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Abstract 

Recent climate observations and trends dictate multiple possibilities of future overall 

climate depending on the actions taken in the present. Some views can be optimistic, 

believing that human beings will soon make the necessary changes required for contin-

ued survival, while others are more pessimistic, believing that there is not much that 

can be done, and that life will end altogether on the planet as Earth slowly converts 

into a hot and barren wasteland. The answers are rarely clear-cut, but given the ability 

of human beings to research and understand the driving factors behind such processes, 

the possibility of optimizing our climate conditions for all of earth’s inhabitants is al-

ways an option. It is for this reason that there are many who try to improve these 

conditions as best as they can, even if they are unsure if their eforts produce any 

tangible long-term results. To optimize our climate processes therefore, it has become 

important focus on long-term sustainability and renewal of optimal environments, and 

improvement of disaster risk resilience, especially for the more immediate climate risks. 

This study intends to contribute to this long-term climate management, by frst 

analysing the history, developments, and trends underlying climate processes, mod-

elling these processes mathematically for the sake of comprehensiveness, and fnally 

applying said models to not only improve climate-based catastrophic risk loss mod-

elling, but also to price and analyse extreme disaster risk fnancing instruments. 

In this manner, the study ensures a fuller view of climate processes and their in-

teractions, generates more efcient catastrophic loss models, and improves model ap-

plicability to incorporate newer trends in climate change and climate risk fnancing, 

while ensuring better model efciency in terms of both computational performance and 

tractability. In this manner, the study thus contributes to the very important need 

for better disaster resilience among communities and societies, a key goal of recent 

climate agreements, including the Sendai Framework for Disaster Risk Management 

(SFDRR). The results established here are useful for both practitioners, academics, 
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and development-based organisations handling issues of climate and disaster risk, dis-

aster fnancing, and applied mathematics. In addition, any individual interested in 

climate impact, mitigation and adaptation can derive value from other elements of the 

study beyond just its results, including the historical and geological connections that 

have been discussed. 

To this efect, therefore, the study focuses on the application of mathematical opti-

mization, with the Expectation-Maximization (EM) algorithm in particular, to improve 

climate-based catastrophic loss modelling and pricing of catastrophic disaster risk f-

nancing instruments, and the catastrophe bond in particular. Three main studies are 

conducted, with the frst aiming to assess the catastrophe bond market’s efciency by 

analysing the ‘fairness’ of its issuer-specifc prices through multi-level random efects 

modelling, the second to provide a better mathematical optimization model for the 

heavy-tailed nature of catastrophic losses through fnite mixture modelling, while the 

third and fnal study proposes a model that better incorporates dependence single-

peril dependence structure in observed catastrophic losses by applying hidden Markov 

models. Apart from these three main studies, historical timelines and developments 

in climate and fnancial disaster risk management are also extensively discussed in the 

remaining sections. 
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Chapter 1 

Introduction 

“Unless there is a global catastrophe, mankind will remain a major environmental 

force for many millennia. A daunting task lies ahead” - Paul Crutzen, Nobel Prize 

winner and originator of Anthropocene as an epoch 

In the year 2000, Nobel Prize winner Paul Crutzen and Eugene Stoermer proposed 

an epoch change, from the Holocene to the Anthropocene, a new geological time unit 

for which human activities had the most signifcant role in the formation of prevailing 

climate systems (Crutzen and Stoermer, 2021). Over twenty years since their recom-

mendation, the proposal has gained much traction, with the increase in supporting 

evidence (see e.g., Ring et al., 2012; SOQS, 2019; Milfont et al., 2021) and the forma-

tion of a special working group to determine the specifcs of such an epoch, including 

its estimated start date. The Anthropocene Working Group, as it is called, recently 

determined the start date of this epoch to be around 1950 CE, based on bottom-layer 

evidence from Crawford Lake in Canada (SOQS, 2019). 

While the formal application for this new epoch is still under review, the theory 

is seeing much support from the scientifc community, and even the world at large, 

especially as human-origin climate change efects continue to be observed worldwide. 

The soaring of greenhouse gas concentrations in the atmosphere within the past century 

and its resultant efects of the planet’s aggregate temperature has also provided further 

proof for this phenomenon (see e.g., Brown, 1994; Nordell, 2003; Ibrahim Dincer, 2013; 

Intergovernmental Panel on Climate Change, 2018). As global warming is now linked 

to many of the observed climate extremes and trends including glacial melts and rising 
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sea levels, heat waves, droughts, and fash foods (see e.g., Intergovernmental Panel on 

Climate Change, 2018; NASA, 2023); the reality of such a human-induced long-term 

climate efect is becoming increasingly difcult to dismiss. Currently, the only leftover 

scepticism has been shown to be a consequence of behavioural factors like the roles of 

gender, political conservatism, and other system justifying ideologies in limiting the 

acceptance of climate change evidence (see e.g., Milfont et al., 2021). 

This study proceeds with these observations in mind, using these developments 

to assess the current state of our planet’s resilience, and our disaster risk resilience 

tools. It assesses the efectiveness of the available disaster risk fnancing and insurance 

tools, with greater emphasis on insurance-linked securities, proposed to fll the gap 

in funding observed in the early 1990s after the occurrence of extreme loss events 

like Hurricane Andrew and the Northridge Earthquake (Froot, 1999a). In addition 

to assessing these resilience tools’ efectiveness, the study also proposes more efective 

valuation techniques to incorporate sources of variability and changes or modifcations 

in catastrophe loss distributions arising as a result of increased frequency and severity 

of loss events, seasonality, and dependence for catastrophic events. 

To achieve these aims, this introduction fows through four key subsections; the 

frst subsection focuses on the background and history of climate processes and events, 

trends, and climate research. The second subsection discusses the key challenges that 

are encountered in conducting climate research, and the research gaps observed in 

climate research, more especially in catastrophic events’ loss modelling applications 

under current climate (change) trends. The third subsection discusses how this study 

intends to address the identifed gaps, with the use of catastrophe loss modelling and 

valuation models that rely on expectation-maximization algorithms. We discuss three 

main issues; and their proposed solutions, with each question addressed in turn. Fi-

nally, the chapter concludes with an impact and contribution subsection; discussing 

the importance of this research projects to not only researchers and academics, but 

also the wider society, including to insurance institutions and security/stock analysts; 

governments and individuals seeking catastrophic risk insurance; and supranational 
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organizations seeking to protect vulnerable communities from the efects of climate 

change and increased event risks. 

We now begin with the background of climate events and processes, linking this 

background with the state of current climate research. Whether formalised as a geolog-

ical time unit or not, the Anthropocene’s evidential existence still serves as proof that 

the planet’s future climate processes will be heavily and disproportionately infuenced 

by human activity in the future, even with the current proposed changes to reduce this 

impact (see e.g., Maizland, 2022). As human energy consumption needs continue to 

grow (Ruijven et al., 2019), those practices aimed at meeting this energy demand will 

continue to place further strain on the planet, especially if said activities continually 

use pollution-heavy sources to achieve their targets. As an example, Mongolia’s wors-

ening winters due to climate change have necessitated an increase in the use of coal 

as a heating source for many households, especially those in its capital Ulaanbaatar, 

causing some of the worst pollution to the city and further exacerbating global warm-

ing (UNDP, 2023). As rising energy needs compete with fnite resources, the efects 

of human-induced climate change will continue to be extensively felt and costlier to 

manage. Vulnerable communities are especially at risk, as most are normally already 

weakened by internal economic and socio-political events including land degradation, 

war, and previous famines, a phenomenon observed especially among nomadic herder 

communities like the Somali (see e.g., ICRC, 2021). 

All is not completely bleak though, as climate observations have also shown that it 

is possible to survive this impending reality, as solutions still exist. In some cases, it 

has also been shown that conditions can be sustainably improved once the necessary 

changes are made (see e.g., Intergovernmental Panel on Climate Change, 2018; Quéré et 

al., 2021). In particular, the reduction in greenhouse gas emissions observed during the 

Covid-19 pandemic (Quéré et al., 2021) when many parts of the world were locked down 

signifes that it possible to reverse these warming efect. In addition, an observation 

of the current environmentally-thriving states of previously heavily degraded ancient 

civilization settlements of the ancient Maya, Inca, and the Khmer of Cambodia, also 
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further proves that nature possesses an outstanding level of resilience, and only requires 

time away from human degrading activity. In fact, even the most toxic of environments, 

like the radiation polluted site of Chernobyl in Ukraine, has still managed to sustain 

some life since its abandonment after the 1986 disaster (Kovalchuk et al., 2004). 

The planet requires time to sustain itself but rising energy demands have made it 

almost impossible for human beings to allow it the required time. Vulnerable commu-

nities, in particular, have rarely had a choice but to survive, as they lose not only their 

livelihoods due to increasingly unsupportive external environments, but are also then 

forced to migrate to urban centres (see e.g., ADB, 2021; ICRC, 2021; UNDP, 2023). 

These migrations then raise the urban populations of their cities of settlement, which 

in most cases further stresses the urban support system’s resources (Pande, 2023). 

Despite this, many have recognised the need to restore a planetary sustainable state 

and have slowly begun enacting measures aimed towards accomplishing this (see e.g., 

Intergovernmental Panel on Climate Change, 2018; ADB, 2021; ICRC, 2021; UNDP, 

2023). 

Governments, supranational organisations, individuals, and other humanitarian or-

ganisations have been at the forefront; enacting climate sustainability policy, climate 

agreements, or making deliberate choice towards protecting the earth for its inhabi-

tants, both present and future (see e.g., Intergovernmental Panel on Climate Change, 

2018; ADB, 2021; ICRC, 2021; UNDP, 2023; Vesnic, 2023). Despite this, these stake-

holders often have signifcant internal constraints that limit just how much they can 

reasonably accomplish; including the prioritization of basic need provision for their cur-

rent populations or dependents; and a forced shift in focus to only providing for their 

local communities when resources are limited by other socio-political factors like wars; 

with an example being the recently observed grain shortages as a consequence of the 

Russia-Ukraine war (see e.g., Ben Hassen and El Bilali, 2022; Lin et al., 2023). Some 

governments e.g., the Indian government (see e.g., Ivanov et al., 2022) have moved to 

limit their grain exports, further exacerbating the grain crisis in import countries. The 

increased pace and resultant increase in costs associated with climate-based events has 
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also signifcantly complicated, and in some cases, impeded mitigation and adaptation 

eforts (see e.g., Froot, 1999b; Vesnic, 2023). 

The pace of climate events has meant that there is often little time to recover and 

pool resources before the next event hits, and that countries can no longer fully rely 

on humanitarian aid to meet their recovery needs, as this requires time to be sourced. 

Aid also seems to favour more ‘trending’ events over long-standing events. It has been 

noted, for example, that the eforts to gain aid for the Somalia famine in 2022, which 

has been shown to have led to over 43,000 deaths and 2.9 million internal displacements 

(WHO, 2023), were complicated as most aid shifted towards the Russia-Ukraine war, 

leading the Somali people even more vulnerable to the associated health risks. In 

addition, aid is dependent on said disasters not afecting the world on a more global 

scale, or on the absence of multi-disaster events that would afect both the donor and 

the receiver at the same time. This unreliability of fnancial aid then forces a protection 

seeker to look elsewhere for their disaster funding needs. In the past, this has mostly 

been via the use of the insurance markets. 

This brings us to our second subsection, which focuses on disaster-based resilience-

maximizing solutions that have historically been available to us; and why these solu-

tions have, in the past three decades especially, increasingly begun to prove insufcient. 

We also briefy discuss the fnancial security that was introduced to cover this gap in 

extreme event insurance in the early 1990s, i.e., the catastrophe bond. We then ad-

dress the challenges faced in the modelling of underlying catastrophic loss processes for 

such/similar instruments, and why such challenges need to be addressed for the con-

tinual reliability of such instruments as viable solutions for funding disaster recovery. 

For centuries, insurance and reinsurance have been the most popular way to fund 

uncertain and extreme events (Trenerry, 1926; Coppola, 2006; Holland, 2009; Swiss 

Re, 2017). In recent decades, however, the increased frequency and severity of extreme 

events has overwhelmed the industry, making it difcult for the industry to ofer com-

prehensive insurance for catastrophic events without risking their own solvency in turn. 

This capital fight observed especially after extreme events like Hurricane Andrew in 
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1992 and the Northridge earthquake in 1994 was the motivation behind an alternative 

source of capital that could better cover the insurance needs of protection seekers. The 

Insurance Linked Securities (ILS thereafter) market and its catastrophe bond market 

was developed as a result (Swiss Re, 2012). 

Though small in scale when compared to traditional insurance and the reinsurance 

markets, its ability to provide an alternative source of capital when traditional markets 

are strained has made the ILS market, and the catastrophe bond market particularly, 

a key source of extreme-event risk fnancing (see e.g., Froot, 2001; Cummins, 2008; 

UNCDF, 2021). The market provides the necessary funding to aid short-term recovery 

eforts, whose costs have been on the rise with the increased frequency and severity of 

catastrophic events. Its key users have included both protection providers like insur-

ance and reinsurance companies, and pure protection seekers, including governments, 

non-governmental organizations, and infrastructure-at-risk companies, including util-

ity companies (Artemis, 2023). Investors in such fnancial assets are drawn from a wide 

range of felds, with institutional investors making up most of them. 

The catastrophe bond market has been in existence since the early 1990s, and 

continues to broaden in both size and number of issues, as the catastrophe bond has 

proven the most popular of the available ILS instruments (UNISDR, 2004; Cummins, 

2008; Artemis, 2023). As the instrument becomes one of the most important sources of 

extreme disaster funding, modelling eforts to expand its pricing capabilities under the 

changing climate and loss trends are becoming increasingly necessary. This is because 

the change in pacing and size of observed losses must be efciently incorporated in 

order for these instruments to continue to be a reliable source of disaster risk fnancing. 

These increased frequencies, volatilities in both losses and prices, and loss dependencies, 

are just but a few of the factors to be incorporated into pricing models to allow for 

comprehensive and fair pricing. 

The challenge arises, however, in the structure of the modelling process itself. The 

catastrophe bond pricing process, for example, applies comprehensive models that 

already incorporate other underlying models for each of the underlying loss severity 
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processes, loss frequency processes, interest rate processes, and fnally the bond pricing 

model itself (see e.g., Vaugirard, 2003a; Vaugirard, 2003b; Burnecki et al., 2005; Ma 

and Ma, 2013; Shao et al., 2017; Burnecki et al., 2019). The number of underlying 

variables increases the complexity and thus intractability of the modelling process, 

making it difcult to incorporate further trends that would further complicate the 

pricing process into the model. The increased computational complexity and model 

intractability can also render such models virtually unsolvable, as many of the formulas 

lack open solutions. Incorporating any trends or changes in extreme event processes 

can therefore prove to be an especially difcult task for these already complicated 

instruments. 

This can be costly to protection seekers, as the inability to comprehensively model 

their key sources of risk could mean a failure to access recovery funding for their 

changing needs. In addition, investors have been shown to be unwilling to fund perils 

they do not fully understand or fund them at exceptionally high risk premiums in the 

catastrophe bond market (Bantwal and Kunreuther, 2000). 

Having established the catastrophic loss modelling challenges, and why it is neces-

sary that these be addressed, we focus this chapter’s third subsection on the proposition 

of models that can efectively address the previously discussed issues. We discuss three 

main challenges and propose models to address each in turn. This study contributes 

towards improving the efciency of the modelling process underlying catastrophe bond 

loss modelling and pricing, with the goal of improving its adaptability to observed 

loss trends and climate processes. The study focuses especially on improving the com-

prehensiveness, computational power and tractability of heavy-tailed loss models, loss 

dependency models, and protection seekers’ pricing volatility models. 

This is accomplished through the application of Expectation-Maximization (EM) 

algorithms, a class of local optimization algorithms formally proposed by Dempster et 

al. (1977) for the modelling of latent variables or missing data problems, and extensively 

used in other applications, including in gene sequencing, image processing, pattern 

recognition, and linguistics, among others (see e.g., Couvreur, 1997; Rabiner, 1989). 
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Since the three aforementioned efects of (i) volatility, (ii) heavy-tail characteristics, 

and (iii) dependency can be structured as missing or latent variable problems, the EM 

algorithms provide efcient and robust techniques to allow the incorporation of such 

efects without signifcantly afecting model tractability and complexity. These three 

main problems are considered in this study, and their respective EM-based models are 

further discussed below. The frst efect considered is the presence and extent of pricing 

volatility in the primary catastrophe bond market for bonds with similar underlying 

characteristics but issued by diferent cedents. In an efcient market, these prices should 

be similarly priced despite their diferent issuers. This is because a catastrophe bond’s 

risk stems not from the characteristics of the issuing party, but from the underlying 

catastrophic event and its risks, including its frequency and severity. Any signifcant 

observed volatility would then imply that issuer’s reputation and standing within the 

catastrophe bond market still bears weight, with investors inadvertently penalising 

newer and less consistent issuers over older and more consistent issuers. This would 

further prove that the catastrophe bond market is still inefcient to some degree, with 

this specifc type of inefciency more likely caused by behavioural factors, as previously 

discussed by Bantwal and Kunreuther (2000). 

This efect is tested in the frst empirical chapter, Chapter 5 , using a large dataset 

of primary catastrophe bonds issued from the early stages of the market, i.e., January 

1997 and until March 2020. The pricing volatility among issuers is assessed through 

a proposed random efects model (an application of Expectation-Maximization algo-

rithms to variance component analysis), which analyses the variations in catastrophe 

bond premiums introduced by the diferences between issuers. The results indicate 

that this efect exists and is signifcant. The testing is also extended to specifc issuer 

characteristics, and the efect is found to be stronger (i) for smaller issuers based on 

issue size, (ii) for less consistent issuers based on their years of issue in the primary 

market, and (iii) for issuers whose primary business is insurance, as opposed to those 

whose primary business is reinsurance of a combination of primary businesses, includ-

ing insurance, reinsurance, general risk management and consulting, labelled here as 
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multiline issuers. 

The second issue we examined and is covered in Chapter 6 , deals with the improve-

ment in the modelling of heavy-tailed catastrophic losses for the valuation and pricing 

of disaster risk fnancing instruments, that is, the catastrophe bond. This is accom-

plished by the proposition of an EM-based approximation technique based on fnite 

mixture modelling for Property Claims Services (PCS)’s industry loss data spanning 

the period beginning January 1985 and ending in April 2014. 

The approximation model is applied to fnd the mixture distribution that best suits 

such heavy-tailed data from a set of heavy-tailed and general distributions; both for 

frequency distribution estimation and severity distribution estimations. The resulting 

model, which in this case is found to be the 2-component log-normal mixture for loss 

severity and the 3-component Poisson mixture model for the loss frequency, is then used 

to generate aggregate loss values that form the basis of the catastrophe bond pricing 

model. Finally, these results are applied to price two catastrophe bonds with diferent 

bond payof functions and their prices plotted on 3-dimensional plots. The model is 

then compared with other similar, but non-EM-based mixture models that have been 

applied for the modelling of heavy-tailed data, including composite mixtures and pure 

composite models, and found to possess superior ft characteristics, among other factors 

including estimate stability and reliability, fexibility, and computational efciency. The 

chosen model’s ft statistics on a diferent but similarly heavy-tailed dataset (out-of-

sample data) are also compared with these non-EM-based mixture models and found to 

be superior. This proves that the model is consistent in its optimization of heavy-tailed 

data regardless of the dataset considered and can be reliably used in real practice. 

The third and fnal issue this study tackles in Chapter 7 is the modelling of de-

pendencies in catastrophe losses over time, especially compounded by the observed 

climate-based and demographic impacts on extreme event loss frequencies and loss 

severity. The independence and identical distribution assumption, commonly used 

to simplify modelling processes, is discarded, and our loss processes are assumed to 

neither be independent nor identically distributed. The loss process is assumed to 
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display both dependencies over time and seasonality, and this is tested and modelled 

by the proposed Baum-Welch (a special case of Expectation-Maximization(EM) algo-

rithms) algorithm-based Hidden Markov Model. This standardized approach models 

loss clusters generated from such dependent and non-stationary processes as catastro-

phe ‘states’. Using single-event data from Property Claims Services (PCS), the pres-

ence, extent, and distribution of these clusters is established through extreme value 

techniques. Hidden Markov Models are then used to identify the optimal dependent 

mixture models for both loss frequency and loss severity. To test this approach, we use 

a fnal sample of 3143 observations that consist of isolated meteorological event data. 
1 The meteorological event data covers, for example, hurricanes, tropical storms, and 

other wind and thunderstorm events. 

A number of both heavy-tailed and general distributions are tested with the most 

optimum loss models found to be the three-component Poisson dependent mixture for 

the loss frequency and the four-component log-normal dependent mixture for the loss 

severity. The dependent mixture Poisson model’s results are then compared to a more 

common Poisson-based frequency model, i.e., the non-homogeneous Poisson frequency 

model based on the peak-over-threshold approach, with the latter’s plots found to be 

a worse ft for the data compared to the dependent Poisson mixture model. Finally, 

a compound Poisson Markov-dependent mixture model is generated for the chosen 

distributions and aggregate losses generated from the model are used as input for the 

accompanying catastrophe bond valuation process. 

The three models applied in these three assessments (i.e., Chapter 5, Chapter 6, 

and Chapter 7) prove the efciency and applicability of EM-type algorithms to heavy-

tailed problems, with improved ft statistics and stability of estimates when compared 

to similar Newton-Raphson based models. 

Lastly, in this chapter’s fourth and fnal subsection, we discuss the value and impact 
1The selected dataset is drawn from a larger original dataset of 3951 individual observations that 

further included non-meteorological events including earthquakes and wildfres from the US-based 

Property Claims Service (PCS) 
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of this study to numerous stakeholders and the wider society. In this subsection, a case 

is made for why this study’s contributions have a place in furthering our eforts towards 

the improvement of overall societal conditions, especially with regards to strengthening 

our disaster risk resilience capacities. 

We begin by assessing the impact of this study on extreme event protection-seekers. 

These include individuals seeking to insure themselves from the efects of extreme 

events, governments seeking to boost resilience among their societies and supranational 

organisations seeking to ensure marginalised and vulnerable communities are not left at 

risk, especially since they normally bear the greatest losses due to conditions stemming 

from the lack of recovery and insurance funding and other resources when such disasters 

occur. 

In times of increasing frequency and severity of catastrophic losses, it is especially 

important that protection-seekers can not only access such funding, but also access it 

at fair prices for the market to truly contribute towards improving insurance capacity 

for those at risk. This is as opposed to adding higher costs to already costly events 

because of mispricing or unreliable pricing risks. This study contributes to improving 

this outreach and access to funding for all those that may need such protection by 

proposing models to identify, quantify and improve the valuation of catastrophic loss 

processes. 

The second group of stakeholders are the insuring institutions. These include in-

surance and reinsurance companies. As extreme events become more prevalent, these 

insurers fnd themselves having to struggle to maintain their solvency. As the princi-

ples of pooling and diversifcation begin to fail due to risk and loss concentration, the 

concept of insurance becomes difcult to proftably sustain for the insurer. Capital 

fight and funding limitations brought on by these increased extreme event risks also 

pose a challenge to traditional insurers. Under such conditions, there is a growing need 

to fnd and provide extended insurance funding alternatives, especially if the goal is to 

ensure the survival of such institutions. 

Financial markets, through insurance-linked securities and especially catastrophe 
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bonds have evolved to fll this gap. Yet these markets are still young and represent only 

a fraction of the mainstream insurance/reinsurance markets. Prior studies to improve 

valuation and product structuring, including this current study, contribute towards 

making such markets more accessible for all that may need its protection, especially in 

times where conventional insurance fails due to the nature of such losses. 

Thirdly, we discuss the importance of this thesis to an alternative group of pro-

tection sellers not in the direct business of providing insurance, that is the security 

market investors. These are stakeholders whose objectives include seeking suitable 

returns on investment and identifying viable and niche return sources for themselves 

and for those companies, institutions, or individuals whose funds they manage, as well 

as seeking sources of diversifcation for their investments to minimize their underlying 

risk of their investment portfolios. 

Insurance-linked security markets are known to be a great source of diversifcation 

as their returns are typically uncorrelated with those of other fnancial market sectors 

(Froot, 2001; Cummins et al., 2002; Cummins, 2008). Such markets also provide higher 

returns due to the riskier nature of the tradable instruments, making them a suitable 

investment for investors that seek high returns and potential speculators. Our study 

into improvement of valuation of insurance-linked securities is of importance to all 

investor seeking to understand the risk-return tradeofs for these types of markets and 

tradable fnancial assets. 

Finally, we discuss two groups of stakeholders who may perhaps be the most keenly 

interested in this study and its results. We begin with valuation companies and in-

vestment banks involved in insurance-linked securities’ underwriting processes. The 

analysis, results and conclusions of this thesis are most directly useful to these end 

users since we are working under similar objectives, that is to provide a more accurate 

and suitable valuation process for such instruments. In line with the objective of this 

thesis, these institutions seek to gain and apply the information they gain or collect 

on catastrophic events’ losses and occurrences to optimize the creation and valuation 

of catastrophic fnancing and insurance options for all the previously discussed stake-
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holders. They also seek to ensure prices refect true conditions as best as possible, 

thereby reducing forecasting errors and promoting trust between sellers and buyers of 

such fnancial instruments. 

Apart from the previous end users, the fndings of this thesis are also of particular 

importance to academics, researchers, and consultants, especially in the feld of extreme 

event disaster risk management. There are multiple objectives that these groups intend 

to meet, with the most applicable being discussed and linked to this study’s objectives 

and contributions. In seeking to ensure that market processes are efcient and that all 

relevant instruments created truly suit their purpose, this thesis contributes towards 

the assessment of the efciency of pricing among diferent issuers for similar bonds. 

This is done by proposing pricing processes that incorporate climate trends and their 

efects on observed losses, including dependence, seasonality, and heavier tails. 

As this group of end users also seeks to propose new and more efcient fnancing 

and insurance tools for an ever-changing climate landscape, and ensure availability of 

protection for all including those vulnerable and unable to access funding by themselves, 

we address this gap in the current literature by pricing instruments that provide funding 

in the most extreme cases and are frequently used by organisations aiming to protect 

the most vulnerable communities, including supranational organisations, governments, 

and disaster funds. There is also the goal to ensure available instruments cover possible 

events comprehensively, leaving no gaps in funding or protection availability, which this 

study contributes to by ensuring better incorporation of heavy tail losses, dependence, 

and seasonality elements of catastrophic events; and the intention to provide industry 

stakeholders with more comprehensive and complete insight into all variables afecting 

catastrophic event processes and observed losses which we also add to by assessing key 

variables afecting pricing in the primary market and the degree to which behavioural 

factors like issuer-based efects would infuence pricing of instruments believed to be 

uncorrelated with the issuing companies. 

Finally, there is the aim to assess and critique present solutions and use this knowl-

edge to propose even better future disaster risk funding solutions. By proposing the use 
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of expectation-maximization-based algorithms that have better ability to pick out and 

isolate hidden efects that either could not be modelled through normal processes, or 

might be entirely ignored, this thesis contributes to the improvement of available dis-

aster risk fnancing solutions and helps in reducing computational costs of the relevant 

modelling processes. 

In conclusion, even beyond key stakeholders, this study retains the over-arching 

objective of providing better disaster risk management solutions for the sustainability 

and resilience of the planet, which in a sense, is the end-goal of all solution-seekers. 

It therefore not only accomplishes its task of proposing a new class of models for 

heavy-tailed data than can better incorporate and assess the trends in extreme event 

modelling and climate change science as well as their impact on the pricing of disaster 

risk fnancing instruments, but also contributes to the over-arching goal of planetary 

sustainability and disaster risk resilience. 

The rest of the thesis is structured as follows. Chapters 2 and 3 give an over-

all historical background of both climate disaster risk and disaster risk management. 

Chapters 4 explains the origins and development of optimisation and the EM algo-

rithm, while chapters 5, 6, and 7 apply the EM algorithm to catastrophic loss mod-

elling, through multilevel random efects models, fnite mixture models, and hidden 

Markov models respectively. The thesis concludes in chapter 8, where we discuss the 

implications of the fndings including suggestions for future research. 



Chapter 2 

Geology, Natural Disasters and 

Disaster Risk Management 

2.1 Geological History: Climate and Natural Dis-

asters 

“To focus solely on endings is to trade conclusions for the very beginnings that 

created them. And if this cycle should persist, we will likewise miss the beginning 

that will follow this ending.” Craig D. Lounsbrough, Author 

2.1.1 Introduction 

The comprehension and appreciation of the geological roots underlying natural disaster 

occurrence necessitates understanding the structure of the planet and/or universe in 

both its current and previous states. For this to be achieved, knowledge of the processes 

underlying landscape, oceanic and atmospheric formation is essential to address the link 

between such events and creation and/or evolution. After all, occurrences bearing the 

label ‘natural hazards’, and consequently ‘natural disasters’ are rarely indistinguishable 

from occurrences underlying the formation of the universe and its ecosystems. This 

is because the universe is an interactive system, with its processes seemingly creating 

through destruction. Volcanic eruptions, for example, are responsible for lithospheric 

replenishment (Longo and Longo, 2013); wildfres for ecological diversity (Burton et 

15 
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al., 2008; Tang et al., 2021; Goldammer et al., 2005); and extinction and speciation 

that arise due to geological cycles, for evolution and diversity (Raup, 1994). Geological 

cycles, which include the tectonic cycle (Nance et al., 2014), the rock cycle (Abbott, 

2022)(Abbott, 2016), the hydrological cycle (Oki, 2006), and the biogeochemical cycle 

(Galloway et al., 2014). Arneth et al. (2010) provide proof of this interconnectivity. 

The universe is also in a constant state of change, evolving due to both geological 

cycles and external infuences like the role of its inhabitants, especially human beings 

(Le Treut et al., 2007). To understand the infuences behind natural disasters therefore, 

it is necessary to understand this process of change. 

The dichotomy of roles in natural events arises only due to these events’ efect on 

the afected communities. Only in cases of signifcant exposure and in some cases cou-

pled with limited capacity to handle such efects, is the source event then termed a 

natural hazard. The United Nations Ofce for Disaster Risk Reduction (UNDRR) de-

fnes a hazard as ‘a process, phenomenon or human activity that may cause loss of life, 

injury or other health impacts, property damage, social and economic disruption, or 

environmental degradation’ (UNDRR, 2016). When these threats arise from a natural 

process, then the hazard is referred to as a natural hazard (Hyndman and Hyndman, 

2016). Examples of natural hazards according to the World Meteorological Organiza-

tion (WMO) include droughts, tropical cyclones, air pollution, desert locusts, foods 

and fash foods, landslide or mudslide (mudfow), avalanche, dust-storms/sandstorms, 

thermal extremes, thunderstorms, lightning and tornadoes, forest or wild-land fres, 

heavy rain and snow, and strong winds; while the Unites States of America’s (USA) 

Federal Emergency Management Agency (FEMA) includes earthquakes, tsunamis, and 

volcanic eruptions as additional processes. Other natural hazards stem from extra-

terrestrial events e.g., asteroid and comet impacts. 

