. While it is clear from these results that strong scaling corrections appear
as the pentacritical point, where the transition changes to first-order, is approached, the exact
location of this pentacritical point and its universality class were not considered here. This
question is left for future work.

Additionally, the universal distributions were considered, which are yet another tool for
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TABLE 4.1: A comparison of exact and numerical results for the 4-state Potts
model, spin-1/2 Baxter-Wu model, and spin-1 Baxter-Wu model in a crystal field.
The latter obtained via the Wang-Landau simulations at fixed values of the crystal

field ∆.

Wang-Landau
Simulation point Tc ν α/ν γ/ν (ξ/L)∞
spin-1/2 2.26918 . . . 2/3 1 7/4 1.02(3) [193]
∆ = −10 2.2578(5) 0.655(17) 1.01(2) 1.76(3) 1.00(4)
∆ = −1 1.8503(9) 0.652(18) 1.04(5) 1.75(1) –

TABLE 4.2: A comparison of the spin-1/2 Baxter-Wu model universality class
with the results obtained via multicanonical simulations at fixed values of the
temperature T. For the value of the exponent ν, the results from the logarithmic
derivatives of Fig. 4.9 for n = 1 are reported. Averaging over all the estimations
was avoided, because this would produce unreliable errors due to the statistical

correlation of the estimates of ν [207, 208].

Multicanonical
Simulation point ∆c ν α/ν γ/ν (Um)∞
spin-1/2 – 2/3 1 7/4 ∼ 0.595 [181]
T = 2.1 −3.436(3) 0.668(6) 1.002(9) 1.75(3) –
T = 1.8503 −1.002(2) 0.669(5) 1.01(1) 1.76(1) 0.596(6)
T = 1.6606 0.0008(7) 0.651(15) 1.06(6) 1.75(3) –
T = 1.5301 0.4999(2) 0.654(28) 1.13(5) 1.74(4) –

investigating the universality principles of the model. The system sizes considered were large
enough to approach the universal distributions, especially when considering the energy. Mix-
ing fields and crossing the phase boundary at different angles was shown to be equivalent to
just working with the energy of the system, as expected.

To conclude, hopefully this work settles some of the previously reported controversies over
the critical behaviour of the spin-1 Baxter-Wu model and lays the foundation for intriguing
extensions. One such interesting line of research would be to unveil the effect of quenched
disorder in both parts of the phase diagram of the model. Additionally, a field mixing approach
would be useful for locating the pentacritical point, like it has been done in the past for the
tricritical point of the Blume-Capel model [155, 204, 206], as well as the tricritical point of the
two-dimensional spin fluid [206].
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Chapter 5

Dynamical Phase Transition in the
Random Blume-Capel Model

This chapter contains work that was published in [209].

By means of Monte Carlo simulations, an investigation is carried out concerning the dy-
namical phase transition of the two-dimensional Blume-Capel model in the presence of a quenched
random crystal-field coupling, under a periodically oscillating magnetic field. The analysis,
concerning the universality features of this dynamic transition, takes place in the originally
continuous transition regime of the corresponding equilibrium phase diagram, for various val-
ues of the crystal-field coupling ∆. A detailed finite-size scaling analysis indicates that the
observed nonequilibrium phase transition belongs to the universality class of the equilibrium
Ising ferromagnet, with additional logarithmic corrections in the scaling behaviour of the heat
capacity. These results are in agreement with earlier works on dynamical phase transitions in
Ising models.

5.1 Introduction

The current theory and results of critical phenomena has developed enough to allow for the
comprehension of a wide variety of systems and how their universal properties arise, as well
as the differences between universality classes. This understanding also extends, at least par-
tially, to quenched disordered systems. In comparison, when it comes to nonequilibrium phase
transitions, the knowledge concerning their underlying physical mechanisms is far reduced.
A comprehensive classification of these transitions, undergone by many-body interacting sys-
tems far from equilibrium, is still lacking.

Following the seminal work of Tomé et al. [210], it is now understood that exposing a fer-
romagnetic system to an oscillating magnetic field, while below its Curie point, an interesting
dynamical behaviour can arise. In general, the oscillating field creates two competing regimes,
depending on the timescales of the half-period of the field, t1/2, and the metastable lifetime τ
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of the system. The later is defined as the average time it takes for the system to leave its two de-
generate zero-field equilibrium states when a field of magnitude h0 is applied, in the direction
opposite to the initial magnetisation. In practice, τ can be measured as the first-passage time
to zero magnetisation. When the half period is smaller than the metastable lifetime, t1/2 < τ,
it is not possible for the spins to follow the external field. Thus, the magnetisation tends to
oscillate around a non-zero value, and this regime corresponds to the dynamically ordered
phase. On the other hand, for t1/2 > τ, the system has enough time to follow the magnetic
field. In this case, the magnetisation oscillates around the zero value, acting in accordance to
the field. This behaviour indicates a phase of dynamical disorder. In the intermediate regime,
where t1/2 ≈ τ, a dynamical phase transition takes place between the dynamically ordered and
disordered phases.

Many theoretical [211–231] and experimental studies [232–236] dealing with the question
of dynamical phase transitions and hysteresis have been carried out through the years. From
there, it is safe to say that both the amplitude and the period of the time-dependent external
field play a key role in dynamic critical phenomena. Moreover, the classification of spin models
with time-dependent oscillating magnetic fields in universality classes has attracted much in-
terest in recent years [237–246]. To express the main finding in a nutshell: The critical exponents
of the Ising model undergoing a dynamical phase transition agree with those of the equilib-
rium model, both at two and three dimensions [237–239, 241]. Also, Buendía and Rikvold [240]
produced strong evidence towards the idea that dynamic phase transitions have the same uni-
versal characteristics, regardless of the choice of stochastic dynamics, by estimating the critical
exponents of the two-dimensional Ising model. The authors utilised so-called soft Glauber dy-
namics [247], where both nucleation and interface propagation are slower and the interfaces
smoother than for the standard hard Glauber and Metropolis dynamics. Additionally, Park
and Pleimling [242] worked on understanding the role of surfaces in nonequilibrium phase
transitions, specifically for Ising models. Their findings show that the nonequilibrium surface
exponents were in disagreement to the respective equilibrium exponents. Moreover, Riego et
al. [236] provided experimental evidence which, together with the numerical results of Buendía
and Rikvold [244], verified that the equivalence of the dynamic and equilibrium phase transi-
tions is limited to the area near the critical period. Lastly, Vatansever and Fytas [245, 246]
showed with numerical simulations that the nonequilibrium phase transitions of the pure and
random-bond Blume-Capel model belong in the universality class of the pure Ising model in
equilibrium, with the presence of additional logarithmic corrections for the disordered case.
Some general and useful features of the dynamical phase transition of the pure Blume-Capel
model can be found in references [217, 225, 226, 228, 248, 249].

The above works in two- and three-dimensional Ising and Blume-Capel models put in place
a map between the universality principles of equilibrium and dynamic phase transitions. Ad-
ditionally, they provide support in favour of an earlier investigation of a Ginzburg-Landau
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model with a periodically changing field [219], as well with the symmetry-based arguments of
Grinstein et al. in nonequilibrium critical phenomena [250].

With the majority of studies in the field of dynamical transitions dealing with pure systems,
this chapter attempts to shed some additional light to what happens when dynamic phase tran-
sitions are combined with quenched disorder (see for example [246]). Earlier mean-field and
effective-field theory treatments in these problems showed that the dynamic characteristics of
a typical system driven by a time-dependent magnetic field depend sensitively on the amount
of disorder, giving rise to re-entrant phenomena and dynamic tricritical points [251–256].

This chapter investigates the spin-1 Blume-Capel model [145–148] on a square-lattice, with
a diffusing randomness in the crystal-field coupling, under the presence of a time-dependent
periodic magnetic field. This type of disorder has also been studied in the past for the equi-
librium counterpart of the model [257–259], and it actually resembles the physics of random
porous media in mixtures of 3He −4 He [260]. In short, extensive Monte Carlo simulations
along the phase boundary advise that the dynamical phase transition of the model lies in the
universality class of the equilibrium Ising model, with additional logarithmic corrections in the
heat-capacity scaling, attributed to the presence of quenched disorder.

The rest of the Chapter is structured as follows: Section 5.2 the model is introduced, along
side the observables studied and the numerical approach followed. Section 5.3 contains the
results, and Section 5.4 gives a summary of the work.

5.2 Model and Methods

5.2.1 Model

Similar to the Baxter-Wu model in the presence of a crystal field, discussed in Chapters 3 and 4,
the Blume-Capel model has a Hamiltonian containing a nearest-neighbour interactions terms,
only this time interactions are between two spins, as well as a single-ion anisotropy term. With
the addition of a time-dependent oscillating external magnetic field, the model is defined by
the Hamiltonian

H = −J ∑
⟨ij⟩

σiσj + ∑
i

∆iσ
2
i − h(t)∑

i
σi. (5.1)

The spin, σi, are allowed to take the values {−1, 0,+1}. The summation is performed over
nearest neighbours, and the coupling strength J > 0 corresponds to ferromagnetic interactions.
The crystal-field strength ∆i controls the density of the zero spins. Choosing a site-dependent
bimodal probability distribution for ∆i

P(∆i) = pδ(∆i + ∆) + (1 − p)δ(∆i − ∆), (5.2)
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implies that each site has a crystal field of strength −∆ or ∆, with probability p and 1 − p
respectively. Of course, p ∈ (0, 1), and denotes a control parameter of the disorder. The mean of
the distribution is µ = ∆(1− 2p), while the standard deviation s = 2∆

√
p(1 − p). Interestingly,

this form of disorder favours the appearance of zero spins in certain sites (where ∆ is quenched
to a positive value), while disfavouring the appearance of σ = 0 in the rest of the sites. This
has interesting effects on the location of the transition points that will be discussed later. Lastly,
the magnetic field term h(t) defines a spatially uniform time-dependent magnetic field. This
is chosen to be periodically oscillating, so that all lattice sites are exposed to a square-wave
magnetic field with amplitude h0 and half-period t1/2, following [239–241].
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FIGURE 5.1: Phase diagram, containing results for both the pure (p = 0) and the
random (p = 1/2) square-lattice Blume-Capel model. For the pure model, the
ferromagnetic and paramagnetic phases are separated by a continuous transition
solid line, at the small ∆ regime, as well as a discontinuous dashed line, for large
∆. The two lines meet at a tricritical point (∆t, Tt), indicated by the black rhombus.

Even without the magnetic field term, the model of Eq. (5.1) has many interesting proper-
ties. At equilibrium, i.e. for h(t) = 0, and for ∆ → ∞ the model maps to the random-site spin-
1/2 Ising. A site will be populated with probability p or vacant with probability 1 − p [257].
Moreover, when p = 0, the first term of the distribution 5.2 is absent, and the pure Blume-
Capel model is recovered [153, 155, 156, 261]. In the random model (p > 0), a rise in the critical
temperatures is observed (see Fig. 5.1) [259].
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Figure 5.1 depicts the phase diagram of the model, in the (∆, T) plane, with h(t) = 0, for
the cases of p = 0, i.e. pure model, and p = 1/2. The pure system undergoes continuous tran-
sitions in the small-∆ regime and discontinuous transitions in the large-∆ regime. These are
portrayed by the solid and dashed black lines, respectively. The second-order transitions are
in the Ising universality class. The critical line crosses the temperature axis at T0 ≈ 1.693 [153].
The line of first-order transitions meets the x-axis at ∆0 = zJ/2. For the square lattice specif-
ically, the coordination number is equal to z = 4. The tricritical point, where the two line
segments join is approximately located at ∆t ≈ 1.966 and Tt ≈ 0.608 [155]. As per the rest of
the thesis, the exchange-interaction strength and the Boltzmann constant were fixed to unity
(J = kB = 1).

5.2.2 Simulation protocol

The numerical method followed was the single-spin-flip Metropolis update, performed on a
square lattice with periodic boundary conditions. [26, 78, 79]. Together with stochastic Glauber
dynamics [262], these two techniques are the standard approaches to study dynamical transi-
tions with Monte Carlo simulations [240]. The algorithm is described thoroughly in Section 2.3.
Here, all transitions among the three possible spin states, i.e. {−1, 0,+1}, are considered for
the proposed update.

More specifically, the above protocol was applied to the model of Eq. (5.1), with the disorder
of the distribution (5.2). The external magnetic field applied was a time oscillating square-
wave, uniform across the whole lattice. Simulations were performed at the values of the crystal-
field strength ∆ = 0.5, 1, and 2, with the disorder parameter p = 1/2 always, and using as a
guide the work of reference [259]. The linear size of the systems considered was in the range
L = 32 − 512, with 500 independent disorder realisations used for each L to average for the
results, using the jackknife method (see Appendix A). Each time 103 periods of the magnetic
field were discarded as the thermalisation time. Data were actually collected in the subsequent
11 × 103 field periods. The time unit was set as one whole sweep of the lattice, or one Monte
Carlo step per site (MCSS). The strength of the magnetic field was set to h0 = 0.3, and the
temperature to T(∆) = 0.8× Tc(∆). This way ensuring that the metastable decay of the system,
due to the field reversal, materialises through nucleation and growth of many droplets in the
stable phase, i.e. the multi-droplet regime, a point emphasised by previous works [237, 241]. As
mentioned, following the work of Vatansever et al. [259], the equilibrium critical temperatures
considered were Tc(∆ = 0.5) = 1.6854, Tc(∆ = 1) = 1.6473, and Tc(∆ = 2) = 1.4907, specific
for p = 1/2.

