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A B S T R A C T

Solute transport in partially-saturated porous media plays a key role in multiple applications across scales, from
the migration of nutrients and contaminants in soils to geological energy storage and recovery. Our under-
standing of transport in unsaturated porous media remains limited compared to the well-studied saturated case.
The focus of this review is the non-reactive transport driven by the displacement of immiscible fluids, where the
fluid-fluid interface acts as a barrier that limits the solute to a single fluid phase. State-of-the-art pore-scale
models are described, with a critical analysis of the gaps and challenges. A numerical example is provided to
demonstrate the acute sensitivity of solute transport prediction to minute, inevitable uncertainties in the spatial
distribution of the fluids’ velocities and interface configuration associated with the multiphase flow modeling.

1. Introduction

Transport of solute in porous materials is ubiquitous in many natural
as well as industrial processes. Often, multiple fluid phases co-exist
(denoted as “unsaturated” in hydrology, a terminology we adopt
here), strongly influencing solute transport within porous media. In the
case of immiscible fluids, the fluid-fluid interface serves as a barrier to
the transport of solutes, essentially restricting transport to one of the
fluid phases. Solute transport driven by immiscible fluid-fluid
displacement occurs in a wide range of systems, including soils (e.g. in
migration of nutrients and contaminants) and deeper geologic media (e.
g. storage of carbon or hydrogen, and contamination from mines or
hazardous waste repositories) (Sahimi, 2011; Corada-Fernández et al.,
2015; Akai et al., 2020; Bonto et al., 2021).

The displacement of immiscible fluids, the phase distribution and the
interface separating them can be highly convoluted and is influenced not
only by the fluid properties and flow conditions but also by the under-
lying porous microstructure (Zhao et al., 2019; Borgman et al., 2019; Wu
et al., 2021; Primkulov et al., 2022). Many porous materials, particularly
natural media (e.g. rocks), possess a complex pore topology with
different degrees of disorder. The structural heterogeneity of a porous
structure can have a remarkable impact on the fluids’ displacement
pattern—for instance limiting instabilities and fingering (e.g. Rabbani
et al., 2018) or promoting them (e.g. Zhang et al., 2011; Borgman et al.,
2019), as well as on solute transport (e.g. Liu and Mostaghimi, 2017;

Zhang et al., 2021). Studies of the impact of pore-scale heterogeneity on
flow and transport include media with correlated disorders (Babaei and
Joekar-Niasar, 2016; Dashtian et al., 2018; Borgman et al., 2019; Saei-
behrouzi et al., 2024), hierarchical heterogeneity (Deliere et al., 2016;
Suo et al., 2020; Suo and Gan, 2021), and layered structures (Liu et al.,
2014; Afshari et al., 2018; Erfani et al., 2021; Ghasemi et al., 2022). The
main source of complexity, which makes modeling of immiscible fluid
displacement challenging, is its multiscale nature: heterogeneity and
coupled mechanisms that operate at small scales (below that of single
pores) dictate the behavior at the larger scales of interest (Tahmasebi
and Kamrava, 2018; Armstrong et al., 2021). A similar challenge exists
for solute transport, where recent evidence points to the large extent by
which mixing and dispersion are controlled by microscopic mechanisms
(Dentz et al., 2011; Heyman et al., 2020; Borgman et al., 2023). For
instance, in hierarchical media where there are two (or more) charac-
teristic length scales in pore sizes (Tafreshi et al., 2009; Lewandowska
et al., 2005; Cushman, 2013), models are required to resolve the smallest
scales, posing a substantial computational challenge. Resolving hetero-
geneity down to the pore level in large-scale media becomes impractical,
and thus field-scale simulators exclude heterogeneity below a length
scale (Zhang and Zhang, 2015).

Recent advancements in experimental and computational methods
allowed appreciable progress in our understanding of immiscible dis-
placements, as well as of solute transport in a porous medium occupied
by a single fluid phase, considered separately (Xu et al., 2017a; Afshari
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et al., 2018; Watson et al., 2019; Dehshibi et al., 2019; Erfani et al.,
2021; Singh et al., 2022). However, our understanding of the coupled
process of solute transport driven by immiscible fluid displacements
remains partial. A major barrier to our ability to model unsaturated
transport in porous media is the sensitivity of the concentration fields to
the spatial distribution of the fluid phases and their velocity fields,
necessitating detailed knowledge of the flow at very fine scales.
Obtaining such information is challenging due to the convoluted fluid-
fluid interface and heterogeneous spatial distribution of the fluid pha-
ses (Bultreys et al., 2018; Picchi and Battiato, 2018) as well as the strong
spatial non-uniformity of fluid velocities, which is further amplified by
the presence of multiple fluids (Velásquez-Parra et al., 2022). The
coupling of multiple mechanisms across a very wide range of scales (in
particular in geologic media, where processes in nanometric pores can
influence km-long reservoirs), leads to a large number of parameters
that can span a wide range of values, exacerbating the modeling
difficulties.

The aforementioned challenges imply that the selection of the
modeling approach for unsaturated transport involves a trade-off be-
tween precision, intricacy, and computational expenses (Scheibe et al.,
2015a; Meigel et al., 2022). Models for unsaturated transport can be
broadly categorized into two types, based on the scale and spatial res-
olution: (i) pore-scale models—the focus of this review, considering
details at the scale of individual pores or smaller (Blunt, 2017); and (ii)
continuum (macroscopic) or “Darcy”-scale models, where the basic
model unit includes multiple pores, hence the model parameters
represent quantities averaged over Representative Element Volumes
(REV) containing both pore space and solid matrix, such as porosity and
permeability (Mehmani and Balhoff, 2015b). Hence, Darcy-scale models
cannot represent pore-scale mechanisms such as thin fingers, snap-off,
or flow in films or corners, nor could they capture pressure or concen-
tration gradients below the REV scale. Since unsaturated transport is
often controlled by microscopic heterogeneity and mechanisms, pore-
scale models are required not only for higher spatial and temporal res-
olutions but also as means for both fundamental understanding as well
as up-scaling and predictive modeling of key macroscopic characteristics
such as permeability, capillary pressure, BreakThrough Curves (BTCs),
and residence times (Oostrom et al., 2016; Zhang et al., 2019; An et al.,
2020b; Ben-Noah et al., 2023).

Pore-scale models can be categorized into two types: Computational
Fluid Dynamics (CFD) methods (also denoted at times “direct” methods)
that resolve sub-pore transport by discretization of the Navier-Stokes
(NS) equations, and Pore Network Model (PNM) where the pore ge-
ometry is represented by a network of interconnected simplified
geometrical objects (e.g. a network of pipes), allowing to use simplified
constitutive rules for fluid and solute transport (e.g. Poiseuille flow)
(Joekar-Niasar and Hassanizadeh, 2012; Blunt et al., 2013). CFD
methods can be further classified into grid-based versus particle-based.
In grid-based models, the flow domain is mapped onto a mesh, and the
flow and transport equations are discretized on that mesh using methods
such as finite volume or finite difference. In particle-based models, the
fluid is represented by a set of discrete particles (Blunt et al., 2013). We
review here one grid-based model: (i) Volume of Fluid (VOF), two
particle-based methods: (ii) Lattice Boltzmann Method (LBM); and (iii)
Smoothed Particle Hydrodynamics (SPH), and also (IV) PNM. PNM,
restricted to the level of individual pores, is the most computationally
efficient and therefore most suitable for up-scaling, whereas CFD
methods resolve sub-pore flow and transport, allowing simulation of the
exact geometry of the porous media. We also briefly review here the so-
called multiscale models, in which the flow and transport equations are
solved at the Darcy scale in most of the domain and at the microscopic
level in domains of special interest.