The UNDRR also defnes a disaster as ‘a serious disruption of the functioning of a 

community or a society at any scale due to hazardous events interacting with condi-

tions of exposure, vulnerability, and capacity, leading to one or more of the following: 

human, material, economic and environmental losses and impacts’ (UNDRR, 2016). 
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This implies that only when the natural hazard results in the actual realization of a 

threat or disruption is it then referred to as a ‘natural disaster’, and once the level 

of loss and destruction is large enough, i.e., beyond a given minimum threshold1, the 

disaster is then labelled a catastrophe (Hyndman and Hyndman, 2016). The following 

table displays the costliest global catastrophic events by economic losses2 since 1900. 

Table 2.1: Top 10 Costliest Global Economic Loss Events (1900-2022) 

Economic Economic loss 

Date(s) Event Location 

Loss (Nominal 

$ billion) 

(2022 $ 

billion) 

March 11, 

2011 

January 16, 

1995 

August, 2005 

Tohoku Earth-

quake/Tsunami 

Great Hanshin 

Earthquake 

Hurricane 

Katrina 

Japan 

Japan 

United States 

235 

103 

125 

314 

203 

190 

May 12, 2008 

August, 2017 

September, 

2017 

Sichuan 

Earthquake 

Hurricane Harvey 

Hurricane Maria 

China 

United States 

Puerto Rico, 

Caribbean 

122 

125 

90 

168 

152 

109 

Continued on next page 

1The risk management and consulting company Aon, for example, defnes catastrophes as ‘natural 

disasters that cause at least $25 million in insured losses; or 10 deaths; or 50 people injured; or 2,000 

fled claims or homes and structures damaged.’ 
2Economic loss, in this case, includes ‘any direct physical damage or direct net loss business 

interruption costs’, according to Aon. 



18 2.1. Geological History: Climate and Natural Disasters 

Table 2.1 – continued from previous page 

Economic Economic loss 

Loss (Nominal (2022 $ 

Date(s) Event Location $ billion) billion) 

October, 2012 Hurricane Sandy United States, 77 99 

Caribbean, 

Canada 

September Hurricane Ian United States, 96 96 

2022 Cuba 

September, Hurricane Irma United States, 77 93 

2017 Caribbean 

January 17, Northridge United States 44 90 

1994 Earthquake 

Source: Aon 2023 Catastrophe Insight 

Of note is the observation that all the costliest natural disasters have occurred in the 

most recent two decades. This could either mean that natural disasters have increased 

in frequency, or the severity of losses from such disasters has increased. Alternatively, it 

could signify a parallel increase in both frequency and severity of natural disasters. This 

deduction is supported by evidence from earth’s external environment, especially with 

regards to the observed changes in the climate system and its consequences (Botzen et 

al., 2010; Hansen et al., 2016). It has been shown in the most recent years that human-

induced changes in climate have increased in scale (Eyring et al., 2021), and therefore a 

key goal to ensure society’s sustainable future has been climate adaptation and disaster 

risk management. This has been evidenced mainly through the key 2015 climate-related 

agreements i.e., 2015’s UN Sustainable Development Goals (SDG), the Paris Climate 

Agreement (Asselt et al., 2015; Falkner, 2016), and the Sendai Framework for Disaster 

Risk Reduction (Wahlström, 2015). 

It has always been important to understand that as the universe is constantly chang-
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ing, natural events will likely keep occurring. As such, knowledge of how to best adapt 

to and coexist with these occurrences is essential. Understanding a natural hazards’ 

underlying processes and its origins enables the proposal of efcient and optimal solu-

tions to any risks that could potentially arise as a result. Society’s resilience is then not 

only strengthened, but through a deeper understanding of the risks introduced at each 

stage of the disaster processes, such risks can even be further converted into rewards, 

by harnessing the immense energy released through these processes and redirecting it 

to more efcient usage. This therefore ensures sustainable maximization of societal 

experience irrespective of the prevailing external state. 

2.2 History and Natural Disasters 

Throughout history, the feld of disaster risk management has aimed to achieve this 

sustainability in one way or another, and using the resources available to civilization at 

the time. Before civilization began, hunter gatherer populations ruled the land. These 

were originally quite sparse in comparison to the land size, but as populations grew, 

increased competition for available resources began to lead to conficts (Bogucki, 2008). 

Early civilizations arose consequently, i.e., out of the need to better manage their 

environmental states to ensure survival of their populations (Bogucki, 2008). Early 

forms of Disaster Risk Management (DRM) thus developed and continued evolving 

with each culture’s needs. This led to improved practices in water management, plant 

and animal domestication, and general governance in the early societies of Mesopotamia 

(Mays, 2010), Ancient China (Gong et al., 2019; Chen, 2016), Crete (Mays, 2010), and 

the Indus valley (Mays, 2010), to name but a few. This also boosted skill diversifcation 

and availability of better tools for production (Bogucki, 2008). 

Despite these developments, the solutions were not always enough, nor sustainable, 

since for many of these civilizations later failures would in a large proportion be at-

tributable to climate change. This is because environments that supported agriculture 

and ensured society’s safety were especially dynamic due to factors both internal to 
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the ecosystems and human related after-efects of settlement. The Minoan civilization 

of Crete, for example, was made vulnerable by a combination of volcanic eruptions, 

earthquakes, and tsunamis, which eventually weakened them to attacks from their 

enemies (Antonopoulos, 1992). The Angkor civilization of Cambodia was weakened 

by drought-food cycles (Penny et al., 2019); the ancient Mayans of Central Amer-

ica by deforestation, erosion, and environmental degradation; the Moche of Peru by 

drought-food cycles and earthquakes; and Norse Greenland by the little ice age be-

ginning around 1000 CE to 1500 CE (Leroy, 2020). These environmental factors were 

therefore frequently both responsible for the onset of civilizations and their eventual 

demise. 

All this notwithstanding, however, Disaster Risk Management has existed in one 

form or another for as long as change has afected human existence and has continued 

to evolve to ft the requirements of the prevailing systems and civilizations. Disaster 

risks have been defned as ‘a function of hazard, exposure, vulnerability, and capacity’ 

by the Organization for Economic Cooperation and Development (OECD) (OECD, 

2017). In this case, exposure is defned as ‘a measurement of the value at risk of 

damage and loss’, and vulnerability as ‘conditions determined by physical, social, eco-

nomic and environmental factors or processes which increase the susceptibility of an 

individual, a community, assets or systems to the impacts of hazards’, according to 

the United Nations Ofce for Disaster Risk Reduction (UNDRR) (UNDRR, 2016). 

Capacity refers to ‘the combination of all the strengths, attributes and resources avail-

able within an organization, community or society to manage and reduce disaster risks 

and strengthen resilience’, (also) as defned by UNDRR. Disaster risk management can 

thus be formally defned as the application of disaster risk reduction processes for the 

prevention, reduction, and adaptation to new, existing, and residual disaster risks and 

the resulting losses (UNDRR, 2016). 

Natural disasters were explained through myths, folklore, legends, and other forms 

of spirituality. 3 Overall, these creations served multiple purposes, including explaining 

3A myth is a story, considered sacred, from the past, that explains either the origin of the universe 
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disasters, warning about disasters, coping with the efects of disasters both mental 

and physical, and seeking solutions to disasters. Other solutions were also sought in a 

consequent manner i.e., through sacrifces, chants, lamentations, and prayers (Bentzen, 

2013). 

These practices subsequently provided the foundation for later developments in dis-

aster risk management. At the time, however, risk acceptance was the predominant 

risk management strategy (Cashman and Cronin, 2008), with divine providence relied 

upon more than mitigation. This could be because of the helplessness early civiliza-

tions would have experienced under such circumstances, further compounded by the 

lack of knowledge and/or tools to provide better understanding and management of 

disasters. Evidently, ancient civilizations’ gods were frequently named after natural 

events for example, sun-gods, moon-gods, storm-gods, and disaster-gods, etc. Divine 

reliance has persisted to recent times, with any developments counter to the divine 

notions encountering resistance. According to Swiss Re (2017), as recently as the 19th 

century, insuring against death was still frowned upon, especially by religious leaders. 

These survival techniques pose several limitations, including, overlooking sustainable 

solutions in favour of erroneous beliefs that then compound disaster losses and ca-

and life or expresses a culture’s moral values (Rosenberg, 1997). Examples include the myths depicting 

Ancient Greek gods (Graves, 1955); the Japanese creation myth of Izanagi and Izanami (Chamberlain, 

1982); and the Ancient Egyptian myths of Anubis, Osiris etc. (Pinch, 2004). Folktales are fctional 

stories that are used to symbolically present diferent mechanisms humankind uses to cope with the 

world they inhabit (Rosenberg, 1997). Popular folktales include the tales of the Little Red Riding 

Hood (Ashliman, 2002) and Jack and the Beanstalk (Jacobs, 2005) from Europe; Anansi the Spider 

from West Africa (McDermott, 1987); and the Wonderful Wizard of Oz (Chaston, 2001) from North 

America. Finally, a legend defnes a story based on an individual or subject that was or is believed 

to have lived or existed in the past. These heroes frequently serve as role models for their respective 

cultures, embodying the desirable values and virtues of a given community (Rosenberg, 1997). An 

example is the Luo community of East Africa’s Legend of Lwanda Magere, a prophesied hero born 

with skin made of stone that no weapon could pierce, who subsequently freed the Luo’s from the 

Lang’o, who had held them captive (Omtatah, 1991); or more famously, Gilgamesh of the ancient 

Mesopotamian epics (Dalley, 1998). 
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sualties for events that could otherwise have been better handled. In addition, the 

passivity arising due to a transfer of responsibility could also lead to the persistence or 

worsening of environmental degradation and pollution, key causes of climate change. 

As civilizations expanded and human population increased over time, more individ-

uals became exposed to natural hazards due to their areas of settlement and reduced 

resources to enable relocations from hazard-prone areas. In earlier civilizations, com-

munities could easily relocate to more conducive geographical areas if their current 

settlements were deemed uninhabitable due to climactic and environmental efects. 

Proof of this can be deduced from the many abandoned historical cities e.g., the Incan 

lost cities of Machu Picchu in Peru (Rodríguez-Camilloni, 2009); the Khmer capital 

of Angkor (Chandler, 2003) in present-day Cambodia; and the ancient Mesopotamian 

cities of Ur, Lagash and Nippur etc. (McDaniel, 1968). Later civilizations did not 

have many resettlement options due to political and demographic factors, including 

land borders and population increase. In addition, such hazard-prone areas were, in 

most cases, the only locations that could support agriculture and society was there-

fore left no choice but to settle in such spots. Cities like San Salvador in El Salvador 

(Ilopango volcano (Suñe-Puchol et al., 2019)); Mexico City in Mexico (Popocatépetl 

volcano, Trans-Mexican Volcanic Belt (Granados and Jenkins, 2015)); Sicily (Etna vol-

cano (Duncan et al., 1996)) and Naples (Vesuvius volcano (Everson, 2012)) in Italy, for 

example, are built in the shadow of active volcanoes or volcanic belts. This proximity 

has therefore meant that natural disaster occurrences generated increasing costs over 

time. As these costs arose, so did developments in disaster risk management since com-

munities were faced with no alternatives but to develop means to adapt and protect 

themselves against such catastrophic losses within their respective settlements. How-

ever, some key benefts did arise from these ancient disaster management techniques 

and observations. 

An early warning system in disaster risk management refers to ‘an integrated system 

of hazard monitoring, forecasting and prediction, disaster risk assessment, communica-

tion and preparedness activities, systems and processes that enables individuals, com-
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munities, governments, businesses and others to take timely action to reduce disaster 

risks in advance of hazardous events’ (UNDRR, 2016). These systems allow societies 

to anticipate disasters and take action to protect lives and livelihoods pre-disaster. 

Mythology, folklore and other oral tradition provided the earliest forms of early warn-

ing systems against natural hazards, and have been shown to play this role even in 

recent times for indigenous societies (Lauer, 2012; Syahputra, 2019). During the 2004 

Indian Ocean Tsunami, for example, the Moken, an indigenous people on the Andaman 

Islands in the Indian Ocean, who relied on the myth of the Laboon or the ‘wave that 

eats people’ to deduce that a tsunami was imminent evacuated to higher ground and 

survived, while those who had not heard these stories did not survive, leading to a 

skewed death toll (UNESCO, 2015). 

Oral tradition, mythology and folklore have also provided a way for both past and 

present societies to identify, explain and understand historical disasters. The feld 

of geo-mythology, which applies myths and legends to provide context for geological 

events, arose as a direct result. Geo-mythologists are defned as those who ‘seek to fnd 

the real geological event underlying a myth or legend to which it has given rise’ (Vi-

taliano, 1968; Vitaliano, 1973). They also served as a record of past natural disasters 

e.g., the South Pacifc islands’ origin myths detailed in (Nunn, 2003) that are believed 

to provide a record of previous volcanic eruptions (see also (Cashman and Cronin, 

2008) for other myths explaining volcanic eruptions). Cosmic disasters can be deduced 

from ancient Aztec mythology and Hopi mythology; hurricanes from Taino and Mayan 

mythology; earthquakes from Tibetan folklore, Mayan mythology; and Polynesian tra-

dition (Mendia-Landa, 2008). This is then supplemented with paleo-climatic data e.g., 

tree rings, ice cores, borehole data, corals, lake and ocean sediments, stalagmites, fre 

history data etc., to then provide a more comprehensive understanding of the evolution 

of the geological environment. 

In addition, coping techniques for natural disasters have been an important con-

sequence of these ancient practices. Natural disasters have been identifed as one of 

the origins of religiosity (Bentzen, 2013), with disaster survivors using stories, rituals 
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and ceremonies to reduce trauma, pain and guilt, and consequently restore hope for 

the future (Hirono and Blake, 2017). Psychological theories, including uncertainty hy-

pothesis, supernatural punishment hypothesis, and religious coping hypothesis have all 

been identifed as techniques for coping with disasters (Bentzen, 2013), with spirituality 

playing a central role in mental health improvement post-disaster. 

Finally, mythology, legends and folklore provided the foundation for disaster risk 

management to develop and evolve over time, with occurrence of the disaster itself also 

providing the opportunity for study and improvement of disaster management (Mauch 

and Pfster, 2009). The next section details some of the key developments in disaster 

risk management over time. 

2.3 Evolution of Disaster Risk Management 

Early civilizations’ shift from hunter-gathering to plant and animal domestication dur-

ing the Neolithic revolution (Childe, 1936) provides the frst formal manifestation of 

practices in natural hazard mitigation and disaster management. Earliest archaeolog-

ical evidence of agriculture has been discovered from settlements of the Ayn Ghazal 

civilization (circa. 7200BCE - 5000BCE (Smit, 2019)), located in modern-day Jor-

dan (Kafaf, 2014); and the Çatalhöyük civilization (circa. 7500BCE-5700BCE (Smit, 

2019)) in central Turkey (Hodder, 2010). Furthermore, communal living which subse-

quently led to the rise of the frst cities, developed in an efort to maximize agricultural 

capacity and boost food production within early civilizations, including in Ancient 

Sumer and Akkad in Mesopotamia (Kennett and Kennett, 2006). This surge in food 

production and storage then allowed the diversifcation of professions and services lead-

ing to the rise of craftsmen, traders, artisans, and the earliest forms of civil service and 

government. Initial natural hazard risk management further expanded in the form of 

food management and irrigation practices, for example in the Tigris and Euphrates 

river valleys in Mesopotamia, and in the Nile river valley in ancient Egypt (circa. 

3150BCE 30BCE) (Smit, 2019; Soroush and Mordechai, 2018). 
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Despite the developments that accompanied the rise of permanent settlements and 

agriculture, civilization also presented its challenges, especially with the rise of disease 

due to weakened immune systems from unsanitary living conditions and less varied 

diets compared to the hunter-gatherer diet (Hart-Davis, 2012). While religion and 

spirituality were applied extensively as an early method of surviving the worsening 

conditions that would be further exacerbated during times of natural disasters e.g., 

droughts and foods (Bentzen, 2013; Mauch and Pfster, 2009; Hughes, 2013), better 

systems of government were required for more efective decision-making. This led to 

improvements in decision analysis via establishment of social groups or councils of elders 

that were tasked with the role of risk analysis and management within the community 

(Coppola, 2006). Such groups ensured the resilience of societies (Leroy, 2022), and 

provided a foundation for the formal risk management departments present in many 

institutions today. 

Evidence of risk transfer can be found as early as 1800BC, with the ancient Baby-

lonian Code of Hammurabi (King, 2005; Harper, 1999), that included an early form of 

marine insurance, also known as ‘bottomry’, whereby merchants who sought loans to 

fund shipments would pay an additional sum to the lender who would then guarantee 

loan cancellation if the shipment was lost at sea (Smyth, 2013). These bottomry con-

tracts have been shown to bear similarities to modern day catastrophe bonds (Holland, 

2009). These same concepts were later applied by the Hindus, the Greeks, and the Ro-

mans. In addition, the Chinese, as far back as 3000BCE, would redistribute their goods 

over multiple ships to minimize catastrophic losses if one ship sunk on its river journey 

(Carter, 1983), giving rise to the earliest forms of diversifcation (Vaughan, 1997). 

Risk sharing was formalised around 1000 BCE (Golding,1931 (cited in Holland 

(2009)); Prudential Insurance Company of America (1915)), with the advent of mar-

itime laws including the Lex Rhodia, or the Rhodesian Sea Laws, that have been 

credited as a key propagator of the fundamental insurance principle of contribution 

(Prudential Insurance Company of America, 1915). According to Prudential Insurance 

Company of America (1915), part of the translation provided that ‘If a ship is caught 



26 2.3. Evolution of Disaster Risk Management 

in a storm and makes jettison of its cargo, and breaks its sailyards and mast and tillers 

and anchors and rudders, let all these come into contribution together with the value 

of the ship and of the goods which are saved’. In this statement, it is evident that 

the loss of one was settled by all, through subdivision. The Babylonian Talmud, circa 

586 BCE, also provided rules for loss sharing with regards to any cargo lost at sea, 

and included the provision for replacement of a lost ship (Rodkinson et al., 1903). 

In addition, it also provided for land travel protection for merchants and travellers 

in case of caravan robberies (Rodkinson et al., 1903). Marine risk management was 

still, however, the predominant form of disaster risk management due to the reliance 

on waterways for transport, trade and commerce. These forms of insurance had their 

limitations, however, as similar routes would result in a concentration of losses and 

thus risk overwhelming the insurer’s capacity (Swiss Re, 2017). 

Around 600BCE, the earliest forms of life and health insurance through risk sharing 

developed in Greek and Roman societies by the creation of guilds known as ‘benevolent 

societies’ (Swiss Re, 2017). These provided support to the bereaved families and paid 

members’ funeral costs (Trenerry, 1926). These forms of societies are not limited to 

the past, as they have survived in diferent forms to the present, including as mutual 

aid societies (farmers in the Alps in the early 16th century) CE, mutual life insurance 

companies, co-operative societies, funding committees, and friendship groups (Eng-

land’s ‘friendly societies’ in the late 17th century) CE. Through to the Middle Ages in 

Flanders, other forms of insurance were then bundled up together with life and health 

insurance to include fre, shipwrecks, livestock loss, and imprisonment, among others 

(Trenerry, 1926). These organizations faced the same challenges of loss concentration 

and the additional limitations including lack of fnancial sophistication and poor fund 

management (Swiss Re, 2017). 

The frst stand-alone insurance transactions, especially in marine insurance, were 

developed later in the Middle Ages. These were motivated by developments within the 

church and with trends in disaster occurrence and loss management. A ban on sea loans 

by Pope Gregory IX in 1236 led to increased need for alternative forms of fnancing, 
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with emphasis on the separation of marine insurance from other forms of insurance 

in order to avoid the label of usury that had led to their original ban. Stand-alone 

marine insurance thus developed consequently (Kohn, 1999; Sibbett, 2006), with the 

frst authenticated record of marine insurance dating back to the year 1347 CE (Masci, 

2011). Around this time, earliest forms of burglary insurance also developed, contracts 

which survived to the end of the 18th century CE (Manes, 1942; Masci, 2011). The 

ban on sea loans also provided the frst formal separation of insurance from fnance as 

forms of risk management (Masci, 2011). Modern insurance can also thus be traced 

back to this period. 

Around this time, the roots of other forms of DRM, especially in relation to land-

scape management and optimization, were also taking shape within early North and 

South American civilizations. The Incan civilization occupied the Andes mountains of 

South America between the 13th and 15th centuries CE (Sassa et al., 2005). At frst 

glance, the Incan settlements would seem a curious choice, especially given their loca-

tions. The Incas deliberately constructed their settlements on jagged mountain peaks 

located along fault lines (Sieczkowska et al., 2022). These sites were, and are still 

prone to landslides, earthquakes, and torrential rains (Hemphill, 2012). It would thus 

seem as if these societies deliberately ignored, or even actively sought, disaster warn-

ing signs in choosing their settlements. Despite what it may seem, however, the Incas’ 

choices were quite logical, given all other considerations. The isolation and remote-

ness of such locations provided greater defence against attacks from enemies (Coppola, 

2006). In fact, these locations proved so efcient that the Spanish conquistadors never 

found the Incan settlement of Machu Picchu (Hennings and Lynch, 2022). The fault 

lines provided protections against foods; the landslides soil for agriculture (Sassa et 

al., 2005); and the fractured rocks from the faults, reliable construction material for 

earthquake-proof architecture (Hennings and Lynch, 2022). In addition, the Incas pi-

oneered comprehensive hydraulic water management systems that lasted for centuries, 

despite the dynamism of their environment, with some systems still functioning as re-

cently as 2012 (Sieczkowska et al., 2022). The Incan case provides the frst example of 
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the transformation of a hazardous environment into and advantageous one for human 

settlement, proving that this is possible with a sufcient understanding of geological 

systems and processes. 

Other forms of disaster protection also began taking shape from the 15th century 

onwards, chief among these being fre management practices. Although formal fre in-

surance took shape especially after major events like the Great Fire of London in 1666 

(ICMIF, 2020) which destroyed 13,200 houses (Alagna, 2003), foundations of both fre 

management, frefghting and other emergency services had been set earlier in the 1st 

century CE by the Romans, during the reign of Emperor Augustus. The Romans had 

previously used slaves for fre management; but the use of slaves proved inefcient, due 

to a lack of training, tools, and motivation (Coppola, 2006). A dedicated frefghting 

unit was thus established in 6 AD by Emperor Augustus to prevent, detect, and ex-

tinguish fres, known as the Cohortes Vigilum (Daugherty, 1992). Modern frefghting 

departments and emergency services trace their roots back to these time. As fre often 

causes signifcant damage to property, property insurance (ICMIF, 2020) also devel-

oped as a result, to enable more comprehensive covers, and to insure property against 

all other non-fre related causes of property destruction. Formalised accident insurance 

also developed in turn to address all other risks, especially railway accidents (Hayter, 

1949) etc., later in the 19th century. 

Later developments include intercontinental expansions of disaster risk management 

practices, with emphasis on fre, property, and life insurance in the 18th, 19th and 20th 

centuries CE, including expansions to the US, Central and Eastern Europe, and Africa 

(ICMIF, 2020). World Wars in the 20th century CE and the rise in terrorist activities 

especially in the early 21st century CE, and technological developments and associated 

cyber risks (OECD, 2021), have also increased the need for protection against not only 

natural disasters, but also man-made, or anthropogenic disasters. 

Though insurance has so far served as the main form of disaster management and 

protection, it is still limited in scope and impact, as these instruments have mostly 

been available only to rich nations (UNDRR, 2022; GRFF, 2021). Disaster losses, 
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however, are felt to a larger degree by poorer and emerging nations, especially in terms 

of overall losses that include both human and economic losses, creating a mismatch 

between the instrument’s role and its applicability. The table below displays, for ex-

ample, the largest catastrophic overall mortality losses and their respective locations 

between the years 1900 and 2023. It is evident from Table 2.2 that the locations of 

signifcant mortality over the past seventy years have been greatly concentrated among 

poorer developing nations. 

Table 2.2: Top 10 Global Human Fatality Events in the Modern Era (1950-

2022) 

Economic Loss 

(Nominal $ 

Date(s) Event Location billion) Fatalities 

November 12, Cyclone Bhola Bangladesh 0.7 300,000 

1970 

July 27, 1976 Tangshan China 36 242,769 

Earthquake 

July 30, 1975 Super Taiwan, China 6.6 230,029 

Typhoon Nina 

December 26, Indian Ocean Indian Ocean 29 227,898 

2004 Earthquake/ 

Tsunami 

Basin 

January 12, 

2010 

April 1991 

May 2008 

Port-au-Prince 

Earthquake 

Cyclone Gorky 

Cyclone Nargis 

Haiti 

Bangladesh 

Myanmar 

11.0 

3.9 

17.8 

160,000 

139,000 

138, 366 

Continued on next page 
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Table 2.2 – continued from previous page 

Economic Loss 

(Nominal $ 

Date(s) Event Location billion) Fatalities 

August 1971 Vietnam Vietnam N/A 100,000 

Floods 

October 8, Kashmir Pakistan 10.0 88,000 

2005 Earthquake 

May 12, 2008 Sichuan China 167 87,652 

Earthquake 

Source: Aon 2023 Catastrophe Insight 

There is increasing need, therefore, for fnancial aid and tools to improve access to 

such tools for poorer nations that need it the most, in addition to better structured 

tools to address the needs of those at greater peril of natural disasters. 

2.4 Recent Developments in Disaster Risk Manage-

ment 

As natural disaster losses have risen over the years (see fgure 2.1 below) due to increases 

in both frequency and severity, the systematic study of disaster risk management ac-

quired greater importance among both academics and practitioners. 
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Figure 2.1: 1970-2020 Natural Catastrophe Losses 

Source: Compiled by author with data obtained from Swiss Re 

Over the years of study, emphasis has slowly shifted to a more holistic approach 

that includes not only the hazards, but also the vulnerability, exposure, and capacity of 

populations to adapt to such events (Alexander, 2020). Due to this shift in view, recent 

developments in DRM have focused on ensuring that all pertinent factors determining 

a hazard’s efect on the society have been incorporated into study models, and that 

proposed solutions account for all vulnerabilities. Some of the recent (20th and 21st 

century CE) developments are discussed below. 

According to UNDRR, the 1960s saw some notable extreme events put the spotlight 

on the need for formalised disaster risk policies to address increasing losses. Notable 

events include the Iranian Buyin-Zara earthquake in September of 1962 that killed over 

12000 people, injured over 2700, damaged over 21,300 houses and killed 35% of the local 

livestock (Ambraseys, 1963); the July 1963 Skopje earthquake in Yugoslavia that killed 

more than 1000 people, injured over 4000, displaced over 200,000, and destroyed 80 

percent of the city (Sinadinovski and McCue, 2013); and the 1963 Caribbean hurricane 
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disaster. These disasters led to creation of special reconstruction funds and the passing 

of resolutions for assistance by the UN; and improved solidarity towards humanitarian 

aid provision at a time when the world was divided by the cold war (Niebyl, 2021). 

Assistance provision was then better formalised in the 1970s and the early 1980s. 

This period saw developments in pre-disaster planning at both national and interna-

tional levels, and increased application of technology and scientifc research for mitiga-

tion, prevention, and control of natural disasters. In 1971, the UN Disaster Relief Ofce 

(UNDRO) was created (UNDRR, 2023b; Lambert and Scott, 2019), with the coordi-

nator authorized to ‘promote the study, prevention, control, and prediction of natural 

disasters’ and advise governments on disaster planning and early warning systems. 

UN resolutions passed as a result ensured improved humanitarian response to natural 

disasters after Afghanistan’s (1971) (Muhammad et al., 2017) and Ethiopia’s (1978, 

1985) (Bayissa et al., 2015; Funk et al., 2019) heavy drought-related losses and led to 

establishment of Famine Early Warning Systems Network by USAID in Afghanistan 

(Brown, 2008) in 1985. In 1974, the United Nations Conference on Desertifcation was 

convened; and increased importance on disaster prevention and pre-disaster planning 

led to strengthening of the UNDRO and an overall strengthening of the UN’s capacity 

to respond to natural and other disasters post 1981. 

Multiple disasters around 1988, including foods, typhoons, hurricanes, and locust 

infestations motivated the UN to proclaims the 1990s as a decade of international co-

operation in risk reduction, in an efort to motivate development of an action frame-

work to handle natural disasters, especially for developing countries (UNDRR, 2023b). 

In 1989, the International Decade for Natural disaster Reduction (IDNDR) was pro-

claimed, to begin on the 1st of January 1990, with the second Wednesday of October 

designated as the International Day for Natural Disaster Reduction and observed an-

nually. The Framework for Action for the International Decade for Natural Disaster 

Reduction (FAIDNDR) was consequently adopted with the international community 

being urged to adopt the framework. 

In 1997, the Kyoto Protocol, the frst greenhouse gas (GHG) emission reduction 
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treaty was adopted. This agreement defned most of the 2000s, as it only entered into 

force on 16 Feb 2005 after 7 years. This process took a long time due to a complex 

ratifcation process, and it was Russia’s ratifcation that fnally brought treaty into 

force (SDDG, 2011). The agreement targeted to reduce six major greenhouse gas 

(GHG) emissions by 5.2% by 2012 relative to 1990 levels. These gases included carbon 

dioxide, methane, nitrous oxide, hydrofuorocarbons, perfuorocarbons, and sulphur 

hexafuoride. The treaty was subsequently amended in Doha in 2012 for a second 

period (2013-2020), but due to slow ratifcation, the amendment only came into force 

on 31 Dec 2020, thus reducing it to a mostly ‘symbolic act’ of closure of the Kyoto 

climate regime as the world moved on to the Paris Agreement (Farand, 2020). A key 

beneft of this agreement, however, is that is motivated carbon emissions and related 

fnancial instruments trading (Ünüvar, 2019). 