5.2.3 Observables

Due to the oscillating magnetic field, it makes physical sense to study period-averaged thermo-
dynamic observables, instead of simply averaging over the typical equilibrium observables,
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such as the energy and the magnetisation. For a field with a half period t1/2, the period-
averaged magnetisation is defined by

QL =
1

2t1/2

∮
M(t)dt, (5.3)

with the integral running over a period of the field, and M(t) being the time-dependent mag-
netisation per site

M(t) =
1
N

N

∑
i=1

σi(t). (5.4)

From the discussion in Section 5.1, concerning the behaviour of the magnetisation, it is expected
that in the ordered phase the probability density of QL becomes bimodal. To distinguish this
phase from the disordered one and capture the symmetry breaking, the order parameter is
defined as the average of the absolute of QL, i.e. ⟨|Q|⟩L. A similar definition to Eq. (5.3) exists
for the period-averaged energy, E.

Following the same discussion of Section 1.1.5, it is straightforward to define quantities
analogous to the susceptibilities of the energy and the magnetisation at equilibrium. These
susceptibilities of the period-averaged quantities play an important role in the study of the
dynamical transition. The variance of the dynamic order parameter is defined as

χQ
L = N

[
⟨Q2⟩L − ⟨Q⟩2

L
]

, (5.5)

behaving as a substitute for the nonequilibrium susceptibility and theoretically justified by the
fluctuation-dissipation relations [227]. In the same fashion, the variance of the period-averaged
energy can be designated by

χE
L = N

[
⟨E2⟩L − ⟨E⟩2

L
]

, (5.6)

which can be thought of as a proxy for the heat capacity. Furthermore, with Q in place for the
magnetisation, a fourth-order Binder cumulant [203, 263] can also be defined

UQ
L = 1 − ⟨|Q|4⟩L

3⟨|Q2|2⟩L
, (5.7)

following [237, 238].

5.3 Results

To begin with, Figs. 5.2, 5.3, and 5.4 illustrate the behaviour of the magnetisation and show-
case the underlying mechanisms that lead to the dynamical phase transition. Employing a
single disorder realisation for a system with linear size L = 192, at ∆ = 1, what was discussed



5.3. Results 109

-1

-0.5

 0

 0.5

 1

 0  50  100  150  200  250  300  350  400

M
(t

),
 h

(t
)/

h 0

t (MCSS)

-1

-0.5

 0

 0.5

 1

 0  200  400  600  800  1000  1200

M
(t

),
 h

(t
)/

h 0

t (MCSS)

-1

-0.5

 0

 0.5

 1

 0  500  1000  1500  2000

M
(t

),
 h

(t
)/

h 0

t (MCSS)

FIGURE 5.2: Time dependence of the magnetisation (red solid lines) of the ran-
dom Blume-Capel model with p = 1/2, in a square-wave magnetic field (black
dashed lines) for a system of linear size L = 192, at ∆ = 1. Three values of the
half period of the external field are considered. Upper panel: t1/2 = 20 MCSS,
corresponding to a dynamically ordered phase. Middle panel: t1/2 = 66 MCSS,
close to the dynamic phase transition. Lower panel: t1/2 = 100 MCSS, corre-
sponding to a dynamically disordered phase. For comparative reasons, the ratio

h(t)/h0 is displayed for the field.
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in Section 5.1 can be seen in these plots. Specifically, Fig. 5.2 compares the evolution of the
magnetisation with time, for different regimes of the external field’s half-period. The red lines
indicate the magnetisation, while the black ones the magnetic field. As expected, when the
field is oscillating rapidly, as in the upper panel, the spins are not given enough time to follow.
This results effectively a constant magnetisation and a dynamically ordered phase. In the lower
panel, where the oscillation is slow, the spins have adequate time to switch to the orientation
of the field, resulting in a zero magnetisation on average and a disordered phase. In the inter-
mediate regime (middle panel of Fig. 5.2), the half-period τ1/2 and the metastable time τ are
comparable. This is where the transition takes place.

Figure 5.3 tells the same tale, but from the point of view of the period-averaged magneti-
sation of Eq. (5.3), Q, pinpointing the role of this quantity as the order parameter. In the dy-
namically ordered phase, for a finite system, Q > 0, while in the disordered phase Q ≈ 0. For
τ1/2 ≈ τ, an intermediary behaviour is observed, where Q is strongly fluctuating. Note that
since the equality is not exact, some non-vanishing finite-size effects are expected. It is clear
that the half-period is equivalent to the temperature in equilibrium systems. Since its compar-
ative size to τ plays an important role for characterising the phase of the system, following
reference [241], the parameter Θ = t1/2/τ is defined. In other words, the transition happens at
the critical point tc

1/2, or equivalently when Θ ≈ 1.
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FIGURE 5.3: Period dependence of the dynamic order parameter, Q, of the ran-
dom p = 1/2 Blume-Capel model. The plot concerns L = 192 and ∆ = 1. Three
characteristic cases of the half period of the external field are shown, correspond-

ing to Fig. 5.2.
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Figure 5.4 contains some snapshots of the local order parameter Qx, at site x, for the re-
spective cases discussed above. When t1/2 < tc

1/2 (upper panel), the majority of the time most
spins are in the state σx = +1, i.e. in the metastable phase during the first half-period and in
the stable equilibrium phase during the second half-period. Of course, thermal fluctuations are
also observed. The system is then in the dynamically ordered phase, and Qx ≈ +1. Contrarily,
on the opposite regime of a slowly varying field, the spins follow the field intently, with a small
lag. In this regime, Qx ≈ 0 (bottom panel), and the dynamically disordered phase is observed.
Around the vicinity of tc

1/2, a dynamic phase transition is expected, and indeed large clusters
of all values of Qx are observed, ±1 and 0 (middle panel).

As a last example for the qualitative behaviour of the system, Figs. 5.5, 5.6, and 5.7 illustrate
the behaviour of the dynamic quadrupole moment O, in full analogy to Figs. 5.2, 5.3, and
5.4, respectively, using the same simulation parameters. Following the definition of Q, O is
calculated from

O =
1

t1/2

∮
ρ(t)dt, (5.8)

with

ρ(t) = 1 − 1
N

N

∑
i=1

σ2
i . (5.9)

This quantity denotes the order parameter that is conjugate to the crystal-field coupling ∆. It
will elucidate the role of the zero spins, σx = 0, something that Qx cannot do, since it does
not have the ability to distinguish between areas of zero spins and areas where the spins are
distributed randomly in ±1. Thus, in full analogy to Fig. 5.4, Fig. 5.5 illustrates configurations
of the dynamic quadrupole moment Ox, over a cycle of the field. Moreover, Fig. 5.6 is analogous
to Fig. 5.2, presenting how ρ of Eq. (5.9) varies with time, given the half-period of the external
magnetic field. Finally, Fig. 5.7 corresponds to Fig. 5.3, presenting the time-evolution of O.

Comparing to the case of the spin-1/2 Ising model, where ρ = 0 due to the lack of zero
spins, in the Blume-Capel case the value of O changes with ∆. At ∆ = −∞, the Ising model
is recovered. As it increases, vacancies start appearing, and O grows. Specifically for p =

1/2 and ∆ = 1, as was seen in the figures, the vacancies do not play a very significant role.
It should be expected however that as p decreases, vacancies will become more prominent
[see Eq. (5.2)]. Moreover, increasing ∆ will also force more vacancies to appear, in the small-
p scenario. Looking at the phase diagram of Fig. 5.1, this corresponds to studying the ex-
first-order regime of the equilibrium model [259]. Looking at Figs. 5.8 and 5.9, the values
p = 0.02 and ∆ = 2 for the parameters seem like a promising choice. There, configurations of
the local dynamic order parameter and quadrupole moment, for different values of the half-
period, are shown. The effects of the vacancies there can be seen to be of great importance for
the underlying transition.



112 Chapter 5. Dynamical Phase Transition in the Random Blume-Capel Model

- 1 . 0 0 0

- 0 . 7 5 0 0

- 0 . 5 0 0 0

- 0 . 2 5 0 0

0 . 0 0 0

0 . 2 5 0 0

0 . 5 0 0 0

0 . 7 5 0 0

1 . 0 0 0( a )

( b )

- 1 . 0 0 0

- 0 . 7 5 0 0

- 0 . 5 0 0 0

- 0 . 2 5 0 0

0 . 0 0 0

0 . 2 5 0 0

0 . 5 0 0 0

0 . 7 5 0 0

1 . 0 0 0

( c )

- 1 . 0 0 0

- 0 . 7 5 0 0

- 0 . 5 0 0 0

- 0 . 2 5 0 0

0 . 0 0 0

0 . 2 5 0 0

0 . 5 0 0 0

0 . 7 5 0 0

1 . 0 0 0

FIGURE 5.4: Configurations of the local dynamic order parameter Qx, at site x,
of the random p = 1/2 Blume-Capel model. Again, L = 192 and ∆ = 1. These
“snapshots” concern the local period-averaged spins for three representative val-
ues of the half period. Upper panel: t1/2 = 20 MCSS < tc

1/2, i.e. in the dynam-
ically ordered phase. Middle panel: t1/2 = 66 MCSS ≈ tc

1/2, near the dynamic
phase transition. Lower panel: t1/2 = 100 MCSS > tc

1/2, i.e. in the dynamically
disordered phase.
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FIGURE 5.5: In full analogy with Fig. 5.4, snapshots of the period-averaged
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parameters are the same in the respective panels of Fig. 5.4.
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FIGURE 5.6: Time series of the order parameter conjugate to the crystal field
ρ(t) (solid blue curves) of the random p = 1/2 Blume-Capel model under the
presence of a square-wave magnetic field (black dashed lines). Similar to Fig. 5.2,
L = 192 and ∆ = 1. The same three values of the half period were used. Upper
panel: t1/2 = 20 MCSS. Middle panel: t1/2 = 66 MCSS. Lower panel: t1/2 = 100

MCSS. For the sake of clarity, the ratio h(t)/h0 is displayed.
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FIGURE 5.7: Period dependencies of the dynamic quadrupole moment, O, of the
random p = 1/2 Blume-Capel model for L = 192 at ∆ = 1. The same half periods

as in Fig. 5.6 were used.

To probe the properties of dynamic phase transition of the random Blume-Capel model, the
finite-size scaling behaviour of the period-averaged observables and their susceptibilities was
analysed. Following previous works [237–241], even though finite-size scaling is specific for
equilibrium system, as discussed in Section 1.4, it can be generalised to systems that are out of
equilibrium.

In Fig. 5.10 the finite-size behaviour of the dynamic order parameter Q [Eq. (5.3)] and its
susceptibility χQ [Eq. (5.5)] are presented at ∆ = 1 and two characteristic system sizes. Simi-
larly to the magnetisation in equilibrium systems, for small t1/2, Q takes a finite value and as
t1/2 increases, Q tends to zero. A steep decline is observed around the phase transition, giving
rise to a corresponding peak in the susceptibility. The location and value of the maxima of χQ

L ,
denoted as t⋆1/2 and (χQ

L )
⋆ respectively, can be utilised for the finite-size scaling analysis. The

same goes for the heat-capacity maxima, (χE
L)

⋆.
The critical half-period tc

1/2 and the exponent ν can be determined, following the same
finite-size scaling analysis performed in equilibrium systems. For ∆ = 1 specifically, the main
panel of Fig. 5.11 shows the scaling of the locations of the maxima of the maxima of χQ

L and χE
L .

A similar behaviour was seen in the two other values of ∆ studied, and the findings are shown
in Table 5.1. Notice that with increased ∆ the value of tc

1/2 decreases, implying that strongly
favouring zero spins in half the lattice sites while strongly disfavouring them in others helps
reduce the metastable time of the system. Figure 5.11 illustrates the shift behaviour of the peak
locations, and an extrapolation for the critical half-period, t⋆1/2, using a simultaneous fit of the
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FIGURE 5.8: Configurations of the local dynamic order parameter Qx of the ran-
dom Blume-Capel model for L = 192, p = 0.02, and ∆ = 2. Note that for this set
of (p, ∆) parameters, the critical half period of the system was approximated to be
very roughly tc

1/2 ≈ 53, using the peak positions of the corresponding dynamic
susceptibility and heat-capacity curves. Upper panel: t1/2 = 20 MCSS < tc

1/2, i.e.
dynamically ordered phase. Middle panel: t1/2 = 53 MCSS ≈ tc

1/2, i.e. near the
dynamic phase transition. Lower panel: t1/2 = 100 MCSS > tc

1/2, i.e. dynami-
cally disordered phase.
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FIGURE 5.9: Snapshots of the period-averaged quadrupole moment conjugate to
the crystal-field coupling ∆, in full analogy with Fig. 5.8. Simulation parameters

are the same as those used in the respective panels of Fig. 5.8.
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form [264–266]

t⋆1/2 = tc
1/2 + bL−1/ν. (5.10)

In the end, the values tc
1/2 = 65.96(6) and ν = 1.03(3) are obtained, with the latter being in

agreement with the value ν = 1 of the two-dimensional Ising universality class [267].
The inset of Fig. 5.11 depicts the fourth-order Binder cumulant, UQ

L [see Eq. (5.7)] at ∆ = 1
and a range of sizes studied. The vertical dashed line corresponds to the critical half-period es-
timated from the main panel. The horizontal line marks the universal value of the Binder cumu-
lant of the 2D equilibrium Ising model, U⋆ = 0.610 692 4(16) [268]. Even though the crossing
depends on the lattice size and shape, as well as the boundary conditions and isotropic inter-
actions [269, 270], Hasenbusch et al. [271] presented strong evidence that the two-dimensional
site-diluted Ising model has the same value for the Binder cumulant as its pure counterpart, at
equilibrium. The plots shown are in qualitatively agreement with this value.