This review is focused on conservative (non-reactive) solute trans-
port. Since conservative transport can be viewed as a special, degenerate
case of reactive transport, we also note recent reviews of pore-scale
reactive transport modeling: (i) Mehmani and Balhoff (2015b): an

overview with focus on PNM and multiscale models; (ii) Xiong et al.
(2016): PNM, emphasizing experimental and analytical methods for
pore network construction and characterization; (iii) Soulaine et al.
(2021a): briefly reviewing CFD methods (e.g. LBM and SPH), focusing
on their implementation in geosciences; (iv) Chen et al. (2022): appli-
cation of direct methods in natural and industrial processes; (v) Ladd
and Szymczak (2021): computational approaches for reactive transport;
(vi) Deng et al. (2022): reactive transport for geochemically-driven
processes. While there is no benchmark study comparing models
against experimental data for unsaturated solute transport, we note
several recent relevant studies on related aspects. For solute transport in
saturated conditions, pore-scale concentrations using both PNM and CFD
(LBM and another finite-volume model) compared well with micro-
model experiments (Oostrom et al., 2016), and similarly both PNM and
LBM were in good agreement with macroscopic breakthrough curves
from column experiments (Yang et al., 2016). Immiscible fluid-fluid
displacement patterns (with no solutes) obtained from micromodel ex-
periments at a wide range of flow rates and wettability conditions were
compared to a large number of models, including PNM, VOF, LBM, as
well as Phase Field, Stochastic Rotation Dynamics, and Level Set (not
covered here) (Zhao et al., 2019). The authors showed that while all
methods were in good agreement with the experiments for a part of the
tested conditions, none were able to reproduce the patterns under all
conditions. The computational cost depends on (i) modeling approach;
(ii) number of cells or pores; (iii) number and performance of used CPUs;
and (iv) flow conditions, e.g. flow rates and viscosity ratio. In the
benchmark comparing single-phase flow and solute transport Oostrom
et al. (2016), computation of the fluid velocity flow field required 45 h in
LBM (408 CPUs for a domain with ~8.5 million grids) vs. 24 h (~5
million cells, 48 CPUs) in CFD using finite-volume discretization vs. ~5
min in PNM (for a network with 15,400 pores) on a regular desktop
(Intel®Core™i7-3930 K CPU 3.2 GHz). Simulating solute transport
required 6 h in LBM and CFD, vs. less than a minute in PNM. All tech-
niques tested in Oostrom et al. (2016) reproduced experimental data
with reasonable agreement, yet PNM required pre-processing of input
parameters using direct modeling approaches. In the benchmark
comparing simulations of immiscible fluid-fluid displacement (without
solute transport) (Zhao et al., 2019), LBM with the color-fluid multi-
phase computations method required 16–58 h (time depended on flow
rate; using 14 CPUs for ~160 million cells in 3D), vs. 1–4 weeks in
Stochastic Rotation Dynamics (particle-based method, not covered here)
with ~5 million particles, vs. minutes in PNM. Notably, only 3D direct
simulations methods were able to reproduce the displacement patterns
for regimes where partial pore-filling mechanisms dominate (e.g. strong
imbibition and strong drainage at high Ca) (Zhao et al., 2019).

The main objective of this review is to overview the main state-of-
the-art methodologies for pore-scale modeling techniques, providing a
critical analysis of key challenges and directions for future research. As
such, we do not provide a detailed description of these techniques, nor a
comprehensive list of publications in which they are presented. We also
do not review some techniques such as Level Set or Phase Field
Modeling. The structure of this paper is as follows: Section 2 describes
the physical mechanisms and governing equations for multiphase flow
and solute transport in porous media. Section 3 reviews the main
modeling techniques. Section 4 discusses complexities and pitfalls that
are specific to each technique and also describes the main challenges
that are common among all methods. This section ends with an exem-
plification of the sensitivity of unsaturated transport to uncertainties in
two-phase displacement. Finally, Section 5 provides concluding
remarks.

2. Physical mechanisms and governing equations

In unsaturated transport, solute transport is coupled with the flow of
multiple fluids. The flow of two immiscible fluids is controlled by the
interplay between viscous, capillary, and gravitational forces, which in
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turn are affected by the underlying pore structure and the surface
properties of the pores (Holtzman, 2016; Borgman et al., 2019; Juanes
et al., 2020; Wu et al., 2021). The resulting patterns range from compact
displacement, characterized by a stable front that evenly fills the pore
space, to highly preferential patterns such as viscous and capillary
fingering, involving only a small portion of the pore space (Juanes et al.,
2020). When gravitational forces are relatively unimportant (e.g. hori-
zontal flow or very small domain and thus negligible height differences),
the flow regime can be characterized by the capillary number, which is
the ratio between viscous to capillary forces, Ca = μinvuinv/σ, and the
viscosity ratio, M = μinv/μdef (Lenormand et al., 1988). Here, μinv and μdef
are the viscosities of the invading and defending fluids, respectively, uinv
is the invading fluid velocity, and σ is the interfacial tension. The relative
importance of gravity vs. capillarity is measured through the Bond
number, Bo = ΔρgR2/σ, where Δρ is the difference in fluids’ density, g is
the gravity, and R is the characteristic pore radius (Liu et al., 2013).

The resulting flow field can be divided into three types of regions:
isolated, dead-end, and backbone (Ramstad and Hansen, 2006; Khayrat
and Jenny, 2016). The backbone zones are the well-connected parts in
which most of the flow happens and hence control the flow properties
like relative permeability. The dead-end zones do not contribute to fluid
flow and act mainly as a sink for the solute, which remains trapped
there. Solute transport is mainly controlled by the competition between
advection, occurring mostly in the mobile (backbone) regions, and
diffusion, which is most effective in immobile (stagnant) zones
(Karadimitriou et al., 2017). The interplay between the advection and
diffusion is quantified through the Peclet number (Huysmans and Das-
sargues, 2005), Pe = uL/Dm, where u is the characteristic velocity of the
fluid transporting the solute, Dm is the molecular diffusion coefficient,
and L is the characteristic length-scale.

The combination of pore-level diffusion and advection in a hetero-
geneous medium also gives rise to macroscopic mechanical dispersion
(Kulasiri and Verwoerd, 2002; Sahimi, 2012). Therefore, in continuum
models with REV containing multiple pores, the macroscopic mass flux
of solute is the sum of advective mass flux, diffusive mass flux, and
dispersive mass flux, which considers the deviation of pore-level ve-
locity from the macroscopic velocity (Neuman and Tartakovsky, 2009).
The dispersion coefficient (D) is the variance of tracer with respect to
time (t) as σ2 = (xi − x)2 = 2Dt, with xi being the position of solute
particles, and x shows the mean solute particles location (De Gennes,
1983; Bijeljic and Blunt, 2006). Another important transport process is
mixing, especially when reaction occurs. Mixing affects the probability
of tracers (e.g. infiltrated to and resident in porous media) coming into
contact and it reduces the likelihood of sharp peaks in tracer concen-
tration (Dentz et al., 2011). While dispersion gives information about
the spatial spreading of the tracer and its transfer time within a medium,
it does not provide adequate knowledge of the spatial structure of con-
centration fields (Kitanidis, 1994; Le Borgne et al., 2015). The existence
of concentration gradients in a porous structure impacts the mass ex-
change rate between regions and, as a result, the time evolution of tracer
concentration (Hasan et al., 2020).

Unsaturated solute transport can be described by two sets of equa-
tions: (i) mass and momentum conservation of the fluids, and (ii) mass
conservation for the solute. In the Eulerian framework, the conservation
of mass and momentum for each fluid phase i can be written as:

∂ρi
∂t +∇⋅(ρiui) = 0 (1)

∂ρiui
∂t +∇⋅(ρiuiui) = − ∇Pi+∇⋅

[
μi
(
∇ui +∇uiT

) ]
+ ρig+ Fs (2)

where P is the fluid pressure. In the NS momentum Eq. (2), the second
term on the left-hand side describes the inertial force. On the right-hand
side, the first term is the pressure gradient, the second term is viscous
dissipation, the third provides the effect of gravity, and the fourth, Fs,

represents interfacial forces. The transport of solute species α (single
component with the exclusion of sorption or reaction) is represented by
the Advection-Diffusion Equation (ADE):

∂Cα

∂t +∇⋅(uCα) − ∇⋅
(
Dm,α∇Cα

)
= 0 (3)

where C is the species concentration. The first term in Eq. (3) is the
temporal evolution of solute, and the second and third correspond to
transport via advection and diffusion, respectively. For immiscible
fluids, the fluid-fluid interface serves as a barrier to solute transport. As
such, it is often modeled as an impermeable boundary, similar to fluid-
solid interfaces. The modeling of both fluid-solid and fluid-fluid in-
terfaces is a subject of debate. Fluid-solid boundaries are typically
modeled by a no-slip condition, but this has been shown to be prob-
lematic in some cases, for instance, fluids that contain polymers and
colloids (Soulaine et al., 2021a), where other approaches like slip
models are used to account for non-zero velocity values tangential to the
wall. In those models, the magnitude of slippage (i.e. slip length) de-
pends on fluid and surface properties (Ren, 2007; Sui et al., 2014).
Comparison between no-slip and free-slip conditions in recent in-
vestigations have also revealed that applying no-slip conditions for fluid-
fluid interfaces has a minimal effect on solute migration (Guédon et al.,
2019; Triadis et al., 2019).