The 2010s saw signifcant development in climate disaster risk management, as the 

world was increasingly becoming aware of climate change and its efects on the environ-

ment. The establishment of the Green Climate Fund in 2010 (Schalatek et al., 2019); 

and the Paris Agreement, Sustainable Development Goals (SDGs), and the Sendai 

Framework for Disaster Risk Reduction in 2015 are some of the key developments that 

brought climate protection to the forefront of disaster planning and management (UN-

DRR, 2022). These developments also improved the integration of climate disaster risk 

management with risk fnance (GRFF, 2021). In addition, the launch of the InsuRe-

silience Initiative by G7 countries in 2015 to provide insurance for 400 million poor 

by 2020 boosted disaster fnancing eforts (Golnaraghi and Khalil 2017; Hillier 2018 

(cited in GRFF (2021))). Recently, the Covid 19 crisis demonstrated the important 

role of governments in ensuring efcient management of disaster risk to avoid negative 

disaster consequences, including the reversal of developmental gains; deceleration of 

poverty reduction; decreased hunger alleviation (UNDRR, 2023b). 



Chapter 3 

Financial Disaster Risk 

Management and Catastrophe 

Bonds 

3.1 Financial Disaster Risk Management 

As the frequency and severity of natural disasters increases with human-induced changes 

in climate, there is greater need for resources to support mitigation and adaptation 

eforts. This need for better investments and funding of climate change projects (Gam-

per, 2018) has led an increasing focus in fnancial disaster risk management (FDRM). 

According to the UNDRR, disaster events are projected to reach 560 a year, or 1.5 a 

day by 2030, with investments in disaster risk reduction yielding signifcant benefts. 

Multiple tools have thus been developed over the years to address disaster losses and 

any other arising needs. These can be classifed into two broad categories: pre-disaster 

fnance and post-disaster fnance. 

Risk transfer tools including insurance, reinsurance, and alternative risk transfer 

tools e.g., catastrophe bonds and other weather derivatives (UNISDR, 2004). Risk 

retention tools include government revenue and budget allocation, contingency and 

reserve funds, extrabudgetary funds, budget reallocations and alignment, and taxation 

(UNCDF, 2021; ADB, 2018; Cissé, 2021). External risk fnance sources include grants 

loans and other funding sources, including traditional disaster risk reduction, develop-

34 
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ment and climate fnance; contingent credit/catastrophe deferred drawdown options; 

disaster response banking tools; disaster risk fnance facilities; bonds including green 

and blue bonds; humanitarian assistance; forecast-based fnancing; and other private 

sector responses (UNCDF, 2021). All these tools then complement each other, and can 

thus be adopted together, each to address specifc risks that they are better suited to, 

with risk retention being favoured for low severity high frequency events, and risk 

transfer and external fnance being favoured for high-severity low frequency events 

that often impose the highest strain on economies and societies (ADB, 2018). 

Figure 3.1: Disaster Risk Financing Layers 

Source: Adapted from Asian Development Bank (2018, p.2) 

Even though risk transfer instruments have seen increased uptake in the past 

decade, external fnance, especially in the form of humanitarian assistance, still dom-

inates as the main funding source for climate and disaster risk management (CDRF) 

(Stander, 2017). Progress in uptake and innovation has mainly been observed with 

risk transfer and external risk fnance tools. 
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Of the sovereign risk insurance and regional insurance pools, the Caribbean Catas-

trophe Risk Insurance Facility (CCRIF) established in 2007 to reduce the fnancial costs 

of earthquakes and hurricanes by providing short-term liquidity to member countries 

(Ghesquiere et al., 2006) has seen the highest participation, attracting 19 Caribbean 

and 3 Central American members as of date. These high participation rates have 

enabled the facility to perform efcient risk pooling (GRFF, 2021), with 58 pay-outs 

totalling US$260 million so far. The Pacifc Catastrophe Risk Insurance Company 

(PCRIC), established in 2016, performs the same function for Pacifc island nations in 

the event of natural events including tropical cyclones, earthquakes, volcanic eruptions, 

and tsunamis. This facility has paid out approximately $US 11 million in four pay-outs, 

two under the Pacifc Catastrophe Risk Assessment and Financing Initiative (PCRAFI) 

and two under the Pacifc Catastrophe Risk Insurance Company (PCRIC). Other pools 

include the African Risk Capacity (ARC), established in 2012, and the Southeast Asia 

Disaster Risk Insurance Facility (SEADRIF), established in 2019. These facilities have 

all observed increased participation over time (GRFF, 2021), as nations increasingly 

begin to understand the key benefts of such insurance schemes. Another key source 

of immediate liquidity, the deferred catastrophe drawdown (CAT DDO), has provided 

the necessary funds to countries including Guatemala (2009), Kenya (2018), Colombia 

(2021) and the Dominican Republic (2018, 2022), among others, to fund immediate 

disaster-related costs, with many of the outstanding CAT DDO’s taken within recent 

years (GRFF, 2021). 

Of the disaster fnancing tools available, catastrophe bonds and other insurance-

linked products are only sought in the most extreme of cases, when both insurance, 

reinsurance, and other fnancing capacity has been exhausted, or is unavailable for 

those in need. With recent observed environmental changes, however, these extreme 

loss instruments have seen growing popularity, which has then increased the need 

for better modelling and pricing to increase reach and capacity of such instruments. 

This study focuses on understanding such instruments in the context of all the inter-

connected felds driving climate change and climate fnance in order to develop better 
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tools that ft majority of the current and possible future climates. The next section thus 

discusses this fnancing tool in detail, including developments within the catastrophe 

bond and insurance-linked securities market over the years. 

3.2 Catastrophe Bonds: History and Market De-

velopment 

Catastrophe bonds were frst introduced in the 1990s, following the loss in insurance 

capacity observed after the extreme loss events of Hurricane Andrew in 1992 and 

the Northridge earthquake in 1994. Hurricane Andrew was a Category 5 hurricane, 

based on the Safr-Simpson Hurricane Scale (Zhang and Peacock, 2009), that struck 

north-western Bahamas, south of the Floridian peninsula, and south-central Louisiana 

(Rappaport, 1993) in August of 1992. Economic losses were estimated to reach US 

$30 billion (Muerman, 2008, cited in (Nowak and Romaniuk, 2016)), with homeowners 

in Florida alone estimated to receive US $ 11 billion in insurance settlements to fund 

reconstruction (Zhang and Peacock, 2009). Until Hurricane Katrina in 2005, Hurricane 

Andrew was the costliest storm in US history (Allen, 2012), and led to the insolvency 

of some insurers (Cummins et al., 2002). 

This lack of capacity prompted protection-seekers to seek alternative sources of 

funding, in this case, securities markets. In an attempt to address this issue, the 

Chicago Board of Trade (CBOT) launched catastrophe futures in December of 1992 

based on aggregate loss indices from the Property Claims Services (PCS) (Cummins, 

2008; Cummins and Weiss, 2009), though these securities were later withdrawn due to 

lack of trading volume (Cummins, 2008). The lack of trading volume was a consequence 

of the scarcity of interest from insurers, which has been attributed to factors including 

thinness of the market, possible counterparty risk, threat of competition, and excessive 

basis risk (Cummins et al., 2004; Cummins, 2008; Cummins and Weiss, 2009; D’arcy 

and France, 1992). 
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The Northridge earthquake, which struck California in January 1994, compounded 

this efect. The magnitude 6.7 (Hauksson et al., 1995) earthquake was the most de-

structive and costly Californian earthquake since 1906 (Jones, 1994). The earthquake’s 

economic losses were estimated at US $ 49.3 billion, with US $ 41.8 billion of this being 

direct economic losses (RMS, 2004). These two events’ losses (Hurricane Andrew and 

the Northridge Earthquake) were in comparison to the previous decade’s (1980-1992) 

losses of only about US $25 billion in total, based on valuations by the Property Claims 

Services (Froot, 1999b). These two events thus motivated the modelling of new instru-

ments that could better address the extreme risks within catastrophic events, including 

catastrophe bonds and other insurance-linked securities, weather, and other credit-risk 

derivatives (Froot and Posner, 2000). This section focuses on the most popular of the 

insurance-linked securities, i.e., the catastrophe bond. 

Catastrophe bonds are debt securities sold in fnancial markets to provide insur-

ance against catastrophic disasters. Like other bonds in the market, they pay regular 

coupons and principal at maturity. The principal repayment in a catastrophe bond, 

and sometimes the interest depending on the structure and conditional on the speci-

fed catastrophe not occurring, since the if the catastrophe occurs investors lose part 

or all their principal, and in some cases their interest. There are some similarities in 

structure between a catastrophe bond and a high yield/ junk bond (Cox and Pedersen, 

2000). Both are priced based on the risk of default to the investor. While the default 

in high-yield or junk bond stems from the issuer defaulting on payments due to under-

lying issuer factors, or external factors afecting the issuer; a catastrophe bond’s risk of 

default stems from the occurrence of a catastrophe, which occurs independent of the 

issuer’s condition or fnancial market factors. 

Due to this diference in the source of default between high-yield bonds and CAT 

bonds, catastrophe bonds are favoured by investors as instruments of diversifcation, as 

their returns are generally uncorrelated with the broader fnancial market (Cummins, 

2008). Most catastrophe bonds are issued through a Special Purpose Vehicle (SPV). 

The SPV is a company created for the express purpose of providing reinsurance to the 
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issuer if a catastrophe occurs. The company receives premiums from the issuer and 

in turn issues CAT bonds in the fnancial markets using the premiums as collateral. 

The proceeds from the bond issue, together with the premiums paid by the issuer, are 

invested in a collateral account consisting of high-quality assets. These investments 

are used to fund coupon and principal repayments to investors if the pre-specifed 

catastrophe does not occur, and used to provide reinsurance to the issuer otherwise 

(PartnerRe, 2015). Figure 3.2 below conveys this general structure: 

Investor
Special Purpose
Vehicle (SPV) Issuer

Collateral
Account

(Highly rated
investments)

Investment

Premium + Inv. Return

Principal

Premium

Reinsurance Recoveries

Investment

In
v
.
R
et
u
rn

Asset liquidation

⇢ dotted arrow represents payouts de-

pendent on the catastrophe occurring or

maturity

Figure 3.2: Catastrophe Bond Structure 

Source: Created by author 

The coupon paid to the investor consists of the premium and a baseline return in 

the market, which in the past, has generally been the London Interbank Ofered Rate 

(LIBOR). The premium, also known as the spread, is composed of the expected loss 

on the underlying peril and a risk load (PartnerRe, 2015). 

The Catastrophe and other Insurance Linked Securities (ILS) market has developed 

over time in key phases. The frst phase, the market onset, is the direct result of 
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Hurricane Andrew and other major events observed around the early 1990s, lasting 

until the mid-1990s. This was a period of experimentation, marketing, and research 

into these new instruments. Academic literature also followed a similar trend, with 

early literature, according to Cummins and Weiss (2009), focused on explaining and 

analysing insurance derivatives (Cox and Schwebach, 1992; D’arcy and France, 1992), 

comparing derivatives to insurance (Niehaus and Mann, 1992), and discussing hedging 

strategies to insurers (Cox and Schwebach, 1992). 

Following the Northridge earthquake in 1994, the frst successful US $85 million 

catastrophe bond was issued by Hannover Re through its KOVER transaction (Zeller, 

2007). Hannover Re, then a wholly owned subsidiary of a German mutual insurer, 

was heavily capital constrained at a time when insurance markets exhibited little ca-

pacity, and this proved a motivating factor to explore insurance securitization as a 

form of funding instead (Zeller, 2007). Securitization attempts continued through to 

1995, since the CBOT futures had yet to generate much interest, these were replaced 

by CBOT options based on catastrophe loss indices by PCS, which were subsequently 

de-listed in 2000 due to a lack of trading (Cummins and Weiss, 2009; D’Agostino, 

2002). Nationwide also issued contingent notes known as ‘Act of God’ bonds worth US 

$400m through the special trust, Nationwide Contingent Surplus Note (CSN) Trust 

(Cummins, 2008). This however, provided little solution due to, according to (Cum-

mins, 2008), lack of segregation in liabilities and the inherent obligation for the issuer 

to eventually repay trust once funds have been withdrawn. 

The period between the years 1996 and 2000 saw the frst ‘true, widely syndicated’ 

catastrophe bond transactions being issued, starting with the GeorgeTown Re Ltd. 

Transaction in December 1996. This was a US $68.5 million bond issued by St Paul 

Re, and structured by Goldman Sachs, with AIR Worldwide as the risk modelling 

agents. The bond covered ‘worldwide all perils, including marine and aviation’, and 

included an indemnity trigger (Evans, 2021). The bond later sufered some losses 

due to events like Hurricane Floyd, Windstorms Anatol, Lothar and Martin, the 2000 

UK Floods, and the 2001 attack on the World Trade Centre, subsequently paying 
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out approximately US $0.5 million (Artemis, 2023). Regarding other securities, the 

Bermuda Commodities Exchange (BCE) attempted to develop a catastrophe options 

market in 1997, but this would be withdrawn two years later due to lack of trading 

(Cummins, 2008). The catastrophe bond market however thrived in 1997, with the 

United Services Automobile Association (USAA), one of the most consistent issuers in 

the catastrophe bond market to date (Artemis, 2023), issuing their frst catastrophe 

bond, through the US $480 million SPV Residential Re Ltd. 1997 (Difore et al., 

2021). This transaction was so successful that it provided a model for later issues by 

Swiss Re and the Tokio Marine and Fire Insurance Company (Zolkos, 1997). The frst 

catastrophe bond issue by a non-fnancial frm occurred in 1999, with the Concentric 

Ltd. Transaction, issued to insure against earthquake losses in Tokyo by Oriental Land 

Company, the owner of Tokyo Disneyland (Cummins, 2008). 

According to Lane (2021), between 1996 and 2001, 36 deals were issued in total, 

with varied results. These deals were considered majorly experimental, with many 

being issued at a discount, and covering 5 or 6 perils including Space Launch, Oil Rig, 

Weather, Aviation, and Man-Made risks, according to Lane (2021). In addition, their 

risk assessment levels were non-comprehensive, with many having very high coupon 

rates (Lane, 2021). According to Cummins et al. (2004), for example, catastrophe 

bond premiums were nearly seven times the expected losses for bonds issued within this 

period. This phenomenon where prices were observed to be much higher than expected 

was analysed by several researchers, including, Canter et al. (1996) and Litzenberger 

et al. (1996). Possible explanations were proposed by Bantwal and Kunreuther (2000), 

who analysed the reluctance of investment managers to invest in catastrophe bonds, 

attributing it to behavioural factors, including ambiguity aversion, loss aversion, and 

uncertainty avoidance. Froot (2001), on the other hand, found that the most possible 

explanations were supply restrictions due to capital market imperfections and market 

power from traditional reinsurers. 
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Figure 3.3: Catastrophe Bonds and ILS Issuance’s Average Expected Loss 

and Coupon (per Year) 

Source: www.Artemis.bm, Deal Directory, retrieved 15th June 2023 

www.Artemis.bm
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According to Figure 3.3, the market observed an increase in unique-risk catastro-

phe bonds in the period between 2001 and 2004 including bonds that covered against 

non-natural disaster risks including terrorism. This was in response to the rise of 

terrorist attacks including the September 2001 attacks on the USA. In 2003, for exam-

ple, the Federation Internationale de Football Association (FIFA) issued the Golden 

Goal Ltd 2003 catastrophe bond to protect against the risk of event cancellations 

due to such man-made events. FIFA was compelled to issue this bond as a result of 

both the September 2001 attacks and the consequent withdrawal of insurers from the 

FIFA World Cup event cancellation insurance policy (Artemis, 2023). Researchers, 

on the other hand, focused on explaining catastrophe securities’ pricing structures 

and determining their optimality. Focus was especially on addressing the basis risk 

(e.g., Harrington and Niehaus, 1999; Cummins et al., 2004) and moral hazard risks 

(e.g., Lee and Yu, 2002; Doherty, 1997; Doherty, 2000) that arose with index-based 

contracts and indemnity contracts respectively, with most researchers recommending 

hybrid covers incorporating both index and indemnity elements to address each of the 

risks comprehensively (Doherty and Richter, 2002). 

Diferent theoretical frameworks for bond pricing were also explored around this 

time (Burnecki and Giuricich, 2017), following the pioneering works of Froot and 

O’Connell (1997) and Froot and O’Connell (1999), Froot and Posner (2000). Utility-

based approaches were proposed by Cox and Pedersen (2000) and Egami and Young 

(2008); and arbitrage free approaches by Baryshnikov et al. (2001), Burnecki and Kukla 

(2003) and Vaugirard (2003a); in addition to standard actuarial pricing methodologies 

(e.g., Lane, 2000; Lane and Beckwith, 2008; Lane and Mahul, 2008) and equilibrium 

pricing transforms, including the Wang transform of Wang (1996), Wang (2000), and 

Wang (2002) and the Esscher transform (Gerber and Shiu, 1996; Kijima, 2006). 

The year 2005 brought signifcant changes to the catastrophe risk insurance market, 

especially because of the multiple extreme loss events observed in the US, including 

Hurricanes Katrina, Rita, and Wilma. Hurricane Katrina, especially, deserves mention, 

as it was considered the costliest natural disaster in US history, with insured losses 
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hitting US $62 billion, further depleting reinsurance capacity (Difore et al., 2021). 

This was a category 5 hurricane, according to the Safr Simpson hurricane wind scale 

(SSHWS), that hit the US Gulf Coast in August of 2005, especially devastating the city 

of New Orleans (Reid, 2019). The losses from these events refocused the spotlight back 

on the catastrophe bond and ILS market as a source of insurance protection, leading 

to record issuance in the two years following the events. Figure 3.4 below displays this 

increase in issuance levels. The year 2006 saw record issuance of $4.7 billion while 2007 

saw issuance stand at a record $7.1 billion (Difore et al., 2021). 

Figure 3.4: Catastrophe bond and ILS risk capital issued and outstanding 

(by year) 

Source:www.Artemis.bm, Deal Directory, retrieved 15th June 2023 

Dieckmann (2010) analysed these extreme catastrophic events, chiefy Hurricane 

Katrina, and fnally addressed the high bond spread (Coupon rate minus Expected 

loss) question that had been brought up during the catastrophe bond market’s early 

trading years by researchers including Froot (2001) etc. Dieckmann found that large 

consumption shocks similar to those of Hurricane Katrina were signifcant enough to 

https://Source:www.Artemis.bm
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afect bond spreads, implying that even though bond spreads had reduced overall, the 

existence of such shocks would always make it unlikely for such spreads to converge 

to the risk-free rate. Carayannopoulos et al. (2022) support this fnding by studying 

market prices for the period 1999-2016 and fnd that despite an overall decrease in 

price of expected loss risk, large catastrophes increased this price by 34% on average. 

Herrmann and Hibbeln (2023), observing secondary trading activity in the catastrophe 

bond market, found that 21% of the observable yield spread on the catastrophe bond 

market was attributable to the liquidity premium, with high-risk bonds having the 

highest magnitudes of up to 141 basis points (bps) based on realized bid-ask spreads. 

The year 2007 also saw further attempts at catastrophe derivatives market devel-

opment in response to Hurricane Katrina. According to Cummins and Weiss (2009), 

futures and options on US Hurricane risk were introduced by two separate exchanges, 

the Chicago Mercantile Exchange (CME) and the New York Mercantile Exchange 

(NYMEX). The market continued adapting through this period, changing to better 

suit the needs arising due to not only the increasing frequency of extreme disaster, 

but also the possibility that warming sea surface temperatures could cause further ex-

tremes. Loss models were updated to include both normal sea surface temperatures 

and the option to use warm sea surface temperatures (WSST) (Lane, 2021), especially 

in times of higher uncertainty and rising risks. 

In addition, the fnancial crisis led to an interesting phenomenon where a catas-

trophe bond made losses, not because of a natural event, but because of a fnancial 

event i.e., the bankruptcy of Lehman Brothers in 2008. Four bonds, Carillon A-1 Ltd, 

Ajax Ltd, Willow Re Ltd, and Newton Re 2008 A-1 Ltd, experienced losses due to 

their LIBOR arrangement with Lehman Brothers, who defaulted (Lane, 2021), leading 

to an instance of counterparty risk causing catastrophe bond losses. This prompted 

improvements in the catastrophe bond structure to avoid any future counterparty de-

faults, developments that were positively received by investors and thus helped keep 

catastrophe bonds as viable diversifcation instruments (Carayannopoulos and Perez, 

2015). 
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In the 2010’s there was an increase in research into factors afecting the price of 

catastrophic risk securities, and the impact of external factors unrelated to the catas-

trophic event or risk on the prices of such instruments. In particular, there was an 

increased exploration of econometric pricing techniques to explain cat prices, for ex-

ample in research done by Braun (2016), Galeotti et al. (2013), and Gürtler et al. 

(2016). These techniques are further discussed in a later application chapter on the 

study of volatility of pricing among market issuers. 

In addition, heavy loss events marking the start of the decade increased the need for 

disaster risk solutions, especially for developing countries that were poorer and could 

not access direct insurance. The Great Tohoku earthquake and the Thailand foods in 

2011 wreaked havoc on the east Asian nations of Japan and Thailand. The magnitude 

9.0 Tohoku earthquake, for example, was the most devastating earthquake in Japanese 

history, and the fourth most powerful earthquake ever recorded since 1900 (Lay et al., 

2013; Stimpson, 2011). The earthquake’s direct efects were much more limited than 

their indirect efects, which caused most of the damage (Stimpson, 2011). The tsunami 

that followed as a direct result of the earthquake, for example, is said to have caused 

98% of the damage (NCEI, 2021), including nuclear meltdowns in Fukushima. This 

event also renewed interest in the coverage of unique risks in the catastrophe bond 

market, including nuclear risks (e.g., Kunreuther and Heal, 2012; Ayyub et al., 2016). 

The tsunami’s economic losses were estimated at US$ 235 billion, according to the 

World Bank (Oskin, 2022), with losses experienced as far as Hawaii, California, French 

Polynesia, Galapagos Islands, Peru, and Chile (NCEI, 2021). 

The fnal half of the decade also brought with it extreme events, marking the 

decade with the heaviest insured losses ever recorded. Hurricanes Harvey (17 Aug 

2017 3 Sept 2017); Irma (30 Aug 2017 13 Sept 2017) and Maria (16 Sept 2017 

2 Oct 2017) combined with wildfres and other catastrophes to make 2017 the most 

expensive year on record for US disasters, according to the National Oceanic and 

Atmospheric Administration. With extreme losses estimated at US$519 billion by 

Aon, it was inevitable that some of these losses would be borne by the catastrophe 
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market. At least 25 SPVs were triggered by these combined events, according to recent 

statistics from Artemis, an ILS-dedicated service, marking the year with the largest 

number of triggered SPVs. 

The World Bank pandemic bond, the IBRD CAR Series, was also issued during 

this time (Piantedosi, 2020), and later paid out due to Covid-related losses in 2020 

(Artemis, 2023), an instance of a successful pandemic-cover catastrophe bond. The 

World Bank, through its disaster risk fnancing facilities, has continued to support 

governments and other disaster resilience eforts by issuing catastrophe bonds in con-

junction with governments or sovereign risk pools to fnance short-term liquidity needs 

of nations frequently afected by catastrophic events (World Bank Group, 2017; Sasaki 

and Ishiwatari, 2022). 

In 2018, the California Camp Fire and Hurricane Michael contributed to heavy 

losses for the US, while Typhoon Jebi generated heavy losses for the Japanese insurance 

industry, the costliest since the 2011 Tohoku events (Simic, 2019). 

The years 2019-2022 have seen even more extreme events, with 2021’s US$ 329 

billion total damage costs now holding the record for the third costliest infation-

adjusted year after 2005 (US$ 351 billion) and 2017 (the costliest at US$519 billion), 

according to Aon, and the second costliest together with 2005 and 2011, according to 

Munich Re. In 2022, Hurricane Ian, a category 5 hurricane based on the Safr-Simpson 

Hurricane Wind Scale (SSHWS), was the most expensive single event, according to 

Munich Re, with total losses of US$100 billion and insured losses of US$60 billion. 

Other events that caused signifcant losses within the year include foods in Australia 

(US$6.6 billion total loss; US$4 billion insured) and winter storms in Europe (US$ 4.3 

billion insured losses) (UNDRR, 2023a). 

It is now widely accepted that the frequency and severity of catastrophic events has 

increased (MIS, 2023) either due to changes in climate or other geological factors like 

seasonality. The focus on climate change adaptation over the last few years, especially 

after the 2015 climate agreements like the Paris Agreement, the Sustainable Devel-

opment Goals, and the Sendai Framework for Disaster Management (UNDRR, 2022), 
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and the occurrence of pandemics like the Covid 19 crisis, have also made such disaster 

fnancing instruments more valuable (Schwarcz, 2020) to not only institutional issuers, 

but also local governments and supranational organizations like the World Bank. As 

the world fnds ways to adapt to a changing climate, the role of these instruments in 

the recovery and reconstruction of lives and livelihoods will continue to increase in 

importance, further motivating the proposal of better and more comprehensive tools 

for current and future risks that may arise due to geological changes. 

30 years since inception, the insurance linked securities (ILS) market, of which the 

catastrophe bond market dominates, has expanded to a capacity of US$39.66 billion, 

with 2023 issuance alone standing at US$6 billion as of May 2023. This is in compari-

son to the 1997 outstanding issuance levels of US$785.5 million, according to Artemis. 

Overall cumulative issuance as of May 2023 stands at US$151 billion. Even though 

these fgures are still much lower than those of the reinsurance market (Cole, 2019), it 

is important to remember that catastrophe bonds were not developed to replace tradi-

tional tools like insurance and reinsurance, but rather to complement these products 

especially in times of exceptional strain to the reinsurance market. As their niche is 

diferent, there is always potential for growth within this market, now even more so 

due to efects of climate change. 

https://US$39.66


Chapter 4 

Mathematical Optimization and the 

EM Algorithm 

4.1 A Brief History of Mathematical Optimization 

“Nothing takes place in the world whose meaning is not that of some maximum or 

minimum.” Leonhard Euler 

Optimization is the formula of life. The concept of optimality is found in all of 

nature, though it acquires diferent names in diferent felds. Physicists and math-

ematicians use labels including the ‘principle of least action’(e.g., Maupertuis, 1744; 

Maupertuis, 1746; Euler, 1744), economists the point of highest utility, evolutionary bi-

ologists have called it ‘survival of the fttest’, or ‘natural selection’ (e.g., Darwin, 1859; 

Spencer, 1872), and fnancial analysts use the ‘highest return for a given risk’, or ‘opti-

mal portfolios’ (e.g., Markowitz, 1952; Tobin, 1958; Roy, 1952); to defne their applied 

version of the concept. Despite being unaware of the formal concept of optimization, 

historical societies and civilizations including those of Ancient Egypt, Mesopotamia, 

Greece, Maya etc., found ways to express this optimality through whatever means were 

available to them at the time, including oral traditions, counting processes, and in their 

majestic constructions. Understanding the ‘formulas’ of optimality is therefore key to 

understanding nature and its changes over time, and subsequently building better so-

lutions for life out of these observations, which can then be applied in any feld of 

study. 

49 
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While optimization as a concept exists and has always existed in all of nature’s dy-

namism, Ancient Greek philosopher-mathematicians were among the earliest to turn 

these natural transformations into abstractions useful for the generalization of relation-

ships. The earliest of these was Euclid, around 300 BCE (Fitzpatrick, 2008). Often 

regarded the ‘Father of Geometry’ (Campbell and Hayhurst, 2015; Sialaros, 2015), Eu-

clid was among the frst mathematicians to compile all the mathematical developments 

of the time in a sequential logically deductive way now known as the ‘axiomatic method’ 

(Hartshorne, 2013), in a book known as the ‘Stoiecheion’ or ‘Elements’ (Heath, 1956). 

Euclid considered problems of minimal distance between two points, and proved that 

this was a line; and showed that of all rectangle types with the same perimeter, the 

square possessed the greatest area of them all. These discoveries also led to further 

discoveries in geometry, catoptrics (the theory of mirrors and refections), and spher-

ical astronomy (Webster, 2014). Euclid’s works were so infuential that they inspired 

mathematical thought for centuries after his death, up until the 19th century and the 

formalization of non-Euclidian geometry (Bonola, 1955). 

The next philosopher to actively consider optimization problems is reported in the 

works of Pappus of Alexandria, who lived around 300AD. The ‘Synagoge’ or ‘Mathe-

matical Collection’ of Pappus (Simmons, 2007) is considered one of the most important 

references to mathematical works of Greek antiquity, as Pappus was among the last of 

the Greeks to compile the works of many Greek mathematicians in a time when phi-

losophy and mathematics was undermined in favour of Christian religious views, thus 

retaining a reliable record of mathematical-philosophical thought of the time (Cuomo, 

2007). Some of the mathematical developments mentioned in Pappus’s collection in-

clude those of Euclid (325 BCE 265 BCE), Archimedes (287 BCE 212 BCE), and 

our current person of interest, Zenodorus (200 BCE 140 BCE) (Ferguson, 2004), 

among others. 

Zenodorus is considered the frst Greek mathematician to consider Dido’s problem 

in his treatise ‘On Isoperimetric fgures’, which though lost to time, can be found in 

excerpt form in the works of Pappus of Alexandria, Theon of Alexandria, and Proclus. 
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Dido’s problem, an isoperimetric problem, involves the fnding of the greatest area that 

can be enclosed by a given perimeter or length. It is mentioned in the epic poem the 

Aeneid of Roman poet Publius Vergilius Maro (70 19 B.C.), more popularly known as 

Virgil. Here is the excerpt containing a description of Dido’s problem; 

"The Kingdom you see is Carthage, the Tyrians, the town of Agenor; 

But the country around is Libya, no folk to meet in war. 

Dido, who left the city of Tyre to escape her brother, 

Rules here--a long and labyrinthine tale of wrong 

Is hers, but I will touch on its salient points in order.... 

Dido, in great disquiet, organised her friends for escape. 

They met together, all those who harshly hated the tyrant 

Or keenly feared him: they seized some ships which chanced to be ready... 

They came to this spot, where to-day you can behold the mighty 

Battlements and the rising citadel of New Carthage, 

And purchased a site, which was named 'Bull's Hide' after the bargain 

By which they should get as much land as they could enclose with a bull's 

hide."’ 

The maximum ‘land as they could enclose with a bull’s hide’ turned out to be a 

semicircle, with the shoreline as the starting point and the fxed border. Zenodorus 

analysed this problem and formalized it in an overall context, which, according to 

Nahin (2003), include these two important conclusions; 

‘the area of a regular n-gon is greater than the area of any other n-gon with 

the same perimeter;’ 

‘given two regular n-gons with the same perimeter, one with 

n = n1, and the other with n = n2 > n1, then the regular 

n2-gon has the larger area.’ 
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Which shows that the circle has the greatest area of any polygons with the same 

perimeter. 