Turning now to the scaling analysis of the maxima of the dynamic susceptibility and heat-
capacity: Figure 5.12 exhibits the size evolution of (χQ

L )
⋆ in a log-log plot, for the different val-

ues of the crystal-field strength considered, ∆ = 0.5, 1, and 2. Fits were performed using [185]

(
χQ

L

)⋆
∼ Lγ/ν. (5.11)

In all cases, the magnetic exponent ratio γ/ν is in very good agreement with the value of 7/4
of the Ising universality. Results can be seen in Table 5.1. From the work of Dotsenko et al. [66]
for the disordered Ising ferromagnet, it is expected that the heat-capacity maxima (χE

L)
⋆ will

follow a double logarithmic law. Although this is difficult to observe, for L ≥ 64 (see Fig. 5.13)
the data are described quite well by fits of the form

(
χE

L

)⋆
∼ ln [ln (L)]. (5.12)
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L (inset), for the random p = 1/2 Blume-Capel
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0 . 0 0 0 0 . 0 0 5 0 . 0 1 0 0 . 0 1 5 0 . 0 2 0 0 . 0 2 5 0 . 0 3 0 0 . 0 3 5
6 6
6 8
7 0
7 2
7 4
7 6
7 8
8 0
8 2
8 4
8 6
8 8
9 0

2 0 4 0 6 0 8 0 1 0 0
0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6
0 . 7

U LQ

t 1 / 2

 L  =  3 2
 L  =  4 8
 L  =  6 4
 L  =  9 6
 L  =  1 2 8
 L  =  1 9 2
 L  =  2 5 6
 L  =  3 8 4
 L  =  5 1 2

I s i n g

t 1/2
c  = 

65
.96

 χL
Q

 χL
E

t 1/2
*

1 / L

∆  =  1

FIGURE 5.11: Shift behaviour of the two pseudocritical half periods, t∗1/2, cor-
responding to the locations of the maxima of the dynamic susceptibility (filled
black squares) and heat capacity (filled red circles). Results concern p = 1/2 and
∆ = 1. The inset illustrates the half-period dependency of the corresponding

fourth-order Binder cumulant UQ
L .



120 Chapter 5. Dynamical Phase Transition in the Random Blume-Capel Model

1 0 1 0 0 1 0 0 0
1 0

1 0 0

1 0 0 0

1 0 0 0 0  ∆  =  0 . 5
 ∆  =  1
 ∆  =  2

(χ LQ )*

L
FIGURE 5.12: Finite-size scaling of the dynamic susceptibility, (χQ

L )
∗, for the ran-

dom p = 1/2 Blume-Capel model. Results are shown for three values of ∆ and a
log-log scale was used.

1 . 2 1 . 3 1 . 4 1 . 5 1 . 6 1 . 7 1 . 8 1 . 9
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0
3 . 5
4 . 0
4 . 5
5 . 0
5 . 5  ∆  =  0 . 5

 ∆  =  1
 ∆  =  2

(χ LE )*

l n  [ l n ( L ) ]
FIGURE 5.13: Double logarithmic scaling behaviour of the heat-capacity maxima
(χE

L)
∗ of the random p = 1/2 Blume-Capel model for the three values of ∆ con-

sidered.



5.4. Conclusions 121

5.4 Conclusions

This Chapter studied the two-dimensional Blume-Capel model under the effect of quenched
disorder in the crystal-field coupling, by making use of extensive Monte Carlo simulations. By
the application of a time-dependent oscillating external magnetic field, it was observed that the
system undergoes a dynamical phase transition. To grasp the properties of this transition, ini-
tially the period averaged magnetisation and quadrupole moment were studied. The former
acts like an order parameter for the system, while the latter does not play an important role
for the values of ∆ studied and the strength of the disorder considered. Following the appli-
cation of an extensive finite-size scaling analysis, the location of the transition was estimated
and critical exponents were calculated with a fairly good accuracy. All the estimates were com-
patible with the respective exponent of the equilibrium Ising ferromagnet. Additionally, the
results revealed the anticipated double logarithmic divergence of the heat capacity. Ultimately,
as discussed in Chapter 1, universality is a cornerstone in the theory of critical phenomena, it
stands however on less solid foundations when it comes to off-equilibrium systems, especially
when coupled with the presence of quenched disorder. Hopefully, this work will help stimulate
further interest in this topic.

TABLE 5.1: A summary of critical parameters describing the dynamic phase tran-
sition of the square-lattice Blume-Capel model in a quenched random crystal
field. Note that the values of ∆ considered in the current work, given the ran-
domness distribution [Eq. (5.2)] with p = 1/2, correspond to the second-order

transition regime of the model’s equilibrium phase diagram.

∆ tc
1/2 ν γ/ν

0.5 72.41(9) 1.00(3) 1.75(1)
1 65.96(6) 1.03(3) 1.76(1)
2 47.61(7) 1.05(7) 1.75(2)
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Conclusions and Outlook

In the current thesis, a number of questions were studied via Monte Carlo simulations, mostly
centred around spin-1 models. In Chapter 3 the dynamical critical scaling, at equilibrium, of the
three-spin nearest-neighbour interactions Baxter-Wu model was discussed. Implementing al-
gorithms that incorporate clusters, it was shown that, in the spin-1 generalisation of the model,
the dynamical exponent z depends on the value of the crystal-field strength ∆, a phenomenon
that becomes more apparent as ∆ crosses to positive values. Furthermore, in Chapter 4, the
critical properties of the spin-1 Baxter-Wu model in a crystal field were probed. Away from the
multicritical point, this model was clearly shown to undergo continuous transitions that belong
to the universality class of its spin-1/2 counterpart (and thus to the respective universality class
of the 4-states Potts model). However, as the multicritical point was approached along the line
of continuous transitions, first-order-like characteristics started to appear in the distributions
of the energy probability density function. These features were attributed to finite-size effects,
via an interface tension analysis, and the model was subsequently shown to not change its scal-
ing behaviour, at least up to ∆ = 0.5. Lastly, in Chapter 5, the kinetic Blume-Capel model in
two-dimensions was analysed. By applying a periodically oscillating external magnetic field,
as well as implementing a random disorder in the crystal-field strength, a non-equilibrium
phase transition was observed, depending on the period of the oscillating magnetic field. Gen-
eralising observables to their period-averaged counterparts led to discovering that these new
observables scale with critical exponents indicative of the Ising universality class.

Going one step further, Chapter 3 was based on the idea of implementing a cluster algo-
rithm, through a hybrid scheme, to study the spin-1 Baxter-Wu model near its pentacritical
point. The hybrid scheme was chosen to consist of one part Swendsen-Wang implementation
of a cluster and one lattice sweep of the restricted heat bath. Judging from an implementa-
tion of a cluster in the spin-1/2 model, an increased efficiency was expected, showcased by the
value of the dynamical critical exponent z. This seemed to be the case when looking at negative
values of ∆. However, the three-spin interactions, in conjunction with the increased density of
the zero spins, proved to be too much for such an approach. In the end, the hybrid scheme was
shown to be almost as inefficient as a single-spin-flip update, at least in the vicinity of the multi-
critical point. It is expected then that this point of interest will probably be located and studied
using the more straightforward Metropolis or heat-bath algorithms. The observed behaviour
of z could be due to the specific algorithm implemented [136], paving the way for a thorough
study of the percolation properties of the algorithm. It could also however be a characteristic
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of models where first- and second-order transitions meet, since cluster methods work well for
Potts models, but are not expected to perform the same close to these multicritical points.

In Chapter 4, using a multicanonical algorithm implemented in parallel on GPUs, was
enough to study the universality of the spin-1 Baxter-Wu model for values of ∆ ≤ 0.5. Ad-
ditional Wang-Landau simulations at ∆ = −10 and −1 corroborated that the universality of
the spin-1/2 model is retained. However, it became clear that such methods can not be im-
plemented for the study of the pentacritical point. In the cases were ∆ ≥ 0 the author had to
implement the analysis in GMP (GNU Multiple Precision Arithmetic Library) and MPFR (GNU
Multiple Precision Floating-Point Reliable Library), in order to make sure that the reweighting
process was not encountering arithmetic issues. This fact, in conjunction to the conclusions for
Chapter 3 make it abundantly clear to that the way to locate and study the multicritical point
via Monte Carlo simulations is by using a restricted heat bath algorithm, or some of the meth-
ods discussed in Chapter 2, in conjunction with the field-mixing method [206]. To that end,
some universal distributions of field-mixed conjugate energies were estimated and compared
to the energy universal distribution. As expected, along the continuous transition line of the
phase boundary, these distributions coincided qualitatively.

In Chapter 5, the response of critical properties to outside factors that drive the system out
of equilibrium was showcased. In essence, similar to previous studies, the important conclu-
sion that the equilibrium scaling properties are transferred to the kinetic model was drawn. It
would be interesting to study what happens in the ex-first-order regime. Although this is well
established for the case of the equilibrium transition [29], it is not so for the dynamic transition.
Additionally, because of the shift of the phase diagram due to the incorporated disorder, and
possible re-entrant phenomena, choosing the transition points that fulfil the criteria is not sim-
ple. In Chapter 5 a suggestion was given, by looking at the qualitative behaviour of the system
at small values of the disorder strength and large values of the crystal-field strength.

Ultimately, spin-1 models, at their core, offer a rich foundation for exploring diverse phe-
nomena. The ability of zero spins to mimic lattice dilution enhances the applicability of these
models in describing real-world materials. Introducing elements of randomness or an oscillat-
ing external magnetic field adds further complexity, particularly when considering the regime
where first-order transitions manifest on the pure model. However, navigating through such
intricacies not only challenges our comprehension of critical phenomena but also provides a
valuable opportunity to test and refine our methods and understanding.

As a last comment; Monte Carlo simulations will continue to benefit from the constant
increase of computational power, allowing for the utilisation of better hardware as well as
more elaborate methods. The addition of machine learning techniques has also been on the
rise in recent years. In that sense, the field is expected to continue to grow, hoping to solve
open question that still remain unanswered.
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Appendix A

Data Analysis

This Appendix serves as a small discussion on data analysis, with the aim of explaining how
results and errors are calculated. In that sense, it precedes the discussion on simulation meth-
ods of Chapter 2, since understanding the analysis that follows any simulation is the most
important step towards designing a proper experiment. However, every method utilised is
very standard and can be found in any good statistics book [57], thus including it in the main
text would be somewhat redundant. Throughout this Appendix, random variables will be de-
noted with capital letters, for example X, while observations of these variable will be indicated
by the respective small-case latter.

A.1 Mean and variance

In general, the end result of a simulation is a time series or some sampled data {xi}N
i=1 of an

observed random variable X. In essence, X is drawn from some distribution, P(X), which is
unknown. Of course, if the distribution was known a priori, any information could be extracted
directly from it. Firstly, the distribution should be normalised, ie

∫ +∞

−∞
P(x)dx ≡ 1. (A.1)

Then any moment of X could be calculated directly from

⟨Xn⟩ ≡
∫ +∞

−∞
xnP(x)dx. (A.2)

Since the distribution is not known, these quantities can be approximated from the sampled
data set. Of course, these estimates should be accompanied with well defined errors in order
to extract any meaningful conclusions. Depending on the method the set {xi}N

i=1 was sampled,
any moment can be estimated directly. In the most general case, the data would have been
sampled from some distribution Q(X), and the proper weight P(x) could be assigned to each
measurement



126 Appendix A. Data Analysis

xn ≡ ∑N
i=1 xn

i P(xi)/Q(xi)

∑N
i=1 P(xi)/Q(xi)

≈ ⟨Xn⟩. (A.3)

where the denominator was used for normalisation. The quantity xn is an unbiased estimator
for ⟨Xn⟩, since the equation becomes exact in the limit of N → ∞.1 This is what happens for
example in multicanonical and Wang-Landau simulations (see Chapter 2).

For random sampling in X that follows a flat Q(X) distribution, then Eq. (A.3) simply be-
comes

xn ≡ ∑N
i=1 xn

i P(xi)

∑N
i=1 P(xi)

. (A.4)

Usually, as happens in most of the methods discussed in chapter 2, X is sampled from P(X).
Then Q(X) = P(X) and Eq. (A.3) reduces to

xn ≡ 1
N

N

∑
i=1

xn
i . (A.5)

Note that with a change of variables in xi all the above estimators can map to Eq. (A.5), just
by absorbing the weight factors and the normalisation term directly into the variable xi. For
that reason, and to keep the discussion brief, focus will only be placed on the latter estimator
of the mean, without any loss of generality.

It should be stressed that all the above estimators are also random variables; If the initial
experiment is repeated many times, each would result in different xn. Since Eq. (A.5) is an
average of random samples, it follows a Gaussian distribution.2 This can be proven rigorously
by the central limit theorem of statistics [73]. The Gaussian distribution is completely defined
by its mean and variance, since all other moments are zero. The standard deviation, which is
the square root of the variance, has the very handy property of indicating exactly how spread
out the distribution is. Specifically, ∼ 68% of the experiments would reside within one stan-
dard deviation from the mean. Additionally, ∼ 95% would be within two standard deviation,
etc. Thus, the standard deviation of an estimator of the mean can be used as a well defined
indication of its error.