In many cases, the timescale for immiscible fluid displacement
required to reach steady-state conditions, in terms of fluid configura-
tions and velocities, is much shorter than the timescale of solute trans-
port. This could be modeled as one-way coupling, where solute transport
in the “carrier” fluid phase is modeled by considering the final (steady-
state) fluid configuration, disregarding solute transport during the
transient flow when interface evolution by pore invasion occurs
(Jimenez-Martinez et al., 2015; Karadimitriou et al., 2016, 2017; Aziz
et al., 2018, 2019; Hasan et al., 2019; Aziz et al., 2020; Gong and Piri,
2020). This provides a substantial simplification compared to the full
two-way coupling of fluid displacement and solute migration that occurs
during the short transient stage and thus is frequently used in both
experimental and computational investigations. Furthermore, in this
one-way coupling approach, predetermined fluid configurations ob-
tained experimentally could be employed in numerical simulations
without simulating their evolution (which is the most computationally
demanding step) (Ben-Noah et al., 2023). Such steady-state configura-
tions could also serve as training data for machine learning, facilitating
the analysis of other conditions (Jimenez-Martinez et al., 2020).

3. Models for unsaturated transport

3.1. Volume of fluid

3.1.1. Fluid displacement
VOF method is a broadly recognized grid-based technique for accu-

rately capturing the interface between fluids. Originally developed for
viscous-dominated flows, it has since been extensively utilized in CFD
applications, particularly in pore-scale modeling (Maes and Geiger,
2018; Rabbani et al., 2018; Ambekar et al., 2021a, 2021b; Yang et al.,
2021c). The phase occupancy in each modeling cell in terms of volu-
metric fraction (called “volume indicator” or “marker function”, γ) is

γ =

⎧
⎨

⎩

0 for Ω1(Phase1)
(0, 1) for Γ(Interface)

1 for Ω2(Phase2)
(4)

For a system with n phases, n − 1 indicator functions are required to
determine the interfaces. The interface evolution in time is described
through an advection equation

∂γ
∂t +∇.(γu) = 0 (5)

A. Saeibehrouzi et al.
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which is coupled with the NS equations for the conservation of mass and
momentum, providing the velocity fields u. Two primary techniques can
be employed to determine the configuration of the interface: (i) Alge-
braic, where the interface is tracked by directly solving the advection Eq.
(5); and (ii) Geometric, which explicitly reconstructs the interface by
utilizing a geometric representation (such as a quadratic surface) (Maes
and Soulaine, 2018). In general, while both techniques share the
advantage of mass conservation, the Geometric VOF method out-
performs the Algebraic method in minimizing interface numerical
diffusion at the expense of a more complex implementation for un-
structured cells (Jamshidi et al., 2019).

In the Algebraic formulation, the curvature of the interface κ can be
found through the gradient of the indicator function:

κ = − ∇⋅n = − ∇⋅
∇γ
|∇γ|

(6)

where n is unit normal vector of interface. The interfacial forces in the
NS equation can be calculated by the Continuum Surface Force (CSF)
(Brackbill et al., 1992):

Fs = σ κ∇γ (7)

The volume-weighted fluid properties at the interface are calculated
by

ρ = γρ1 + (1 − γ)ρ2
μ = γμ1 + (1 − γ)μ2

(8)

For further details of other variants of VOF and their implementation
refer to Gopala and van Wachem (2008); Bilger et al. (2017); Pavuluri
et al. (2018).

3.1.2. Solute transport
The ADE can be employed directly to simulate solute transport in

grid-based techniques (Dou et al., 2022; Noughabi et al., 2023). A
common approach to substantially reduce computing time while still
conserving solute mass within the carrier phase and avoiding its
migration through fluid-fluid boundaries is to generate a numerical
domain based on the carrier phase distribution. With this, only the ve-
locity field (single-phase) in the carrier phase needs to be calculated,
whereas, in terms of solute transport, the second fluid phase is treated
similarly to the solid phase i.e. with no-flux boundary conditions. This
scenario is valid for laminar flow in porous media when the solute so-
lution’s injection rate in the carrier phase is small enough that it cannot
significantly alter the fluid-fluid boundaries (Jimenez-Martinez et al.,
2020; Ben-Noah et al., 2023). Another approach to account for zero
diffusive mass flux between the two fluid phases is by introducing three
phases that are transported: (i) invading (carrier) fluid phase, (ii)
defending fluid phase, and (iii) infiltrated phase that mixes with the
invading phase and acts as the solute solution (Aziz et al., 2020). An
additional diffusion coefficient between infiltrated and defending pha-
ses is included in the modeling to avoid solute migration from the
invaded fluid to the defending fluid. This is achieved by setting this
additional coefficient to zero, generating a no-flux boundary condition
for the tracer between the carrier and defending phases.

3.2. Lattice Boltzmann modeling

In LBM, each fluid is represented by a group of particles, carrying
averaged properties such as density and momentum. Flow is simulated
by fluid particles motion and collision on a computational grid, through
particle distribution functions. The simulated flow at near-
incompressible conditions in LBM provides a close approximation of
the NS equations. The method is highly suitable for parallel computing
for the simulation of media with irregular pore shapes, and it can
automatically handle phase separation by tracking the particles of each
phase. Particles’ motion is computed by discretizing the Boltzmann

equation, restricting the motion of particles in each time step to a limited
number of discrete locations on a lattice (Coreixas et al., 2019). The
lattice configuration is indicated by DnQm, in which n denotes the di-
mensions of simulation (2D or 3D) and m is the number of directions
(Fan et al., 2019; Wang et al., 2019), see Fig. 1.

3.2.1. Fluid displacement
The general form of the LBM equation can be written as

fi(x+ eiδt, t+ δt) − fi(x, t) = Ωi (9)

where fi(x,t) is the distribution function indicating the probability that
particles located at the lattice site x at the time tmoves in the direction i,
ei denotes the particle discrete velocity, and Ωi corresponds to the
collision operator, describing the intermolecular interactions. The left-
hand side of Eq. (9) is called the “streaming step”, and the right-hand
side “collision step” (He et al., 2019; Ramstad et al., 2019).

The fluid density and velocity at position x and time t are determined
by the distribution function as follows:

ρ(x, t) =
∑

i
fi(x, t) (10)

and

u(x, t) =
1

ρ(x, t)
∑

i
eifi(x, t) (11)

Pore walls are introduced as immobile solid particles that stop fluid
particles penetration across and propagation along the wall via no-flow
and no-slip boundary conditions, by mirroring particle momentum
when it collides with a solid surface (“bounce-back”) (Golparvar et al.,
2018; Ramstad et al., 2019).

Different LBM variants exist for multiphase flow, including pseudo-
potential or Shan-Chen model (Shan and Chen, 1993, 1994), color-
gradient model (Gunstensen et al., 1991; Tolke et al., 2006), and the
free energy model (Swift et al., 1996). Among these, the pseudopotential
and color-gradient are more common for porous media. The major dif-
ference among them is the way that phase separation is simulated. For
each phase α, a different distribution function is introduced, such that

Fig. 1. An example of lattice arrangement and velocity distribution for a
D2Q9 LBM.
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fi(x, t) =
∑

αfαi (x, t). The color-gradient model is advantageous for
multiphase flow due to its ability to set phases viscosity ratio and
interfacial tension independently (Bakhshian and Hosseini, 2019; Chen
et al., 2019; Liu et al., 2021). The pseudopotential model aims to
simulate the microscopic interactions between the nearest fluid particles
by introducing an effective mass. While it is known for its simplicity and
computational efficiency, the model may require some pre-processing of
input parameters in certain scenarios (see Section 4.1.2) (Liu et al.,
2021). For further information regarding the implementation of LBM in
multiphase flow see recent reviews by Chen et al. (2014); Liu et al.
(2016); Coreixas et al. (2019); Liu et al. (2021).