Zenodorus also made contributions to catoptrics, as mentioned in Diocles’s work 

‘On Burning Mirrors’ (Toomer, 1976). Major contributions to catoptrics were how-

ever made by a diferent philosopher-mathematician around 100BCE, Heron or Hero 

of Alexandria (O’Connor and Roberston, 1999), who proved in his work, Catoprica, 

(Smith, 1999) that light refected from a mirror travelled between two points through 

the path of shortest length. Though at the time Hero gave no proof of this deduction, 

the principle provided a key foundation for later developments, including in the 17th 

century mathematician Fermat’s principle of least time, which is considered on of the 

building blocks to the calculus of variations (Ferguson, 2004). According to Grabiner 

(1983), Fermat had also read that ‘a problem which has, in general, two solutions will 

have only one solution in the case of a maximum’ in the works of Pappus of Alexandria, 

which then led him to discovering his concepts of maxima and minima. 

After the Greek philosopher-mathematicians, a time gap exists in the development 

of optimization, with further discoveries only formalized beginning in the 16th and 

17th centuries CE in Europe. At this time, according to Grabiner (1983), European 

mathematicians had familiarized themselves with both Greek mathematics and the 

Islamic world’s algebraic developments enough to extend these concepts on their own. 

A revolution thus began with the French mathematician Francois Vieta’s invention 

of symbolic algebra in 1591, and the invention of analytic geometry in the 1630’s inde-

pendently by Descartes and Fermat (Grabiner, 1983). We will discuss some of the no-

table discoveries and inventions during this period in detail, starting with the German 

mathematician-astronomer Johannes Kepler (1571-1630) in 1615. Two major develop-

ments in applied optimization are attributed to Kepler, including the determination 

of the optimal dimensions of a wine barrel (Hellmann, 2019), a major contribution to 

later integral calculus. The story goes that Kepler purchased some wine for his second 

wedding, but the wine seller’s technique of measuring the volume of the wine for pric-

ing dissatisfed him. He then set out to determine the optimal dimensions of a wine 
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barrel that would guarantee the most wine. Sufce it to say, Kepler proved that the 

wine seller’s technique had been close to accurate all along! He later wrote a book re-

garding his experiments, known as Nova stereometria doliorum vinariorum (New solid 

geometry of wine barrels), a key contribution to Archimedes’ works on solid geometry 

(Knobloch, 2017). The other major development was that of the ‘secretary problem’ 

or the ‘marriage problem’, which Kepler had earlier encountered when choosing said 

second wife. The problem is defned in Ferguson (1989) as ‘a sequential observation 

and selection problem in which the payof depends on the observations only through 

their relative ranks and not otherwise on their actual values.’ This ‘problem’ and its 

subsequent solution have seen many applications in the feld of optimal decision making 

to date. 

A further development in applied optimization is seen later in 1638, when Italian 

astronomer Galileo Galilei (1564-1642) tried to determine the shape of a fexible hang-

ing chain of uniform linear mass density, but erroneously concluded it to be a parabola 

(Kunkel, 2016; Renn and Damerow, 2003). Theoretical optimization also picked up 

around this time, beginning with the works of French mathematician Pierre de Fermat 

(1601-1665). 

Together with French philosopher Rene Descartes (1596-1650), Fermat is considered 

one of the founders of the analytic geometry. According to Grabiner (1983), this meant 

that curves could be now represented by equations and that every equation determined 

a curve. 

Fermat is said to have ‘laid the technical foundations for diferential and integral 

calculus’; together with French mathematician Blaise Pascal (1623-1662), was instru-

mental in establishing the foundations of probability theory; and established modern 

number theory Mahoney (1994). He proved that the necessary condition for a minima 

or maxima for a real-valued function on one variable is that the derivative must be 

zero (Neunzert and Siddiqi, 2000). Fermat also applied the concept of minima and 

maxima to optics, showing that light travelled between two points in minimal time, 

while slowing down in a denser medium. The latter deduction was a major point of 
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contention between Fermat and Descartes, who believed that light travelled faster in 

denser mediums (Ferguson, 2004). Sufce it to say, Fermat was right. Subsequently, 

these studies of the concepts of extremes laid the foundation for the development of 

the techniques collectively labelled the ‘calculus of variations’. 

The label ‘calculus of variations’ is a construct of Swiss mathematician Leonhard 

Euler (1707-1783), derived from his analysis of Italian-French mathematician Joseph-

Louis Lagrange (1736-1813)’s works. This is a branch of mathematics that deals with 

optimizing, i.e., fnding the maximum or minimums, of a function defned by an integral. 

In a way, this was the frst attempt to formalize the concepts of optimization into 

mathematical formulas. The mathematical basis surrounding the calculus of variations 

were developed in the late 17th century, with the works of English mathematician Isaac 

Newton (16431-1727) and German polymath Gottfried Wilhelm Leibniz (1646-1716). 

Newton’s studies on the motion of bodies in resisting mediums, found in his book 

Philosophae naturalis principia mathematica (Principia) in 1685, is considered one of 

the frst real problems in the calculus of variations (Ferguson, 2004; Dacorogna, 2007; 

Goldstine, 2012). In addition, the brachistochrone problem, which had been formu-

lated by Galileo Galilei (1564-1642) in 1638, was fnally solved by Swiss mathemati-

cian Johann Bernoulli (1667-1748) in 1696, and then by Leibniz, Newton, the French 

Mathematician Guillaume François Antoine, Marquis de l'Hôpital (1661-1704), and by 

Johann’s elder brother, Jacob Bernoulli (1655-1705). The brachistochrone problem, 

from Greek brachistos, shortest, and chronos, time, aims to determine the curve be-

tween two points for which an object would slide in the least time under gravity and 

neglecting friction (Johnson, 2004). In general, these mathematicians were able to for-

mulate an integral representing the total slide time given the unknown curve and vary 

this unknown until a minimum slide time was established. The diferential equation 

formed then solved to a curve known as the cycloid (Ferguson, 2004; Johnson, 2004). 

The brachistochrone problem is one of the most famous problems in the calculus 

1Diferent sources give diferent birth dates, with some placing it on the 25th December 1642 and 

others on the 4th of January 1643. 
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of variations (Dacorogna, 2007), and is also responsible for showing the connection 

between the least time principle of Fermat and the least time nature of the Brachis-

tochrone (Ferguson, 2004). Leibniz and the Bernoulli brothers are also responsible for 

the solution of many problems in infnitesimal calculus i.e., the theory of diferentiation 

and integration, and variational calculus using modern methods (Gårding, 1977). 

The brachistochrone problem can be considered the birth of calculus of variations, 

but the feld was generalised later in the 18th century by the Swiss mathematician 

Leonhard Euler (1707-1783), who had, for a time, had Johann Bernoulli for a mentor 

(Ferguson, 2004). 

Applied optimization problems considered during this century include the honey-

comb problem considered by German mathematician Johann Samuel König (1712-1757) 

around 1739, in reply to a question posed by French scientist René Antoine Ferchault 

de Réaumur that went as follows; 

"Of all possible hexagonal cells with pyramidal base composed of three 

equal and similar rhombs, to fnd the one whose construction would need 

the least material." 

For which König’s answer was ‘the cell that had for its base three rhombs whose large 

angle was 109 deg 26', and the small 70 deg 34'’, showing that the hexagonal structure 

of honeycombs is optimal. These results that were similar to earlier calculations by the 

Italian-French mathematician Giacomo Filippo Maraldi(or Jacques Philippe Maraldi) 

(1665-1729) (Maeterlinck, 1901). König is also more famously known for his dispute 

with French mathematician Pierre Louis Moreau de Maupertuis (1698-1759) regarding 

the true originator of the principle of least action. 

In Euler’s 1744 book on the calculus of variations titled Methodus inveniendi lineas 

curvas maximi minimive proprietate gaudentes, sive solution problematis isoperimetrici 

latissimo sensu accepti, or A method for discovering curved lines that enjoy a maximum 

or minimum property; or the solution of the isoperimetric problem taken in the widest 

sense, he extended the methods of calculus of variations, forming and solving diferen-
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tial equations for optimizing single-integral variables; showed how such equations could 

be used to represent equilibrium positions of elastic and fexible lines, and ‘formulated 

the frst rigorous dynamic variational principle’ (Fraser, 2005). This book is considered 

by some to represent the birth of the theory behind the calculus of variations (Kreyszig, 

1994a; Kreyszig, 1994b; Ferguson, 2004). The techniques were then later extended and 

simplifed by Joseph-Louis Lagrange. 

The principle of least action, heavily applied in mechanics, follows the general idea 

that nature follows the path of least action, or that ‘nature is thrifty in all its actions’, 

popularized by Maupertuis in 1744 (Maupertuis, 1744) and 1746 (Maupertuis, 1746). 

Euler also made an independent formulation of this principle at the same time as 

Maupertuis (Euler, 1744), but claimed no priority. This principle is important due 

to its applicability in the generation of equations of motions for mechanical systems, 

and its applications in the theory of relativity, quantum mechanics, quantum feld 

theory, and Morse theory (CFGB, 2006). König’s dispute with Maupertuis regarding 

this principle stemmed from the fact that König considered Leibniz as its originator, 

furnishing a copy of a letter supposedly written by Leibniz in 1707 that contained this 

principle. König, unfortunately, was labelled a forger (O’Connor and Robertson, 2003) 

as there was no way to prove the letter was actually written by Leibniz at the time, 

as it was not the original. Euler and the King of Prussia supported Maupertuis in 

refuting König’s claim, while the French enlightenment writer Voltaire (François-Marie 

Arouet) (1694-1778) supported König. 

Around 1760, the Plateau problem, named after Belgian physicist Joseph Plateau 

(1801-1883), was formulated by Joseph-Louis Lagrange. This is a problem of fnding 

the surfaces of least area within a given boundary. Plateau’s experimentations in 1849 

proved that this surface could be found by immersing a wire frame into soapy wa-

ter, with the wire frame representing the boundaries (Harrison, 2014). Later studies 

by American mathematician Jesse Douglas in 1931, Hungarian-American mathemati-

cian Tibor Radó (1895-1965), Russian mathematician Abram Samoilovitch Besicov-

itch (1891-1970), American mathematicians Herbert Federer (1920-2010) and Wendell 
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Helms Fleming (1928-2023) in the 1950s, and by Enrico Bombieri in the 1970s, ex-

tended and specialized the study of minimal surfaces, earning Douglas and Bombieri 

Field Medals for their work (Almgren Jr and Montgomery, 1974). 

A further optimization development of note arising out of the 18th century is that 

of French mathematician Gaspard Monge, known as the transportation problem. This 

was a problem formulated by Monge in 1781 whereby he intended to fnd the optimal 

way of moving a pile of sand between military embankment sites at minimal cost 

(Monge, 1781; Peyré and Cuturi, 2019). This problem was later reformulated by 

Russian mathematician Leonid Kantorovich in 1942 (Kantorovich, 1942), who intended 

to solve practical concerns of optimal resource allocation (Peyré and Cuturi, 2019), and 

is now more popularly known as the Monge-Kantorovich problem (Chen et al., 2020). 

Other further formulations include those of Yann Brenier in 1987 (Brenier, 1987) that 

connected the problem with other felds including partial diferential equations, fuid 

mechanics, geometry, probability theory, and functional analysis. This increased the 

concept’s applicability, and it is now applied in image processing, cancer detection, and 

machine learning, among others. 

In the 19th century optimization developed mainly as an abstract concept, and 

the frst rigorous defnitions of calculus were formulated, especially with the works of 

the ‘father of modern analysis’ (Baker, 1996), German mathematician Karl Theodor 

Wilhelm Weierstrass (1815-1897), and French mathematician Augustin-Louis Cauchy 

(1789-1857) (Grabiner, 1983; Borovik and Katz, 2012). It also saw some application, 

especially in the feld of economics. Further improvements to previously defned theo-

ries and concepts were also developed at this time. The frst optimization algorithms 

were also formulated during this period. 

The major developments of this period began in 1805, when French mathemati-

cian Adrien-Marie Legendre’s published his least squares method for algebraic ftting 

(Legendre, 1806), which was then later statistically backed by German mathematician 

Carl Friedrich Gauss (1777-1855) (who also claimed to have invented the least squares 

method much earlier (Stigler, 1981), to the ire of Legendre (Stigler, 1977)) and French 
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mathematician Pierre-Simon, marquis de Laplace (1749-1827), among others. 

Between the years, 1813-1815, the economic Law of Diminishing Returns, which is 

based on the (quasi) concave function began to take shape (Cannan, 1892), culminating 

in the works of Thomas Robert Malthus, Robert Torrens, Edward West, and David 

Ricardo, all published within a three-week period in 1815 (Brue, 1993). According to 

Brue (1993), this law was developed and applied to land rent, in an attempt to explain 

the fall in grain prices observed in England at the time. This fall was found to be 

caused by the end of the Napoleonic wars (1803-1815) (O’Rourke, 2006; Gates, 2011), 

and consequently, the reduced need to cultivate less fertile or inaccessible English land 

to supplement any grain shortages, as they had previously done when the Napoleonic 

wars had disrupted international trade. The end of the war and the restoration if 

imports had thus led to the observed decline in grain prices (Brue, 1993). 

The year 1826 marks the beginning of the story of linear programming2, when the 

linear programming problem was formulated by French mathematician and physicist 

Jean-Baptiste Joseph Fourier (1768-1830) (Fourier, 1826). Fourier is believed to have 

contributed in the following ways (Prékopa, 1980): frst, he ‘anticipated’ the linear 

programming problem in 1824 (Grattan-Guinness, 1970); second, he formulated the 

inequality for the mechanical equilibrium in 1798 (Fourier, 1798); and third, he pro-

posed a parametric solution of homogenous linear inequalities in 1826 (Fourier, 1826). 

110 years later, in 1936, these methods were independently reinvented by American 

mathematician Theodore Motzkin (1908-1970) (Motzkin, 1936), leading to the current 

Fourier-Motzkin elimination (FME) method. Inspired by Fourier’s work, Hungarian 

mathematician Gyula Farkas (1847-1930) formulated a fundamental theorem on linear 

inequalities towards the end of the 19th century and the beginning of the 20th, cul-

minating in a famous 1901 paper in which we fnd the Farkas lemma (Farkas, 1896; 
2Some authors, e.g., Biggs (2021) attribute this beginning to a much earlier date, the 13th century, 

with Fibonacci’s rules for mixtures using the Hindu-Arabic arithmetic system. As these were written 

in word form they did not gain much traction till the invention of algebraic symbols in the 17th 

century. 
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Farkas, 1901; Biggs, 2021). The Farkas lemma uses the fundamental linear inequality 

theorem to determine the necessary optimality conditions for non-linear programming, 

conditions that were later used to provide proof of the (Karush)-Kuhn-Tucker theorem 

in 1951 (Kuhn and Tucker, 1951; Prékopa, 1980), and to support further application 

of linear programming in optimization. Farkas’s contributions to linear programming 

and optimization include (Prékopa, 1980): proving the basic theorem of linear inequal-

ities in 1894 and 1898 (Farkas, 1894; Farkas, 1898); providing a rigorous proof for 

duality of Fourier’s mechanical inequality principle in 1894 and 1895 (Farkas, 1894; 

Farkas, 1895); and providing an ‘elegant parametric representation’ for solutions to 

homogeneous linear inequalities beginning in 1898 (Farkas, 1898). 

Renewed interest in linear programming and its applications was subsequently ob-

served during the Second World War as the need for resource optimization increased 

(Chakraborty et al., 2020), but the application of linear programming for the optimal 

resource allocation began with the work of Russian mathematician Leonid Kantorovich 

(Boldyrev and Düppe, 2020) in 1939 when he published his Mathematical Methods of 

Organizing and Planning Production (Kantorovich, 1960; Koopmans, 1960), subse-

quently developing an algorithm for such applications. 

During the Second World War, scientists focused on optimising linear functions over 

a set of linear inequalities as a way to ensure resource optimization (Chakraborty et al., 

2020). This began with the ‘simplex method’ for solving US Airforce planning problems 

of American mathematician George Dantzig (1914-2005) and Dutch-American mathe-

matician Tjalling Koopmans (1910-1985)’s application of linear programming models 

for analysis of classical economic theories in 1947 (Schrijver, 1998). Later develop-

ments include Hungarian-American mathematician John von Neumann (1903-1957)’s 

development of game theory and the duality theorem, later proven by Gale, Kuhn and 

Tucker (1951). In 1960, Zoutendijk (1960) developed the methods of feasible direc-

tions to enable the generalization of the simplex algorithm for non-linear problems. 

Linear programming then evolved to be solvable in polynomial time with the ellipsoid 

algorithm of Soviet-American mathematician Leonid Khachiyan (1952-2005) in 1979 
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(Khachiyan, 1979); and the introduction of interior point methods for solving linear 

programming problems by Indian mathematician Narendra Karmakar in 1984 (Kar-

markar, 1984). Over time, linear programming and extensions have also evolved in 

application, moving beyond its original military and economic roots, to be applied in 

a broad range of felds, including in agriculture, manufacturing, healthcare, and in 

energy and transportation. 

In the 19th century, after Fourier, optimization applications to forest economics 

were considered by German forester Martin Faustmann (1822-1876) in the mid-19th 

century (Scott, 2008). The optimum forest rotation problem involved attempting to 

maximize Faustmann’s present value of the forest rotation income stream problem, 

which was later formally solved by Bertil Ohlin in 1924 (Findlay et al., 2002), though 

it is believed that this solution was known to researchers as early as the 1849 (Viitala, 

2006). 

Around this time, Augustin Louis Cauchy also presented the gradient descent (or 

steepest descent) method applied in nonlinear optimization in the 1847 publication 

Méthode générale pour la résolution des systemes d'équations simultanées (General 

method for solving systems of simultaneous equations) Cauchy (1847). This was an 

alternative to the model-based unconstrained nonlinear optimization techniques frst 

developed by Newton (Nazareth, 1994). Cauchy developed this method to aid in solv-

ing complex quadratic problems in astronomy (Lemaréchal, 2012). Later, in 1907, 

French mathematician Jacques Hadarmard (1865-1963) also independently developed 

the technique (Hadamard, 1907; Courant, 1943). This technique has seen much appli-

cation as an iterative machine learning algorithm for local minimization problems. 

The early 20th century saw developments in convex analysis, through the works 

of Hermite (1883) and Hadamard (1896) (Krtinic and Mikic, 2018), Holder (1889), 

Jensen (1906), Minkowski (1910), and Minkowski (1911), among others, giving rise to 

famous probabilistic inequalities for convex functions, including the Jensen’s inequality 

Burnside (1975) and the Hermite-Hadamard inequality (Sezer, 2021). 

Optimization concepts were also applied in biology to explain the distribution of 
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natural forms and the source of natural changes by Scottish biomathematician D’Arcy 

Wentworth Thompson (1860-1948) in 1917 (Thompson d’Arcy, 1917); and in fnance 

for the determination of optimal portfolios by Markowitz in 1952 (Markowitz, 1952), 

Tobin (1958) and Marschak (1938). 

Other notable 20th century contributions to optimization include the advent of 

combinatorial optimization techniques by Ford and Fulkerson (1956) and Ford and 

Fulkerson (1962), the development of optimal control theory in 1956 (Pontryagin, 1987) 

as a result of developments in dynamic programming concepts, especially due to the 

works of Bellman (1952) and Bellman (1956), the rise of computers, and the aerospace 

applications of initial programming ideas (Sargent, 2000). The sequential quadratic 

programming algorithms for constrained nonlinear optimization were also proposed by 

Wilson (1963), Han (1976), Han (1977), Powell (1978a), Powell (1978c), and Powell 

(1978b). 

Even though there were further developments in other aspects of optimization as the 

subject area broadened in both theory and application, of interest to us are the mid-to-

late 20th century developments in unconstrained optimization algorithms for both local 

and global optimization, including conjugate gradient methods, quasi-Newton methods, 

approximation methods, etc. It is these developments that motivated the search for 

specifc-case algorithms to supplement their limitations. For purposes of parameter 

estimation, particularly maximum likelihood estimation, we study a class of special 

case application algorithms that have been used extensively for optimization purposes 

in cases of missing data or hidden variables, i.e., the Expectation-Maximization (EM) 

algorithms. 
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4.2 Background to the Expectation-Maximization 

(EM) Algorithm 

"I felt like the old minstrel who has been singing his song for 18 years and now fnds, 

with considerable satisfaction, that his folklore is the theme of an overpowering 

symphony" - Herman Hartley 

When the Expectation-Maximization (EM) algorithm, an optimization technique 

for parameter estimation given missing or hidden data was formally proposed by Demp-

ster et al. (1977) in 1977, it cemented this algorithm’s place in the timeline of opti-

mization. Dempster et al. (1977)’s paper was later supplemented by Boyles (1983), Wu 

(1983), and Redner and Walker (1984) (Bagozzi, 1994). The EM is a better-converging 

alternative to both general optimization methods like the Newton-Raphson methods 

and conjugate gradient methods; and methods of scoring (Titterington, 1984). To 

establish parameter estimates, the EM algorithm alternates between the Expectation 

step (E-step), which uses current or initial parameter estimates to create the log-

likelihood expectation, and the Maximization step (M-step), which then maximizes 

the E-step’s expected log-likelihood to determine new ‘more likely’ parameters, with 

are then used as the new initial parameters for the E-step (Meng and Dyk, 1997). The 

process then repeats until the local optimum parameter has been reached, signifed by 

highest likelihood. 

The intuition behind the EM algorithm, despite being formalized in 1977, however, 

was not a new concept, with Dempster et al. (1977) even noting that the algorithm 

had been "proposed many times in special circumstances". The next few paragraphs 

thus gives an overview of the ‘roots’ of the concepts driving the EM algorithm, and the 

historical developments that culminated in Dempster, Laird and Rubin’s 1977 study. 

The development of the EM algorithm can be traced back to the end of the 19th 

century, with the frst EM-type algorithm being referenced by Newcomb (1886) and 

Pearson (1894) and applied to model parameter estimates for fnite mixture models 
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(McLachlan and Krishnan, 2007; Bagozzi, 1994). This development has also been at-

tributed to Fisher(1925)’s statistical identities (Meng and Dyk, 1997), and McKendrick 

(1926)’s ‘Applications of mathematics to medical problems'(see e.g., Dietz, 1997). 

The 1950s saw much improvement in the development of EM-type methods and 

their application. In 1955, these techniques were applied in gene-counting for the esti-

mation of gene frequencies by Cedric Smith, Ruggero Ceppellini, and Marcello Sinis-

calco in 1955 (Ceppellini et al., 1955; Smith, 1957); reformulated for use in randomized 

block design by Healy and Westmacott (1956); and a version of the EM algorithm that 

provided the basis for the Dempster et al. (1977) formulation proposed by Herman 

Hartley in 1958 (Hartley, 1958). 

In the 1960s, EM-type algorithms were formulated and applied, especially to Markov 

models with the works of Leonard Baum, Ted Petrie, and John Eagon (Baum and 

Petrie, 1966; Baum and Eagon, 1967), who introduced hidden Markov models (HMMs) 

to the world. These HMM models have been popular in applications including speech 

recognition (Juang and Rabiner, 1991), signal processing, and gene sequencing, etc. 

Baum and Petrie extended their studies and provided a more comprehensive results 

of their model in their 1970 paper, together with George Soules and Norman Weiss 

(Baum et al., 1970). Orchard and Woodbury (1972) defne their contribution in their 

paper ‘A missing information principle: theory and applications’ as follows ‘present a 

general philosophy for dealing with the problem of missing information, and to give a 

method which will lead quite easily to maximum likelihood estimates of the parameters 

obtained from the incomplete data using as nearly as possible the same techniques as 

if the data were all present.’. This is identical to the process followed by EM algorithms 

to arrive at parameter estimates. 

The Richardson-Lucy algorithm, a nonlinear iterative technique for image deblur-

ring and restoration developed independently by William Richardson in 1972 and Leon 

Lucy in 1974 is also a type of EM algorithm (McLachlan and Krishnan, 2007). Carter 

and Myers (1973) show how the maximum likelihood parameter estimation problem 

for a linear combination of probability functions can be solved through an iterative 
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algorithm that reduces the problem to a complete data problem, which is the EM 

algorithm. 

Other key sources cited in Dempster et al. (1977) include the ‘self-consistency prin-

ciple’ of Efron (1967) and a later extension of Efron (1967)’s idea by Turnbull (1976) 

to incorporate not only single-censored data, but also other grouped and truncated 

data; and Sundberg (1974), Sundberg (1976), and Orchard and Woodbury (1972) for 

the theory behind the EM algorithm, among others. 

The EM algorithm has gained much popularity over the years especially due to its 

attractive convergence properties and computational efciency (McLachlan and Krish-

nan, 2007). In addition, it provides a simple and straightforward class of algorithms 

that can be modifed for multiple applications and extended or improved by merging 

it with other general optimization algorithms like the Newton-Raphson algorithms to 

further improve its efciency. Because of this, EM algorithms have seen broad ap-

plicability, including fnite mixture modelling, variance components, hyperparameter 

estimation, hidden Markov models, iteratively reweighted least squares, and factor 

analysis, etc. (Dempster et al., 1977). 

Catastrophic loss modelling, on the other hand, can be complicated to accomplish, 

especially due to the intractable nature of most of the modelling and subsequent pricing 

equations. Because of this, many techniques used to accomplish the modelling process 

tend to be computationally expensive, especially due to the simulations required for 

each of the equations involved (see e.g., Ma and Ma, 2013; Burnecki and Giuricich, 

2017). The techniques underlying the EM algorithm can bypass this problem, as the 

losses are formulated in accessible distribution-forms that are then combined to ensure 

a complete loss structure, especially in the tails (Dempster et al., 1977; Raudenbush 

and Bryk, 2010; McLachlan and Krishnan, 2007). The fnal ‘mixed’ distribution is then 

used as a model for overall losses, and the distribution then applied as the underlying 

distribution in pricing models. This process increases not only the computational ef-

ciency of the modelling process (McLachlan, 2008), but also provides the opportunity 

to incorporate many diferent elements of loss observations that would otherwise be 
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difcult to incorporate into normal models (Dempster et al., 1977; Baum and Petrie, 

1966; Rabiner, 1989), including elements like dependency and heavy tail modelling. 

It is for these reasons that this study applies the EM algorithm to climate risk mod-

elling, as it provides more comprehensive modelling options for not only the observed 

catastrophic losses, but also for catastrophe bond price analysis. 

The following sections will thus focus on the application of the EM algorithm to 

catastrophic loss modelling and catastrophe bond pricing and analysis, with the aim of 

ensuring more robust and comprehensive models and thus ‘fair’ pricing for catastrophic 

risk fnance instruments that then provide protection against the risks of such catas-

trophes. The frst application involves an application of the EM algorithm for variance 

component analysis, with the goal of determining whether internal issuer factors have 

the potential to afect their issuer-specifc catastrophe bond prices, even though this 

should not be the case as catastrophic risks are independent of and external to issuer 

company-specifc risks. The second application intends to propose a model that bet-

ter incorporates the heavy tails of catastrophic loss processes, through fnite mixture 

modelling; while the third application proposes a model that can better incorporate 

the dependence structure of single-peril catastrophic losses over time and location. 



Chapter 5 

Exploring Inefciencies in the 

Primary Catastrophe Bond Market 

with a Focus on the ‘Issuer Efect’
1 

The COVID pandemic has highlighted the importance of hedging against catastrophic 

events, for which the catastrophe bond market plays a critical role. Most catastrophe 

bonds issued in the primary catastrophe bond market are sold by the same issuers every 

year, and within each year. Signifcant similarities in the bond characteristics are there-

fore anticipated, which ultimately leads to similarities in pricing for these bond issuers 

over time. Using a very rich database with primary catastrophe bond data from 1997 

to 2020, and proposing a novel random intercept model, the variations in catastrophe 

bond premiums introduced by the diferences between issuers are captured, analysed and 

found to be signifcant. To accomplish this, we develop a two-level model based on the 

Expectation-Maximisation (EM) algorithms’ variance components analysis. We then 

apply this to a unique, hand-collected dataset, which is one of the largest and most de-

tailed datasets to date containing: 101 diferent issuers, 794 diferent bonds, spanning 

from 1997-2020, to identify issuer efects robustly, isolating them from bond specifc 

1This section of the study has already been published in the International review of Financial 

Analysis, as Chatoro, M., Mitra, S., Pantelous, A. A., & Shao, J. (2023). Catastrophe bond pricing in 

the primary market: The issuer efect and pricing factors. International Review of Financial Analysis, 

85, 102431. https://doi.org/10.1016/j.irfa.2022.102431 
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pricing efects, therefore providing more credible pricing factor results. We fnd that 

bond pricing and volatility are heavily impacted by the issuer, causing 26% of total price 

variation. We also identify specifc issuer characteristics signifcantly impact bond pric-

ing and volatility, and can account for up-to 36% of total price variation. We further 

fnd that issuer efects are signifcant over diferent market cycles and time periods, 

causing substantial price variation. The size and content of our data also enables us to 

identify the counter-intuitive relation between bond premiums and maturity, and bond 

premiums and hybrid bond triggers. Our results give strong evidence that the primary 

catastrophe market remains inefcient. Keywords: Catastrophe risk bonds; Primary 

market; Multilevel modelling techniques; Issuer efect; Hedging 
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5.1 Introduction 

The COVID-19 pandemic was catastrophic for many economies and societies. Previ-

ously, and despite the constant depiction of contagious disease outbreaks in popular 

entertainment, a real-life global pandemic of this scale was never truly considered. 

Although some previous events have been insured e.g. the Wimbledon tennis tour-

nament, which had been insured against the SARS outbreak since 2003, leading the 

organisation’s policy to pay out US$142 million to cover the cost of cancelling the 2020 

tennis tournament, 2 these types of coverage are not always guaranteed in each year 

e.g. in the Wimbledon case, the coverage was not renewed in 2021 due to an increase 

in premiums 3. The rarity of such events, in addition to their high insurance costs, im-

plies that in most cases, these high cost disasters go uninsured. Alternative tools that 

provide protection against possible disaster in the form of high-yield debt instruments, 

such as the catastrophe (CAT) bond, were therefore introduced to tackle such issues. 