The variance of a random variable X is defined as

σ2(X) ≡
〈
(X − ⟨X⟩)2

〉
=
〈

X2〉− ⟨X⟩2. (A.6)

In order to calculate the variance of x, substitute Eq. (A.5) into Eq. (A.6), and assuming
translational invariance in the data set, it holds that

1An estimator is called biased if its mean returns the quantity of interest plus terms that decrease ∼ N of the
data set. An example of a biased estimator will be seen in Eq. (A.11).

2This is true if the original distribution P(X) has finite moments.
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σ2(x) =
〈

x2〉− ⟨x⟩2 =
σ2(xi)

N
2

[
1
2
+

N

∑
k=1

⟨x1x1+k⟩ − ⟨x1⟩⟨x1+k⟩
⟨x2

i ⟩ − ⟨xi⟩2

(
1 − k

N

)]
, (A.7)

where the fact the all the individual measurements have the same variance was used, σ2(xi) =

⟨x2
i ⟩ − ⟨xi⟩2, since they come from the same distribution.

Defining the autocorrelation function as A(k) = ⟨x1x1+k⟩ − ⟨x1⟩⟨x1+k⟩, the variance can be
written as

σ2(x) =
σ2(xi)

N
2

[
1
2
+

N

∑
k=1

A(k)
A(0)

(
1 − k

N

)]
. (A.8)

The term in brackets measures the correlation of the data and is called the integrated autocor-
relation time [41]

τint ≡
1
2
+

N

∑
k=1

A(k)
A(0)

(
1 − k

N

)
. (A.9)

For uncorrelated data τint =
1
2 , since A(k) = 0 for any k ̸= 0. For correlated data the vari-

ance will be increased by a factor proportional to τint. The integrated autocorrelation time can
then be though of also as a reduction in the number of independent measurements sampled.
Specifically,

σ2(x) =
σ2(xi)

N
2τint =

σ2(xi)

Neff
, (A.10)

where the number of total measurements N has given way to the number of effective measure-
ment Neff, increasing the variance of the average. Note that for uncorrelated measurements
(τint = 1/2) σ(x) = σ(xi)/N.

Equation (A.10) indicates that to find σ2(x) it is enough to construct an estimator for the
variance of the individual measurements σ2(xi). To accomplish that, start from x2 − x2 and
substitute the definitions for the moments [Eq. (A.5)]

〈
x2 − x2

〉
= σ2(xi)−

σ2(xi)

Neff
. (A.11)

Note that this is a biased estimator for σ2(xi), since it approaches it with a factor decreasing
as ∼ 1/N. Finally, using Eq. (A.10), an unbiased estimator for σ2(x) can be defined as

σ2(x) =

〈
x2 − x2

〉
Neff − 1

, (A.12)
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which implies that the error decreases as ∼ 1/
√

N. Upon expanding, the well-known estimator
for the variance of the average x is retrieved

x2 − x2

Neff − 1
=

1
Neff(Neff − 1)

N

∑
i=1

(xi − x)2 . (A.13)

This discussion is adequate when one wants to estimate the means of an observed quan-
tity’s moments and their respective error. In general functions, f (X), of observables will need
to be calculated. Such quantities, like the specific heat [Eq. (1.19)] and magnetic susceptibility
[Eq. (1.21)], play a central role in statistical physics. A simple substitution, f (x), would re-
sult in a biased estimator for f (⟨X⟩), if the function is non-linear in X.3 A systematic way of
estimating, without bias, functions of observables and their variances. The first step towards
accomplishing these goals is to separate the original observables into bins.4

A.2 Resampling Methods

A.2.1 Binning of data

The binning of data provides a simple way of dealing with one of the issues mentioned above,
namely data correlation. In general, some correlation will always exist, due to measurements
being taken consecutively within small time steps, not allowing for the decorrelation of the sys-
tem. After large enough time steps however, the system will have decorrelated enough to treat
the measurements as uncorrelated. A general treatment in such cases can come from binning
data together, transforming the original set {xi}N

i=1 to {yk}NBins
k=1 , where NBins is the number of

bins used. Each member of the new set is produced by averaging over NB = N/NBins consec-
utive data of the original set. By choosing NB ≫ τint the binned data can be considered almost
uncorrelated. The new data set can be extrapolated by

yk ≡
1

NB

NB

∑
i=1

x(k−1)NB+j (A.14)

In general, the data {xi} that fall on each bin can be used to calculate derived quantities.
Given for example a function f (X), an estimate of f (⟨X⟩) can be computed by fk = f (yk), k =

1, . . . NBins. Then the set { fk}NBins
k=1 can be analysed with the methods described in the previous

section, solving the issue of producing both an estimator and its error.
However, binning does not deal with the biases. First of all, since y = x, σ2(x) = σ2(y). Ad-

ditionally, starting from the definition of Neff of Eq. (A.10), the integrated autocorrelation time

3An example of this can be seen in the estimation of the variance σ2(xi) of Eq. (A.11). The estimator was biased
because ⟨xi⟩2 was replaced with x2, and ⟨x2⟩ ̸= ⟨xi⟩2.

4To be a bit more quantitative, for example in Eq. (A.11) the bias decreases as 1/N. Additionally, in Eq. (A.12)
the error decreases much more slowly like 1/

√
N. In that sense, in most reasonable applications, the bias does not

play a very important role.
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for the binned data will be smaller. The new number of effective measurements is N(Bins)
eff =

NBins/
(

2τ
(Bins)
int

)
= N/

(
2τ

(Bins)
int NB

)
, and for NB > 2τint, the effective measurements become

N(Bins)
eff < N/

(
2τ

(Bins)
int 2τint

)
< N/ (2τint), or N(Bins)

eff < Neff.
In the end, binning produces a new set of data of smaller effective measurements. Thus,

a larger bias enters in the calculations of variances in Eq. (A.11). To proceed, a process that
removes the bias from these estimations is required. There are a number of ways to accom-
plish this, and the one used was the jackknife resampling method, which, likewise binning,
manipulates the original data set and also provides a systematic way of dealing with biases.

A.2.2 Jackknife method

Similarly to the binning method, the jackknife scheme merges the data while also allowing
for data overlap between the bins. Even though the new data set has similar entries, due
to the overlap, there is a formal treatment that not only takes into account these additional
correlations, but also removes the bias from our estimators. The discussion continues from
the binning process, assuming a data set {xi}N

i=1 of uncorrelated measurements, produced by
binning with a large enough bin size. Then, a new set {x J

k}
NBins
k=1 is defined, where each xk is the

average of the whole data set, if the kth entry is excluded. That way

x J
k ≡

1
N − 1

N

∑
i ̸=k,i=1

xi. (A.15)

This is the average of the data set if one bin of measurements is excluded. Due to the overlap
the new set is trivially correlated, however these correlations can be exactly accounted for.

Mean

The jackknife method can be used to estimate f (⟨X⟩) with f J
k ≡ f (x J

k), k = 1, . . . , N. Taking the
average over all the jackknife estimates would result in

f J ≡ 1
N

N

∑
i=1

f J
i . (A.16)

Taylor expanding f j
i around the mean f (⟨X⟩) and keeping only terms up to second order

f (x J
i ) = f (⟨X⟩) + ∂ f (x)

∂x

∣∣∣∣
x=⟨x⟩

(
x J

i − ⟨x⟩
)
+

1
2

∂2 f (x)
∂x2

∣∣∣∣
x=⟨x⟩

(
x J

i − ⟨x⟩
)2

. (A.17)

Taking the mean
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⟨ f (x J
i )⟩ = f (⟨X⟩) + 1

2
∂2 f (x)

∂x2

∣∣∣∣
x=⟨x⟩

σ2(x J
i ), (A.18)

and replacing from Eq. (A.16) results in

〈
f J
〉
= f (⟨X⟩) + 1

2
∂2 f (x)

∂x2

∣∣∣∣
x=⟨x⟩

σ2(x J
i ). (A.19)

The variance that appears on the right hand side is very similar in principle to the variance
σ2(x). In fact, their only difference is that in σ2(x J

i ) the ith data entry was excluded. Specifically,
σ2(x J

i ) = σ2(x), but when it comes to their estimator, in σ2(x J
i ) Eq. (A.13) needs to be applied

without using xi, resulting in N − 1 entries. Replacing with the estimator of the jackknife data
will result in

f (⟨X⟩) ≈ f J − 1
2

∂2 f (x)
∂x2

∣∣∣∣
x=⟨x⟩

1
N

N

∑
i=1

(
(x2

i )
J)− (x J

i

)2

N − 2
. (A.20)

The term (x2
i )

J implies to first square the data set and then apply the jackknife resampling.
Expanding the last sum and keeping terms that fall only as ∼ 1/N leads to5

f (⟨X⟩) ≈ f J − 1
2

∂2 f (x)
∂x2

∣∣∣∣
x=⟨x⟩

x2 − x2

N − 2
. (A.21)

The same calculation for the original data set yields

⟨ f (x)⟩ = f (⟨X⟩) + 1
2

∂2 f (x)
∂x2

∣∣∣∣
x=⟨x⟩

σ2(x). (A.22)

Since the data are uncorrelated, σ2(x) = σ2(xi)/N, according to Eq. (A.10). Using Eq. (A.12)

f (⟨X⟩) ≈ f (x)− 1
2

∂2 f (x)
∂x2

∣∣∣∣
x=⟨x⟩

x2 − x2

N − 1
. (A.23)

Combining linearly Eqs. (A.21) and (A.23) can lead to an unbiased estimator for ⟨ f (x)⟩. For
example, excluding again terms that drop faster than 1/N

f (⟨X⟩) ≈ N f (x)− (N − 1) f J . (A.24)

Variance

With the same argument used in Appendix A.1, the variance of the estimators can be used as a
well defined error. Specifically, the variance of f J is

5Expecting the bias to decrease with ∼ 1/N and the error as ∼ 1/
√

N, as discussed in Appendix A.1, there is no
reason to keep the rest of the terms.
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σ2
(

f J
)
=
〈

f J2〉
−
〈

f J
〉2

. (A.25)

Initially, the hypothesis that the original data are uncorrelated was made. Taking this into
account, together with the fact that most jackknife bins consist of mostly the same data (see
Eq. (A.15)) Eq. (A.10) implies that the variance of the jackknife mean can be calculated from

σ2
(

f J
)
= (N − 1)σ2( f J

i ), (A.26)

where σ2( f J
i ) is the variance of the sampled jackknife dataset.
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Appendix B

Least-Square Fits

This Appendix contains a thorough reporting of various least square fits performed in the the-
sis. The emphasis is placed specifically in Chapter 3, where a large amount of fits were per-
formed.

B.1 Dynamical Scaling in the Dilute Baxter-Wu Model

The following tables show the various fits performed in Chapter 3. It should be noted that the
linear fits were performed using a logarithms. However, this was not an issue for the errors,
since they were very small in comparison to the values of τ, making an error propagation
approximation reliable. As for the non-linear fits which include corrections, one can never
be too sure about being stuck in a local minimum of the parameter space. To this end, many
different initial points were used, in order to make sure that the fits are reliable. Notice the cases
where the correction-term errors were very large or the fit qualities unacceptable, indicating
that the linear fit might be a better choice.
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B.1.1 Spin-1/2 τint and τx fits

The fits for τint at Tc for the Swendsen-Wang algorithm follow:

Fits without corrections: τint ∼ Lz

Lmin z zerror a aerror Q χ2/do f
12 1.164 0.007 0.769 0.030 0.60 0.84
15 1.159 0.008 0.790 0.033 0.74 0.68
18 1.153 0.009 0.818 0.037 0.91 0.44
24 1.150 0.010 0.831 0.042 0.90 0.44
30 1.149 0.011 0.837 0.047 0.84 0.49
36 1.154 0.013 0.812 0.055 0.85 0.44
48 1.159 0.015 0.789 0.065 0.83 0.43
54 1.171 0.017 0.735 0.077 0.98 0.09
60 1.171 0.021 0.732 0.094 0.95 0.12
72 1.175 0.028 0.716 0.130 0.85 0.17
96 1.179 0.049 0.696 0.231 0.57 0.33

TABLE B.1: Linear fits for the integrated autocorrelation time τint of the spin-
1/2 Baxter-Wu model using the Swendsen-Wang algorithm. Fits were performed

using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.143 0.012 2.369 0.125 -11.988 5.393 0.91 0.47
15 1.143 0.014 2.378 0.147 -12.824 8.470 0.86 0.52
18 1.150 0.016 2.298 0.167 -3.305 13.660 0.87 0.48
24 1.161 0.021 2.176 0.209 15.835 26.228 0.88 0.44
30 1.182 0.026 1.969 0.249 62.172 46.932 0.96 0.25
36 1.188 0.034 1.903 0.314 81.740 77.375 0.93 0.28
48 1.222 0.059 1.610 0.477 195.999 189.320 0.93 0.22
54 1.187 0.072 1.919 0.698 57.195 245.683 0.96 0.11
60 1.197 0.093 1.828 0.857 100.172 361.594 0.86 0.15
72 1.208 0.144 1.721 1.272 162.017 695.368 0.60 0.28

TABLE B.2: Fits for the integrated autocorrelation time τint of the spin-1/2 Baxter-
Wu model using the Swendsen-Wang algorithm, including corrections. Fits were

performed using Eq. (3.7).
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The fits for τx at Tc for x = 1.5 for the Swendsen-Wang algorithm follow:

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror Q χ2/do f
12 1.143 0.003 -0.034 0.012 0.59 0.85
15 1.142 0.003 -0.030 0.013 0.57 0.86
18 1.141 0.003 -0.024 0.015 0.55 0.87
24 1.141 0.004 -0.024 0.017 0.45 0.98
30 1.141 0.004 -0.024 0.019 0.36 1.11
36 1.141 0.005 -0.024 0.022 0.26 1.29
48 1.141 0.006 -0.024 0.025 0.17 1.54
54 1.149 0.007 -0.062 0.030 0.56 0.75
60 1.149 0.008 -0.062 0.037 0.39 1.00
72 1.149 0.011 -0.062 0.052 0.22 1.50
96 1.180 0.021 -0.212 0.098 0.97 0.00

TABLE B.3: Linear fits for the autocorrelation time τx, for x = 1.5 of the spin-
1/2 Baxter-Wu model using the Swendsen-Wang algorithm. Fits were performed

using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.139 0.005 0.984 0.021 -2.241 2.287 0.59 0.84
15 1.140 0.006 0.981 0.024 -1.675 3.350 0.50 0.93
18 1.142 0.006 0.970 0.028 1.506 5.325 0.46 0.97
24 1.145 0.008 0.956 0.036 6.596 9.995 0.39 1.05
30 1.147 0.010 0.946 0.044 11.456 16.363 0.30 1.20
36 1.154 0.014 0.917 0.061 28.901 31.503 0.24 1.36
48 1.187 0.023 0.777 0.088 136.490 69.221 0.51 0.83
54 1.169 0.029 0.848 0.124 69.033 98.211 0.47 0.84
60 1.186 0.038 0.778 0.151 144.319 150.201 0.36 1.02
72 1.251 0.064 0.556 0.184 499.942 334.736 0.64 0.21

TABLE B.4: Fits for the autocorrelation time τx, for x = 1.5, of the spin-1/2 Baxter-
Wu model using the Swendsen-Wang algorithm, including corrections. Fits were

performed using Eq. (3.7).
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The fits for τint at Tc for the Metropolis algorithm follow:

Fits without corrections: τint ∼ Lz

Lmin z zerror a aerror Q χ2/do f
12 2.134 0.018 -0.873 0.067 0.31 1.16
15 2.124 0.020 -0.832 0.079 0.29 1.19
18 2.140 0.024 -0.899 0.094 0.34 1.12
24 2.158 0.028 -0.977 0.114 0.37 1.08
30 2.169 0.033 -1.025 0.138 0.31 1.18
36 2.139 0.040 -0.889 0.172 0.37 1.08
48 2.136 0.050 -0.875 0.218 0.26 1.30
54 2.139 0.058 -0.891 0.260 0.17 1.62
60 2.139 0.071 -0.891 0.323 0.09 2.16
72 2.068 0.100 -0.555 0.466 0.07 2.71
96 1.860 0.188 0.453 0.899 0.05 3.71

TABLE B.5: Linear fits for the integrated autocorrelation time τint of the spin-1/2
Baxter-Wu model using the Metropolis algorithm. Fits were performed using

Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 2.137 0.033 0.410 0.058 1.710 12.034 0.26 1.25
15 2.179 0.042 0.339 0.062 36.069 25.040 0.43 1.01
18 2.174 0.048 0.346 0.075 30.716 37.173 0.34 1.13
24 2.142 0.062 0.405 0.115 -15.860 64.530 0.30 1.20
30 2.076 0.074 0.555 0.191 -130.298 90.997 0.38 1.07
36 2.111 0.100 0.467 0.224 -46.424 189.848 0.29 1.23
48 2.070 0.178 0.575 0.507 -171.024 472.083 0.19 1.51
54 1.974 0.221 0.934 1.030 -489.954 598.436 0.13 1.89
60 1.798 0.254 2.265 2.865 -1063.307 636.573 0.09 2.39
72 1.686 0.425 4.021 8.655 -1457.609 1296.909 0.03 4.71

TABLE B.6: Fits for the integrated autocorrelation time τint of the spin-1/2 Baxter-
Wu model using the Metropolis algorithm, including corrections. Fits were per-

formed using Eq. (3.7).
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B.1.2 Spin-1 τint fits for the hybrid algorithm

The fits for τint at ∆ = −10 follow:

No corrections linear fit: log τint = a + z ∗ L
Lmin z zerror a aerror Q χ2/do f
12 1.194 0.005 0.151 0.022 0.00 2.59
15 1.184 0.006 0.196 0.024 0.56 0.87
18 1.180 0.006 0.213 0.027 0.69 0.72
24 1.178 0.007 0.224 0.030 0.66 0.73
30 1.179 0.008 0.220 0.034 0.57 0.83
36 1.175 0.009 0.239 0.040 0.56 0.81
48 1.172 0.010 0.252 0.047 0.47 0.91
54 1.174 0.012 0.241 0.055 0.35 1.10
60 1.170 0.014 0.263 0.067 0.25 1.36
72 1.179 0.019 0.220 0.092 0.17 1.80
96 1.227 0.032 -0.017 0.156 0.83 0.05

TABLE B.7: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = −10. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.163 0.008 1.341 0.050 -18.572 3.741 0.62 0.81
15 1.171 0.010 1.295 0.058 -11.041 6.458 0.75 0.66
18 1.173 0.011 1.284 0.066 -8.433 10.105 0.67 0.73
24 1.174 0.014 1.274 0.086 -5.650 18.892 0.56 0.83
30 1.165 0.018 1.333 0.113 -26.457 30.130 0.54 0.84
36 1.171 0.023 1.291 0.145 -8.496 51.412 0.43 0.97
48 1.202 0.040 1.109 0.223 94.951 127.228 0.40 1.00
54 1.208 0.051 1.073 0.276 122.006 184.518 0.26 1.32
60 1.270 0.069 0.778 0.274 432.830 310.143 0.43 0.85
72 1.359 0.115 0.488 0.294 993.694 700.566 0.49 0.48

TABLE B.8: Fits for the integrated autocorrelation time τint of the spin-1 Baxter-
Wu model at ∆ = −10, including corrections. Fits were performed using Eq. (3.7).
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The fits for τint at ∆ = −1 follow:

No corrections linear fit: log τint = a + z ∗ L
Lmin z zerror a aerror Q χ2/do f
12 1.264 0.006 0.170 0.025 0.24 1.26
15 1.260 0.006 0.188 0.028 0.33 1.14
18 1.253 0.007 0.221 0.031 0.77 0.63
24 1.247 0.008 0.248 0.035 0.94 0.37
30 1.242 0.009 0.268 0.040 0.97 0.27
36 1.238 0.010 0.287 0.046 0.98 0.20
48 1.240 0.012 0.280 0.055 0.95 0.23
54 1.236 0.014 0.297 0.064 0.93 0.22
60 1.231 0.017 0.323 0.079 0.91 0.19
72 1.219 0.023 0.377 0.108 0.98 0.02
96 1.224 0.039 0.356 0.186 0.91 0.01

TABLE B.9: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = −1. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.239 0.010 1.333 0.058 -15.126 4.464 0.18 1.38
15 1.231 0.011 1.384 0.070 -22.899 6.806 0.80 0.60
18 1.230 0.013 1.387 0.081 -23.425 10.752 0.72 0.67
24 1.228 0.016 1.400 0.108 -26.827 20.405 0.64 0.74
30 1.228 0.021 1.400 0.139 -26.827 34.796 0.52 0.87
36 1.234 0.027 1.361 0.178 -10.414 60.056 0.45 0.95
48 1.200 0.044 1.612 0.353 -120.570 126.093 0.87 0.32
54 1.192 0.056 1.678 0.474 -150.720 183.132 0.78 0.36
60 1.192 0.071 1.678 0.606 -150.720 266.929 0.58 0.54
72 1.238 0.116 1.328 0.793 90.252 573.495 0.88 0.02

TABLE B.10: Fits for the integrated autocorrelation time τint of the spin-1 Baxter-
Wu model at ∆ = −1, including corrections. Fits were performed using Eq. (3.7).
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The fits for τint at ∆ = 0 follow:

No corrections linear fit: log τint = a + z ∗ L
Lmin z zerror a aerror Q χ2/do f
12 1.300 0.005 0.328 0.023 0.00 3.33
15 1.294 0.005 0.358 0.025 0.00 2.76
18 1.286 0.006 0.396 0.027 0.04 1.88
24 1.281 0.006 0.417 0.030 0.06 1.77
30 1.276 0.007 0.443 0.033 0.12 1.56
36 1.272 0.008 0.464 0.037 0.13 1.57
48 1.265 0.009 0.500 0.041 0.25 1.30
54 1.259 0.010 0.526 0.047 0.26 1.27
60 1.254 0.011 0.553 0.054 0.24 1.34
72 1.243 0.013 0.609 0.067 0.33 1.14
96 1.223 0.017 0.713 0.087 0.75 0.40
120 1.211 0.023 0.778 0.118 0.77 0.27
144 1.195 0.033 0.861 0.172 0.75 0.10

TABLE B.11: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = 0. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.269 0.007 1.615 0.056 -24.283 4.057 0.36 1.09
15 1.263 0.008 1.665 0.065 -32.604 6.279 0.51 0.93
18 1.262 0.009 1.673 0.074 -34.330 10.067 0.42 1.02
24 1.252 0.011 1.767 0.096 -59.752 17.542 0.61 0.81
30 1.244 0.013 1.839 0.121 -84.320 28.402 0.63 0.76
36 1.231 0.015 1.970 0.156 -136.130 43.535 0.79 0.55
48 1.212 0.021 2.186 0.246 -227.948 81.574 0.90 0.37
54 1.202 0.025 2.297 0.299 -282.800 108.380 0.89 0.34
60 1.190 0.028 2.465 0.368 -375.265 142.798 0.93 0.21
72 1.171 0.035 2.728 0.523 -530.442 230.786 0.98 0.06
96 1.158 0.062 2.930 1.006 -667.339 591.296 0.95 0.06

120 1.126 0.113 3.524 2.255 -1102.484 1379.633 1.00 0.00

TABLE B.12: Fits for the integrated autocorrelation time τint of the spin-1 Baxter-
Wu model at ∆ = 0, including corrections. Fits were performed using Eq. (3.7).
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The fits for τint at ∆ = 0.5 follow:

No corrections linear fit: log τint = a + z ∗ L
Lmin z zerror a aerror Q χ2/do f
12 1.433 0.006 0.182 0.028 0.14 1.42
15 1.428 0.007 0.205 0.030 0.24 1.25
18 1.429 0.007 0.201 0.033 0.18 1.36
24 1.426 0.008 0.212 0.037 0.15 1.45
30 1.430 0.009 0.197 0.041 0.13 1.54
36 1.426 0.010 0.213 0.047 0.10 1.66
48 1.422 0.011 0.233 0.053 0.08 1.81
54 1.437 0.013 0.157 0.060 0.52 0.86
60 1.435 0.015 0.170 0.071 0.41 1.01
72 1.443 0.018 0.129 0.088 0.35 1.11
96 1.457 0.023 0.056 0.117 0.31 1.19
120 1.485 0.031 -0.091 0.161 0.42 0.87
144 1.521 0.045 -0.280 0.236 0.46 0.56

TABLE B.13: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = 0.5. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.422 0.010 1.262 0.057 -7.894 5.356 0.19 1.34
15 1.429 0.011 1.223 0.064 0.556 8.980 0.20 1.33
18 1.427 0.012 1.235 0.073 -3.158 13.272 0.15 1.45
24 1.434 0.015 1.191 0.089 13.698 25.187 0.13 1.54
30 1.427 0.018 1.235 0.110 -8.021 38.435 0.10 1.66
36 1.438 0.022 1.165 0.129 36.077 64.014 0.08 1.79
48 1.494 0.033 0.861 0.148 327.094 149.080 0.37 1.09
54 1.468 0.036 0.992 0.188 156.728 174.119 0.51 0.86
60 1.497 0.043 0.847 0.193 380.667 256.251 0.64 0.63
72 1.524 0.056 0.730 0.222 638.482 442.165 0.59 0.64
96 1.629 0.108 0.405 0.245 1990.350 1369.413 0.82 0.19
120 1.734 0.220 0.221 0.280 3849.717 3936.453 0.88 0.02

TABLE B.14: Fits for the integrated autocorrelation time τint of the spin-1 Baxter-
Wu model at ∆ = 0.5, including corrections. Fits were performed using Eq. (3.7).
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The fits for τint at ∆ = 0.8902 (which was suggested as the crystal-field value at the multi-
critical point [160]) follow:

No corrections linear fit: log τint = a + z ∗ L
Lmin z zerror a aerror Q χ2/do f
12 1.737 0.010 -0.277 0.041 0.84 0.62
15 1.742 0.011 -0.300 0.046 0.80 0.65
18 1.756 0.012 -0.364 0.052 0.88 0.54
24 1.769 0.014 -0.425 0.059 0.90 0.48
30 1.773 0.015 -0.444 0.068 0.86 0.53
36 1.785 0.018 -0.501 0.079 0.84 0.53
48 1.786 0.020 -0.501 0.093 0.75 0.60
54 1.789 0.023 -0.516 0.108 0.65 0.70
60 1.789 0.027 -0.516 0.129 0.52 0.84
72 1.786 0.035 -0.505 0.166 0.38 1.05
96 1.732 0.049 -0.233 0.243 0.31 1.20
120 1.705 0.071 -0.094 0.356 0.17 1.76
144 1.472 0.111 1.124 0.572 0.20 1.67

TABLE B.15: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = 0.8902. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.774 0.017 0.634 0.049 25.306 9.306 0.02 2.07
15 1.791 0.020 0.583 0.053 46.862 15.720 0.03 1.94
18 1.789 0.022 0.591 0.060 42.543 22.353 0.02 2.13
24 1.782 0.026 0.613 0.077 27.497 37.629 0.01 2.34
30 1.786 0.032 0.599 0.095 39.844 64.074 0.01 2.63
36 1.760 0.038 0.685 0.129 -50.186 91.631 0.01 2.78
48 1.737 0.056 0.775 0.222 -146.652 187.661 0.00 3.18
54 1.703 0.065 0.924 0.310 -315.505 239.520 0.00 3.63
60 1.663 0.074 1.145 0.439 -544.101 300.152 0.00 4.23
72 1.563 0.090 1.961 0.932 -1182.913 416.117 0.00 4.66
96 1.415 0.154 4.422 3.684 -2373.145 985.341 0.00 6.31

120 0.736 0.224 186.707 225.862 -7437.642 1053.091 0.08 2.98

TABLE B.16: Fits for the integrated autocorrelation time τint of the spin-1 Baxter-
Wu model at ∆ = 0.8902, including corrections. Fits were performed using

Eq. (3.7).
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Owing to the bad quality of fit for the ∆ = 0.8902, a further fit is attempted, excluding the
final point, which has large errors and seems to deviate from the general trend. This exclusion
makes a large difference, since it renders the correction terms unimportant and the results more
in line with the linear fit above.