3.2.2. Solute transport
Unlike the flow described by the nonlinear NS equations, the ADE is

linear in velocity, indicating that linear equilibrium distributions can be
used. This results in a lower number of lattice directions, such that for
instance D2Q9 and D3Q17 schemes for flow reduce to D2Q5 and D3Q7 for
transport, respectively. The migration of solute component k is repre-
sented by concentration distribution functions (Sullivan et al., 2005;
Chen et al., 2012; Zhou et al., 2015; Chen et al., 2018a; Zhang et al.,
2021):

gi,k(x+ eiδt, t+ δt) − gi,k(x, t) = −
gi,k(x, t) − geqi,k(x, t)

τC
(12)

where τC is relaxation time indicating the time rate, and

geqi,k = Ckωi
[

Ji,k+
ei⋅u
c2s

]

(13)

is the equilibrium distribution function, with Ck =
∑
gi,k and Ji can be

defined as (e.g. for D2Q5):

Ji =
{

J0, i = 0
(1 − J0)/4, i = 1, 2,3, 4 (14)

Here, J0 is the rest function ranging between 0 and 1, corresponding
to different diffusivity, cs is the lattice speed of sound, and ωi is a
weighting factor. The relation between lattice diffusion coefficient and
relaxation time in 2D is given by

Dm =
1
2
(1 − J0)(τC − 0.5) (15)

In modeling multiphase flow, Chen et al. (2013) presented a model to
account for zero concentration flux between phases through a critical
density within the system; if a node’s density is greater than that value, it
is considered a carrier-phase node, and otherwise, it belongs to the other
phase. While effective in closed systems (e.g. brine inclusion in a crystal
of salt subjected to thermal gradient), this technique is associated with
high computational costs and requires the redistribution of solutes to
preserve mass conservation (Li and Berkowitz, 2019).

Another approach to include the effect of fluid-fluid interfaces on
solute migration was developed by Riaud et al. (2014) and Zhao et al.
(2015) for the color-gradient model through the modification of the
collision operator of species, resulting in the following equilibrium
distribution function

gi,k(x+ eiδt, t+ δt) − gi,k(x, t) = −
gi,k(x, t) − geqi,k(x, t)

τC
+ βkW(xr)geq(0)i,k

ei⋅n
‖ei‖
(16)

where, geq(0)i,k = ωiCk, n is normal to the interface, W(xr) is an arbitrary
function that acts as a driving force on solute, and βk tunes the profile of
interface and relates the diffusion coefficient to the relaxation time. For
a two-phase scenario, while solute is only migrated in one phase, the
single driving force can be chosen such thatW(xr) = − (1 − xr). Here, xr
is the concentration fraction in the carrier phase, such that for xr = 1
solute diffuses in the carrier phase, and for xr = 0 the second phase re-

pels the solute.
Unsaturated solute transport can also be simulated in the Shan-Chen

LBM method by considering three types of particles (“fluids”): two
resident fluids, Ω1 (carrier) and Ω2 (corresponding to the two physical
immiscible fluids), where the solute is represented by an “infiltrated
fluid” Ω3 that mixes with the carrier fluid (Li and Berkowitz, 2018; Zhao
et al., 2021). To that end, the interaction coefficient between mixing
fluids particles in the collision operator (Eq. (17)) is reduced signifi-
cantly below the critical phase separation value. The mixing of infil-
trated fluid with the other (non-carrier) fluid is avoided by increasing
the interaction coefficient above the threshold (Li and Berkowitz, 2018).

Finter,α = − Gcψα(x, t)
∑

β∕=α

∑

i=1
ωiψβ(x+ eiΔt, t)ei (17)

Here, α and β represent phases, ψ is the effective mass density of the
fluid, and Gc is the interaction coefficient adjusting the cohesion forces
between two components (α and β) with positive values for repelling
particles and negative values for cohesive forces.

3.3. Smoothed particle hydrodynamics

SPH was initially developed for compressible fluids in astrophysics
and later was extended to incompressible free-surface flows, such as a
dam break problem (Monaghan, 1994). SPH is a mesh-free, particle-
based Lagrangian approach representing fluid flow as multiple inter-
acting particles possessing a given volume and mass. Particles act as
discretization points to solve the governing (NS) equations. Similar to
the particle-based LBM, the SPH does not require handling phase
boundaries explicitly, allowing the natural account of complex geome-
tries and boundaries. However, it is more computationally demanding
than Eulerian, grid-based techniques as SPH requires a much higher
number of particles than grid points in Eulerian methods for the dis-
cretization of the spatial term (Tartakovsky et al., 2016; Bui and Nguyen,
2021).

3.3.1. Fluid displacement
In SPH, any tensor or scalar property A(x) is formulated by integral

interpolation (Kunz et al., 2016; Peng et al., 2017; Wu et al., 2020),

A(x) =
∫

A(xʹ)W(x − xʹ, h)dxʹ (18)

represented in discretized form, known as particle approximation of
A(x) as

Ai(x) =
∑N

j=1

mjAj(x)
ρj

Wij (19)

where indices i and j count for particles, N is the number of the particles
inside the support territory of reference particle i, m is the particle mass,
W is the kernel function (a weighing function with the dimension of
inversed volume), x is the distance, and h is the smoothing length,
indicating the affecting region of the kernel function, see Fig. 2. Similar
to Eq. (19), one can employ the following expression inside a sampling
volume to determine the gradient of a continuous function:

∇Ai(x) =
∑N

j=1

mjAj(x)
ρj

∇Wij (20)

The NS momentum equation in the Lagrangian form is written as:

d(ρiui)
dt

=
(
− ∇Pi+∇⋅

[
μi
(
∇ui +∇uiT

) ] )
+ g+ Fs (21)

Eqs. (19–20) can be used to approximate the NS momentum equa-
tion, e.g. ∇Pi =

∑N
j=1
mjPj

ρj
∇Wij, resulting in a system of ordinary differ-

ential equations (Monaghan, 2005; Tartakovsky et al., 2009; Yang et al.,
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2020):

d(miui)
dt

= Fi + Finteractioni (22)

where Fi is the total force affecting particle i (that is pressure force,
viscous force, body force, excluding interfacial force) and Finteractioni is the
force acting on particle i owing to interactions with the other phases,
(known as pairwise interaction model) Finteractioni =

∑N
j=1Fij where

Fij =

⎧
⎪⎨

⎪⎩

sijcos
(

1.5π
h

| xi − xj|
)
xi − xj⃒
⃒xi − xj

⃒
⃒
, for ∣xj − xi∣ ≤ h

0, for h < ∣xj − xi∣
(23)

Here, sij is the “interaction strength” between two particles, which
represents the wetting condition and the interface contact angle, set by
adjusting the relative ratio of interaction coefficients between particles
of the same phase (i = j) and different phases (i ∕= j). In addition to the
above-mentioned definition of interfacial forces, there are other forms
and readers can refer to a review by Wang et al. (2016b) for more
information.

Similar to fluids, solid boundaries are represented by particles. To
enforce no-flow boundaries, particles that are repulsive to the fluids can
be placed (Monaghan, 1994). Another approach for considering solid
boundaries is “ghost” particles, located outside the fluid but mirroring
fluid particles’ properties along the boundary (the perpendicular
component of velocity for ghost particles is of opposite sign to fluid
particles). Depending if a slip or no-slip condition is enforced, the same
or the opposite sign needs to be assigned to the tangential velocity
component, respectively. For this approach, the location of reflected
particles is usually fixed in time, i.e. the velocity component is found
from fluid particles according to the distance between them (Morris
et al., 1997; Liu et al., 2012). One overarching challenge in imposing
boundary conditions in SPH is the length of the support domain for the
kernel function that may be overlapped or truncated with the boundary.
For more details regarding the implementation of SPH for single and
multiphase flows see Tartakovsky and Meakin (2006); Tartakovsky et al.
(2009, 2016).

3.3.2. Solute transport
SPH naturally provides a physical representation of advection and

diffusion, and thus has been used extensively to model transport in
porous media (Tartakovsky et al., 2007a, 2007b; Ryan et al., 2011; De
Anna et al., 2014; Yang et al., 2021a). The ADE can be written in the
moving Lagrangian system formulation as (Zhu and Fox, 2001; Meakin
and Tartakovsky, 2009):

dC
dt

=
1
ρ∇(Dmρ∇C) (24)

which for particle i results in (Meakin and Tartakovsky, 2009; Ryan
et al., 2011):

dCi
dt

=
1
mi

∑

j∈fluid

(
Dm,inimi + Dm,jnjmj

)(
Ci − Cj

)

ninj
(
ri − rj

)2

(
ri − rj

)
⋅∇iW

(
ri − rj, h

)
(25)

where Ci is the solute concentration (the ratio between the mass of solute
carried by particle i to the mass of solution carried by particle i), Dm,i is
diffusion coefficient associated with particle i, and n is particle number
density (density to mass ratio). The separation of phases between fluids
(e.g. particles representing solute in one phase) is implemented by
adjusting the interaction forces between particles. This is accomplished
by indicating the interaction strength sij in Eq. (23) between particles of
the same fluid to be higher than for particles of different fluids
(Tartakovsky and Meakin, 2006; Tartakovsky et al., 2009).