The CAT bond market developed largely in response to the reduction in reinsurance 

capacity observed after Hurricane Andrew in 1992. It was established as an alternative 

platform for companies to acquire reinsurance protection as reinsurance companies were 

overwhelmed by increasing losses due to catastrophic events (Swiss Re, 2012). Similar 

to other debt securities, CAT bonds pay regular coupons and the principal value at 

maturity. However, the coupon paid to the investor consists of a baseline return and a 

premium.4 The former is determined based on market conditions at the time, and the 

latter, also known as the spread, is composed of the expected loss on the underlying 

peril and a risk load (Patel, 2015).5 Further, the risk load is determined based on 

2https://www.insurancetimes.co.uk/news/wimbledon-set-for-coronavirus-windfall-in-huge-pay-

out-from-pandemic-insurance/1433146.article 
3https://www.insurancetimes.co.uk/news/wimbledon-boss-confrms-the-championship-will-not-

have-pandemic-insurance-in-2021/1433726.article 
4In the past, it has generally been based on the London Interbank Ofered Rate (LIBOR), or a 

similar well-known index (Cummins, 2008). 
5The mathematical expression is given by P remium(P ) = Expected Loss (EL) + Risk Load (RL). 
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the bond characteristics and other external factors including the bond’s underlying 

peril, the trigger, the bond rating, the bond issuer, the time of issue, the reinsurance 

cycle and the state of the competing fnancial market, among others (e.g., Lane and 

Beckwith, 2008; Bodof and Gan, 2009; Papachristou, 2009; Braun, 2016; Gürtler et 

al., 2016). The principal repayment (and sometimes the coupons, depending on the 

structure) is conditional on the specifed catastrophe not occurring. If the catastrophe 

occurs, investors lose either part or all of their coupon and/or principal.6 

To date, over $123 billion worth of CAT bonds have been issued. Figure 5.1 shows 

the development of CAT bond issues in US$ and the number of deals over the years in 

the primary market.7 

6There are some similarities in structure between a CAT bond and a high-yield or junk bond (Cox 

and Pedersen, 2000). Both are priced based on the risk of default to the investor. For high-yield or 

junk bond the default stems from the issuer defaulting on payments due to underlying issuer factors, 

or external factors afecting the issuer. For a CAT bond, however, the risk of default stems from the 

occurrence of a catastrophe, which in most cases occurs independently of the issuer’s condition or 

fnancial market factors. Due to this diference in the source of default between high-yield bonds and 

CAT bonds, CAT bonds are favoured by investors as instruments of diversifcation, since their returns 

are generally uncorrelated with broader fnancial market factors that normally afect other fnancial 

instruments (e.g., Cox and Pedersen, 2000; Zimbidis et al., 2007; Carayannopoulos and Perez, 2015). 

Investors also choose to invest in these bonds because of their attractive risk-adjusted returns, when 

compared to other fnancial market instruments (Swiss Re, 2012). 
7Data provided by https://www.artemis.bm/deal-directory/ (Retrieved on 22nd June 2020) 

https://www.artemis.bm/deal-directory
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The catastrophe bond market is still in its expansion stage, only having been for-

mally in existence for approximately 20 years. To ensure its successful growth and 

wider investor participation, it is important that inefciencies are identifed and solu-

tions proposed to improve participation rates. One of the most common characteristic 

of primary CAT bond issues is that they are issued by the same issuers every year, or 

even within the year (Major, 2019). These issues usually have similar characteristics, 

since most new bonds are renewals of older expiring bonds, which are issued by the 

same issuers to cover the same catastrophic events. Despite these similarities, the risk 

factors of a CAT bond relate to the catastrophe itself, and not to the issuer. Further, 

the Special Purpose Vehicle (SPV)8 that issues the CAT bond ensures bankruptcy 

remoteness (Pearce II and Lipin, 2011), efectively separating the risks faced by the 

issuing company from those of the CAT bond.9 In principle, issuers’ characteristics 

should not, therefore, have any impact on premium determination. 

This is not always the case in practice, however, as frequent issuers may receive 

better deal terms and pricing over time than infrequent issuers due to the relation-

ships developed with investors (Spry, 2009). The Covid-19 pandemic has also further 

attracted new issuers to the market looking to beneft from both the protection and 

diversifcation potential ofered by ILS instruments. These issuers would be interested 

in understanding the specifc risks faced by newer entrants before formally participat-

ing in the CAT market. Furthermore, new types of ILS investments that the market 
8The SPV is a company created for the express purpose of providing reinsurance to the issuer if a 

catastrophe occurs (e.g., Cox and Pedersen, 2000; Zimbidis et al., 2007; Pearce II and Lipin, 2011). 

The company receives premiums from the issuer and in turn issues CAT bonds in the fnancial markets 

using the premiums as collateral. The proceeds from the bond issue, together with the premiums paid 

by the issuer, are invested in a collateral account consisting of high-quality assets. These investments 

are used to fund coupon and principal repayments to investors if a pre-specifed catastrophe does not 

occur, and used to provide reinsurance to the issuer otherwise. 
9Once the issuing company has transferred the premiums, which serve as collateral for the CAT 

bond, the SPV takes up the responsibility for ensuring full and timely cash fow payments are provided 

to investors. 
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seems keen on introducing10 can only be successful if the necessary issuer screening and 

market efciency analysis is conducted to determine suitability. Issuer considerations 

will therefore need to be incorporated into pricing models to ensure that the models 

are exhaustive and complete. 

Research analysing the efect of the issuer on CAT bond premiums is scarce. Of the 

major studies assessing factors that afect CAT bond premiums, only Major and Kreps 

(2002), Braun (2016) and most recently, Goetze and Gürtler (2020) explicitly study the 

impact of the issuer. These studies, however, are either limited by their small sample 

size (Major and Kreps, 2002), or number of issuers analysed (Braun, 2016), or are 

focused only on the secondary market (Goetze and Gürtler, 2020). Distinctly to Goetze 

and Gürtler (2020), this paper focuses on the efect of the issuer on initial premiums 

charged for CAT bonds issued in the primary market. Other stylised factors relating 

to the issuer, the market, and the time period are further analysed to establish the 

characteristics that introduce the greatest variability in the bond premiums charged 

to specifc issuers. These include the efect of the total CAT bond issue size since 

inception, the number of years the issuer has returned to the primary CAT market to 

issue bonds, the issuer’s line of business, the state of the market cycle at the time of 

the bond issue, and the efect of the time of issue. Further, we incorporate the efect 

of all the issuers that have issued bonds in the primary market since inception, instead 

of focusing on only one issuer. This efect is then tested on a much larger sample of all 

CAT bonds issued in the primary market between June 1997 and March 2020. 

The present paper assumes that, even after controlling for all the other factors that 

afect CAT bond prices, base premiums still vary based on who sponsors the bond. To 

determine the signifcance of this observation on CAT bond pricing, this study applies 

multilevel modelling techniques to estimate the level of variation in bond premiums as a 

result of pricing diferences between issuers in the primary market. Multilevel analysis 

allows us to separate the efects of the issuer from those of the other explanatory 

10https://www.artemis.bm/news/cat-bond-market-can-grow-to-50bn-pandemic-risk-esg-are-

drivers-swiss-re/ 
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variables believed to impact premiums, in addition to quantifying the level of variation 

in premiums between issuers arising as a result of their inherent diferences. We fnd 

this issuer efect to be signifcant, implying that variations in base premiums due to 

the issuer exist. Around 11% of the variation in premiums appears to be as a result of 

between issuer diferences. Furthermore, this variation is reported to be much larger for 

smaller issuers based on issue size, for issuers that have issued less in the primary CAT 

bond market (i.e., less consistent issuers), and for companies in the primary business 

of conducting insurance as opposed to reinsurance or other multi-line businesses. We 

also identify the three independent factors that have the largest impact on premiums 

as the expected loss, the peril and the reinsurance cycle. Finally, the robustness of our 

results is established across the major stages of the market cycle and for diferent time 

periods. 

The contribution of this research is therefore as follows. First, we develop a two-level 

model on the largest sample size to date to determine the efect of issuer variations on 

issuer premiums. We also quantify the magnitude of this issuer efect to better establish 

the amount of volatility introduced by the diferences between issuers. The magnitude 

of the efect of the other major explanatory variables (those whose efect on premiums 

does not change as the issuer changes) is also calculated to enable identifcation of 

the key fxed factors. Second, we extend the issuer analysis to identify the specifc 

characteristics of the issuer that impact this volatility the most. This involves splitting 

the sample into smaller sub-samples based on specifc characteristics of the issuers, 

including the efect of the issuer’s line of business, the issuer’s total CAT bond issue 

size in the primary market since inception, and the number of years for which the 

issuer has been issuing bonds in the primary market. Finally, we extend the analysis 

of these factors to determine the level of issuer variation that infuences premiums in 

diferent stages of the market cycle and over diferent time periods. In aggregate, by 

testing for the existence of the issuer efect and the main characteristics determining 

the magnitude of this efect, we efectively determine the extent to which the primary 

CAT bond market exhibits inefciencies. As an important impact, these inefciencies 
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considered here can be exploited by future frst-time issuers, who can use them to pick 

the optimal avenue through which to issue new bonds. These results can also provide 

an understanding of the factors to consider before introducing a new product to the 

ILS market, especially when conducting issuer screenings. This will further lead to 

increased participation and growth of the ILS markets. 

The rest of this article is structured as follows: Section 5.2 introduces the hypothe-

ses to be assessed in determining the factors that afect CAT bond pricing. Section 5.3 

describes the sample selection and data characteristics. Section 5.4 gives the methodol-

ogy and empirical analysis, while Section 5.5 discusses potential implications for CAT 

market participants. Section 5.6 concludes the article and an appendix follows there-

after. 

5.2 Development of Hypotheses 

To assess the efect of issuer diferences on bond premiums, we incorporate both the 

efect of the issuer (i.e., random efect) and that of other explanatory factors (i.e., 

fxed efects). Random efects represent the factors that lead to variable premiums as 

we move between the groupings created by the previously mentioned factors. They 

introduce an additional source of variation to the model, in addition to the error 

term that represents the unexplained variation (Raudenbush and Bryk, 2010). Fixed 

efects, which represent those factors whose efect on premiums does not change as 

the grouping changes, will therefore explain the premiums to a large extent before 

the remaining variation is allocated between the issuers and the unexplained variation 

(Major, 2019). This section identifes and justifes both the fxed and random efects 

that will be tested for inclusion into the fnal model, following previous research and 

other observations. 

Based on Lane (2018), we establish our hypotheses using common factors afecting 

CAT bond pricing, such as (1) the expected loss, (2) the CAT bond deal structure, 

(3) the reinsurance cycle, (4) the bond issue or sponsor and (5) the competitive fxed 
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income fnancial markets. In addition, other factors, including maturity, issue date 

and bond rating, are assessed. Hypotheses are generated for each of these explanatory 

factors as follows. 

5.2.1 Issuer 

Issuer characteristics are assumed to afect the impact of the issuer on the premium, 

with higher or lower premiums charged depending on underlying characteristics. In 

previous treatments, the issuer efects are either included as dummy variables (Braun, 

2016) or not included at all (Lane, 2018). However, there are challenges that arise 

with the use of dummy variables to incorporate issuer efects. Observing our dataset, 

over 100 issuers have participated in the CAT bond market since inception, and unless 

these issuers are aggregated into smaller classifcations, testing the issuer efect will be 

impossible. Aggregation, which involves averaging across issuers, may however lead to 

the loss of key issuer information that could be relevant to the analysis. 

In a single-level model with only one error term that represents the fxed efects, the 

issuer-specifc diferences are not sufciently considered. This leads to under-estimation 

of standard errors and over-estimation of the signifcance of explanatory variables, and 

thus, to incorrect inferences. As a result, a multilevel model is recommended instead 

(see, e.g., Raudenbush and Bryk, 2010; Nezlek, 2012). 

In the corresponding pricing literature, very few of the CAT bond studies actually 

apply a multilevel model for their analysis. Major and Kreps (2002) are among the 

frst to consider it to assess the impact of “client-specifc factors” on pricing, which 

they fnd to be signifcant. It should be noted, however, that their dataset was much 

smaller, and with a much smaller number of issuers compared to the present study’s 

dataset. In addition, the “client-specifc factors” are not subsequently broken down to 

identify which specifc factors have the greatest impact on pricing. Gürtler et al. (2016) 

apply a multilevel model to incorporate the efects of time in secondary market data. 

Recently, Goetze and Gürtler (2020) consider something similar to test the efect of 
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sponsor-specifc variables on premiums in the secondary market. Distinctly to them, 

we test for the existence of the issuer efect in the primary market issues to assess the 

penalty “at issue”. 

In a multilevel structure, units belonging to a lower level would be grouped into 

units at a higher level (Wang et al., 2011). If the individual data points can be clustered 

based on an identifying characteristic of each group, then the individual data points 

will comprise the lower (micro) level, while the grouping characteristic will form the 

units for the higher (macro) level. In our case, most of the bonds are issued by the same 

issuers every year, or even within the year. Since most of these issuers cover similar 

risks to every other issuer, it is possible that investors base their pricing decisions for 

future bonds on the same company on the past premiums. This implies that, when all 

other factors afecting premiums are held constant, the identity of the issuer, or their 

total number of issues, might lead to diferences in premiums charged for diferent 

issuers. Seasoned issuers may receive lower rates based on their standing as frequent 

issuers, while new issuers may receive higher rates. This deduction is in line with Spry 

(2009), who explains that an issuer with a strong track record has the ability to issue 

even more bonds at better pricing terms over time. The similarities in bonds issued 

by the same issuer also lead to higher correlation in premiums for a given issuer. This 

means that the individual observations will no longer be independent, but dependent 

based on the issuer of the bond. The following hypothesis assesses whether the issuer’s 

characteristics, reputation or track record have any infuence on their premiums. 

Hypothesis 1a: After controlling for all other independent variables, premiums will 

still difer depending on the bond issuer. 

In addition, other supporting hypotheses are tested to identify the characteristics 

of the issuers that introduce the greatest volatility into premiums. These supporting 

hypotheses include: 

Hypothesis 1b: Issuers with a higher total issue volume will have lower volatility in 

premiums arising as a result of the issuer efect compared to those with a lower total 

issue volume. 
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Hypothesis 1c: The longer the issuer has participated in the primary CAT bond 

market, the lower their premium volatility will be due to the issuer’s characteristics. 

Hypothesis 1d: Issuers in the insurance industry will have higher volatility than 

issuers in other lines of business such as reinsurance or multi-line. 

5.2.2 Additional factors 

Peril 

Following Cummins and Mahul (2009), we break down our perils into four major cat-

egories: Peak are US-based perils including US hurricanes and earthquakes, non-peak 

includes European wind storms and Japanese earthquakes, diversifying includes all 

other non-US perils, e.g., Mexican earthquakes, Australian earthquakes and hurricanes, 

and multi-perils combines peak and non-peak perils in the same transaction. 

It is assumed that peak CAT bonds will normally have higher premiums than non-

peak (non-US) bonds (Cummins, 2008). This is because the peak regions are more 

prone to natural disasters such as hurricanes, typhoons, earthquakes, tornadoes etc. In 

addition, peak bonds do not ofer as much diversifcation beneft as non-peak bonds, 

due to the concentration of investor portfolios in peak regions. Multi-peril bonds are 

also assumed to have higher spreads due to the complexity of the deal structure (Gürtler 

et al., 2016; Patel, 2015). Our hypothesis is therefore as follows: 

Hypothesis 2: Peak or multi-peril bonds will have higher risk premiums than non-peak 

or single-peril bonds respectively. 

Trigger 

There are fve major trigger types in the CAT bond market: indemnity, parametric, 

industry loss, modelled loss and a hybrid trigger - representing a combination of any 

of the other four. Indemnity triggers provide a perfect hedge, where pay-outs are 

based on the issuer’s actual losses. All the other triggers are non-indemnity triggers 

based on a specifed index. Industry loss triggers pay out if the value of industry 
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losses exceeds a specifed level. Parametric triggers pay out based on the CAT bond 

meeting pre-defned physical parameters, e.g., wind speed and location of a hurricane 

or magnitude and location of an earthquake, while a modelled loss is determined by 

running the catastrophe’s physical parameters on the modelling frm’s database of 

industry exposures (MMC Securities, 2007). Non-indemnity triggers are an imperfect 

hedge and do not always fully cover the issuer’s actual losses. 

Indemnity-triggered bonds would be expected to have higher spreads because of the 

reduced basis risk to the sponsor and the increased moral hazard risk to the investor 

(Doherty and Richter, 2002). There are also increased transaction costs because of the 

more extensive due diligence that would need to be carried out compared to a non-

indemnity bond (Cummins and Weiss, 2009). Empirical studies on the efects of the 

trigger on a CAT bond’s price have derived mixed results. Gürtler et al. (2016) report 

no signifcant efect of the trigger on the premiums. Braun (2016) and Papachristou 

(2009) also fnd that the trigger term is much less infuential in pricing. Dieckmann 

(2010), however, reports that the trigger is signifcant. It is worth noting, however, 

that Dieckmann’s sample size was much smaller, with only 61 CAT bonds considered. 

Similar to previous studies, we test the efect of the indemnity trigger on risk premiums 

through the following hypothesis. 

Hypothesis 3: Indemnity-triggered bonds have higher premiums than non-indemnity 

triggered bonds. 

We also assume that bonds with hybrid triggers will have higher risk premiums due 

to the complex nature of the bonds. An additional hypothesis then becomes: 

Hypothesis 4: Bonds with multiple triggers have higher risk premiums than bonds 

with a single trigger. 

Rating 

Ratings give investors an indication of what the bond’s risk of default might be and 

help companies reduce their cost of capital by providing credit enhancements (White, 
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2013). In analysing CAT bond ratings, we focus on two aspects: the impact of the lack 

of a bond rating, and the impact of a specifc rating, on the bond premium. In the 

frst case, we seek to determine whether the lack of a rating on CAT bonds impacts the 

premiums compared to similar bonds with a rating. The majority of CAT bonds issued 

within the past eight years do not have a rating. This either means that investors are 

capable of conducting their own due diligence, or that ratings would not add any other 

signifcant information to what investors already know. Cummins (2008) states that 

the modelling frm’s analysis is a more important driver of price than ratings, and for 

Krutov (2010), investors do not rely on bond ratings, in general. 

We also analyse whether specifc types of ratings still infuence the bond premium. 

Past literature supports the view that stronger ratings lead to lower premiums. Gürtler 

et al. (2016) fnd that, as the rating declines, premium increases, and this result is 

similar to those of Galeotti et al. (2013) and Braun (2016). As CAT bonds drop 

ratings, though, this efect might not be observable in the long term. We test two 

hypotheses, one for the impact of a given rating and the other for the impact of no 

ratings, on prices. Assuming all other factors afecting premiums are controlled for, 

the hypotheses then become: 

Hypothesis 5: Bonds with a higher rating have a lower risk premium. 

Hypothesis 6: Non-rated bonds have higher risk premiums than rated bonds. 

Issue date/quarter 

This will be used to test for the signifcance of the issuance season, especially the pre-

versus post-hurricane seasons. Most issues occur in the second (Q2) or fourth (Q4) 

quarter, and Q2 precedes the hurricane season; therefore, it is assumed that there will 

be higher spreads allocated to this period compared to the other quarters due to an 

increase in perceived risk (e.g., Patel, 2015). Seasonal efects are tested in Galeotti 

et al. (2013) using the seasonal index proposed in Lane and Beckwith (2009). The 

authors report no signifcant seasonal efect, which they attribute to either no efect or 
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a misspecifed index. We specify the hypothesis below: 

Hypothesis 7: Issues in Q2 have a higher risk premium than issues in the other 

quarters. 

Maturity 

On average, CAT bonds have a maturity period of about three years, but maturity 

has been observed to be as short as fve months and as long as six years. Investment 

literature suggests that longer-term bonds should have higher risk due to the increased 

sensitivity of their prices to fuctuations in interest rates (e.g., Bodie et al., 2014). 

They would therefore be expected to have higher premiums. To determine whether 

this assumption holds, we specify the following hypothesis: 

Hypothesis 8: Longer-maturity bonds have higher spreads than shorter-maturity 

bonds. 

Cyclic index 

The insurance market faces cycles; prices have been observed to increase after signif-

icant catastrophic events or capital outfows due to other economic events, and they 

decrease due to capital infows and stability in the catastrophe losses (see, Lane and 

Mahul, 2008; Cummins and Weiss, 2009; Lane, 2018; Swiss Re, 2019). There can be 

hard, soft and neutral markets representing, respectively, increasing, decreasing and 

stable prices. 11 Whether the bond is issued in a hard, soft or neutral market will af-

fect its observed spreads due to the overall market’s conditions and investor sentiment 

at the time of issue. Bonds issued in hard markets tend to have higher premiums than 

comparable bonds issued in soft markets due to a higher cost of coverage and changes 

11According to Lane and Beckwith (2020), a hard market represents a period of more ‘more aggres-

sive demand for protection from issuers than the appetite for assuming risk among investors (pg.8)’ 

and therefore premiums rise in turn, while a soft market represents a period of less demand from 

issuers compared to investor risk appetite and thus premiums fall. Neutral markets exist in times 

when the demand for protection balances out with investor risk appetites. 
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in risk perception (Patel, 2015; Lane and Beckwith, 2007). 

Similar to Gürtler et al. (2016), we apply a property catastrophe cyclic index by 

Guy Carpenter12 to test the efect of these cycles on premiums. 

Hypothesis 9: CAT bond premiums increase in line with the cyclic index. 

Competing fnancial environment 

Since CAT bonds are similar to defaultable bonds with an equal rating (Cox and 

Pedersen, 2000), investors have a choice of either investing in the corporate or the 

CAT bonds (or both). If the CAT bond market intends to attract investors, it has to 

price these bonds with reference to the prices in the competing market. The premiums 

can be slightly lower or higher depending on the diversifcation beneft provided by 

each bond, but premiums on corporate bonds still provide a benchmark for assessing 

premiums in the CAT bond market. 

Hypothesis 10: CAT bond premiums move proportionally to the spreads in similar 

high-yield corporate bonds. 

5.3 Data 

5.3.1 Sample selection 

Our sample is an original dataset of 724 CAT bonds issued in the primary CAT bond 

market between June 1997 and March 2020. For each bond, we have information on 

the issuer, underwriters, size of issue (in millions of US dollars), issue rating13, term, 

issue and maturity month, spread per annum, expected loss, peril and geographical 

location, trigger, probability of frst loss and the conditional expected loss. The data is 

acquired from Lane Financial LLC’s trade notes and cross-checked with other sources 

12The Catastrophe Bond Market at Year-End: The Market Goes Mainstream (Retrieved 11 

September 2020) https://www.gccapitalideas.com/2008/02/28/the-catastrophe-bond-market-at-year-

end-the-market-goes-mainstream/ 
13For bonds with multiple ratings, we picked the lowest rating. 

https://www.gccapitalideas.com/2008/02/28/the-catastrophe-bond-market-at-year
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to include missing information. Some of these other sources include the Insurance 

Linked Securities’ (ILS) portal Artemis.bm, Aon’s Annual ILS Reports, Swiss Re’s ILS 

Market Updates, Munich Re and Guy Carpenter reports, the Institute and Faculty 

of Actuaries’ publications and Froot (1999a). The raw dataset is made up of 749 

bonds, but 25 observations are excluded, either due to missing values of key variables 

or diferent payment structures from those of a typical CAT bond.14 We also exclude 

all life and health bonds as they have diferent underlying variables that determine 

their pricing. 

5.3.2 Issuers 

The data, once grouped based on issuers, consists of 101 individual issuers, with Swiss 

Re (173 bonds), USAA (74 bonds), Munich Re (30 bonds), Hannover Re (26 bonds) 

and SCOR (21 bonds) representing the top fve issuers by number of tranches. Swiss 

Re (11.22%), USAA (8.46%), Hannover Re (5.25%), Everest Re (4.34%) and Munich 

Re (4.18%) are the top fve issuers by size of issues. The individual issuer data for all 

101 issuers is given in Appendix A. Table 5.1 gives an example of the similarities and 

developments in issues over time, with a focus on one of the pioneer issuers, USAA. 

USAA’s CAT bonds, known as Residential Re, are among the frst bonds to have 

been issued in the market in 1997. Over the years, USAA has issued a minimum of one 

CAT bond every year, and is one of the most consistent issuers in the market. USAA’s 

issue characteristics over time show an increase in bond term from one to four years, a 

decrease in issue ratings (from AAA to B- following the S&P scale), an increase in the 

number of classes per issue, and an extension of coverage regions and perils. Later deals 

cover unique risks such as volcanic eruption, meteorite impact, and even operational 

risks. This implies that market participants either trust the company more, or that a 

better understanding of USAA’s CAT bonds has increased their willingness to take on 

14They include bonds triggered by multiple losses, e.g., Bay Haven Ltd which covered six events 

occurring only after the frst three events had occurred, efectively covering frequency instead of 

severity of losses (Lane and Beckwith, 2007). 

https://Artemis.bm
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more risk. 

USAA has developed a reputation for consistency that has accorded the company 

more leeway in product structuring, leading to more complex products over time. We 

want to determine whether some issuers are charged higher premiums based purely 

on their company characteristics or their reputation in the market. If the pricing is 

similar, then all companies should face a similar trajectory to that of USAA, with 

earlier deals including more stringent requirements than later deals. Premiums should 

also be similar for bonds with the same characteristics, but diferent issuers. 

To determine whether variations in premiums exist by issuer, we run a two-level 

model, with issuers as our second-level variables, or random efects. The remaining 

independent variables are taken as frst-level variables, or fxed efects, since their efect 

on premiums is independent of the issuer characteristics. These concepts are elaborated 

upon in Section 5.4. 

5.3.3 Other predictors 

Table 5.2 presents the remaining characteristics of the data, excluding issuer charac-

teristics. It breaks down key characteristics of CAT bond issues over the observation 

period. The Size column gives the total issue size of all CAT bonds issued under each 

classifcation in millions of US dollars. Obs stands for the total number of observa-

tions within each classifcation, while P is the average CAT bond premium and EL 

the average expected loss. P/EL is a multiple, derived by dividing the premium by the 

expected loss value. This multiple gives the number of times the premium is higher 

than the expected loss, and is normally higher during hard markets or for complex 

CAT bonds, e.g., multi-peril bonds or bonds with hybrid triggers. EER is the expected 

excess return, given by the premium minus the expected loss. It represents how much 

investors demand for taking on the risk associated with bonds of a given characteristic. 

The Term variable, which is given in months, is the average length of time the bonds 

within each classifcation are issued for. A discussion of each of the characteristics is 
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given below. 
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Table 5.2: Summary data characteristics 

Size ($m) Obs. (No) P(%) EL (%) P/EL EER (%) Term 

Peril 

Peak 65,718.53 460 7.89 2.60 6.54 5.29 36.00 

Multiperil 12,927.30 127 9.65 3.41 7.80 6.24 36.53 

Non-Peak 12,111.42 91 4.85 1.54 5.24 3.31 42.59 

Diversifying 6,114.11 46 5.13 2.45 2.69 2.69 37.67 

Trigger 

Hybrid 2,145.50 33 13.96 5.21 3.33 8.75 33.33 

Indemnity 47,801.66 307 6.71 2.37 8.11 4.34 38.19 

Industry loss 29,545.90 200 8.98 3.08 4.07 5.89 37.43 

Modelled loss 3,951.10 40 7.18 1.62 6.36 5.57 36.20 

Parametric 13,427.20 144 6.46 2.10 6.45 4.36 35.06 

Rating 

High yield 49,571.41 396 7.47 1.86 5.04 5.60 35.34 

Investment grade 3,199.60 33 2.34 0.15 49.46 2.19 35.76 

Not Rated 44,100.35 295 8.47 3.87 3.29 4.60 39.43 

Issue Quarter 

Quarter 1 20,443.26 149 7.22 2.40 7.76 4.81 38.30 

Quarter 2 41,865.46 304 7.38 2.42 6.43 4.96 36.78 

Quarter 3 8,678.50 63 7.33 2.24 7.58 5.09 35.73 

Quarter 4 25,884.14 208 8.42 3.12 4.85 5.30 36.86 

Grand Total 96,871.36 724 7.64 2.60 6.35 5.04 37.02 

Note: This table summarises the main characteristics of the categorical variables included 

in our sample. These include the bond peril, the bond trigger, the bond rating at issue, and 

the issue quarter. For each of these variables, the size of issue (in millions of US dollars), 

the number of bonds/observations (Obs.No), the expected loss (EL), the premium (P), the 

multiple of the premium given the expected loss (P/EL), the expected excess return (EER), 

and the bond term (in months) are given. These values are calculated for the full dataset of 

724 CAT bonds issued in the primary market between June 1997 and March 2020. 
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Categorical predictors 

Peak perils, i.e., US-based earthquakes and hurricanes, represent a major portion of 

the bonds issued in the market at 63% of the total observations. These are followed by 

multi-peril bonds, which are bonds covering both US perils and other non-US perils, at 

18%. In total, these two classifcations alone represent 81% of the market, showing that 

US-based issues still dominate the market for catastrophe bonds. The non-peak perils 

of EU wind and Japanese earthquakes represent 13% of the market, while diversifying 

perils, i.e., all non-US perils excluding EU wind and Japanese earthquakes, compose 

the remaining 6% of the market. Diversifying and non-peak perils, which together make 

up 19% of the market, represent a great opportunity for investors to diversify away 

from the US market. Due to this, their spreads are generally much lower than those of 

the peak and multi-peril bonds in the primary market. To confrm this relationship, 

we build our dummy variable Peril (see Hypothesis 2) as follows:  1, if peak or multiperil. 
P eril = (5.1)0, if non-peak or diversifying. 

Indemnity bonds are a signifcant proportion of the CAT bond market at 42%, followed 

by industry loss index bonds (28%) and parametric bonds (20%). Modelled loss and 

hybrid bonds bring up the rear at 6% and 5%, respectively. It seems that investors 

still buy indemnity bonds despite some of their previously discussed risks. In fact, 

since 2013, indemnity bonds have consistently made up over 50% of the total bonds 

issued (Lane and Beckwith, 2020). On average, the spreads for the hybrid bonds, at 

14%, are much larger than the spreads for any of the other triggers. This, however, is 

due to the fact that bonds using hybrid triggers are mainly complex multi-peril bonds, 

represented by the high expected loss fgure of 5.21%. The multiple of hybrid-triggered 

bonds is also much lower than that of other bonds, further reinforcing this deduction. 

All other triggers have average spreads ranging between 6% and 9%, and EER between 

4% and 6%. This also means that, on average, there is not much diference in pricing 
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based on trigger. To determine whether the hybrid trigger afects bond premiums (see 

Hypothesis 4), we use the dummy variable Trigger as follows:  1, if hybrid. 
T rigger = (5.2)0, otherwise. 

The indemnity trigger hypothesis (see Hypothesis 3) is tested by replacing hybrid with 

indemnity in the above equation. 

In recent years non-rated bonds have dominated the market, while the number of 

rated bonds has fallen signifcantly. Non-rated bonds comprise 41% of our sample, and 

this number is expected to increase for future issues. Rated bonds make up the re-

maining 59%, with high-yield bonds representing 55% and investment-grade bonds the 

other 4%. Investment-grade bonds have the lowest spreads due to their very low ex-

pected loss values, while both the non-rated and high-yield bonds have similar spreads. 