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.796 0.018 0.578 0.047 33.264 9.974 0.49 0.95
15 1.819 0.021 0.517 0.050 62.004 17.107 0.89 0.51
18 1.821 0.023 0.513 0.056 64.694 24.528 0.83 0.56
24 1.823 0.029 0.508 0.070 68.529 42.121 0.75 0.63
30 1.841 0.036 0.464 0.082 117.901 74.088 0.75 0.61
36 1.825 0.043 0.503 0.107 64.640 108.327 0.69 0.65
48 1.848 0.067 0.446 0.153 161.512 247.442 0.60 0.73
54 1.837 0.079 0.474 0.194 99.930 327.917 0.46 0.90
60 1.817 0.092 0.525 0.252 -14.970 425.550 0.33 1.15
72 1.754 0.116 0.738 0.453 -443.406 618.298 0.24 1.41
96 1.790 0.246 0.607 0.812 -119.428 2091.419 0.10 2.78

TABLE B.17: Fits for the integrated autocorrelation time τint of the spin-1 Baxter-
Wu model at ∆ = 0.8902, including corrections, but excluding the point L = 240.

Fits were performed using Eq. (3.7).
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B.1.3 τx fits for the hybrid algorithm

Since many values were tried for x, specifically x = 1, 1.5, 2, 3, 5, 6, 8, 10, here only the smallest
value of x with acceptable qualities of fit is quoted. This value is always stated in the caption
of each table.

The fits for τx at ∆ = −10 follow:

Fits with no corrections
Lmin z zerror a aerror Q χ2/do f
12 1.162 0.002 -0.547 0.009 0.00 2.84
15 1.158 0.002 -0.528 0.010 0.17 1.42
18 1.156 0.003 -0.521 0.011 0.21 1.33
24 1.155 0.003 -0.514 0.012 0.24 1.29
30 1.155 0.003 -0.517 0.014 0.18 1.45
36 1.151 0.004 -0.495 0.017 0.78 0.53
48 1.153 0.004 -0.505 0.020 0.80 0.47
54 1.155 0.005 -0.515 0.023 0.80 0.42
60 1.155 0.006 -0.517 0.028 0.65 0.55
72 1.161 0.009 -0.543 0.040 0.66 0.42
96 1.170 0.014 -0.588 0.069 0.65 0.21

TABLE B.18: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = −10 and x = 1.5. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.149 0.004 0.614 0.010 -7.333 1.588 0.34 1.12
15 1.151 0.004 0.608 0.011 -5.340 2.729 0.32 1.16
18 1.151 0.005 0.608 0.013 -5.340 4.186 0.24 1.30
24 1.153 0.006 0.604 0.017 -2.846 7.529 0.17 1.47
30 1.147 0.008 0.622 0.023 -16.391 12.525 0.20 1.42
36 1.163 0.010 0.574 0.027 28.573 21.724 0.92 0.28
48 1.173 0.017 0.546 0.047 63.241 54.005 0.92 0.23
54 1.174 0.022 0.544 0.061 66.366 77.573 0.82 0.30
60 1.185 0.028 0.512 0.072 119.861 111.378 0.81 0.21
72 1.188 0.043 0.504 0.112 138.167 214.937 0.52 0.41

TABLE B.19: Fits for the integrated autocorrelation time τx of the spin-1 Baxter-
Wu model at ∆ = −10 and x = 1.5, including corrections. Fits were performed

using Eq. (3.7).
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The fits for τx at ∆ = −1 follow:

Fits with no corrections
Lmin z zerror a aerror Q χ2/do f
12 1.203 0.002 -0.408 0.010 0.00 2.73
15 1.200 0.003 -0.393 0.011 0.04 1.90
18 1.197 0.003 -0.380 0.012 0.18 1.39
24 1.195 0.003 -0.368 0.013 0.57 0.84
30 1.191 0.004 -0.354 0.016 0.75 0.61
36 1.193 0.004 -0.362 0.019 0.76 0.56
48 1.195 0.005 -0.372 0.022 0.73 0.56
54 1.198 0.006 -0.385 0.026 0.82 0.39
60 1.198 0.007 -0.385 0.030 0.67 0.51
72 1.195 0.009 -0.371 0.043 0.51 0.67
96 1.203 0.015 -0.410 0.074 0.33 0.94

TABLE B.20: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = −1 and x = 1.5. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.189 0.004 0.712 0.013 -9.464 1.947 0.63 0.80
15 1.187 0.005 0.716 0.015 -10.816 3.126 0.57 0.85
18 1.187 0.005 0.718 0.018 -11.583 5.078 0.47 0.95
24 1.191 0.006 0.704 0.022 -4.880 7.807 0.50 0.90
30 1.202 0.009 0.666 0.028 21.180 15.610 0.88 0.39
36 1.203 0.011 0.662 0.035 25.194 24.975 0.80 0.46
48 1.210 0.019 0.640 0.061 47.975 60.815 0.71 0.53
54 1.199 0.024 0.679 0.081 1.522 83.571 0.67 0.52
60 1.198 0.029 0.679 0.101 1.524 115.009 0.46 0.77
72 1.234 0.047 0.563 0.138 200.119 242.777 0.43 0.61

TABLE B.21: Fits for the integrated autocorrelation time τx of the spin-1 Baxter-
Wu model at ∆ = −1 and x = 1.5, including corrections. Fits were performed

using Eq. (3.7).
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The fits for τx at ∆ = 0 follow:

Fits with no corrections
Lmin z zerror a aerror Q χ2/do f
12 1.266 0.002 -0.359 0.010 0.00 3.36
15 1.264 0.002 -0.349 0.011 0.00 3.06
18 1.262 0.003 -0.340 0.012 0.00 2.98
24 1.260 0.003 -0.331 0.013 0.00 2.96
30 1.259 0.003 -0.326 0.014 0.00 3.19
36 1.258 0.003 -0.320 0.016 0.00 3.50
48 1.254 0.004 -0.298 0.017 0.00 2.92
54 1.250 0.004 -0.279 0.020 0.02 2.61
60 1.246 0.005 -0.258 0.022 0.04 2.36
72 1.240 0.005 -0.229 0.026 0.10 1.93
96 1.229 0.008 -0.169 0.039 0.36 1.08
120 1.217 0.010 -0.106 0.053 0.91 0.09
144 1.213 0.014 -0.084 0.076 0.88 0.02

TABLE B.22: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = 0 and x = 1.5. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.256 0.003 0.736 0.011 -9.411 2.101 0.02 2.06
15 1.254 0.004 0.741 0.013 -11.392 3.129 0.01 2.18
18 1.253 0.004 0.747 0.014 -14.775 4.671 0.01 2.31
24 1.249 0.005 0.762 0.018 -24.413 8.223 0.01 2.34
30 1.243 0.006 0.788 0.022 -46.058 12.845 0.04 2.06
36 1.231 0.007 0.836 0.029 -93.352 19.766 0.38 1.06
48 1.217 0.009 0.902 0.044 -162.435 36.920 0.83 0.48
54 1.212 0.011 0.930 0.054 -196.743 50.568 0.86 0.38
60 1.207 0.013 0.953 0.064 -229.322 67.920 0.84 0.36
72 1.201 0.016 0.987 0.085 -281.531 103.708 0.80 0.33
96 1.181 0.028 1.103 0.172 -502.475 276.783 0.86 0.15
120 1.202 0.054 0.981 0.299 -209.232 720.932 0.75 0.10

TABLE B.23: Fits for the integrated autocorrelation time τx of the spin-1 Baxter-
Wu model at ∆ = 0 and x = 1.5, including corrections. Fits were performed

using Eq. (3.7).
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The fits for τx at ∆ = 0.5 follow:

Fits with no corrections
Lmin z zerror a aerror Q χ2/do f
12 1.411 0.002 -0.557 0.011 0.03 1.90
15 1.410 0.003 -0.555 0.012 0.02 2.04
18 1.412 0.003 -0.563 0.013 0.03 1.96
24 1.411 0.003 -0.560 0.014 0.02 2.13
30 1.413 0.004 -0.569 0.016 0.02 2.24
36 1.416 0.004 -0.585 0.019 0.03 2.11
48 1.415 0.004 -0.580 0.021 0.02 2.36
54 1.418 0.005 -0.592 0.022 0.02 2.42
60 1.423 0.005 -0.621 0.027 0.06 2.14
72 1.429 0.007 -0.648 0.035 0.06 2.30
96 1.442 0.009 -0.717 0.045 0.36 1.06
120 1.449 0.012 -0.757 0.061 0.32 1.14
144 1.456 0.017 -0.792 0.088 0.16 1.97

TABLE B.24: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = 0.5 and x = 1.5. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.413 0.004 0.566 0.010 1.886 2.317 0.02 1.99
15 1.416 0.004 0.556 0.012 6.767 3.749 0.03 1.91
18 1.415 0.005 0.560 0.013 4.528 5.244 0.02 2.07
24 1.421 0.006 0.543 0.015 18.847 8.961 0.05 1.85
30 1.426 0.007 0.528 0.018 36.540 16.346 0.06 1.86
36 1.426 0.008 0.528 0.023 36.540 27.184 0.04 2.13
48 1.454 0.012 0.455 0.029 179.006 54.227 0.61 0.75
54 1.458 0.014 0.445 0.032 206.054 66.910 0.55 0.80
60 1.460 0.015 0.440 0.036 222.612 89.674 0.41 0.99
72 1.482 0.021 0.391 0.044 429.503 165.723 0.69 0.49
96 1.486 0.035 0.381 0.075 487.368 386.152 0.49 0.72
120 1.524 0.069 0.307 0.121 1064.511 1022.909 0.31 1.03

TABLE B.25: Fits for the integrated autocorrelation time τx of the spin-1 Baxter-
Wu model at ∆ = 0.5 and x = 1.5, including corrections. Fits were performed

using Eq. (3.7).
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The fits for τx at ∆ = 0.8902 follow:

Fits with no corrections
Lmin z zerror a aerror Q χ2/do f
12 1.752 0.005 -0.822 0.022 0.00 6.94
15 1.757 0.006 -0.844 0.024 0.00 7.14
18 1.773 0.006 -0.916 0.027 0.00 4.38
24 1.781 0.007 -0.950 0.029 0.00 3.86
30 1.796 0.008 -1.021 0.036 0.00 2.90
36 1.818 0.010 -1.125 0.045 0.26 1.27
48 1.826 0.011 -1.167 0.052 0.40 1.03
54 1.831 0.013 -1.190 0.059 0.36 1.10
60 1.834 0.015 -1.202 0.069 0.25 1.35
72 1.837 0.018 -1.221 0.089 0.15 1.76
96 1.821 0.026 -1.140 0.129 0.10 2.26
120 1.784 0.040 -0.950 0.199 0.09 2.94
144 1.456 0.017 -0.792 0.088 0.16 1.97

TABLE B.26: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = 0.8902 and x = 3. Fits were performed using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.810 0.008 0.315 0.011 38.989 4.796 0.00 4.68
15 1.834 0.009 0.280 0.012 71.678 8.095 0.04 1.93
18 1.841 0.011 0.270 0.014 84.355 12.872 0.04 1.95
24 1.856 0.013 0.251 0.015 115.951 19.493 0.15 1.51
30 1.858 0.015 0.249 0.018 120.675 30.231 0.10 1.72
36 1.848 0.019 0.262 0.025 82.450 53.143 0.08 1.88
48 1.824 0.027 0.297 0.041 -21.347 96.026 0.08 1.95
54 1.805 0.031 0.328 0.053 -117.984 124.657 0.08 2.12
60 1.792 0.037 0.352 0.067 -194.825 166.998 0.05 2.68
72 1.740 0.047 0.464 0.115 -539.322 248.682 0.07 2.68
96 1.577 0.083 1.129 0.504 -1821.432 541.617 0.36 0.85

TABLE B.27: Fits for the integrated autocorrelation time τx of the spin-1 Baxter-
Wu model at ∆ = 0.5 and x = 3, including corrections. Fits were performed

using Eq. (3.7). This fit excludes the largest size of L = 240.
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B.1.4 τ∗
int fits for the hybrid algorithm

The fits for τ∗
x at ∆ = −10 follow:

Fits without corrections
Lmin z zerror a aerror Q χ2/do f
12 1.194 0.005 0.151 0.022 0.00 2.59
15 1.184 0.006 0.196 0.024 0.56 0.87
18 1.180 0.006 0.213 0.027 0.69 0.72
24 1.178 0.007 0.223 0.030 0.66 0.73
30 1.179 0.008 0.219 0.034 0.57 0.83
36 1.175 0.009 0.238 0.040 0.56 0.81
48 1.172 0.010 0.252 0.047 0.47 0.91
54 1.174 0.012 0.240 0.055 0.35 1.10
60 1.170 0.014 0.262 0.067 0.25 1.36
72 1.178 0.019 0.220 0.092 0.17 1.80
96 1.227 0.032 -0.018 0.156 0.83 0.05

TABLE B.28: Linear fits for the integrated autocorrelation time τ∗
int of the spin-1

Baxter-Wu model at ∆ = −10. Fits were performed using Eq. (3.6). The time was
contracted so that at each time step 2N spins are updated.