3.4. Pore network modeling

PNM was developed by Fatt (1956), solving for flow (mass conser-
vation) by a set of equations akin to Kirchhoff’s using an analogy be-
tween a network of tubes and electrical resistors. In PNM, the intricate
pore geometry is replaced by a set of interconnected pores with
simplified geometry, which allows the use of analytical expressions for
capillary entry pressure and the averaged fluid velocity. One common
example used for multiphase flow is discretizing the pore space into
“pore bodies” containing most of the fluid volume, interconnected by
constrictions or “throats” (usually of cylindrical shapes) where most of
the pressure drop occurs which thus controls the velocity. Another
common variant is a network of cylindrical tubes that contain all the
volume, connected at nodes or pore junctions where the conservation
equations are enforced (for fluid momentum and solute mixing). A pore
network can be generated directly from a specific sample by discretizing
a complex porous volume, e.g. using X-ray microtomography, or in a
statistical sense, maintaining features such as pore size distribution,
connectivity, and topology (Bultreys et al., 2016; Wang et al., 2016a; Lai
et al., 2018). PNM provides a trade-off between accuracy and compu-
tational efficiency, simplifying the pore geometry in a way that still
captures the essential physical mechanisms including some of the
essential (statistical) features of the pore geometry. This enables simu-
lations of much larger domains than other pore-scale methods, hence
allowing both the introduction of various types of heterogeneity as well
as repeated realizations (Mehmani and Balhoff, 2015b; Borgman et al.,
2019). Flow and transport in porous media are highly sensitive to pore-
scale characteristics; thus, inevitable uncertainty in the knowledge of
pore geometry, associated with the accuracy of manufacturing as well as
assessing pore geometry (e.g. by porosimetry or imaging), can sub-
stantially affect the fluid-fluid displacement patterns and breakthrough
time (Borgman et al., 2017); e.g. see Borgman et al. (2017) for quanti-
tative examples of the impact of given random noise in pore sizes on the
patterns, which becomes particularly strong in the extreme example of a
“binary choice” when the invasion front reaches a “bottleneck”. This
sensitivity typically requires multiple realizations for each set of con-
ditions in order to obtain a statistically representative description
(Borgman et al., 2017, 2019).

3.4.1. Fluid displacement
The most simple implementation of PNM for fluid flow is for quasi-

Fig. 2. Fluid particles inside the Kernel function smoothing length h for particle
i in SPH.
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static fluid-fluid displacement, using the Invasion-Percolation (IP)
model (Wilkinson and Willemsen, 1983). This assumes instantaneous
pore filling through a series of local jumps or bursts, relying on the
separation of timescales between Haines jumps and the macroscopic
driving force of the invasion (such as injection rate or changes in pres-
sure). These models also rely on the instant relaxation of pressures
following an invasion event, which makes these events independent in
space. Consequently, the pressure between invasion events is considered
spatially uniform, and the displacement pattern depends solely on the
pore topology (spatial arrangement of capillary entry pressures) (Blunt,
2001; Golparvar et al., 2018; Biswas et al., 2018). Pore invasion occurs
once the local capillary pressure exceeds the entry threshold, computed
from the Young-Laplace rule for complete pore filling. The case of partial
pore filling e.g. film and corner flows requires more intricate criteria
(Primkulov et al., 2018; An et al., 2020a).

To relax the assumption of quasi-static displacement, “dynamic
PNM” introduces the effect of viscosity and pore pressure dissipation by
resolving the temporal evolution of the pressure field, hence requiring
higher computational cost (Aker et al., 1998; Holtzman and Juanes,
2010; Joekar-Niasar and Hassanizadeh, 2012; Aghaei and Piri, 2015).
For incompressible flow, pressures and velocities are resolved from the
continuity equation (akin to Kirchhoff’s law), which for pore i reads as
follows:

∑Ni

j=1
qα
ij + q

β
ij = 0 (26)

Here Ni is the total number of pores j connected to the pore i. The
flow rate between pores i and j for phase α, neglecting gravity and fluid
compressibility, can be determined by the Hagen-Poiseuille equation
(Sun et al., 2016; Borgman et al., 2019):

qα
ij =
Fα
ij

Lij
(
Pi,α − Pj,α

)
(27)

where Lij is the distance between pore centers, and Fα
ij denotes the fluid

conductance for phase α, computed from the shape of the conduit con-
necting pore i to j, and fluid viscosity. Gravity can be introduced by using
a potential as the driving force instead of the pressure P. The pressure
field in the entire domain results in an algebraic system of equations at
each time step. For the compressible case, the volumetric flux leaving
pore i and entering pore j do not cancel, and Eq. 26 needs to be revised to
account for compressibility (Huang et al., 2016). For more details on
PNM for single and multiphe conditions see Joekar-Niasar and Hassa-
nizadeh (2012); Xiong et al. (2016); Hosseinzadegan et al. (2023).

3.4.2. Solute transport
PNM typically considers a single (volume-averaged) value for ve-

locity, pressure, and concentration in each unit volume (pore), which in
the context of solute transport is denoted the Mixed-Cell Method (MCM).
MCM relies on perfect mixing within each pore (Hasan et al., 2019).
With that, the discrete solute conservation equation is:

Vi
dCi
dt

=
∑N
th.,q<0
i

j=1
Ciqij+

∑N
th,q>0
i

j=1
Cjqij+

∑N
th
i

j=1
DmAij

Cj − Ci
Lij

{i, j} ∈ Ωcarrier phase

(28)

where V is pore volume and A is the cross-section area.
The well-mixed assumption in MCM provides a good approximation

for low Pe where diffusion dominates over advection, smoothing the
pore-scale concentration gradients (Mehmani and Balhoff, 2015b). PNM
for solute transport can also be used in a Lagrangian framework, denoted
Particle Tracking Method (PTM). In PTM, the motions of solutes (rep-
resented by non-interacting particles) are tracked using the velocities
obtained from Eularian PNM described earlier (Bijeljic and Blunt, 2007).
PTM typically represents pore geometry as a network of tubes (mixing in

the nodes) (Vasilyev et al., 2012; Meng and Yang, 2019). Hence, PTM
and MCM often rely on different network extraction method (Acharya
et al., 2007). PTM, being particle-based, is more precise but more
computationally intensive than grid-based PNM e.g. MCM (Mehmani
and Tchelepi, 2017).

3.5. Multiscale methods

Computational cost makes the application of pore-scale models (in
particular CFD) prohibitive for large domains, e.g. field scale. Multiscale
models aim to address this challenge by solving the flow and transport
equations at different spatiotemporal resolutions. Below we describe
two such methods; more detailed discussions can be found e.g. in Yang
et al. (2021b); Mehmani et al. (2021).

3.5.1. Micro-continuum method (filtering)
This approach is based on the Darcy-Brinkman-Stokes (DBS) equa-

tion, obtained by integrating the NS equation over a REV containing
both fluid and solid phases (Brinkman, 1949). In regions with fluids
only, where the drag force vanishes, the DBS equation is equivalent to
the NS equation, and elsewhere it becomes a Darcy-like equation
(Soulaine and Tchelepi, 2016; Soulaine et al., 2021b). Fig. 3 shows
domain discretization for the micro-continuum approach and its com-
parison with pore- and Darcy-scale modeling. Analogous to the DBS
equation, a volume-averaged ADE is used to model transport:

∂εfCf
∂t +∇⋅

(
ufCf

)
= ∇⋅

(
εfDm∇Cf

)
(29)

where εf is porosity, and Cf , uf are averaged concentration and velocity,
in turn.

3.5.2. Hybrid multiscale method (domain decomposition)
A general technique that allows the use of different pore-scale

models in regions of interest embedded in a larger domain where a
continuum, Darcy-scale model is implemented (Yang et al., 2021b;
Scheibe et al., 2015b). A scale coupling condition (a bilateral commu-
nication) is implemented for the interface of discretized subdomains to
assure the continuity of fluxes and concentration fields over the macro-
and pore-scale regions (Roubinet and Tartakovsky, 2013).

4. Discussion: Modeling challenges

As said, each approach has its advantages and disadvantages in terms
of computational cost and precision. In this section, we examine the
challenges, shortcomings, and proposed resolutions specific to the
reviewed methods, followed by a discussion of the more general chal-
lenges (not specific to one method). We end with an example showing
the high sensitivity of transport modeling to uncertainties in multiphase
flow details.