Table 5.3 gives a further breakdown of the main ratings. 
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Table 5.3: Catastrophe bond ratings 

Lowest RatingSize ($m) Obs. (No) P(%) EL (%) P/EL EER (%) Term 

AA 256.00 1 0.66 0.01 66.00 0.65 36.00 

A+ 26.50 1 1.01 0.01 144.29 1.00 36.00 

A 647.60 1 1.77 0.01 177.00 1.76 36.00 

A- 225.50 4 2.03 0.04 64.58 2.00 29.00 

BBB+ 509.50 5 2.45 0.08 119.51 2.37 43.20 

BBB 225.00 2 2.77 0.07 82.20 2.70 36.00 

BBB- 1,599.50 20 2.49 0.22 11.77 2.28 35.80 

BB+ 13,145.28 81 4.73 0.82 6.51 3.90 39.73 

BB 12,038.68 77 5.96 1.06 6.26 4.89 33.45 

BB- 9,244.05 103 6.67 1.43 4.98 5.25 36.01 

B+ 5,226.00 35 9.01 2.22 4.18 6.79 35.14 

B 6,906.00 60 10.57 3.44 3.28 7.14 30.97 

B- 2,721.40 39 12.23 4.07 3.04 8.16 34.72 

NR 44,100.35 295 8.47 3.87 3.29 4.60 39.43 

Grand Total 96,871.36 724 7.64 2.60 6.35 5.04 37.02 

Note: This table summarises the CAT bond ratings (at issue) for the bonds included in the 

sample. The ratings are standardised to the Standard & Poors (S&P) scale, and can be split 

into three main groups. These are the investment-grade bonds (those with a BBB- rating and 

above); high-yield bonds (those with a B- rating and above, up to BB+); and the non-rated 

(NR) bonds. For each of the ratings displayed, the size of issue (in millions of US dollars), 

the number of bonds/observations (Obs.No), the expected loss (EL), the premium (P), the 

multiple of the premium given the expected loss (P/EL), the expected excess return (EER), 

and the bond term (in months) are given. These values are calculated for the full dataset of 

724 CAT bonds issued in the primary market between June 1997 and March 2020. 
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For the rating variable we test the efect of having either an investment-grade rating 

or having no rating on the premium as given by Hypotheses 5 and 6, respectively. 

Q2 is the most dominant issue period, with 42% of all the bonds issued in this quar-

ter, followed by Q4 at 29% and the frst quarter(Q1) at 20%. The third quarter(Q3), 

which represents the hurricane season, has the least number of issues at approximately 

9%. Average spreads, however, seem to be within a similar range. This introduces the 

possibility that the issues might not be afected by the issue date. The suggestion from 

the literature is that Q2 has higher spreads because it falls before the hurricane season 

(Braun, 2016). This will be tested in the regression models using the dummy variable 

Quarter, as defned in Eq. (5.3) (see Hypothesis 7).  1, if issued in the second quarter. 
Quarter = (5.3)0, otherwise. 

Continuous predictors 

The Guy Carpenter Global Property Catastrophe Rate on Line Index (GC RoL Index) 

is used as a representative of the reinsurance cycle (see Hypothesis 9). This is an index 

of global property catastrophe reinsurance rate-on-line movements covering all major 

global catastrophe reinsurance markets. Since most CAT bonds cover property-related 

risks, this index is assumed to be a good representative of the state of the property 

reinsurance market. The state of the competing fnancial environment (see Hypothesis 

10) is proxied by the ICE Bank of America Merrill Lynch BB US High Yield Option-

Adjusted Spread Index (BB Spread Index). This index tracks the performance of 

US-dollar-denominated BB-rated corporate debt, publicly issued in the US domestic 

market. A majority of the rated CAT bonds carry a BB rating. Therefore, this index 

contains securities that compete with the CAT bond market for investments. 

Figure 5.2 summarises the GC RoL Index and the Corporate BB Spread Index, 

respectively. From the GC Rol Index graph, we can pick out the key hard market 

periods due to their increased spreads. Spikes in the index are observed after the 
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9/11 attacks in 2001, after Hurricane Katrina in 2005, during the fnancial crisis, and 

after the 2017 Atlantic hurricane season that saw Hurricanes Irma, Harvey and Maria, 

among others, cause widespread losses.15 This shows that premiums increase following 

major catastrophes or in periods of extreme economic turmoil. The BB Spread chart 

further reinforces this point, with notable spikes in the index after 9/11 and during 

the fnancial crisis. One of the most notable diferences between the two graphs is the 

efect of natural catastrophes, which did not seem to afect corporate spreads as much 

as it did the reinsurance cycle. The fnancial crisis also seems to have afected the 

corporate spreads more than the property catastrophe reinsurance market. 

Table 5.4 gives a summary of the characteristics of the remaining continuous vari-

ables. 

15According to Swiss Re (2018), global insured losses from catastrophes in 2017 were estimated at 

US$136bn. 

https://losses.15
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Figure 5.2: The Reinsurance cycle and State of the Financial Market 
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Note: The line graphs above display developments in the reinsurance cy-

cle and the competing fnancial environment over the period of analysis. 

The reinsurance cycle is represented by the Guy Carpenter Global Property 

Catastrophe Rate on Line Index (GC Rate-on-Line Index), and is given 

annually for the period beginning January 1997 (for 1996) and ending Jan-

uary 2020 (for 2019). The competing fnancial environment is represented 

by the ICE Bank of America Merrill Lynch BB US High-Yield Option Ad-

justed Spread Index (BB Spread Index), and is given daily for the period 

beginning 31st December 1996 and ending 31st March 2020. 
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Table 5.4: Summary descriptive statistics 

Variable Mean Median Std.Dev. Minimum Maximum 

Size ($m) 133.800 100.000 117.371 1.800 1500.000 

EER (%) 5.000 4.100 3.500 0.650 41.100 

EL (%) 2.600 1.600 2.600 0.007 17.400 

Premium(%) 7.600 6.100 5.100 0.660 49.900 

Term (months) 37.025 36.000 12.067 5.000 69.000 

Note: This table summarises descriptive statistics of the continuous variables in our 

sample, excluding the reinsurance cycle and the competing fnancial environment, 

which are separately displayed. These variables include the bond issue size (in mil-

lions of US dollars), the expected loss (EL), the bond premium (P), the expected 

excess return (EER) (calculated as the diference between the premium and the ex-

pected loss), and the bond term (in months). The mean, median, standard deviation, 

and minimum and maximum values are displayed for each variable, for the full dataset 

of 724 CAT bonds issued in the primary market between June 1997 and March 2020. 

The average spread in the CAT bond market is 7.6% while the median spread 

is 6.1%, showing that there might be outliers in the dataset that are weighted more 

heavily in determining the mean spreads. This is against an average expected loss 

of 2.6%, representing the low probability of most catastrophic events. In fact, the 

minimum expected loss of 0.007% is so low it is close to zero. This would be the 

expected loss allocated to a very remote event, or a covered loss layer that is highly 

unlikely to be hit. The CAT bonds have an average term of three years and an average 

size of US$133 million. 

The linear relationship between the above variables is displayed in the correlation 

matrix of Table 5.5. 
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Table 5.5: Correlation matrix of continuous variables 

Variable Premium EL GCIndex BBSpread Term Size 

Premium 1.0000 

EL 0.7792*** 1.0000 

GCIndex 0.2585*** -0.0822** 1.0000 

BBSpread 0.1387*** 

Term -0.2563*** 

0.0770** 

-0.1361*** 

0.2477*** 

-0.2123*** 

1.0000 

0.0494 1.0000 

Size -0.2454*** -0.1968*** -0.2329*** -0.1299*** 0.1746*** 1.0000 

Note: This table displays the pairwise correlations of the continuous variables included in our 

sample. These include the CAT bond premium, the expected loss (EL), the reinsurance cycle 

(represented by the Guy Carpenter Index, GCIndex), the competing fnancial environment 

(represented by the BB Corporate Bond Index, BBSpread), the bond term (in months) and 

the bond size (in millions of US dollars). The signifcance of each of these values is also 

indicated. Signifcance at 90%, 95%, and 99% confdence levels are indicated by *, **, and 

***, respectively. 

The bond premium is signifcantly correlated with all the other continuous vari-

ables. It is positively correlated with the expected loss, the reinsurance cycle and the 

competing fnancial market, and negatively correlated with the bond term and issue 

size. The largest positive linear relationship is between the expected loss and the pre-

mium, providing support for the deduction from the literature that the expected loss 

is the main factor applied in the determination of CAT bond premiums. Term and 

size have a negative correlation with the premiums, implying that premiums actually 

decrease as we increase both the term and size of a CAT bond issue. The term and size 

variables also have a signifcant negative correlation with the expected loss, the rein-

surance cycle and the competing fnancial market. When the term and size variables 

are compared to each other, however, the relationship is signifcantly positive, with an 

increase in size corresponding to an increase in term and vice versa. Each of these 
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factors will be analysed in more detail in a multilevel model to determine causality. 

5.4 Empirical Analysis 

5.4.1 Model specifcation 

Our issuance data16 has shown that most CAT bonds are sold by the same issuers year-

on-year, and multiple bonds can be sold by a given issuer within a given year. The 

bonds are therefore nested within groups, which in this case represent the issuers. Table 

5.1 also shows that there are major similarities in characteristics for bonds issued by the 

same issuer over time. The question of the issuer efect, arising from this hierarchical 

structure and the similarities in bond characteristics, on pricing, is the focus of this 

research. For this purpose, we will be applying multilevel modelling techniques,17 in 

particular, a two-level random intercept model, since we will be assuming that only 

the intercept varies for the issuers, while the slope remains the same for all issuers. 

This implies that the minimum premium charged for each company changes based on 

the issuer, but the manner in which the other predictors, e.g., peril, trigger, cycle, 

afect the premiums does not change based on the issuer. The assumption here is that 

investors determine premiums based on the characteristics of the CAT bond itself frst, 

before reviewing these expectations based on the issuer characteristics. 

Furthermore, before running the regression models, we frst determine the indepen-

dent variables to be included. We analyse all the factors included in the hypotheses 

in initial multi-level regressions. To test the model’s ft and determine its suitabil-
16See Appendix .1 for more details on the summary of all analysed issuer characteristics. 
17Multilevel modelling techniques have mainly been used in educational and psychological research 

in the past, to model hierarchical structures (see, e.g., Nezlek (2012), Bryk and Raudenbush (1987), 

Kreft and Leeuw (1998), and Raudenbush and Bryk (2010)). However, their application is not only 

limited to the aforementioned felds, as researchers studying CAT bond pricing, e.g. Major (2019), 

have proposed that the CAT bond hierarchical structure be taken into account through multi-level 

models. Appendix .2 presents the structure of a multilevel model. 
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ity for the data, goodness-of-ft tests based on the log-likelihood ratio (LLR) and the 

Akaike Information Criterion (AIC) (Akaike, 1974) are conducted.18 We will therefore 

be comparing the more complex model, the one with the random efects, against the 

simpler model without random efects. A lower AIC value will support the two-level 

model’s superiority over the single-level model. 

The fnal factors are chosen based on their signifcance, with the requirement being 

at least a 90% confdence level. The fnal model includes the following eight factors: ex-

pected loss, peril, reinsurance cycle, competing fnancial environment, term, investment-

grade rating, hybrid trigger and issuer. The indemnity trigger, the impact of a lack of 

credit rating, and the issue quarter representing Hypotheses 3, 6 and 7 respectively, 

are all insignifcant and therefore excluded from the model. Table 5.6 summarises a 

comparison between the fnal specifed model and alternative models that include those 

excluded (insignifcant) factors. Further, since the likelihood ratio test statistic (LRT) 

is also signifcant for all the models, it further supports the deduction that a multi-

level model ofers the best ft for our data. The conditional and marginal R-squared 

values, which are calculated based on Nakagawa and Schielzeth (2012), represent the 

amount of variation explained by the total of the fxed and random efects, and the 

variation explained by the fxed efects only, respectively. The intra-class correlation 

coefcient (ICC) gives the variation explained by the random efects only. Of the three 

excluded factors, the “indemnity trigger” model displays the closest similarity to our 

fnal model, but is subsequently not chosen because the hybrid trigger is signifcant 
18Likelihood ratio tests provide a way to compare the model with the random efect term (the 

two-level model) against one without the random efect term based on their likelihoods and determine 

whether the two are signifcantly diferent. The AIC, on the other hand, gives a measure of the 

information lost as the model’s complexity increases by considering the estimated residual variance and 

the complexity of the model as additive terms (Chen and Li, 2017). The AIC equation is represented 

below (Akaike, 1974): 

AIC = −2 ∗ ln(L) + 2k 

where L represents the maximum likelihood and k represents the number of estimated model param-

eters. 

https://conducted.18
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when compared to the indemnity trigger. The proposed novel two-level model displays 

superior performance in goodness-of-ft tests, i.e., a lower AIC and signifcant LRT. 
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Table 5.6: Model factor specifcation 

Final model 
Hypothesis 3 

(Indemnity) 

Hypothesis 6 

(Not Rated) 

Hypothesis 7 

(Issue Quarter 2) 

Marginal R2 

Conditional R2 

ICC 

0.8172 

0.8369 

0.1078 

0.8135 

0.8377 

0.1297 

0.8040 

0.8182 

0.0725 

0.817 

0.8368 

0.1082 

AIC 

LRT 

2837.5 

12.71*** 

2840.9 

14.58*** 

2899.1 

7.90*** 

2841.5 

12.75*** 

Note: This table summarises the explanatory and ft properties of the fnal model in comparison to models that 

include the excluded (insignifcant) factors from the hypotheses. The respective models’ equations are given below: 

Final model 

P = β0 + β1EL + β2P eakMultiperil + β3GCIndex + β4BBSpread + β5T erm + β6IG 
(5.4) 

+ β7Hybrid + uij + εij 

Hypothesis 3 (Indemnity trigger) 

P = β0 + β1EL + β2P eakMultiperil + β3GCIndex + β4BBSpread + β5T erm + β6IG 
(5.5) 

+ β7Indemnity + uij + εij 

Hypothesis 6 (Lack of a Credit Rating) 

P = β0 + β1EL + β2P eakMultiperil + β3GCIndex + β4BBSpread + β5T erm + β6Non − Rated 
(5.6) 

+ β7Hybrid + uij + εij 

Hypothesis 7 (Issue Quarter 2) 

P = β0 + β1EL + β2P eakMultiperil + β3GCIndex + β4BBSpread + β5T erm + β6IG 
(5.7) 

+ β7Hybrid + β8Quarter + uij + εij 

In the equations above, EL represents the expected loss, PeakMultiperil represents all peak and multiperil bonds, Term 

represents the bond term in months, IG represents an investment-grade rating, while Non-Rated represents bonds 

without a credit rating, Hybrid represents the hybrid trigger, Indemnity denotes the indemnity trigger, Quarter is the 

second quarter of the year, BBSpread is the high yield corporate bond index and GCIndex represents the reinsurance 

cycle index. The conditional and marginal R-squared values are calculated based on Nakagawa and Schielzeth (2012), 

with the conditional R-squared representing the amount of variation explained by the total of the fxed and random 

efects, and the marginal R-squared representing the variation explained only by the fxed efects. The intra-class 

correlation coefcient (ICC) gives the variation explained only by the random efects. In addition, the Akaike information 

criterion (AIC) and the likelihood ratio test (LRT) statistic are given. The signifcance of each of these values is also 

indicated. Signifcance at 90%, 95%, and 99% confdence levels are indicated by *, **, and ***, respectively. These 

values are calculated for the full dataset of 704 CAT bonds (after exclusion of outliers) issued in the primary market 

between June 1997 and March 2020. 
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The proposed two-level model is given by Eq. (5.8), where EL represents the 

expected loss, PeakMultiperil represents all peak and multiperil bonds, Term represents 

the bond term in months, IG represents an investment-grade rating, Hybrid represents 

the trigger, BBSpread is the high yield corporate bond index and GCIndex represents 

the reinsurance cycle index. The random intercept accounts for the issuer efect. uj is 

the variation due to the issuer (level 2) while εij is the level 1 unexplained variation. 

P = β0 + β1EL + β2P eakMultiperil + β3GCIndex + β4BBSpread + β5T erm + β6IG 

+ β7Hybrid + uij + εij 

(5.8) 

Note that Eq.(5.8) also includes an intercept term. Some researchers propose the 

inclusion of the intercept term to account for very low expected-loss bonds (Lane, 

2018), while others propose exclusion, since a bond with an expected loss of zero would 

probably not be issued (see, e.g., Braun, 2016). We include the intercept term to avoid 

creating artifcial steepness or fatness of the slope arising as a result of forcing the 

intercept to begin at zero. For this intercept to make logical sense though, we centre 

the data based on the minimum values of the respective independent variables in the 

dataset. The intercept therefore represents the bond with the lowest value of each of 

the continuous variables and that has the characteristics included in a dummy variable 

of zero.19 

The fnal sample excludes outliers, identifed by using studentised deleted residual 

plots and Cook (1977)’s distance. To generate studentised deleted residuals, the ob-

servations are deleted one at a time, and the regression model ftted to the remaining 

n−1 observations. The observed response values are then compared to the values from 

the reftted model to generate the deleted residuals. Thereafter, these deleted resid-

uals are standardised to generate studentised residuals (Aguinis et al., 2013). Cook 

19This would be a 6 month USD 1.8m non-US, non-indemnity, non-Swiss Re, high yield catastrophe 

bond with expected loss of 0.007% issued when both the GC Index and the BB Spread Index were at 

their lowest over the estimation period (i.e., at 151.8 and 1.4783 respectively) and issued before the 

month of April or after the month of June in a given year. 
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(1977)’s distance follows a similar process, and considers both residuals and leverage, 

i.e., both the independent and dependent variables. We only exclude those bonds that 

were identifed as outliers by both the studentized residual plots and Cook (1977)’s 

distance. 20 bonds are therefore excluded from the original sample of 724, leaving 704 

bonds in the dataset.20 

5.4.2 Assumptions 

The goodness-of-ft test results (see Table 5.7) show that the model with random efects 

(i.e., our two-level model) is a better ft for the data than a model without the random 

efects. In addition, the LRT is signifcant at the 99.9% confdence level, favouring the 

10-parameter (i.e., two-level) over the 9-parameter (i.e., the single-level) model. 

20Most of the excluded issues covered bonds with unique underlying structures or covering unique 

property. The Swiss Re Successor Series, for example, from which six of the excluded bonds originated, 

were priced at extremely high premiums, diferent from any other bond ever issued. This was a shelf 

programme that allowed fexibility of model structure and had unique pay-out characteristics (MMC 

Securities, 2007; Lane and Beckwith, 2007). 

https://dataset.20
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Table 5.7: ANOVA-like Table for Random Efects : Single term deletions 

Deleted Variable Parameters (No.) logLik AIC LRT Dof Pr(>Chisq) 

None 10 -1408.7 2837.5 

Random efect (issuer) 9 -1415.1 2848.2 12.71 1 0.0004*** 

Note: This table displays the goodness-of-ft test results for our two-level model when com-

pared to a single-level model for our data. The random efect term (the issuer efect) is 

removed in the second model, and the two models then compared to determine which of 

the two provides the best ft for the distribution of the data. The model with a superior ft 

will have a lower Akaike information criterion (AIC) and a signifcant likelihood ratio test 

(LRT) statistic. The table also displays the number of parameters in each model (Parameters 

(No.)), the log-likelihood ratio (logLik) for each of the models, the degrees of freedom for the 

likelihood ratio test, i.e. the diference in the number of parameters between the two models, 

and the p-value based on the Chi-square distribution (Pr(>Chisq))(Kuznetsova et al., 2017). 

The signifcance of the LRT is also indicated. The signifcance of each of these values is also 

indicated. Signifcance at 90%, 95%, and 99% confdence levels are indicated by *, **, and 

***, respectively. 

A multilevel model applies maximum likelihood to estimate its parameters. This 

technique assumes a large sample size and that the standard errors are normally dis-

tributed (Wang et al., 2011). For the sample to be considered large, both the number 

of groups and number of observations should be large. Our sample size of 704 CAT 

bonds and 101 issuers is assumed large enough to meet the frst assumption, based 

on sample size recommendations by Maas and Hox (2005). To test for normality in 

standard errors, we generate a QQ plot of residuals (see Figure 5.3). 
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Figure 5.3: QQ-Plot of Residuals 
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Note: The fgure above displays the distribution of residuals (sample quan-

tiles) against theoretical normal residuals for our sample. For the normality 

of residuals assumption to hold, the plotted residuals should lie close to the 

diagonal line. 

For the normality assumption to hold, the majority of the data points should lie close 

to the straight line in the QQ plot. Even though most of our data points do lie on the 

straight line, they are still skewed to the right. If maximum likelihood were applied, the 

fxed efects (level 1 estimates) would not necessarily be biased, but standard errors and 

other variance components would be biased downward (Leeden et al., 2007; Busing, 

1993). For this reason, we apply the restricted maximum likelihood (REML) estimation 

technique instead of maximum likelihood (ML) estimation, since the REML has been 

shown to yield more accurate results in such cases (Forman, 2019). 

Other assumptions include linearity (Galeotti et al., 2013), and homogeneity of 

the variance for individual observations, which is assumed to hold based on the fgure 
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5.4.3 EM Algorithm for Variance Components Analysis 

The following algorithmic steps are taken in order to arrive at the within issuer variation 

estimates, via the Expectation-Maximization algorithm. The underlying mathematical 

derivations can be found in the Appendices section (see Appendix .3) 

1. Initialization: Assign some initial values for γ00, γk0, σ
2 

e, and σ2 
u0. 

2. The Expectation Step: Evaluate the expected log-likelihood for complete data 

given observed data in the fnal iteration, i.e., 

Q(δ, δ(k−1)) = E[l(δ; y, u)|y; δ(k−1)] (5.9) 

3. The Maximization Step: Update δ through 

δ̂  = argmax Q(δ, δ(k−1)) (5.10) 
δ 

4. Repeat the Expectation and Maximization steps above until convergence is achieved. 

5.4.4 Fixed efects 

All of the fxed efects are signifcant based on Table 5.8. In addition to the expected 

loss, the peril hypothesis (see Hypothesis 2) is supported. The results summarised in 

Table 5.8 show that, on average, premiums on peak and multi-peril bonds are about 

2.25% higher than those on non-peak or diversifying bonds. This could be a result of 

the frequency of occurrence of the peak perils in the specifed regions, which generates 

more volatility in expected loss estimates over time. 

Of the two trigger hypotheses analysed, the hybrid trigger is included in the fnal 

model while the indemnity trigger is excluded. This is because we cannot confrm the 

indemnity hypothesis based on the evidence, while the hybrid trigger is signifcant at 

the 95% confdence level. In support of Hypothesis 5, hybrid triggered bonds seem 

to demand 0.71% more in premiums at the 95% confdence level. The fndings on the 
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indemnity trigger are in line with fndings from previous studies (see, e.g., Braun, 2016; 

Gürtler et al., 2016), while those on the hybrid trigger are not. In fact, none of the 

existing studies identifes the hybrid trigger as a factor to be considered. This might 

be due to the smaller sample sizes that limit analysis of the hybrid trigger. 

The bond rating hypotheses lead to diferent conclusions. Only the investment 

grade rating seems to have a major impact on premiums, while the efect of a lack of 

rating cannot be confrmed as this factor is not signifcant. Highly rated bonds receive 

lower premiums when compared to either lower or non-rated bonds. With a diference 

of about 2.67% on average, these results confrm Hypothesis 5. In addition to the 

rating, both the reinsurance cycle (see Hypothesis 9) and the state of the competing 

fnancial market (see Hypothesis 10) have an efect on premiums. As the values of both 

these indexes increase, the CAT bond premiums also increase. Hypothesis 7, regarding 

the issue quarter, is not supported by the evidence and is therefore also excluded from 

the fnal model. These results are in line with the fndings of previous studies (e.g., 

Lane, 2018; Gürtler et al., 2016). 

The maturity factor (see Hypothesis 6) leads to some unexpected results; the bond 

term is signifcant, but this term is inversely related to the premiums. We hypothesised 

that the longer-term bonds might lead to higher premiums, but we get the opposite 

result instead. Increasing the bond term by one more month leads to a 0.02% decrease 

in premiums on average. This might be because the longer term allows investors to 

earn interest for a longer period than the shorter term. It is also worth noting that the 

term variable is not signifcant in previous studies, an efect we attribute to smaller 

sample sizes that failed to pick up developments in the CAT bond market. 

To analyse efect size, we use a variation of the Cohen (1992)’s f 2 included in Selya 

et al. (2012) that measures the local efect size, i.e., the magnitude of the efect of 

each independent variable on the variation in the dependent variable. According to 

Cohen (1992), the efect size is considered large at 0.35, medium at 0.15 and small at 

0.02. From the results in Table 5.8, it is evident that the expected loss, peril and the 

reinsurance cycle have the greatest efect on the variation in the premiums. The state 
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of the competing fnancial environment has a small-to-medium efect, and the term and 

bond rating have a small efect. Finally, the bond trigger has a very small efect. The 

efect of the expected loss is exceedingly large, in line with theoretical deductions that 

the expected loss is the main factor driving CAT bond premiums (see, e.g., Lane, 2018). 

The reinsurance cycle and peril are the second- and third-largest factors, respectively. 

These factors are all identifed in initial studies by Lane and Beckwith (2008) as key 

factors that determine premiums. 

5.4.5 Random efects 

In Table 5.9, the random efect term represented by σu, the variability introduced by 

the issuers, is signifcant at the 95% confdence level. This implies that an issuer efect 

exists, confrming Hypothesis 1a, i.e., that there are similarities in premiums on bonds 

issued by the same issuer, and diferences in premiums on bonds issued by diferent 

issuers with similar characteristics. To determine the size of this efect, we use the ICC. 

This can be interpreted as the amount of variation arising due to the random efects 

as a proportion of the total variation in the model (Lorah, 2018). The ICC displayed 

in Table 5.9 indicates that around 11% of the variation in the regression model can be 

explained by issuer diferences. 

We also assess whether the two-level model is a better ft for the data than a 

single-level model through the LRT. A signifcant LRT would indicate that the model 

with random efects (the issuer efect, in this case) was a better model for this type 

of data than a model without random efects. Our LRT is signifcant, proving that 

the multilevel model is a better model for this data type than a single-level model. 

A comparison of the largest and smallest issuers by total issue size gives the results 

reported in Table 5.9. 
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Table 5.8: Fixed efect estimates 

Estimate Standard error Efect size 

Fixed efects 

Intercept 

Expected Loss 

PeakandMultiperil 

GCIndex 

BBSpread 

Term 

IG 

Hybrid 

-0.5907∗ 

1.3986∗∗∗ 

2.2520∗∗∗ 

0.0377∗∗∗ 

0.4613∗∗∗ 

-0.0239∗∗∗ 

-2.6742∗∗∗ 

0.7057∗∗ 

0.3440 

0.0314 

0.1932 

0.0023 

0.0471 

0.0064 

0.3312 

0.3415 

3.0141 

0.1984 

0.3845 

0.1283 

0.0166 

0.0994 

0.0035 

Issuers 101 

Observations 704 

Note: This table provides estimates of the relationship between CAT bond premiums and 

factors believed to afect those premiums, excluding the efect of the bond issuer. The factors 

include the expected loss, the underlying peril, the reinsurance cycle (represented by the 

Guy Carpenter Index), the competing fnancial market environment (represented by the BB 

Spread Index), the bond term, the bond rating (Investment-Grade), and the bond trigger 

(Hybrid). The data covers all CAT bonds issued in the primary market between June 1997 

and March 2020, and consists of 704 CAT bonds issued by 101 issuers after excluding outliers. 

Estimates are annualised percentage changes in premiums given a unit change in the covari-

ates, and the efect size measure is derived through the Cohen’s f2 measure. The signifcance 

of each of these values is also indicated. Signifcance at 90%, 95%, and 99% confdence levels 

are indicated by *, **, and ***, respectively. 
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Table 5.9: Hypothesis 1a: Random (issuer) efect estimates 

Estimate Standard error 

Random efects 

σu 

σe 

LRT 

ICC 

0.5922** 

1.7042*** 

12.7100*** 

0.1087 

0.1593 

0.1663 

Issuers 101 

Observations 704 

Note: This table summarises the efect of issuer variability on CAT bond premiums for 

all 101 issuers. The σu estimate gives the volatility introduced due to diferences in pricing 

between issuers, while the σe term represents the level of unexplained volatility. To determine 

whether the multi-level model provides a better ft for the data than a single-level model, 

we use the likelihood ratio test (LRT). A signifcant LRT would indicate that the multi-

level model was indeed better than the single-level model. The intra-class correlation (ICC) 

indicates the proportion of the total variability in the premiums that arises due to issuer 

pricing diferences (around 11% in this case). The signifcance of each of these values is also 

indicated. Signifcance at 90%, 95%, and 99% confdence levels are indicated by *, **, and 

***, respectively. 
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5.4.6 Extended random efect analysis 

After establishing the signifcance of the issuer efect for the full sample, we now focus 

on specifc issuer characteristics. To establish issuer-specifc characteristics with the 

greatest impact on the issuer efect, we analyse three main characteristics. These 

include the number of years for which the issuer has issued bonds in the primary CAT 

bond market, the issuer’s total issue size since the inception of the CAT bond market, 

and the issuer’s line of business. 

In each of the tables below, the full dataset consisting of 704 CAT bonds issued 

by 101 issuers is split into sub-samples that represent a classifcation of each issuer 

characteristic being tested. The explanatory variables, in addition to the issuer, include 

the expected loss, the underlying peril, the reinsurance cycle (represented by the Guy 

Carpenter Index), the competing fnancial market environment (represented by the 

BB Spread Index), the bond term, the bond rating (Investment-Grade), and the bond 

trigger (Hybrid). The results of each analysis are summarised below. 

By issue size 

To generate the results in Table 5.10, issuers are classifed based on the total size of 

their bond issues in the CAT bond market since inception. The issuer sample is then 

split into three equal sub-samples based on the number of issuers, resulting in three 

sub-samples, each with approximately one-third of the total issuer population. The 

results displayed in Table 5.10 show that the efect of issuer diferences on premiums is 

larger for those issuers with a smaller issue size than for those with a larger issue size, 

confrming Hypothesis 1b. The ICC is therefore considerably higher for smaller issuers 

than for larger ones, signifying the larger amount of variability that results from this 

sub-group’s smaller issues. 