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.163 0.008 1.340 0.050 -18.565 3.741 0.62 0.81
15 1.171 0.010 1.294 0.057 -11.031 6.459 0.75 0.66
18 1.173 0.011 1.283 0.066 -8.422 10.105 0.67 0.73
24 1.174 0.014 1.273 0.086 -5.637 18.893 0.56 0.83
30 1.165 0.018 1.332 0.113 -26.440 30.131 0.54 0.84
36 1.171 0.023 1.290 0.145 -8.480 51.413 0.43 0.97
48 1.201 0.040 1.108 0.223 94.983 127.231 0.40 1.00
54 1.208 0.051 1.072 0.276 122.050 184.524 0.26 1.32
60 1.270 0.069 0.777 0.274 432.882 310.151 0.43 0.85
72 1.359 0.115 0.488 0.294 993.767 700.586 0.49 0.48

TABLE B.29: Fits with correction term for the integrated autocorrelation time τ∗
int

of the spin-1 Baxter-Wu model at ∆ = −10. Fits were performed using Eq. (3.7).
The time was contracted so that at each time step 2N spins are updated.
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The fits for τ∗
x at ∆ = −1 follow:

Fits without corrections
Lmin z zerror a aerror Q χ2/do f
12 1.262 0.006 0.144 0.025 0.27 1.21
15 1.258 0.006 0.161 0.028 0.36 1.10
18 1.251 0.007 0.193 0.031 0.79 0.61
24 1.245 0.008 0.220 0.035 0.94 0.36
30 1.240 0.009 0.240 0.040 0.97 0.26
36 1.236 0.010 0.258 0.046 0.98 0.20
48 1.238 0.012 0.251 0.055 0.95 0.23
54 1.234 0.014 0.268 0.064 0.93 0.22
60 1.229 0.017 0.294 0.079 0.91 0.18
72 1.218 0.023 0.347 0.108 0.98 0.02
96 1.222 0.039 0.326 0.186 0.91 0.01

TABLE B.30: Linear fits for the integrated autocorrelation time τ∗
int of the spin-1

Baxter-Wu model at ∆ = −1. Fits were performed using Eq. (3.6). The time was
contracted so that at each time step 2N spins are updated.

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.237 0.010 1.295 0.057 -14.819 4.475 0.19 1.36
15 1.229 0.011 1.344 0.068 -22.508 6.821 0.80 0.60
18 1.228 0.013 1.347 0.079 -22.953 10.772 0.72 0.67
24 1.226 0.016 1.360 0.105 -26.290 20.431 0.64 0.74
30 1.226 0.021 1.360 0.135 -26.290 34.828 0.52 0.87
36 1.232 0.027 1.320 0.173 -9.583 60.119 0.45 0.94
48 1.199 0.044 1.564 0.342 -119.633 126.189 0.87 0.32
54 1.191 0.056 1.628 0.460 -149.646 183.265 0.78 0.36
60 1.191 0.071 1.628 0.588 -149.646 267.097 0.58 0.54
72 1.236 0.116 1.287 0.769 91.596 573.830 0.88 0.02

TABLE B.31: Fits with correction term for the integrated autocorrelation time τ∗
int

of the spin-1 Baxter-Wu model at ∆ = −1. Fits were performed using Eq. (3.7).
The time was contracted so that at each time step 2N spins are updated.



150 Appendix B. Least-Square Fits

The fits for τ∗
x at ∆ = 0 follow:

Fits without corrections
Lmin z zerror a aerror Q χ2/do f
12 1.296 0.005 0.288 0.023 0.00 3.19
15 1.290 0.005 0.317 0.025 0.00 2.65
18 1.283 0.006 0.354 0.027 0.05 1.81
24 1.278 0.006 0.375 0.030 0.07 1.71
30 1.273 0.007 0.401 0.033 0.14 1.51
36 1.269 0.008 0.420 0.037 0.14 1.52
48 1.262 0.009 0.455 0.041 0.26 1.27
54 1.257 0.010 0.481 0.047 0.28 1.25
60 1.252 0.011 0.507 0.054 0.25 1.32
72 1.241 0.013 0.563 0.067 0.34 1.13
96 1.221 0.017 0.666 0.087 0.75 0.40
120 1.209 0.023 0.731 0.118 0.77 0.27
144 1.194 0.033 0.813 0.172 0.75 0.10

TABLE B.32: Linear fits for the integrated autocorrelation time τ∗
int of the spin-1

Baxter-Wu model at ∆ = 0. Fits were performed using Eq. (3.6). The time was
contracted so that at each time step 2N spins are updated.

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.266 0.007 1.546 0.054 -23.762 4.074 0.39 1.06
15 1.260 0.008 1.593 0.062 -31.891 6.303 0.53 0.91
18 1.260 0.009 1.600 0.071 -33.406 10.101 0.44 1.00
24 1.249 0.011 1.688 0.092 -58.522 17.589 0.63 0.79
30 1.242 0.013 1.756 0.116 -82.593 28.475 0.65 0.75
36 1.229 0.015 1.879 0.149 -133.856 43.647 0.80 0.55
48 1.210 0.021 2.083 0.235 -224.919 81.738 0.90 0.37
54 1.201 0.025 2.187 0.285 -279.029 108.608 0.89 0.34
60 1.188 0.028 2.347 0.350 -371.745 143.034 0.94 0.21
72 1.170 0.035 2.597 0.498 -526.244 231.136 0.98 0.06
96 1.157 0.062 2.787 0.958 -662.390 591.973 0.95 0.06

120 1.124 0.113 3.356 2.148 -1099.714 1380.273 1.00 0.00

TABLE B.33: Fits with correction term for the integrated autocorrelation time τ∗
int

of the spin-1 Baxter-Wu model at ∆ = 0. Fits were performed using Eq. (3.7). The
time was contracted so that at each time step 2N spins are updated.
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The fits for τ∗
x at ∆ = 0.5 follow:

Fits without corrections
Lmin z zerror a aerror Q χ2/do f
12 1.428 0.006 0.136 0.028 0.15 1.41
15 1.423 0.007 0.158 0.030 0.24 1.26
18 1.424 0.007 0.153 0.033 0.18 1.36
24 1.422 0.008 0.163 0.037 0.15 1.46
30 1.426 0.009 0.147 0.041 0.13 1.54
36 1.423 0.010 0.162 0.047 0.10 1.67
48 1.419 0.011 0.181 0.053 0.08 1.83
54 1.434 0.013 0.104 0.060 0.51 0.87
60 1.431 0.015 0.117 0.071 0.40 1.02
72 1.439 0.018 0.076 0.088 0.35 1.12
96 1.454 0.023 0.002 0.117 0.31 1.19
120 1.482 0.031 -0.146 0.161 0.42 0.88
144 1.518 0.045 -0.336 0.236 0.46 0.55

TABLE B.34: Linear fits for the integrated autocorrelation time τ∗
int of the spin-1

Baxter-Wu model at ∆ = 0.5. Fits were performed using Eq. (3.6). The time was
contracted so that at each time step 2N spins are updated.

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.419 0.010 1.199 0.055 -7.188 5.384 0.18 1.35
15 1.425 0.011 1.161 0.061 1.574 9.024 0.20 1.33
18 1.423 0.012 1.172 0.069 -1.920 13.329 0.15 1.45
24 1.431 0.015 1.128 0.084 15.536 25.280 0.13 1.54
30 1.424 0.018 1.169 0.104 -5.588 38.570 0.10 1.67
36 1.435 0.022 1.102 0.122 39.310 64.234 0.08 1.79
48 1.492 0.033 0.814 0.141 330.441 149.368 0.36 1.09
54 1.465 0.036 0.938 0.178 159.716 174.383 0.50 0.86
60 1.494 0.043 0.801 0.183 384.743 256.687 0.64 0.63
72 1.521 0.056 0.690 0.210 643.299 442.842 0.59 0.64
96 1.626 0.108 0.382 0.232 1998.150 1371.539 0.82 0.19
120 1.731 0.220 0.209 0.265 3852.700 3938.498 0.88 0.02

TABLE B.35: Fits with correction term for the integrated autocorrelation time τ∗
int

of the spin-1 Baxter-Wu model at ∆ = 0.5. Fits were performed using Eq. (3.7).
The time was contracted so that at each time step 2N spins are updated.
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The fits for τ∗
x at ∆ = 0.8902 follow:

Fits without corrections
Lmin z zerror a aerror Q χ2/do f
12 1.730 0.010 -0.328 0.042 0.04 1.85
15 1.736 0.011 -0.354 0.047 0.04 1.87
18 1.751 0.012 -0.423 0.053 0.25 1.25
24 1.765 0.014 -0.490 0.060 0.59 0.83
30 1.771 0.016 -0.516 0.070 0.55 0.86
36 1.785 0.018 -0.584 0.081 0.76 0.60
48 1.788 0.021 -0.595 0.097 0.66 0.69
54 1.795 0.024 -0.629 0.112 0.58 0.76
60 1.801 0.029 -0.660 0.134 0.46 0.90
72 1.809 0.037 -0.697 0.176 0.32 1.16
96 1.778 0.053 -0.542 0.263 0.24 1.43
120 1.799 0.079 -0.651 0.399 0.10 2.72

TABLE B.36: Linear fits for the integrated autocorrelation time τ∗
int of the spin-1

Baxter-Wu model at ∆ = 0.8902. Fits were performed using Eq. (3.6). The time
was contracted so that at each time step 2N spins are updated.

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 1.780 0.018 0.569 0.046 31.261 9.848 0.54 0.89
15 1.802 0.021 0.513 0.049 58.073 16.829 0.89 0.51
18 1.802 0.023 0.511 0.056 59.235 24.106 0.83 0.56
24 1.802 0.028 0.511 0.070 59.235 41.318 0.75 0.63
30 1.819 0.036 0.471 0.082 103.394 72.573 0.73 0.63
36 1.802 0.042 0.513 0.108 45.776 106.044 0.68 0.66
48 1.820 0.066 0.467 0.159 121.740 240.906 0.58 0.76
54 1.806 0.078 0.501 0.203 51.846 319.115 0.45 0.93
60 1.786 0.091 0.560 0.265 -72.014 413.791 0.32 1.18
72 1.720 0.115 0.797 0.484 -510.216 602.157 0.24 1.42
96 1.747 0.241 0.687 0.903 -264.798 2015.167 0.09 2.82

TABLE B.37: Fits with correction term for the integrated autocorrelation time
τ∗

int of the spin-1 Baxter-Wu model at ∆ = 0.8902. Fits were performed using
Eq. (3.7). The time was contracted so that at each time step 2N spins are updated.
Removing the largest system size improved the quality of fit in all cases for the

current ∆.
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B.1.5 τint fits for the heat bath algorithm

Even thought the emphasis of Chapter 3 was placed on the cluster algorithm for the Baxter-
Wu model and its application, through a hybrid scheme, in the spin-1 case, results were also
extracted for single spin flip updates. The results of the fits of the heat bath simulations at
∆ = −1 are presented in this section.

The fits for τ∗
x at ∆ = 0.8902 follow:

Fits without corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror Q χ2/do f
12 2.145 0.018 -1.059 0.067 0.42 1.03
15 2.143 0.021 -1.054 0.080 0.33 1.14
18 2.143 0.025 -1.054 0.097 0.25 1.28
24 2.131 0.031 -1.003 0.124 0.20 1.40
30 2.144 0.038 -1.057 0.155 0.15 1.58
36 2.152 0.047 -1.090 0.196 0.09 1.88
48 2.181 0.061 -1.217 0.260 0.07 2.20
54 2.276 0.072 -1.646 0.310 0.49 0.81
60 2.311 0.089 -1.808 0.392 0.37 0.99
72 2.202 0.132 -1.303 0.601 0.39 0.74

TABLE B.38: Linear fits for the integrated autocorrelation time τint of the spin-1
Baxter-Wu model at ∆ = −1, using the heat-vath algorithm. Fits were performed

using Eq. (3.6).