4.1. Model-specific challenges

4.1.1. Volume of fluid
One of the most pervasive issues in the simulation of multiphase

flows, in particular, slow flows of high-density contrast, is spurious
vortex-like currents, also known as parasitic currents. These result from
the inaccuracy in the discretization of the pressure gradient and surface
tension in Eq. (2), and improper determination of interface curvature
(Popinet, 2018). These artificial currents add additional viscous dissi-
pation and shear stress, which in turn lead to inaccurate estimation of
displacement pattern (Pavuluri et al., 2018). This makes implementa-
tion of VOF in slow (low Ca) cases challenging (Jamshidi et al., 2019).
For instance, the commonly used VOF-CSF, describing interfacial forces,
is often associated with strong spurious currents (Hu et al., 2017; Rab-
bani et al., 2016, 2018; Ambekar et al., 2021a). Alternatives methods for
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CSF that improve the interfacial forces and curvature in different ways
include the Sharp Surface Force (SSF) method (Francois et al., 2006),
Filtered Surface Forces (FSF) method (Raeini et al., 2012), and Contour-
Level Surface Force (CLSF) (Shams et al., 2018). SSF smooths the indi-
cator function, which is successful in reducing parasitic currents in the
quasi-static case but not efficiently in dynamic cases. FSF addresses that
by separately solving for the dynamic (viscous) and capillary forces,
removing the parasitic currents that are parallel to the interface. This is
achieved by modifying the capillary forces that are accountable for those
currents. The CLSF employs a sharp iso-contour surface to indicate the
interface and define it as discrete elements, providing a good repre-
sentation of the interface with marginal spurious currents even at low
mesh density. FSF is more efficient for diminishing the spurious veloc-
ities (compared to SSF and CSF), yet requires extra heuristic parameters
and suffers from periodic bursts in velocity fields that affect the advec-
tion of the interface (Pavuluri et al., 2018; Yang et al., 2021c).

Another resolution is to combine VOF with other interface models.
For instance, Level Set, an Eulerian method (not covered in this review),
can be used to calculate the interface configuration, which is then used
in VOF when solving interface advection (Albadawi et al., 2013;
Haghshenas et al., 2017; Cao et al., 2020). This approach exploits the
advantages in both methods: mass conservation in VOF and a sharp
interface in Level Set, which results in reduced spurious currents how-
ever at a much higher computational cost (Hoang et al., 2013; Dianat
et al., 2017).

4.1.2. Lattice Boltzmann modeling
In general, the accuracy of LBM in simulation can be enhanced by

increasing the lattice resolution (number of directions), however with an
increase in computational cost (Kang and Hassan, 2013; Kuwata and
Suga, 2015; Liu et al., 2021). Nevertheless, at some conditions, lower
resolution in terms of lattice directions has been shown to perform
better; for instance, while D2Q9 lattice suffered from smaller errors vs.
the coarser D2Q5 at high Pe, the opposite was found for lower Pe. Similar
findings were also shown in 3D (D3Q7 vs. D3Q19) (Li et al., 2017).

A pervasive challenge in multiphase LBM (especially the pseudopo-
tential method) is representing fluids of high density and/or viscosity
ratios (Molaeimanesh and Akbari, 2016; Huang et al., 2020). This is
particularly the case for simulation with a simple scheme for the colli-
sion operator (known as Single Relaxation Time (SRT)). A collision
operator known as Multi Relaxation Time (MRT), improving upon SRT,
has been suggested as a solution to improve the performance and sta-
bility of the model.

The color-gradient LBM method uses a fictitious density to capture
the effect of the contact angle (Latva-Kokko and Rothman, 2005), which
was found to introduce numerical mass transfer along the solid-fluid
interfaces (Leclaire et al., 2016; Akai et al., 2018). For a restricted
range of contact angles, this was alleviated by introducing the static
contact angle as a Dirichlet boundary condition in 2D and 3D (Leclaire
et al., 2016, 2017). Another scheme to improve modeling wetting phe-
nomena and reduce spurious currents for the color-gradient approach
was introduced by Akai et al. (2018) (extending the geometrical method
in Xu et al. (2017b) to 3D). The method works based on enforcing the
color-gradient’s direction to match the required contact angle on the
solid boundary. However, this scheme uses the SRT scheme, which can
cause numerical instabilities.

In the pseudopotential method, determining the interaction coeffi-
cient Gc in modeling the phase separation or mixing (Eq. 17) is a
cumbersome step. A stability analysis to test its value is required to
ensure that it is sufficiently high for phase separation between the fluids
(strong repulsive forces), and sufficiently low for numerical stability
(Huang et al., 2007; Ikeda et al., 2014).

Enforcement of the boundary conditions at fluid-solid interfaces is
another challenging aspect. The bounce-back scheme’s accuracy is
highly influenced by the spatial location of solid and fluid nodes and
their proximity to the wall interface (Yin and Zhang, 2012). In addition,
the type of incorporated collision operator can also affect the perfor-
mance of wall treatment in LBM. For instance, employing the SRT
collision operator with the bounce-back scheme may cause errors in
modeling and result in viscosity-dependent permeability. Various
schemes have been introduced for representing boundaries according to
spatial interpolation methods between solid and fluid nodes, however,
they can be prohibitive in terms of computational power and numerical
stability (Yoon et al., 2015; Ramstad et al., 2019).

4.1.3. Smoothed particle hydrodynamics
A fundamental challenge in SPH (and other particle-based tech-

niques) is modeling the hydrodynamic force arising from the merging of
fluid interfaces, as it requires a high number of model particles (TingYe
and CanHuang, 2019). One method to consider the interactions of in-
terfaces was proposed by Hirschler et al. (2017) that is based on the
energy model, relating the surface energy to the kinetic energy. The
model works based on a critical Weber number (relative importance of
inertia to surface tension) to accounts for droplets’ transition from
bouncing to coalescence. Another approach based on CSF for calculating
interfacial forces is using a film drainage model that allows trapped

Fig. 3. Domain discretization and porosity (ϕ) distribution at (A) pore-scale approach, where white is the void space and gray is the solid wall, (B) filtering approach
used in the micro-continuum method, where a cutoff length is indicated according to the REV, and (C) macro-scale approach, where all control volume can contain
both solid and fluid phase (Soulaine et al., 2021b). Note that the indicated control volume in the hybrid- and macro-scale represent regions with different sizes for a
distinct approach.
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particles between two interfaces to drain out (Rahmat and Yildiz, 2018).
A common difficulty in the SPH is the modeling of solid boundaries.

For instance, in the repulsive solid boundary model, an improper cut-off
distance (length at which solid particles start interacting with fluid
particles) can cause either nonphysical penetration of fluid particles into
the solid wall or pressure oscillations. The ghost particles method works
well, however, only for simple geometry, and indicating the ghost par-
ticles’ velocity and location in complex boundaries is elusive (Holmes
et al., 2011; Liu et al., 2012; Tartakovsky et al., 2016; Wang et al.,
2016b).

Another unresolved issue in SPH is imposing prescribed flow and
pressure boundary conditions. Periodic boundary condition, commonly
used in SPH, does not work well in complex flow fields, for instance,
where inlet and outlet geometries are not aligned (Morris et al., 1997;
Zhu and Fox, 2002; Jiang et al., 2007; Tartakovsky et al., 2009).
Different studies tried to address this issue and impose prescribed ve-
locity filed for flowing boundaries (Lastiwka et al., 2009; Hosseini and
Feng, 2011; Federico et al., 2012; Kunz et al., 2016). These new de-
velopments, however, faced challenges such as disagreements between
numerical and experimental results or problems in modeling cases when
flow regimes in transient conditions are needed (Holmes and Pivonka,
2021).

4.1.4. Pore Network modeling
The simplifications underlying PNM—in particular in terms of pore

geometry—greatly reduce its computational cost. However, the trade-
off of these simplifications with accuracy has motivated researchers to
improve PNM by relaxing some of these simplifications. Examples
include combining PNM with other CFD techniques to solve flow
equations (Rabbani and Babaei, 2019; Montellá et al., 2020; Lanetc
et al., 2022), employing machine-learning algorithms for finding pore-
wise conductivities (Miao et al., 2017), and introduction of more real-
istic pore geometries (Wang et al., 2021, 2022, 2023). For instance,
Wang et al. (2022) and Wang et al. (2023) extended PNM to simulate
imbibition / drainage as well as cyclic injection, respectively, for arbi-
trarily structured porous media. The authors discretized the solid sur-
faces into computational nodes, where the interface movement was
modeled by advancing the menisci through pore-scale events, using the
grain-based Cieplak& Robbins model that allows for the introduction of
wettability effects (cf. Holtzman and Segre, 2015).