Most of the fxed efects, excluding the term and the trigger (Hybrid), remain 

signifcant, with the confdence levels increasing for larger and medium issuers. This 

might signify the decreasing efect of the issuer diferences and the increasing efect of 
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other variables in explaining premiums as the issue size increases. The term variable 

is insignifcant for medium issuers, while the trigger is insignifcant for both large and 

small issuers, implying that these factors’ infuence on premiums is yet to stabilise 

enough to enable any long-term inferences to be made about them. 
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Table 5.10: Hypothesis 1b: Random efects by total issue size 

Larger issuers Medium issuers Smaller issuers 

Estimate Standard error Estimate Standard error Estimate Standard error 

Fixed efects 

Intercept -1.3757*** 0.4447 -1.8549** 0.8143 2.2975** 0.9146 

Expected loss 1.4175*** 0.0352 1.3171*** 0.0861 1.2636*** 0.0617 

PeakandMultiperil 2.5655*** 0.2277 1.8337*** 0.4001 1.2350* 0.6079 

GCIndex 0.0428*** 0.0029 0.0310*** 0.0049 0.0135** 0.0048 

BBSpread 0.4211*** 0.0508 1.1445*** 0.1847 0.3892* 0.1868 

Term -0.0151** 0.0075 0.0043 0.0180 -0.0378* 0.0179 

IG -2.8340*** 0.3952 -1.9867*** 0.7303 -2.8524*** 0.4926 

Hybrid 0.6058 0.4010 1.7397*** 0.6234 -0.3627 1.5218 

Random efects 

σu 0.6200** 0.1914 0.0000† 0.4115 1.3408*** 0.5374 

σe 1.7440*** 0.1896 1.4799*** 0.5058 0.5803*** 0.1140 

ICC 0.1122 0.0000 0.8423 

Issuers 34 33 34 

Observations 558 92 54 

† In this instance, the variation associated with the issuer efect is so small compared to the background 

noise that this volatility is assumed to be zero. 

Note: This table displays estimates of the factors afecting CAT bond premiums for diferent total issue 

sizes. The bond issue size is aggregated for all the bonds sold by the respective issuer to determine the 

issuer’s sub-group. The data are then split equally over the three main sub-samples to ensure each sub-

sample contains an equal number of issuers. Larger issuers represent the top one-third of all issuers, while 

the smaller issuers represent the bottom one-third of all issuers based on total issue size. All other issuers 

are included in the medium sub-sample. Finally, estimates and standard errors are calculated for both 

fxed and random efects. The signifcance of each of these values is also indicated. Signifcance at 90%, 

95%, and 99% confdence levels are indicated by *, **, and ***, respectively. 
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By number of years in the primary market 

The number of years for which the issuer has been issuing bonds in the primary CAT 

bond market is used here as a proxy for the issuer’s reputation in the market. We 

assume that the longer the issuer stays in the market, the better their terms of issue 

(see Hypothesis 1c). This follows from deductions from Spry (2009) that major issuers 

could be rewarded with better pricing terms, since multiple issues over a longer period 

display their consistency to the bond market investors. Table 5.11 supports Hypothesis 

1c, showing that the issuer’s impact on premiums is greatest for those bonds issued by 

companies that have been issuing CAT bonds for one year or less, while this impact is 

smallest for those companies that have been issuing bonds over a longer time period. 

This might be because frst-time issuers do not have the required time to establish 

a trusted investor base for themselves when compared to those companies that have 

been in the market for a longer period. As the company issues more and more bonds 

therefore, its terms of issue should also improve, and the efects of issuer characteristics 

on pricing should diminish. This is evidenced by the decreasing ICC value in Table 

5.11 as the number of years in the market increases. Though the random efects are 

signifcant in each instance, they are signifcant at a a higher confdence level (99%) for 

one-time issuers than for those issuers that have been in the market for longer (90%). 

In addition, fxed efects are stronger for those companies that have established a 

reputation than for those that have not, further supporting the deduction that issuer 

characteristics tend to have less of an impact over time, as other factors take prece-

dence. The efect of the hybrid trigger is insignifcant in all sub-samples, indicating 

that this might not be a very stable covariate, while the efect of the bond term and 

the competing fnancial environment is only insignifcant for the shorter-period issuers. 

This might be because the efect of these factors is better established over a broader 

time period than that allowed for by these issues. 
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Table 5.11: Hypothesis 1c: Random efects by years in primary CAT market (reputation) 

One year Two to three Years Four years or more 

Estimate Standard error Estimate Standard error Estimate Standard error 

Fixed efects 

Intercept 1.0147 0.7524 0.0741 0.7033 -1.4230*** 0.4893 

Expected Loss 1.2545*** 0.0671 1.3221*** 0.0705 1.4303*** 0.0377 

PeakandMultiperil 1.4077*** 0.4615 2.1600*** 0.4992 2.4751*** 0.2448 

GCIndex 0.0200*** 0.0048 0.0450*** 0.0074 0.0431*** 0.0030 

BBSpread 0.2167 0.1898 0.2616* 0.1549 0.4542*** 0.0534 

Term -0.0093 0.0155 -0.0309** 0.0141 -0.0155* 0.0081 

IG -2.1645*** 0.4203 -4.6744*** 1.0843 -2.7844*** 0.4069 

Hybrid -0.4610 1.3704 0.3734 0.6783 0.5959 0.4121 

Random efects 

σu 1.0964*** 0.3836 1.0150* 0.5393 0.6139* 0.0140 

σe 0.7387*** 0.1527 1.3154*** 0.2801 1.7906*** 0.2086 

ICC 0.6878 0.3732 0.1052 

Issuers 44 30 27 

Observations 72 121 511 

Note: This table provides estimates of the relationship between CAT bond premiums and factors believed 

to afect these premiums based on the issuer’s longevity in the CAT bond market. The number of years 

for which the respective issuer has been issuing bonds in the primary CAT bond market is aggregated and 

each issuer allocated according to this length of time. Issuers who have only issued bonds in one year fall 

within the frst class, those who have been issuing for two or three years fall into the second class, and 

those who have been issuing bonds for four years or more fall into the third class. The time splits are 

chosen to ensure that each sample includes an adequate number of issuer observations (level two variables) 

to aid analysis. Estimates and standard errors are then calculated for both fxed and random efects in 

each sub-group. The signifcance of each of these values is also indicated. Signifcance at 90%, 95%, and 

99% confdence levels are indicated by *, **, and ***, respectively. 
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By issuer’s line of business 

To estimate the efect of the issuer’s line of business on issuer premium volatility, the 

data are split into three sets of observations based on each specifc issuer’s main line 

of business. Table 5.12 provides the estimates and standard errors of the multilevel re-

gressions on the three sub-samples. From this table, we can see that the random efects 

are signifcant only for those issuers operating mainly as insurers, and insignifcant for 

both reinsurers and multi-line businesses, in line with Hypothesis 1d. This might be 

a consequence of the sizes of the companies that fall into each of these classifcations, 

with reinsurers and multi-line companies being signifcantly larger in size than most 

insurers, especially since they need to be able to take on insurer losses. This ability can 

aford such companies a better reputation than smaller insurance companies. In addi-

tion, and similar to the observation regarding Table 5.10, fxed efects continue to be 

signifcant, with confdence levels increasing as the issuer efect decreases. The hybrid 

trigger is also insignifcant in each sub-sample, while the bond term is insignifcant for 

insurers. 
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Table 5.12: Hypothesis 1d: Random efects by issuer’s line of business 

Insurers Reinsurers Multiline/Others 

Estimate Standard error Estimate Standard error Estimate Standard error 

Fixed efects 

Intercept 0.2833 0.7799 -0.4213 0.7526 1.3377** 0.4616 

Expected Loss 1.3330*** 0.0747 1.3549*** 0.0619 1.4195*** 0.0427 

PeakandMultiperil 1.3725*** 0.4660 2.5580*** 0.4546 2.6479*** 0.2332 

GCIndex 0.0258*** 0.0041 0.0377*** 0.0049 0.0408*** 0.0031 

BBSpread 0.5643*** 0.0890 0.6000*** 0.1023 0.3638*** 0.0662 

Term -0.0209 0.0146 -0.0316** 0.0151 -0.0137* 0.0079 

IG -1.4306** 0.6087 -1.9646*** 0.7060 -3.4174*** 0.4575 

Hybrid 0.2551 1.6248 0.8084 0.7004 0.4566 0.4100 

Random efects 

σu 0.7892** 0.2538 0.6116 0.3981 0.0000† 0.0293 

σe 1.3947*** 0.2243 1.5628*** 0.3371 1.8432*** 0.2253 

ICC 0.2425 0.1328 0.0000 

Issuers 47 27 27 

Observations 194 144 366 

† In this instance, the variation associated with the issuer efect is so small compared to the background 

noise that this volatility is assumed to be zero. 

Note: This table displays estimates of the factors afecting CAT bond premiums based on the issuer’s 

main line of business. ‘Insurers’ include those businesses that primarily conduct insurance business; ‘Rein-

surers’ include those businesses that primarily conduct reinsurance business or are syndicates; and ‘Mul-

tiline/Others’ includes all other companies, including those that conduct both insurance and reinsurance 

business, investment managers, or insurance agents. Companies not operating in the fnancial services sec-

tor are also included within this classifcation, including supranational organisations and utility companies. 

Each issuer is then allocated into their respective sub-groups and estimates and standard errors calculated 

for both fxed and random efects. The signifcance of each of these values is also indicated. Signifcance 

at 90%, 95%, and 99% confdence levels are indicated by *, **, and ***, respectively. 
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By market cycle 

The CAT bond market has been shown to follow reinsurance cycles (Lane and Mahul, 

2008; Lane and Beckwith, 2008), with rising premiums during periods of high losses, 

and lower premiums in periods of low losses and capital infows. Hard markets are 

observed in periods of increasing losses, especially following major catastrophic events, 

and are characterised by higher-than-expected premiums. Soft markets, on the other 

hand, represent periods of low losses and capital infows, and are characterised by 

lower-than-expected premiums. Neutral markets are characterised by premiums close 

to their expected values. 

Table 5.13 displays the results of the multilevel regressions on each of the sub-

samples. The results show that random efects are signifcant only in the soft or 

neutral market periods, but not in the hard market. This could be because other 

factors, particularly the fxed efects, have a larger impact on premium variability in 

hard market periods than the issuer, evidenced by higher estimates for the fxed efects 

in hard markets. The proportion of variability based on the ICC is therefore higher in 

soft or neutral markets due to the higher impact of issuer diferences and lower impact 

of fxed efects on premiums. The term variable is also only signifcant in hard markets, 

while the trigger variable representing the hybrid trigger is only signifcant in soft or 

neutral markets. 
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Table 5.13: Robustness by state of market cycle at issue 

Hard market Soft or neutral market 

Estimate Standard error Estimate Standard error 

Fixed efects 

Intercept 

Expected Loss 

PeakandMultiperil 

GCIndex 

BBSpread 

Term 

IG 

Hybrid 

-0.2640 

1.4192*** 

2.7479*** 

0.0337*** 

0.5808*** 

-0.0297*** 

-2.2472*** 

0.7559 

0.4936 

0.0506 

0.2793 

0.0032 

0.0604 

0.0097 

0.5815 

0.5834 

-1.5230*** 

1.3858*** 

1.9092*** 

0.0395*** 

0.3760*** 

0.0034 

-2.7234*** 

0.7356** 

0.4011 

0.0314 

0.2126 

0.0027 

0.0725 

0.0069 

0.3213 

0.3392 

Random efects 

σu 0.4780 0.2797 0.5751** 0.1439 

σe 1.8942*** 0.3268 1.2406*** 0.1235 

ICC 0.0603 0.1769 

Issuers 78 65 

Observations 329 375 

Note: This table provides estimates of the extent to which the chosen independent variables impact CAT bond premiums 

over the state of the market cycle. The data are split according to the state of the cycle prevailing at issue. This results 

in two sub-samples, one representing hard market issues where premiums are assumed to be higher than expected and 

the other representing soft or neutral market issues where premiums are assumed to be lower or stable respectively 

(According to Lane and Beckwith (2020), a hard market represents a period of more ‘more aggressive demand for 

protection from issuers than the appetite for assuming risk among investors (pg.8)’ and therefore premiums rise in 

turn, while a soft market represents a period of less demand from issuers compared to investor risk appetite and thus 

premiums fall. Neutral markets exist in times when the demand for protection balances out with investor risk appetites). 

Both the fxed efects and the random efects are displayed, with their respective estimates and standard errors. The 

signifcance of each of these values is also indicated. Signifcance at 90%, 95%, and 99% confdence levels are indicated 

by *, **, and ***, respectively. 
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By time 

Based on Table 5.14, in both samples, the random efects and most of the fxed efects 

are signifcant, at least at a 90% confdence level. Random efects are signifcant at 

90% confdence, with around 12% of the total variation in premiums being explained 

by issuer diferences. Fixed efects including the expected loss, the underlying bond 

peril, the reinsurance cycle and the competing fnancial environment are signifcant at 

a 99% confdence level in both time periods, while the term and trigger variables are 

insignifcant. The rating variable, representing investment-grade bonds, is signifcant 

only in the pre-2010 sample (1997-2010), and insignifcant in the post-2010 sample 

(2011-2020). This can be explained by the fact that most bonds issued after 2010 do 

not have a rating, and those that do are mainly non-investment grade bonds. The efect 

of the investment-grade rating is therefore mainly observed in the frst sub-sample. 
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Table 5.14: Robustness by time period 

1997-2010 2011-2020 

Estimate Standard error Estimate Standard error 

Fixed efects 

Intercept 

Expected Loss 

PeakandMultiperil 

GCIndex 

BBSpread 

Term 

IG 

Hybrid 

0.9287** 

1.8603*** 

2.1222*** 

0.0156*** 

0.3416*** 

-0.0125 

-2.1723*** 

-0.1225 

0.4548 

0.0581 

0.2409 

0.0032 

0.0522 

0.0084 

0.3434 

0.3991 

-1.9594*** 

1.3127*** 

2.2988*** 

0.0530*** 

0.3727*** 

-0.0003 

-2.0310 

-0.1759 

0.4514 

0.0329 

0.2560 

0.0037 

0.0941 

0.0089 

1.4696 

0.5796 

Random efects 

σu 0.5822* 0.1969 0.5281* 0.1469 

σe 1.6237*** 0.2206 1.4415*** 0.1672 

ICC 0.1139 0.1183 

Issuers 53 72 

Observations 323 381 

Note: This table provides estimates of the extent to which the chosen independent variables 

impact CAT bond premiums over two (almost) equal time periods. The data are divided into 

two sub-samples: one representing the early CAT bond issues (1997-2010), and the other 

representing more recent CAT bond issues (2011-2020). The data is split almost exactly in 

half to ensure the retention of a sufcient number of issuers (the level two variable) in each 

sample to aid comparison. Both the fxed efects and the random efects are displayed, with 

their respective estimates and standard errors. The signifcance of each of these values is also 

indicated. Signifcance at 90%, 95%, and 99% confdence levels are indicated by *, **, and 

***, respectively. 
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5.5 Implications for Issuers and CAT Market Par-

ticipants 

This study confrms that premium variability introduced by issuer diferences does 

indeed exist, despite the risk of a CAT bond arising from the underlying catastrophe, 

which occurs independently of the state of the issuer (Cummins, 2008). In addition, 

the bankruptcy-remote SPV that issues the bond ensures that bond payouts are not 

related to the issuer. Despite these indicators of the independence of risks, investors, 

it seems, still take into account issuer-specifc factors when pricing CAT bonds. In 

particular, it has been established that investors consider the reputation of the issuer 

in the CAT bond market, based on the total size of issue since inception and the length 

of time spent as issuers in the primary market, when pricing. In addition, insurers tend 

to experience more variability than other types of issuers such as reinsurers and multi-

line businesses. This raises the possibility of issuance through a more established 

company, especially for those less established in the markets, or those conducting 

mainly insurance business. Indeed, this practice of “balance sheet lending” (Lane, 

2018) has been practised by more established companies such as Swiss Re in the past. 

According to Lane (2018) however, Swiss Re has since ceased this practice. Despite 

this, issuers can still issue bonds for other companies if they choose to, so newer issuers 

and insurers could still have the option of issuing through a more established company 

if their pricing terms prove too expensive or inefcient. 

Other options include issuance through other types of markets that could prove to 

have better terms, e.g., reinsurance markets, the corporate bond markets, derivatives 

markets, or through private issues of insurance-linked securities. These avenues all have 

their disadvantages though, since most do not price catastrophic risks as their main 

risks. Their pricing terms could prove even more expensive and standardised for the 

issuer than the CAT market. Creating a customised disaster-risk-fnancing instrument 

might incur higher transaction costs than using already-established instruments like 
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CAT bonds, which are better customised for catastrophic risks (Cummins, 2008). The 

less established issuer could also set aside reserve funds, efectively retaining the risk 

instead of transferring it. In addition to the uncertainty in estimating such reserves, this 

could prove to be an inefcient use of funds, since the same funds could be assigned 

to more productive uses and better risk management options applied. Issuers will 

therefore have to establish the opportunity cost of issuing through the CAT bond 

market and receiving a potentially inefcient price versus using alternative sources of 

disaster-risk-fnancing that could still prove more expensive. As the cheapest choice 

might still be the CAT bond market, these issuers can then look into available avenues 

of issue in the CAT market and choose the most efcient. 

Existing issuers, on the other hand, seek to renew their deals. Our results show 

that they could receive better terms over time, as the variability introduced by their 

characteristics reduces over time. This could motivate existing issuers to continue using 

the primary CAT market as their source of funding, and increase market liquidity. 

Existing issuers could also gain access to more unique instruments, including better 

terms through private placements, as their issues increase. This could further increase 

participation and encourage expansion of the CAT bond market by volume. 

Whether the increase in issues for existing issuers is enough to ofset the potential 

decrease from the loss of new issuers can only be determined over time based on how 

the CAT market develops. The Covid-19 pandemic could have motivated new issuers 

to acquire protection from the CAT market, but this may not be sustainable, especially 

if a pandemic of this magnitude is viewed as a short-lived one-time event. The types 

of new issuers could also be limited to those exposed to pandemic risks. To attract 

a diverse range of issuers and investors, therefore, market inefciencies will need to 

be recognized and addressed. This inefciency also impacts the overall operational 

and allocative efciency of the CAT bond market, and could afect returning investor 

participation in the long run, further hindering the development of this market. 
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5.6 Conclusion 

This study set out to establish the existence and signifcance of the issuer efect in 

the primary catastrophe (CAT) bond market by applying two-level analysis techniques 

to the data. The novel random intercept model produces reliable estimates and more 

robust standard errors for the fxed efects due to its ability to pick out the second 

level of variability arising from issuer-specifc variables, as it incorporates the premium 

variations by issuer at the second level and the remaining independent variables (fxed 

efects) at the frst level. 

The key explanatory variables included, in addition to the issuers, are the expected 

loss, peril, term, trigger, rating, reinsurance cycle and state of the competing fnancial 

environment. These factors are similar to those identifed in previous studies (e.g., 

Braun, 2016; Gürtler et al., 2016; Lane, 2018) on CAT bond pricing, with the exception 

of the term and trigger variables. These two factors are included due to their signifcant 

efect on the premium, an efect attributed to the larger sample size that allows factor 

developments over time to be picked out. 

From the results, we establish that the issuer efect exists, and that the variation 

introduced by issuers is signifcant. We report that around 11% of the total variation 

in CAT bond premiums is due to diferences between issuers, based on the intra-class 

correlation coefcient (ICC). Classifcations of issuers based on length of time in the 

primary market, total issue size and line of business further enable us to determine 

that the issuers introducing the greatest variability are those with a smaller total issue 

size, those which have been issuing bonds in the primary market over a shorter period, 

and those issuers whose primary business is insurance as opposed to reinsurance or 

a multi-line business. We also identify the fxed efects with the largest impact on 

premiums by magnitude to be the expected loss, the peril and the reinsurance cycle. 

These results support deductions that, all else constant, within-issuer CAT bond 

similarities introduce between-issuer diferences in premiums. These diferences are 
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attributable to issuer reputation, issuer characteristics and total size of issues. Is-

suers with smaller total issue sizes and a shorter period (lower consistency) in the 

primary market tend to exhibit more variability, with stability in pricing increasing 

as the issuer’s presence within the CAT bond market increases. Issuers conducting 

mainly insurance business also experience higher volatility in premiums than those in 

reinsurance or multi-line businesses, an observation that could be attributed to the 

reputations of these respective companies in the market. 

Even though the issuer efect has been established to have an impact on variability 

in the baseline premium, and the main issuer characteristics impacting this volatility 

identifed, the nature of the data limited further analysis into more issuer-specifc 

factors. CAT bond data are unbalanced with regards to the number of observations 

per issuer. Some issuers have as many as 173 observations while others have only 

1 or 2 observations. This is controlled for by the use of a shrinkage estimator in the 

multi-level model, but a challenge still arises when conducting further tests that require 

splitting the data into smaller groups, e.g. tests looking into issuer characteristics and 

robustness of estimates. Most of these tests risk losing either a number of issuers from 

the sample or observations from the groups, thereby reducing the reliability of the 

multilevel model estimates of the random efects. In addition, data related to other 

issuer-specifc characteristics such as the bond rating at the time of a bond issue in the 

primary market are scarce, and also raises a challenge for those issuers that have issued 

over multiple periods as these factors are not constant. Despite this, future research 

could still expand the scale of the tests and establish more relationships as more data 

becomes available. In addition, other techniques that do not rely on the assumptions 

of maximum likelihood estimation, e.g., non-parametric bootstrap techniques, could 

be used to further test for these relationships. 

Finally, this study is able to identify that variations in CAT bond premiums as 

a result of issuer diferences do, in fact, exist. This implies that the primary CAT 

bond market is still inefcient, and might provide an opportunity for issuers to exploit 

these inefciencies by using the platform with the least amount of volatility. Based on 
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issue size and consistency of issues in the primary market, larger and more seasoned 

issuers experience less volatility in premiums than smaller, less consistent issuers. In 

addition, insurers experience more volatility than reinsurers or multi-line companies. 

New issuers and insurers may therefore need to take into consideration the fact that 

direct issuance may cost them more than indirect issuance. The opportunity cost of 

direct versus indirect issuance will therefore need to be established when assessing the 

available funding options. For those looking to introduce new ILS instruments, the 

study also provides an understanding of key risks that might impact market efciency 

and identifes factors that may need to be considered during product development to 

ensure the success of these new securities. 



Chapter 6 

A Compound Poisson Flexible 

Mixture Model (CPFMM) for 

Catastrophic Loss Modelling and 

Valuation using Expectation 

Maximization(EM) Algorithms 

Catastrophe bonds are fnancial securities that provide insurance against the risk of 

extreme events. Since these bonds functions as both fnancial securities and an in-

surance products, valuation techniques usually involve the determination of expected 

losses and the frequency of such losses through insurance pricing techniques and there-

after incorporating this information into a bond pay-of function derived through f-

nancial modelling assumptions. Each stage of the valuation process includes multiple 

assumptions with regards to loss distributions, interest rate processes and bond pricing 

functions. The fnal pricing functions are therefore often complex and non-smooth. 

This creates a challenge in the numerical integration process, as most of these func-

tions are analytically intractable. Previous catastrophe bond valuation literature has 

applied either adaptive Monte Carlo techniques or approximation methods to optimise 

their functions. Despite this, few approximation techniques exist for heavy-tailed data. 

This study proposes an alternative numerical approximation technique for heavy-tailed 
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data based on Expectation-Maximization (EM) optimization techniques. Individual loss 

models, optimised as fexible mixture models through EM algorithms, are ftted to both 

loss frequency and loss severity data from the US’s Property Claims Services to estab-

lish the most optimal models. Thereafter, the optimal loss models’ performance and ft 

are compared with that of similar mixture-type models optimized via the more popular 

Newton-Raphson algorithms, as opposed to Expectation Maximisation (EM) algorithms, 

including General Composite Models (GCMs) and Composite Mixture Models(CMMs). 

Results indicate that the EM-based fnite mixture model provides the most optimal ft for 

such heavy-tailed data, while retaining computational efciency and robustness when 

compared to the Newton-Raphson (NR)-based models. A Compound Poisson Flexi-

ble Mixture Model (CPFMM) for heavy-tailed catastrophic aggregate loss processes is 

then formulated using the most optimal loss frequency and loss severity fexible mixture 

models. Subsequently, this model is employed in the valuation of two catastrophe bond 

instruments with diferent payof functions to prove its applicability and efciency. 

6.1 Introduction 

For the past twenty years, the catastrophe (CAT) bond market has provided funding 

for extreme events that had previously proved difcult to insure through traditional 

means. It has therefore been a useful source of alternative fnancing and investing, espe-

cially when traditional fnancing tools have been unattractive due to their correlations 

with fnancial market risks. The market continues growing and expanding each year, 

with total cumulative issuance of about US $145 billion 1 since inception. Improve-

ments in valuation techniques and loss modelling have also attracted new investors and 

contributed to the expansion. As the catastrophic risk landscape is constantly chang-

ing, however, there is always a need to update available techniques to account for these 

changes and retain valuation reliability. Due to this, researchers have over the years 

1This fgure is retrieved from the Insurance Linked Securities’(ILS) website Artemis.bm on the 

14th of June 2021 

https://Artemis.bm
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dedicated their studies to proposing new valuation techniques that could improve the 

efciency of this system and enable valuers determine fair prices as the market evolved. 

The catastrophe bond valuation process in the past has involved the merging of 

fnancial and actuarial modelling assumptions to determine price estimates; including 

interest rate assumptions, bond valuation assumptions, and aggregate claims modelling 

assumptions. As the catastrophe bond market is incomplete, the probability distribu-

tion of the expected losses has to be incorporated into the pay-of function to establish 

the fnal expected pay-ofs under all available loss possibilities (Cox and Pedersen, 

2000). The multiple pricing assumptions also imply that, in most cases, researchers 

can only focus on improving one aspect of the valuation process at a time, or risk losing 

model tractability and efciency. Some of the studies dedicated to improving these key 

aspects of the pricing process are summarized below, based on their research focus. 

Early studies in catastrophe bond valuation aimed at introducing the catastrophe 

bond structure and the fnancial and insurance theories underlying this instrument. 

Most of the theoretical foundations underlying catastrophe bond valuation were de-

veloped at this stage, including the incomplete markets framework and equilibrium 

pricing techniques of Cox and Pedersen (2000) and the arbitrage pricing framework 

of Vaugirard (2003b). Insurance pricing techniques were also formalized for extreme 

events through the extreme value theory (see e.g. Embrechts et al. (1999) and other 

suitable machine learning techniques e.g. Monte Carlo (MC) methods applied (see e.g. 

Ermoliev et al. (2000) , Vaugirard (2003a). Once these theoretical foundations were 

established, the next set of studies developed pricing models based on these aforemen-

tioned models and assumptions. Each of these studies also improved a specifc aspect 

of the valuation process, further discussed below. 

Among the frst areas of improvement after the establishment of theoretical foun-

dations was the modelling the aggregate claims process. Studies focused on developing 

the claim distribution process, especially through Poisson processes and its extensions. 

These include the compound doubly stochastic Poisson process (e.g., Burnecki and 

Kukla, 2003; Burnecki et al., 2005) and the Poisson shot noise process (e.g., Albrecher 
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et al., 2004). The non-homogenous Poisson process for claim arrivals was also pro-

posed to model claim frequency distributions. These processes continue to be applied 

over time to model aggregate loss distributions for catastrophic events (e.g., Härdle 

and Cabrera, 2010; Ma and Ma, 2013; Shao et al., 2017; Burnecki et al., 2019). In 

addition, alternative valuation methods e.g. transformation techniques of Wang (2000) 

were developed to further improve the claim modelling process. 

Other valuation-based studies focused on modelling the fnancial processes under-

lying valuations, especially the interest rate process and the equilibrium pricing tech-

niques. Nowak and Romaniuk (2013), in developing their valuation framework, com-

pared the diferent interest rate processes to establish their applicability and suitability 

for CAT bond modelling. Their work was an extension of the arbitrage pricing frame-

work developed by Vaugirard (2003b), and has subsequently been expanded upon in 

Nowak and Romaniuk (2016) to incorporate the efects on correlations in the underly-

ing random processes and a multi-factor interest rate model. In addition, and contrary 

to previous studies that considered overall catastrophe losses without regard to the 

source of the loss, recent studies have tried to price specifc types of losses and events 

(e.g. Deng et al. (2020) for global drought CATs,); or value bonds with specifc unique 

structures (e.g. Burnecki et al. (2019) for index-linked convertible CATs). Other ex-

tensions include incorporating the efect of dependencies between risks through Markov 

chains (Shao et al., 2017) and copulas (Chao and Zou, 2018), among others. 

Having established the state of current valuation research, and its key developments 

and contributions, we now focus on one specifc element of these valuation frameworks, 

that is, the solution-seeking processes of the proposed models and their valuation equa-

tions. More specifcally, we look at the process of numerical integration of the catastro-

phe bond valuation equations. Numerical integration techniques for catastrophe bond 

valuation were also developed in line with other model assumptions, with an emphasis 

on Monte Carlo (MC) integration (see e.g. Ermoliev et al. (2000). Monte Carlo inte-

gration methods have been favoured in the past as they are robust and independent 

of the dimensionality of the valuation integral, which can often be multi-dimensionally 
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complex. Despite its advantages, the integration process can still be computationally 

expensive, especially as the number of dimensions is increased (Cafisch, 1998). Given 

the complex nature of the CAT valuation equations due to the multiple assumptions 

taken into account when pricing catastrophic risks, this could limit the exploration of 

more complex valuation techniques that might be better representations of the catas-

trophe bond market, especially as climate change and demographic trends continue to 

change catastrophic loss structures (Swiss Re, 2023). Incorporation of these structural 

complexities can, however, still be a challenge (see e.g., Davison and Smith, 1990; Mc-

Neil, 1997). This is because any small or minimal change in valuation equations further 

complicates already-complex models, thereby increasing the models’ associated com-

putational costs. To address this, it is crucial that the numerical integration element 

of the modelling process be made efcient, and the process optimized to allow ease of 

trend or change incorporation. It is also important that the proposed models be easy 

to understand and replicate, if there is any intention of their practical application. 

To this efect, this chapter proposes a valuation model that optimizes functions 

through the Expectation Maximisation (EM)’s (Dempster et al., 1977) fexible-mixture 

class of algorithms, for both catastrophe loss frequency and catastrophe loss severity 

modelling. These techniques have the advantage of creating both analytically tractable 

distribution functions (Miljkovic and Grün, 2016), limiting over-smoothing of the tails 

of the distribution which are the focus of extreme event modelling (Embrechts et al., 

1997), and most importantly, retaining computational efciency while accomplishing all 

these tasks. These characteristics are important especially due to the nature of recent 

catastrophic loss trends, which have been refecting heavier tails due to signifcant 

increases in loss severities (see e.g., Swiss Re, 2023). 