Fits with corrections: τint = aLz(1 + c/L2)
Lmin z zerror a aerror c cerror Q χ2/do f
12 2.140 0.038 0.353 0.056 -0.905 12.433 0.31 1.17
15 2.140 0.047 0.353 0.070 -0.905 21.244 0.23 1.31
18 2.141 0.056 0.352 0.084 -0.940 33.302 0.16 1.50
24 2.219 0.083 0.245 0.091 97.609 90.315 0.20 1.44
30 2.262 0.111 0.200 0.102 177.059 170.871 0.14 1.65
36 2.351 0.158 0.129 0.098 413.494 365.892 0.12 1.85
48 2.608 0.448 0.036 0.081 1469.034 2058.300 0.10 2.09
54 2.556 0.491 0.048 0.118 960.565 2046.070 0.17 1.77
60 1.802 0.327 2.000 3.179 -1303.454 622.983 0.67 0.18

TABLE B.39: Fits with corrections for the integrated autocorrelation time τint of
the spin-1 Baxter-Wu model at ∆ = −1, using the heat-vath algorithm. Fits were

performed using Eq. (3.7).
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B.2 Universality of the Dilute Baxter-Wu Model

The fits for the universal exponents of the spin-1 Baxter-Wu model in a crystal field using
the multicanonical algorithm are presented. For the specific heat, magnetic susceptibility, and
logarithmic derivatives of the magnetisation maxima, the fits follow the form aLx(1 + c/L2),
where a, x, c are parameters to be set by the fitting process. Specifically, x is a critical expo-
nent ration, either α/ν or γ/ν or 1/ν, for the specific heat, magnetic susceptibility, and log-
arithmic derivatives, respectively. For the location of the critical point, fits followed the form
∆c + aL−1/ν(1+ c/L2). For the crossing value of the binder cumulant, the scaling law Uc + c/L2

was utilised. The tables that follow show how the fit parameters and the fit quality behave by
varying the minimum system size used in the fits.

Lmin α/ν (α/ν)error a aerror c cerror Q χ2/do f
12 0.989 0.003 0.034 0.000 58.389 1.141 0.01 2.55
15 0.988 0.005 0.034 0.001 57.633 2.153 0.01 2.95
18 1.002 0.009 0.032 0.001 67.019 3.864 0.14 1.25
24 0.981 0.013 0.035 0.002 49.489 9.262 0.38 1.04
30 0.952 0.019 0.040 0.003 17.046 18.335 0.94 0.14
36 0.951 0.029 0.040 0.005 15.750 39.157 0.82 0.20
48 0.985 0.084 0.034 0.013 78.830 152.813 0.65 0.21

TABLE B.40: Fits for the specific-heat-like quantity maxima, C∗
∆, at T = 2.1.

Lmin γ/ν (γ/ν)error a aerror c cerror Q χ2/do f
12 1.803 0.005 0.065 0.001 -7.189 1.145 0.37 1.09
15 1.796 0.008 0.067 0.002 -10.094 2.511 0.42 1.00
18 1.797 0.010 0.066 0.003 -9.518 4.861 0.31 1.19
24 1.787 0.019 0.069 0.006 -16.817 12.874 0.23 1.40
30 1.747 0.031 0.083 0.011 -57.390 27.316 0.37 1.06
36 1.776 0.049 0.073 0.016 -18.627 59.773 0.27 1.29
48 1.949 0.183 0.032 0.028 321.900 389.627 0.25 1.30

TABLE B.41: Fits for the magnetic susceptibility maxima, χ∗, at T = 2.1.
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Lmin ν (ν)error a aerror c cerror Q χ2/do f
12 0.686 0.004 0.026 0.001 67.393 3.058 0.29 1.21
15 0.683 0.006 0.025 0.001 70.078 5.261 0.23 1.35
18 0.668 0.006 0.024 0.002 78.395 9.375 0.24 1.36
24 0.673 0.014 0.027 0.003 50.642 20.271 0.32 1.17
30 0.688 0.022 0.031 0.006 18.292 39.295 0.28 1.29
36 0.699 0.031 0.029 0.008 45.494 80.325 0.16 1.86
48 0.566 0.080 0.006 0.007 766.104 628.545 0.60 0.27

TABLE B.42: Fits for the logarithmic derivative maxima, (d ln ⟨m⟩/d∆)∗, at T =
2.1.

Lmin α/ν (α/ν)error a aerror c cerror Q χ2/do f
12 1.017 0.010 0.100 0.004 18.172 3.516 0.54 0.88
15 1.013 0.011 0.102 0.005 15.101 5.731 0.48 0.94
18 1.011 0.013 0.103 0.006 12.227 9.848 0.39 1.06
24 1.021 0.020 0.098 0.009 28.731 24.526 0.34 1.14
30 1.029 0.024 0.094 0.010 42.541 34.945 0.26 1.30
36 1.039 0.032 0.090 0.014 65.115 59.460 0.18 1.57
48 1.104 0.071 0.065 0.023 243.943 194.792 0.16 1.73
54 1.317 0.147 0.023 0.017 1054.795 605.944 0.86 0.16

TABLE B.43: Fits for the specific-heat-like quantity maxima, C∗
∆, at T = 1.8503.

Lmin γ/ν (γ/ν)error a aerror c cerror Q χ2/do f
12 1.772 0.008 0.081 0.003 -11.388 2.375 0.31 1.17
15 1.763 0.010 0.085 0.004 -17.792 4.644 0.42 1.02
18 1.759 0.012 0.086 0.005 -22.445 8.404 0.36 1.10
24 1.767 0.018 0.083 0.007 -11.405 20.656 0.29 1.23
30 1.772 0.021 0.081 0.008 -3.420 26.428 0.21 1.43
36 1.772 0.028 0.081 0.011 -3.420 48.896 0.13 1.78
48 1.820 0.058 0.064 0.018 123.668 147.313 0.10 2.06
54 1.979 0.104 0.029 0.015 677.323 374.263 0.60 0.52

TABLE B.44: Fits for the magnetic susceptibility maxima, χ∗, at T = 1.8503.

Lmin ν (ν)error a aerror c cerror Q χ2/do f
12 0.667 0.005 0.039 0.002 9.228 5.238 0.41 1.03
15 0.667 0.005 0.039 0.002 9.228 5.238 0.41 1.03
18 0.669 0.006 0.040 0.002 4.998 9.683 0.33 1.14
24 0.666 0.009 0.039 0.003 13.803 21.590 0.26 1.29
30 0.664 0.010 0.038 0.004 20.106 26.238 0.18 1.52
36 0.668 0.013 0.039 0.005 2.481 47.545 0.12 1.85
48 0.660 0.024 0.036 0.009 50.968 130.449 0.07 2.41
54 0.602 0.034 0.017 0.008 546.436 309.729 0.54 0.62

TABLE B.45: Fits for the logarithmic derivative maxima, (d ln ⟨m⟩/d∆)∗, at T =
1.8503.
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Lmin α/ν (α/ν)error a aerror c cerror Q χ2/do f
12 1.081 0.007 0.162 0.004 10.920 2.007 0.75 0.64
15 1.085 0.009 0.159 0.006 13.199 3.465 0.73 0.63
18 1.078 0.010 0.164 0.007 8.286 5.127 0.83 0.47
24 1.074 0.016 0.166 0.011 4.918 12.331 0.74 0.55
30 1.062 0.022 0.175 0.017 -9.519 22.608 0.70 0.55
36 1.059 0.030 0.178 0.024 -14.284 38.981 0.54 0.73
48 1.067 0.065 0.171 0.053 2.931 135.749 0.34 1.08
54 1.001 0.097 0.235 0.109 -163.574 218.640 0.22 1.47

TABLE B.46: Fits for the specific-heat-like quantity maxima, C∗
∆, at T = 1.6606.

Lmin γ/ν (γ/ν)error a aerror c cerror Q χ2/do f
12 1.789 0.006 0.089 0.002 -9.061 1.561 0.66 0.73
15 1.789 0.008 0.089 0.003 -9.061 3.029 0.56 0.84
18 1.780 0.010 0.092 0.004 -15.032 4.680 0.78 0.53
24 1.774 0.016 0.095 0.006 -20.740 11.635 0.71 0.58
30 1.764 0.023 0.099 0.010 -32.417 22.392 0.64 0.64
36 1.754 0.031 0.104 0.014 -46.906 39.217 0.50 0.89
48 1.792 0.068 0.087 0.028 37.239 144.233 0.38 0.98
54 1.729 0.101 0.118 0.057 -126.709 233.884 0.24 1.37

TABLE B.47: Fits for the magnetic susceptibility maxima, χ∗, at T = 1.6606.

Lmin ν (ν)error a aerror c cerror Q χ2/do f
12 0.643 0.003 0.062 0.002 8.978 2.173 0.81 0.56
15 0.642 0.004 0.061 0.002 10.795 3.886 0.76 0.59
18 0.644 0.005 0.062 0.003 6.681 5.944 0.77 0.56
24 0.645 0.007 0.063 0.005 4.708 13.957 0.65 0.66
30 0.644 0.011 0.062 0.007 7.297 27.120 0.51 0.82
36 0.651 0.015 0.067 0.010 -17.699 45.357 0.41 0.95
48 0.648 0.032 0.065 0.023 -2.680 155.965 0.24 1.42
54 0.703 0.053 0.116 0.059 -302.366 225.766 0.32 1.00

TABLE B.48: Fits for the logarithmic derivative maxima, (d ln ⟨m⟩/d∆)∗, at T =
1.6606.

Lmin α/ν (α/ν)error a aerror c cerror Q χ2/do f
12 1.178 0.008 0.190 0.001 12.918 0.227 0.00 44.09
15 1.188 0.010 0.182 0.001 17.891 0.388 0.00 12.51
18 1.189 0.013 0.181 0.001 18.571 0.656 0.00 14.32
24 1.198 0.020 0.175 0.002 25.900 1.544 0.00 11.54
30 1.207 0.030 0.167 0.002 38.001 3.220 0.00 9.65
36 1.208 0.041 0.167 0.003 39.672 5.589 0.00 12.82
48 1.132 0.053 0.207 0.008 -58.986 16.259 0.43 0.85
54 1.142 0.135 0.198 0.013 -34.202 32.239 0.35 0.88

TABLE B.49: Fits for the specific-heat-like quantity maxima, C∗
∆, at T = 1.5301.
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Lmin γ/ν (γ/ν)error a aerror c cerror Q χ2/do f
12 1.820 0.0024 0.092 0.001 -5.458 0.591 0.34 1.13
15 1.824 0.0032 0.090 0.001 -3.729 1.084 0.62 0.76
18 1.823 0.0041 0.091 0.002 -4.729 1.936 0.55 0.83
24 1.824 0.0065 0.090 0.003 -3.129 4.680 0.44 0.97
30 1.826 0.0097 0.090 0.004 -1.642 10.011 0.31 1.20
36 1.829 0.0133 0.088 0.005 3.521 17.808 0.20 1.56
48 1.744 0.0373 0.114 0.015 -107.750 52.083 0.90 0.80
54 1.791 0.0443 0.106 0.022 -68.946 103.904 0.94 0.48

TABLE B.50: Fits for the magnetic susceptibility maxima, χ∗, at T = 1.5301.

Lmin (Um)∞ ((Um)∞)error c cerror Q χ2/do f
12 0.597 0.005 2.651 0.298 0.06 1.98
15 0.596 0.006 3.295 0.391 0.37 1.08
18 0.594 0.007 4.831 1.210 0.46 0.90
24 0.592 0.008 7.143 2.469 0.48 0.82

TABLE B.51: Fits for the value at the crossing of the binder cumulant, Um, at
T = 1.8503.

The fits concerning the Wang-Landau simulations follow. The scaling laws for the specific
heat and magnetic susceptibility are identical to those discussed above for the case of multi-
canonical simulations.

Lmin α/ν (α/ν)error a aerror c cerror Q χ2/do f
12 1.013 0.018 0.362 0.005 -6.010 1.080 0.35 1.11
15 1.016 0.024 0.362 0.006 -6.242 1.905 0.26 1.27
18 1.016 0.030 0.362 0.008 -6.242 4.323 0.18 1.48
24 1.017 0.035 0.361 0.011 -5.031 8.130 0.12 1.77
30 1.018 0.049 0.359 0.014 -2.544 14.175 0.07 2.20
36 1.020 0.053 0.356 0.017 1.428 19.812 0.03 2.91
48 1.037 0.107 0.327 0.030 56.879 55.008 0.02 3.75
60 1.056 0.185 0.297 0.049 131.473 120.922 0.01 6.99

TABLE B.52: Fits for the specific-heat maxima, C∗, at ∆ = −10.
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Lmin α/ν (α/ν)error a aerror c cerror Q χ2/do f
12 1.04 0.05 0.609 0.008 -3.962 1.057 0.54 0.87
15 1.05 0.05 0.607 0.010 -3.524 1.854 0.44 0.98
18 1.05 0.06 0.604 0.013 -1.895 4.219 0.35 1.12
24 1.05 0.06 0.598 0.017 1.692 7.875 0.27 1.28
30 1.06 0.08 0.586 0.022 10.649 13.718 0.22 1.44
36 1.06 0.09 0.576 0.026 19.424 19.175 0.15 1.77
48 1.07 0.17 0.550 0.047 49.429 51.462 0.09 2.46
60 1.10 0.31 0.473 0.074 166.359 115.322 0.06 3.51

TABLE B.53: Fits for the specific-heat maxima, C∗, at ∆ = −1.
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