Extraction of the pore network remains a major challenge and dis-
tinguishing the pore and throat space for the network extraction algo-
rithm is not straightforward (Joekar-Niasar, 2016). For instance,
Bhattad et al. (2011) highlighted the high sensitivity of estimated
capillary pressure curves from quasi-static PNM to the variation in pore
network topology. Network extraction becomes even more challenging
in the presence of multiscale heterogeneity, common in, e.g. carbonates
and fractured rocks. Evaluating parameters such as relative permeability
and capillary pressure are based on the assumption of well-connected
pores on a single scale (Mehmani et al., 2020). This motivated the
development of two-scale (macro- and micro-porosity) PNM, where
networks at more than one pore level are coupled (Jiang et al., 2013;
Mehmani and Prodanović, 2014; Bultreys et al., 2015). Jiang et al.
(2013) presented a numerical construction algorithm for combining
generated networks from CT images of different length scales. Mehmani
and Prodanović (2014) developed a two-scale network generation
approach by using the Delaunay tessellation of grain centers to form the
macro network. Intraparticle void space, i.e. micro networks, were
generated based on a scaling factor and down-scaling extracted macro
network. An image-based method was presented by Bultreys et al.
(2015) for incorporating networks at different length scales by consid-
ering micro-porosity as a continuous medium. The proposed algorithms
by Jiang et al. (2013) and Bultreys et al. (2015) exclude the effect of
micropores that cannot be captured by micro-CT and ignore geometric
details of micropores clusters. The developed method by Mehmani and
Prodanović (2014) produced distorted pores for the cases when a large

grain is in contact with finer grains (Xiong et al., 2016).
For solute transport, various improvements to MCM have been pro-

posed, including assigning volumes to and solving for concentrations in
both pores and throats or using a modified diffusion coefficient (Raoof
and Hassanizadeh, 2013; Seetha et al., 2017; Gong and Piri, 2020). For
instance using an effective pore-wise molecular diffusion which ac-
counts for Taylor-Aris dispersion within throats (Li et al., 2014; Babaei
and Joekar-Niasar, 2016; An et al., 2020b). The simplified assumption of
perfect mixing, while computationally efficient, can lead to considerable
errors at high Pe. In addition, the shearing of solute species inside pore
throats, which occurs due to the parabolic profile of velocity stream-
lines, is also excluded from MCM (Mehmani and Balhoff, 2015a).
Although the Taylor-Aris dispersion coefficient can partially address
shear dispersion in pore throats, its effectiveness is limited due to the
small length of throats (Mehmani and Tchelepi, 2017). A notable
improvement to the perfect mixing assumption underlining MCM is the
Streamline Splitting Method (SSM), using a sub-pore scale description
for transport, representing pore bodies as made of multiple “pockets” of
different concentration values which are affected by the number of inlets
into each pore (Mehmani et al., 2014). Table S1 in Supplementary
Material (SM) provides an overview of the classification and analysis of
the advantages and disadvantages of reviewed pore-scale models.

4.2. Heterogeneity across scales

4.2.1. Field scale applications (large domains)
Structural heterogeneity across scales is an intrinsic feature of

geological porous media, which can lead to scale-dependent, macro-
scopic (averaged) properties e.g. permeability or residence times (Liu
et al., 2015; Muljadi et al., 2016; Aminnaji et al., 2019). The brute force
approach of representing pore-scale processes in very large domains (e.
g. field scale) is prohibitive by computational resources (Lunati and
Jenny, 2006). However, continuum (averaged) models, even with se-
lective grid refinement (Scheibe et al., 2015a), may still overlook crucial
pore-scale details and thus result in considerable errors. Up-scaling, the
“holy grail” of fluid dynamics in general and flow in porous media in
particular, remains an open challenge (Li et al., 2006; Mehmani and
Balhoff, 2015b; Yang et al., 2021b).

The aforementioned multiscale models offer a promising resolution
by solving the flow and transport equations using different methods and
spatial resolution.

4.2.2. Non-fickian transport
The Advection-DIspersion Equation (ADIE) describes solute trans-

port at the Darcy scale. It captures well the transport when the solute
spreads for a sufficiently long time and over a sufficiently large space
compared to that of the flow inhomogeneities (Padilla et al., 1999;
Neuman and Tartakovsky, 2009), such that it samples the entire velocity
field and the transport asymptotically reaches the so-called Fickian
regime (and concentration along the flow follows a Gaussian distribu-
tion) (Puyguiraud et al., 2021). Conversely, the ADIE fails to describe
transport (e.g. dispersion and breakthrough) when the solute spreading
exhibits a non-Gaussian breakthrough curve with long tails, a phe-
nomenon denoted as non-Fickian or anomalous transport (Berkowitz
et al., 2000; Cortis and Berkowitz, 2004; Zhang and Benson, 2008). Non-
Fickian transport is promoted by spatial heterogeneity, as well as time-
dependent velocity fields (Nissan et al., 2017; Nissan and Berkowitz,
2019). It is also enhanced by partial saturation: at given medium
properties for which saturated transport is Fickian, reduction of the
saturation can lead to strongly non-Fickian regimes, due to the devel-
opment of highly non-uniform velocity fields and diffusion-controlled
mass exchange between high- and low-velocity fields, termed mobile
(or flowing) and immobile (trapped) (Guillon et al., 2013; Jimenez-
Martinez et al., 2020; Velásquez-Parra et al., 2022). Fig. 4 displays so-
lute migration at saturated (Fig. 4a) and unsaturated (Fig. 4b) conditions
for a correlated porous medium. Fluid-fluid boundaries create regions of
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high- and low-velocity fields, limiting the available pathways for solute.
This leads to an early breakthrough time (compared to the saturated
case) with non-Fickian tailing behavior (Fig. 4c).

Anomalous spreading can be sub- or super-dispersive, that is slower
or faster than predicted by Fick’s law, respectively. These regimes are
characterized by a power-law scaling of concentration variance, σ2 ∼ tα,
where α (unity for Fickian) is smaller or greater than unity for sub- and
super-dispersive, respectively (Zhang et al., 2012; Guillon et al., 2014).
Super-dispersive transport is more common in highly heterogeneous
domains such as fractured media and is mostly controlled by the pref-
erential pathways with high-velocity fields. Different causes have been
suggested for the sub-dispersive behavior, including mass transfer be-
tween low- and high-velocity zones or adsorption/desorption of the
tracer by the solid phase (Guo et al., 2021).

Various methods were designed to capture anomalous and scale-
dependent transport, using history-dependent transport equations with
temporal and spatial nonlocality. Examples include Continuous Time
Random Walk (CTRW) (Berkowitz et al., 2006; Noetinger et al., 2016;
Kutner and Masoliver, 2017), Multi Rate Mass Transfer (MRMT)
(Haggerty et al., 2000; Tecklenburg et al., 2016; Guo et al., 2020b), and
Fractional ADIE (FADIE) (Zhang et al., 2009; Garrard et al., 2017; Qiao
et al., 2020). These methods use a continuum statistical description
which is not pore-scale modeling and therefore are not discussed further
here; for further details see e.g. Neuman and Tartakovsky (2009); Lu
et al. (2018); Guo et al. (2021).

4.3. Impact of fluid displacement on solute transport

4.3.1. Dispersion and mixing vs. saturation
Dispersion vs. saturation. Contrasting results were found regarding the

effect of saturation on the dispersion coefficient, making it a contro-
versial, open topic. While some studies found an inverse relationship
between dispersivity and carrier phase saturation (Padilla et al., 1999;
Nützmann et al., 2002; Sato et al., 2003), others showed the opposite in
undisturbed soils (increasing dispersion with saturation) (Hammel and
Roth, 1998; Vanderborght and Vereecken, 2007). A potential explana-
tion for the inverse relationship is that lower saturation amplifies pref-
erential pathways, which in turn enhance spreading and dispersion. The
opposite effect was explained by the positive correlation between the
relative permeability and flow rate of the carrier fluid, directing flow to
bigger pores. There were also observations of a non-monotonic rela-
tionship between dispersion and saturation (Birkholzer and Tsang,
1997; Raoof and Hassanizadeh, 2013; Karadimitriou et al., 2016, 2017;

Gong and Piri, 2020; Zhuang et al., 2021; Dou et al., 2022), linking flow
non-uniformity (impacted by variation in saturation) and dispersion
coefficient.
Mixing vs. saturation. Mixing, affected by diffusion and local

spreading (dispersion) in a relatively homogeneous medium, is also
controlled by the stretching and folding of fluid elements associated
with the complex structure of the medium (and hence velocity) in more
heterogeneous media (Dentz et al., 2011; Heyman et al., 2020). An
elaborated description of mixing is beyond the scope of this review, and
interested readers can refer to a dedicated review study by Dentz et al.
(2022). It is worth noting, however, that the distinction between mixing
and dispersion is nontrivial (Le Borgne et al., 2015) and that even when
spreading is Fickian mixing can become non-Fickian (Le Borgne et al.,
2010; Boon et al., 2017).

Partial saturation has an intricate effect on mixing (Markale et al.,
2021). Decreasing saturation typically increases the heterogeneity of
velocity fields, promoting preferential pathways with shorter residence
times for solute particles that reduce mixing (Ursino et al., 2001; Kapetas
et al., 2014). However, preferential flow can promote concentration
gradients between different regions, enhancing diffusive mass flux and
thus mixing (Jimenez-Martinez et al., 2015; Jimenez-Martinez et al.,
2017). Jimenez-Martinez et al. (2015) concluded that there could be
different mechanisms that affect mixing at unsaturated porous media:
(1) development of preferential flow pathways that create low- and
high-velocity zones; (2) non-Fickian behavior that sustains concentra-
tion gradients; and (3) coalescence of pathways due to the presence of
very high-velocity spots. Other studies also highlighted the decisive role
of the mass exchange rate between flowing and trapped regions and its
dependence on concentration gradients, the geometry of the pores, and,
in particular, the interfaces between these regions (Haggerty et al.,
2004; Karadimitriou et al., 2016; Aziz et al., 2018; Hasan et al., 2019; An
et al., 2020b).

4.3.2. Three-dimensional effects
A quasi-2D domain in the form of a thin gap (of a much smaller

length than the dimensions in the perpendicular plane) is widely used
both experimentally and computationally. Beyond simplifying design,
measurement, and visualization in experiments and reducing compu-
tational complexity and run-time, reducing the dimensionality also can
simplify the physics and thus allow more fundamental understanding e.
g. of the effect of pore structure. The confinement of flow in the third
dimension can significantly impact the flow field and interface config-
uration, especially when the thickness is comparable to the pore aper-

(a) (b) (c)

Fig. 4. Solute transport at single and multiphase conditions in a porous medium with spatially-correlated pore sizes, simulated with OpenFOAM using VOF for
capturing the fluid-fluid boundaries. Solute concentrations for the saturated case (a) at tD = 50 and for the unsaturated case (b) at tD = 37 show a marked difference:
in the latter (b), the existence of flowing and trapped regions is evident. These differences are manifested in breakthrough curves (c), with long tails and early arrival
time in the unsaturated case. Note that in (b) regions with no concentrations (white) are either solid phase or non-carrier fluid.
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tures (Chen et al., 2018b). To account for this effect in a 2D model
without resolving the full 3D pore geometry, an additional Darcy-like
term was introduced to the NS momentum equation (Horgue et al.,
2013; Ferrari et al., 2015),

∂ρu
∂t +∇.(ρuu) = − ∇P+∇.

(
μ
(
∇u+∇uT

) )
+ ρg + Fs − u

μ
k

(30)

The permeability in Eq. 30 is expressed as a function of the gap
thickness b, as k = b2/12. The interface curvature at a local point is the
sum of curvatures in the direction of flow (κxy) and perpendicular to it
(κz). Assuming capillary equilibrium, the interface curvature is deter-
mined by

κ = − ∇⋅n −
2
b
cosθ (31)

where θ is the contact angle of the interface to the solid boundary.

4.3.3. Wettability effects
One of the biggest challenges in modeling fluid displacement is

representing the surface forces associated with the wetting of the solid
by the fluids. Methodologies describing wettability include lubrication
theory, pairwise interaction forces, and contact angle (Huber et al.,
2016; Guo et al., 2020a). In capillary-controlled displacement, a thin
film can be deposited on the solid wall, prohibiting direct contact of the
non-wetting phase with the solid. The sub-pore scale dimension of the
film makes accurate modeling of its evolution computationally prohib-
itive. The lubrication approximation is a sub-pore scale model that
solves a nonlinear partial differential equation for the film evolution
(Roman et al., 2017), which has been also incorporated in a multi-phase
flow model (Qin et al., 2020).

The most common description of wettability is via the contact angle
between the fluids and the surface. Most studies of porous media
consider a static (equilibrium) contact angle, namely identical
advancing and receding contact angles, ignoring the effect of hysteresis
related to the direction of advancement or flow velocity (dynamics)
(Rabbani et al., 2017; Friis et al., 2019; Rabbani and Seers, 2019;
Ambekar et al., 2021b; Jettestuen et al., 2021; Yang et al., 2021c), in
contrast with the more picture exposed by experimental and theoretical
studies showing different advancing and receding contact angles (Lam
et al., 2002; Chibowski, 2007) as well as contact angle variations in both
space (due to the surface roughness and chemistry) (Alhammadi et al.,
2017; AlRatrout et al., 2017; Nazari et al., 2022) and time (Bandara
et al., 2016). Neglecting these aspects can lead to discrepancies in the
predicted displacement patterns (Tembely et al., 2020).

4.3.4. Sensitivity to phase distribution
To exemplify the appreciable effect of uncertainty in interface

configuration and the resulting fluid velocity fields on solute transport,
we compare simulations in four idealized media of identical pore ge-
ometry which vary by a single pore occupancy (e.g. resulting from snap-
off), corresponding to a minute variation in phase saturation (less than
0.3%), cf. Fig. S1 in SM, Fig. 5a shows pattern C. Simulations (run in
OpenFoam) of pulse injection were conducted for the four patterns at
Pe = 80 (see numerical details in SM). While the removed pores’ occu-
pancy hardly affected saturation, their effect on phase connectivity was
significant. This, in turn, strongly affected the tortuosity of streamlines
and solute dispersivity. Consequently, the (macroscopic) breakthrough
curves show a striking ~20% increase in the peak concentration
(Fig. 5b), and longer tails of high concentration in the less-connected
patterns (Fig. 5c), indicating a progressively more non-Fickian
behavior caused by gradual washout of the solute from the medium.
The non-Fickian behavior reflects the mass exchange between high- and
low-velocity regions, which happens primarily by diffusive mass flux.
This remarkable difference in transport can be explained quantitatively
via the contributions of different regions, comparing the probability
distribution of pore velocities (or equivalent pore-scale Peclet number,
see SM). This reveals the emergence of a low velocity, diffusion-
controlled (“dead-end”) region.

5. Concluding remarks

Advancements in pore-scale modeling techniques have improved our
understanding of how solutes migrate in partially-saturated porous
media. Nonetheless, several pervasive challenges remain, including
nonphysical (“spurious”) fluxes, and representation of boundaries or
interfaces and the interfacial forces acting there, in particular wetting.
These challenges in simulating multiphase flow are shown here to have a
meaningful impact on the prediction of solute transport in unsaturated
conditions.

The choice of pore-scale modeling method depends on the required
resolution and the trade-off between accuracy and computational cost,
which can vary among applications. Highly resolved, direct approaches
(CFD) provide a reasonably accurate pore-scale description of the flow
field. However, even with the rapidly increasing computational power,
simulations of a sufficiently large domain to capture multiscale hetero-
geneity are expected to remain prohibitive, in particular, in geosciences
where such heterogeneity is inherent. PNM offers a substantially
increased computational efficiency, allowing up-scaling to sample and
possibly to the field scale. However, this is achieved at the expense of
overly simplified pore geometries and pore-level mixing. Multiscale

(a)
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(b) Pattern A

Pattern B
Pattern C
Pattern D

0 0.5 1 1.5 2
10-6

10-4

10-2

100

(c)

Pattern A
Pattern B
Pattern C
Pattern D

Fig. 5. Sensitivity of solute transport to uncertainty in multiphase fluid displacement is demonstrated by comparing transport in four almost identical patterns of the
carrier phase. The four patterns, consisting of 6 straight and 3 diagonal channels, differ by a single pore occupancy; in pattern A, all channels are clear, in pattern B,
one diagonal channel is obstructed, in pattern C, two diagonal channels are obstructed (shown in Panel (a) with red arrows), and in pattern D, only straight channels
are clear. The flow direction is from left to right (black arrows). Solute breakthrough curves at the outlet are shown in linear (b) and logarithmic (c) scales. We use
dimensionless time τ = tV0/Lϕ, where t is time, V0 is the inlet velocity, L is the domain length, and ϕ is porosity. Blockage of pathways, which causes dead-end
regions, is shown to increase the concentration peak (b) and the concentration tails (c), exhibiting non-Fickian behavior due to the solute washout from stagnant
areas; observe the well-defined exponential tail in pattern A. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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models are a promising compromise between the scale of simulated
domains, the level of details in regions where they matter the most, and
thus computational cost. Finally, further improvement of techniques
requires validation against both pore-scale experiments (Datta et al.,
2023)) as well as the larger, macroscopic scales from the laboratory
(Flemisch et al., 2023) to the field (Dentz et al., 2020) scales.
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