To accomplish this, we ft individual loss models optimised through the EM algo-

rithms to both the loss frequency and loss severity data from the US’s Property Claims 

Services’ catastrophe industry loss data. Thereafter, we compare the loss severity’s in-

dividual loss model’s performance and ft with that of similar mixture-type models 

created via the use of a more common and popular optimization method, the Newton-
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Raphson algorithm, as opposed to the Expectation Maximisation (EM) algorithms, in-

cluding General Composite Models (GCMs) and Composite Mixture Models(CMMs). 

The results indicate that the EM-based fnite mixture model provides the most optimal 

ft for such heavy-tailed data, while retaining computational efciency and robustness 

when compared to the Newton-Raphson (NR)-based models. We then create an ag-

gregate loss model, the Compound Poisson Flexible Mixture Model (CPFMM) for 

heavy-tailed catastrophic loss processes using the most optimal loss frequency and loss 

severity fexible mixture models. Subsequently, we apply this model to the valua-

tion of two catastrophe bond instruments with diferent payof functions, one with its 

principal-at-risk and the other with its coupon-at-risk, and assuming interest rates fol-

low the Cox-Ingersoll-Ross (CIR) process, in order to prove applicability and efciency. 

The results of the proposed Compound Poisson Flexible Mixture Model (CPFMM), 

optimized through the Expectation-Maximisation (EM) algorithm, and applied in this 

chapter, prove the efciency and applicability of EM-type algorithms to heavy-tailed 

problems, with improved ft statistics and stability of estimates when compared to 

similar Newton-Raphson based models. These results are of particular impact to ex-

treme loss risk modellers and other market pricing experts who generate the required 

models underlying such disaster fnancing instruments. In addition, the risk modelling 

and pricing improvements will beneft protection seekers, assuring them of fair pricing 

for their instruments and investor uptake of their products due to reduced informa-

tion asymmetries. This will also in turn expand the insurance linked securities (ILS) 

market’s capacity to provide more adapted catastrophe risk management instruments 

better suited for larger scale fnancing applications, subsequently allowing all stake-

holders to beneft from the increased capacity. Vulnerable communities will also gain 

more efcient disaster recovery tools, especially to cover the increasing risks of climate 

change. 

The rest of this article is structured as follows: Section 6.2 introduces the valuation 

framework, the problem set-up, and the methodology. Section 6.3 describes the sample 

selection, empirical analysis and results, while Section 6.5 concludes the article. 
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6.2 Valuation Framework 

6.2.1 Assumptions 

Similar to previous literature (e.g., Cox and Pedersen, 2000; Ma and Ma, 2013; Shao 

et al., 2017; Burnecki et al., 2019) we assume the following modelling assumptions: 

1) fnancial market events are independent of catastrophic events; 2) it is possible to 

diversify risks posed by catastrophic events by diversifying the insured locations and 

perils; and 3) the fnancial market is arbitrage free with equivalent martingale measure. 

6.2.2 General pricing formula 

Suppose we have the probability space (Ω, F , P), where Ω is the sample space, F is 

a σ-algebra representing a set of all possible events while P is a probability measure. 

Following from Burnecki and Giuricich (2017), and assuming an arbitrage free fnancial 

market, the value Vt of a contingent claim CT at time t ≥ 0 is given by the following 

equation 

Vt = e −r(T −t)EP [CT |Ft] (6.1) 

under the real-world probability measure P . In equation (6.1), r represents a constant 

rate of interest,Ft the number of events till time t, and EP denotes the expectation 

under the real world probability measure P . 

6.2.3 Interest rate process 

To model the interest rate process for the short rate {r(t) : t ∈ [0, T ]}, we apply the 

equilibrium interest rate model of Cox, Ingersoll and Ross (CIR) (Cox et al., 1985). In 

the CIR model, interest rates are assumed to display mean-reversion, with a standard 

deviation proportional to 
√ 
r (Hull, 2017). This model ensures that the possibility of 

negative interest rates is eliminated. The interest rate process under the risk-neutral 
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measure Q is then given as; 

dr(t) = a(b − rt)dt + σ 
√ 
rtdWt (6.2) 

where a, b and σ are non-negative constants; and 2ab > σ2. (Wt)t∈[0,T ] denotes a 

Brownian motion. 

Under the real-world measure P , we assume the spot interest rate follows the form; 

dr(t) = [ab − (a + λr)r(t)]dt + σ 
√ 
rtdWt 

∗ (6.3) 

∗ t λr rswhere Wt = Wt + 
⎞ 

0 

√ 

σ ds denotes a Brownian motion under the real world measure 

P and λr is a constant (Ma and Ma, 2013). Assuming P and Q are equivalent measures, 

we can obtain the Radon-Nikodym derivative of Q with respect to P i.e. ⎫ ⎫ √ 
dQ 1 t λ2 

r rs
t λr rs= exp(− ds + dWs 

∗ (6.4)
dP Ft 

2 0 σ2 0 σ 

The stochastic form of the market price of risk process λ∗ 
r (t) is given by 

λr √ 
λ ∗ 

r(t) = rt (6.5)
σ 

The price of a principal-at-risk bond at time t can be determined from the following 

equalities (Brigo and Mercurio, 2007); 

−B(t,T )rtBCIR(t, T ) = A(t, T )e , (6.6) 

where 
+h)(T −t)/2 

2 
σ
ab 
22he(a+λr 

A(t, T ) = , (6.7)2h + (a + λr + h)(e(T −t)h − 1 
(T −t)h − 12e 

B(t, T ) = , (6.8)2h + (a + λr + h)(e(T −t)h − 1 q 
h = (a + λr)2 + 2σ2 (6.9) 

6.2.4 Aggregate claims process 

In the collective risk model (Cramer-Lundberg model), the stochastic process Nt rep-

resents the number of claims occurring until time t. This is modelled as a Poisson 
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process with intensity λ > 0 (Korn et al., 2010). The size of the individual claims is 

denoted by the non-negative random variables Xi, i = 1, ..., Nt with the distribution 

function F (x) = P {Xi < x}. 

In this model, we assume 1) the number of claims is independent of the claim sizes; 

and 2) the individual claims are independent and identically distributed. We also 

assume the aggregate loss process {Lt : t ∈ [0, T ]} follows a compound Poisson process 

and is defned as; 
Nt⎥ 

Lt = Xi (6.10) 
i=1 

and Lt=0 when Nt = 0. 

6.2.5 CAT Bond Pricing Model 

Consider two index-linked CAT bonds2; a principal-at-risk CAT bond and a principal-

and-coupon-at-risk CAT with both the coupons and principal at risk if a catastrophe 

occurs. First consider the principal-at-risk CAT bond with pay-of (PCAT 
(1)) and ma-

turity T > 0. The payof structure can be defned as;  1, if LT < D. 
PCAT 

(1) = (6.11) ρ, if LT ≥ D. 

where LT represents the aggregate claims at time T , D is the threshold level that 

triggers a payout, and ρ(0 ≤ ρ < 1) represents the proportion of principal recovered by 

the investor at time T if the bond is triggered. The value of this bond at time t given 

the catastrophe loss distribution F (x) and the claim arrival process Nt is then given 

by (see e.g., Ma and Ma (2013) and Burnecki and Giuricich (2017)); 

⎞ T 

Vt = e − 
t 

rsdsEQ[PCAT 
(1)|Ft] 

∞⎥ −λt(T −t) (λt(T − t))n 

= BCIR(t, T ) ρ + (1 − ρ) × e F ∗n(D) (6.12) 
n=0 n! 

2an index linked CAT pays out to the issuer if the losses from the pre-specifed event exceed losses 

on a certain catastrophe loss index 
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under the risk-neutral probability measure Q.F ∗n(D) = Pr(X1 + X2 + ... + Xn ≤ D 

is the n-fold convolution of F and 

−B(t,T )rtBCIR(t, T ) = A(t, T )e , 

+h)(T −t)/2 
2 
σ
ab 
22he(a+λr 

A(t, T ) = ,2h + (a + λr + h)(e(T −t)h − 1 
(T −t)h − 12e 

B(t, T ) = ,2h + (a + λr + h)(e(T −t)h − 1 q 
h = (a + λr)2 + 2σ2 (6.13) 

Now consider the principal-and-coupon-at-risk CAT bond with a constant coupon c > 0 

and the payof structure;  c + 1, if LT < D. 
PCAT 

(2) = (6.14)ρ(c + 1), if LT ≥ D. 

where LT represents the aggregate claims at time T , D is the threshold level that 

triggers a payout, and ρ(0 ≤ ρ < 1) represents the proportion of coupon and principal 

recovered by the investor at time T if the CAT bond is triggered. Similarly, the value 

of this bond at time t given the catastrophe loss distribution F (x) and the claim arrival 

process Nt is then given by; 
⎞ T 

Vt = e − 
t 

rsdsEQ[PCAT 
(2)|Ft] 

∞⎥ −λt(T −t) (λt(T − t))n 
∗n(D)= BCIR(t, T ) ρ(c + 1) + (1 − ρ(c + 1)) × e F (6.15) 

n=0 n! 

where F ∗n(D) = Pr(X1 + X2 + ... + Xn ≤ D is the n-fold convolution of F and 

−B(t,T )rtBCIR(t, T ) = A(t, T )e , 

+h)(T −t)/2 
2 
σ
ab 
22he(a+λr 

A(t, T ) = ,2h + (a + λr + h)(e(T −t)h − 1 
(T −t)h − 12e 

B(t, T ) = ,2h + (a + λr + h)(e(T −t)h − 1 q 
h = (a + λr)2 + 2σ2 (6.16) 
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6.2.6 The EM Algorithm and Flexible Mixtures 

Assuming claim arrivals Nt follow a time-inhomogeneous Poisson process and a claim 

severity variable Xi ≥ 0 with distribution F (x) = P (Xi < x), the aggregate loss (Lt) 

distribution is given as (see e.g., Ma and Ma (2013)); 

∞⎥ (λtt)n 

F (x, t) = exp{−λtt} F ∗n(x), x > 0 (6.17) 
n=0 n! 

= exp{−λtt}, x = 0 

since the convolution function F ∗n(x) is analytically intractable, approximation meth-

ods including the normal approximation, the inverse gaussian approximation and the 

gamma approximation have been applied instead (Burnecki and Giuricich, 2017). Bur-

necki and Giuricich (2017) also show that few approximations exist for very heavy-tailed 

distributional assumptions. Since we assume catastrophe loss data is assumed to be 

heavy-tailed, heavy-tailed probability distributions are often applied to ft the data 

and explain the loss structure (Miljkovic and Grün, 2016). It is therefore necessary 

that approximation methods proposed are applicable to the heavy-tailed structure of 

extreme events data. 

In this study, we propose an approximation method based on the Expectation Max-

imization (EM) Algorithm (the EM Approximation). The EM Algorithm is used to 

generate maximum likelihood estimates for incomplete data or latent/hidden variables. 

We will therefore be artifcially formulating our problem as an incomplete data problem 

to facilitate maximum likelihood estimation (Ng et al., 2011). 

Problem Set-up 

Assume X = {X1, X2, ..., Xn} is a sample of independently and identically distributed 

random variables derived from an M -component fnite mixture of probability distri-

butions. The density function f of the mixture distribution is the weighted average 
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of the M -component densities with mixing weights ωm (ωm ≥ 0, m = 1, ..., M , and 

M 
m=1 ωm = 1) (Sitek, 2016) 

M⎥ 
f(x|ϑ) = ωmfm(x|θm), (6.18) 

m=1 

where ϑ = (ω ′ , θ ′)′ = (ω1, ω2, ..., ωm, ..., ωm−1, θ1 
′ , θ2 

′ , ..., θm 
′ , ..., θ ′ ) is the vector of un-M 

known parameters .The density functions fm are assumed to be absolutely continuous 

with respect to the Lesbegue measure and to be derived from the same univariate para-

metric family with d-dimensional parameter vector θm, F = {fm(.|θm), θm ∈ Θ ⊂ Rd} 

(Miljkovic and Grün, 2016; Sitek, 2016)). For purposes of analysis, we consider 

fve heavy-tailed distributions; Gamma, Burr, Weibull, Lognormal and Birnbaum-

Saunders. Most of these distributions have been tested for extreme event modelling in 

previous literature (see e.g Miljkovic and Grün (2016)) and shown to provide a good ft. 

The Classical EM Algorithm 

Assume the complete data is given by Z = (X, Y ) where X is observed but Y is 

hidden (or unobserved). The log-likelihood for this complete data can then be repre-

sented by l(ϑ; X, Y ), where ϑ represents an unknown parameter vector for which we 

would like to fnd the maximum likelihood estimate. The EM Algorithm accomplishes 

this through two steps. The Expectation Step (E-step) computes the expected value of 

l(ϑ; X, Y ) given the observed data X and an initial estimate for the parameter vector 

ϑ i.e. ϑinitial. 

The E-Step 

Q(ϑ, ϑinitial) := E[l(ϑ; X, Y )|X, ϑinitial]⎫ 

= l(ϑ; X, y)p(y|X, ϑinitial)dy (6.19) 

where p(.|X, ϑinitial) represents the conditional density of Y given X, assuming ϑ = 

ϑinitial. 

The Maximization step (M-step) then maximizes the expectation derived in the E-step 
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over ϑ. 

The M-Step 

We therefore set 

ϑnew := max Q(ϑ, ϑinitial) (6.20)
ϑ 

The new ϑinitial is then set to equal ϑnew, and the process repeated until convergence. 

The EM Algorithm and Flexible Mixtures 

For the complete data Z = (X, Y ) defned above, Y = (Yim ∈ {0, 1}, i = 1, ..., n, m = 

1, ..., M) is the hidden variable that allocates each observation to their specifc com-

ponent. Y is assumed to consist of M vectors y = (y1, y2, ..., yn) for m = 1, ..., M , 

where  1 if observation xi originates from component m 
yim = (6.21)0 otherwise 

The complete data likelihood function for the fnite mixture is then defned as; 
n M⎧ ⎧ 

L(x1, x2, ..., xn|ϑ, ω) = (ωmfm(xi|θm))yim (6.22) 
i=1 m=1 

The complete data log-likelihood can then be expressed as 

n M⎥ ⎥ 
l(x1, x2, ..., xn|ϑ, ω) = yim[log(ωm) + log(fm(xi|θm))] (6.23) 

i=1 m=1 

In numerical simulation, the expected complete data log-likelihood (E-step) is deter-

mined by replacing hidden values with their expected values given the observed values 

X and the parameter estimates from the most recent iteration i.e. the k −1’th iteration 

for the k’th simulation. This expected value is then given by; 

ω(k−1) (xi|θ(k−1))(k) m fm mω = E[yim|xi, ϑ
(k−1)] = (6.24)im M (k−1) (k−1) 

m ′=1 ω m m ′ fm ′ (xi|θ ′ ) 
(k)where ωim is the posterior probability that xi originates from the m’th mixture for 

the kth iteration of the EM Algorithm (Ng et al., 2011). The EM Algorithm then 
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iteratively maximizes the following operator; 

n M⎥ ⎥ 
Q(ϑ|ϑ(k−1)) = ω

(s)[[log(ωm) + log(fm(xi|θm))] (6.25)im 
i=1 m=1 

The E-step is the same for all distributions considered as it is independent of paramet-

ric form in F. 

The M-step generates new estimates for the unknown parameters ω and θ by maxi-

mization of the Q-operator. The ω estimates are updated in the kth iteration by 

n1 ⎥(k) (k)
ω⎟m = ωim (6.26) 

n i=1 

By solving a weighted maximum likelihood estimation problem for each of the com-

ponent distributions with the posterior probabilities as weights, we can generate new 

estimates for θm. This can be solved analytically if possible, or by numerical optimiza-

tion. In the distributions that follow, θk is obtained in the M-step as follows (Miljkovic 

and Grün, 2016); 

Gamma: X ∼ G(λ, θ) 

The Gamma distribution has the form 

1 λ−1 −x/θf(x; λ, θ) = x e (6.27)Γ(λ)θλ 

where λ > 0 denotes the shape parameter, θ > 0 the scale parameter, and Γ(λ) = 

(λ − 1)!. 

M-step maximization of the Q-operator with respect to θ given λ gives the following 

closed form solution 
λ⎠(k)ω(k) 

θ⎠(k) m ⎠ m n = (6.28)m n (k) 
i=1 ωim xi 

Marginal weighted log-likelihood, with θ⎠ 
m as a function of λ⎟ 

m; and numerical optimiza-

tion are used to generate an estimate for λ. 

Burr: X ∼ Burr (λ, θ, γ) 
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The Burr distribution has the form; 

λγ(x/θ)γ 

f(x; λ, θ, γ) = (6.29) 
x(1 + (x/θ)γ )λ+1 

, 

where λ > 0, γ > 0 denote the shape parameters while θ > 0 denotes the scale param-

eter. The M-step maximization the Q-operator with respect to λ given θ and γ gives 

the closed form solution; 

ω(k)n⎠ mλ⎠ =  ⎠γm 

 (6.30)(k) 

n (k) xi 
i=1 ωim log 1 + ⎠(k) 

 
θm 

Marginal weighted log-likelihood, with λ⎠ 
m as a function of θ⎜ 

m and γ⎠m; and numerical 

optimization are used to generate estimates for θ and γ. 

Weibull: X ∼ W(λ, α) 

The Weibull distribution with shape parameter α > 0 and scale parameter λ > 0 has 

a density function of the form 

(x)α−1 −(x/λ)α 
f(x; λ, α) = 

α
e (6.31)

λ λ 

Weighted log-likelihoods and numerical optimization are used to obtain estimates for 

α and θ. 

Log-normal: X ∼ W(µ, σ2) 

The log-normal density function is given as 

1 (logx − µ)2 

f(x; µ, σ2) = √ exp(− (6.32)
xσ 2π 2σ2 

where µ denotes the location parameter, σ > 0 denotes the scale parameter, and x > 0. 

M-step maximization the Q-operator with respect to µ and σ given µ gives the closed 

form solutions; 
n (k) 

(k) i=1 ωim log(xi)
n 

(k)
µ⎠ m = ωim (6.33) 

i=1 
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and 
n (k) (k))2 
i=1 ωim (log(xi) − µ⎠ m(σ⎠ m 

2 )(k) = (k) (6.34)
n 
i=1 ωim 

Birnbaum-Saunders: X ∼ B-S(γ, µ, β) 

The Birnbaum-Saunders distribution with shape parameter γ > 0, location parameter 

µ, and scale parameter β > 0 has the form q qq q
−x µx−µ β β+ − β x−µ β x−µ

f(x; γ, µ, β) = (6.35)ϕ2γ(x − µ) γ 

where x > µ. 

Weighted log-likelihoods and numerical optimization are used to obtain estimates for 

γ, µ and β. 

Model selection and goodness-of-ft 

To identify the optimal m-component mixture for a given dataset under each of the 

considered distributions, goodness-of-ft tests based on the Akaike Information Crite-

rion (AIC) and the Bayesian Information Criterion(BIC) are conducted. 

The Akaike Information Criterion (AIC) (Akaike, 1974) provides a measure of the 

information lost when the specifed model if ftted to a given dataset. It is calculated 

as follows; 

AIC = −2ln(L) + 2k (6.36) 

where L is the maximum likelihood while k denotes the number of estimated model 

parameters. 

The Bayesian Information Criterion (BIC) (Schwarz, 1978) performs the same func-

tion as the AIC, and considers both the parameters and the number of observations in 
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determining the information lost. The BIC is calculated as; 

BIC = −2ln(L) + kln(n) (6.37) 

where L is the maximum likelihood, k is the number of parameters, and n represents 

the total number of observations. The lower the value of either the AIC or BIC, 

therefore, the better the model. However, since the BIC penalizes model complexity 

more heavily than the AIC, it is prioritized in cases where the two values lead to 

inconsistent conclusions on the choice of distribution. 

6.3 Model Application 

6.3.1 Data 

Pricing an index-linked catastrophe bond requires specifcation of the respective loss 

index, since these bonds’ payof are determined by the losses recorded by the underlying 

index. One of the most popular underlying indices is created by the US’s Property 

Claims Services (PCS), which records property losses from natural catastrophes in the 

USA and its associated territories. This data is used by industry catastrophe risk 

modellers and valuers to represent the underlying catastrophic loss processes. For 

this reason, we also use PCS data for purposes of application. Our specifc dataset 

spans the period beginning January 1985 and ending March 20143; and includes loss 

estimates from majority natural perils, including, for example, hurricanes, tornadoes, 

earthquakes, tropical storms, wildfres and winter storms. The gross loss fgures are 

3The data is only used for application purposes. The timeline from January 1985 to March 2014 

is a result of data unavailability due to extreme data costs for individual researchers after this period. 

The data was deemed acceptable to use as it was only used to ft the model and prove that the 

model could efciently be applied to heavy-tailed data. Other recent studies have applied even older 

datasets, for example the Danish Fire data that spans the period beginning January 1980 and ending 

December 1990 for similar purposes (see e.g Miljkovic and Grün (2016)). 
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then adjusted for infation to their 2014 values using the US Consumer Price Index. A 

time series plot of the data is displayed below; 
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Figure 6.1: Full PCS Data Histogram 

Note: This fgure displays a summary of catastrophe industry loss esti-

mates from the Property Claims Services (PCS). The data covers the pe-

riods beginning January 1985 and ending March 2014, and comprises loss 

estimates from a majority natural perils, including hurricanes, earthquakes, 

tornadoes, wildfres, and winter storms. The displayed fgures are infation-

adjusted estimates to 2014, using the US consumer price index. The losses 

are displayed in millions of US dollars, with the y-axis displaying loss esti-

mates, and the x-axis displaying the respective dates. 
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From the time series plot, key periods with the most severe losses can be identifed. 

The year 1989 saw the occurrence of Hurricane Hugo; and the interval between the years 

1992 and 1994 the occurrence of Hurricane Andrew and the Northridge Earthquake 

respectively. The year 2001 coincides with Tropical Storm Allison, while the time 

interval between 2004 and 2006 coincides with Hurricanes Frances, Jeanne, Katrina 

and Wilma. Hurricane Ike led to increased losses in 2008; while several extreme Wind 

and Thunderstorm events caused signifcant damage in 2011. Hurricane Sandy’s 2012 

losses complete these key ‘spike periods’ for this dataset.4 The annual loss frequencies 

and loss severities are further summarised in the following fgures; 

(a) Catastrophic Loss Severity (b) Catastrophic Loss Frequency 

Note: The two plots above summarize the catastrophic loss severity values 

(left), and the catastrophic loss frequency (right) values for the PCS data 

spanning the period beginning January 1985 and ending March 2014. The 

Loss Severity plot displays aggregate loss estimates in millions of US dollars 

per year, while the Loss Frequency plot displays the annual loss frequencies 

per year. 

The data’s summary descriptive statistics are given in the following table 

4This PCS data is focused on the US and its associated territories, but this is not an issue for CAT 

bond valuation, as most of these bonds are currently issued with US-based underlying perils. 
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Table 6.1: Summary Statistics for PCS Catastrophe Industry Loss Data 

Statistic Value (USDm) 

Minimum 1.07 

Maximum 30630.28 

Mean 128.46 

Median 28.90 

Skewness 22.45 

Kurtosis 581.61 

Note: The table gives a summary of the PCS data descriptive statistics. These de-

scriptive statistics relate to data spanning the period beginning January 1985 and ending 

March 2014, with the specifc statistic displayed in the ‘Statistic’ column and its exact 

value displayed in the ‘Value’ column in millions of US dollars. The statistics assessed 

include the data’s range, given by the minimum and maximum values, its measures 

of location, including its mean and median, and fnally the data’s measures of shape, 

given by the skewness and kurtosis values. The table provides a good reference for an 

initial deduction of the heavy-tailed characteristics of the data. 

From the table above, we can infer that the mean is approximately 4 times the 

median, suggesting that PCS data is right skewed, with a longer tail on the right. This 

assumption is justifed by a maximum loss value that is about 239 times the mean, 

and skewness and kurtosis values of 22.45 and 581.61 respectively. These statistics 

suggest that the data is heavy-tailed, and this will be further confrmed by the following 

diagnostic tests, which are based on extreme value theory. 

6.3.2 Further Heavy Tail Diagnostics based on Extreme Value 

Theory (EVT) 
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Figure 6.3: Exploratory QQ plot of PCS data for extreme value analysis 

Note: The fgure displays an exploratory quantile-quantile plot, used to test 

and further confrm the heavy-tailed characteristics of the PCS data. De-

partures from the medium-tailed distribution, which in this case is the expo-

nential distribution, indicate either heavy-tailed data for convex departures, 

or lighter-tailed data for concave departures. 
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The exploratory QQ plot is used for the identifcation of any departures from a 

medium-tailed distribution, with the medium-tailed distribution in this case being 

the exponential distribution. Convex departures are an indication of thinner-tailed 

data, while concave departures, similar to our case, serve as proof of the heavy-tailed 

nature of the data. This heavy-tailed observation is further supported by the sample 

mean excess plot, whose upward trend is an indication of heavy-tailed behaviour. It 

is therefore evident from the Figure 6.3 and Figure 6.4 that the PCS data displays 

heavy-tailed behaviour. 

Figure 6.4: Sample Mean Excess plot of PCS data 

Note: This plot represents the sample mean excess plot for the PCS data, 

used to further assess the heavy tail characteristics of the data. An approxi-

mately straight line indicates Pareto heavy-tailed behaviour, while a fat line 

indicates medium-tailed behaviour like that of the exponential distribution. 
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6.4 Finite Mixture Model Fitting 

Once the heavy-tailed nature of the data has been established, we now turn our at-

tention to the ftting of the previously defned (see Sub-section 6.2.6) fexible mixture 

distributions to the data. These include the gamma, burr, weibull, lognormal, and 

the birnbaum-saunders distributions for the loss severity, and the poisson distribution 

for the loss frequency. The optimal mixture model under each distribution is chosen 

based on a low BIC value, and then compared with the other previously defned dis-

tributions to pick the overall best ftting mixture model. We use the R software and 

packages ForestFit (Teimouri et al., 2020), fexmix (Leisch, 2004; Grün and Leisch, 

2008), and gendist (Bakar et al., 2016) for these purposes. Results of these tests are 

given in the following tables, for both the loss frequencies and the loss severity, with 

M representing the number of components making up the mixture; NLL the Negative 

Log-Likelihood value; and AIC and BIC the Akaike Information Criterion and the 

Bayesian Information Criterion respectively; 

6.4.1 Loss Frequency Model 

For the loss frequency model we consider the Poisson distribution, a popular distri-

bution for claim frequency modelling in actuarial applications (see e.g., Burnecki and 

Kukla (2003), Burnecki et al. (2005), and Albrecher et al. (2004)). 

Poisson: X ∼ G(λ) 

The Poisson distribution function is 

f(x; λ) = 
λx 

−λ (6.38) 
x! e 

where λ > 0 denotes the rate parameter. 

M-step maximization of the Q-operator with respect to λ gives the closed form 

solution 
n (k) 

λ⎠(k) i=1 ωim xi= (6.39)m n (k) 
i=1 ωim 
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Table 6.2: EM-based Flexible Mixture Modelling: Loss Frequency 

Distribution M NLL AIC BIC 

Poisson 1 

2 

3 

4 

2688.82 

2221.83 

2159.40 

2159.40 

5379.64 

4449.66 

4328.8 

4332.8 

5384.4 

4463.95 

4352.61 

4366.13 

Note: The table provides results of the fexible mixture model fts to the loss frequency data, 

via the R packages fexmix, ForestFit, and gendist. In the table, M represents the number 

of components of the distribution that make up the mixture; NLL represents the Negative 

Log-Likelihood value; and AIC and BIC display the Akaike Information Criterion and the 

Bayesian Information Criterion respectively, which are used to identify the distribution and 

components that provide the most optimal ft for the data. The components with the lowest 

BIC value are highlighted in bold font and represent the mixture model under each distribution 

with the best ft characteristics. 

6.4.2 Loss Severity Model 

For the loss severity model, we use the distributions previously defned in section 6.2. 



Table 6.3: EM-based Flexible Mixture Modelling: Loss Severity 

Distribution M NLL AIC BIC 

Lognormal 

Gamma 

Birnbaum-Saunders 

Weibull 

Burr 

1 

2 

3 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

3 

4 

5 

6 

7 

1 

2 

3 

4 

5 

6 

7 

8 

9 

1 

2 

74881.06 

74745.59 

74738.78 

77159.21 

75267.19 

75183.76 

75033.71 

74936.04 

74877.15 

74840.70 

74788.23 

74780.15 

75725.19 

75002.98 

74933.42 

74845.65 

74785.21 

74751.00 

74749.97 

75830.63 

75283.79 

75237.39 

75132.79 

75033.06 

74950.18 

74886.95 

74822.72 

74834.14 

83590.17 

83590.51 

149766.1 

149501.2 

149493.6 

154322.4 

150544.4 

150383.5 

150089.4 

149900.1 

149788.3 

149721.4 

149622.5 

149612.3 

151454.4 

150016 

149882.8 

149713.3 

149598.4 

149536.0 

149539.9 

151665.3 

150577.6 

150490.8 

150287.6 

150094.1 

149934.4 

149813.9 

149691.4 

149720.3 

167184.3 

167191.0 

149778.7 

149532.6 

149543.8 

154335.0 

150575.8 

150433.8 

150158.5 

149988.0 

149895.1 

149847.0 

149766.9 

149775.6 

151466.9 

150047.4 

149933.1 

149782.4 

149686.4 

149642.8 

149665.6 

151677.8 

150609.0 

150541.0 

150356.7 

150182.1 

150041.2 

149939.5 

149835.9 

149883.6 

167196.9 

167222.4 

Note: The table provides results of the fexible mixture model fts to the loss severity data. Here M represents the 

number of components of the distribution that make up the mixture; NLL represents the Negative Log-Likelihood 

value; and AIC and BIC display the Akaike Information Criterion and the Bayesian Information Criterion re-

spectively, used to identify the distribution and components that provide the most optimal ft for the data. The 

components with the lowest BIC value are highlighted in bold font. 
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The optimisation functions were tested on the Poisson distribution for the loss fre-

quency data; and on fve pre-specifed distributions for the loss severity data, including 

the log-normal, gamma, birnbaum-saunders, weibull, and burr distributions. Each cat-

egory of mixture model was tested, by increasing the mixture components within each 

distribution until the best ftting mixture was established for each distribution cate-

gory. The best ftting mixture for a distribution was determined as the mixture that 

generated the lowest BIC values within said distribution. This was confrmed by test-

ing that the next higher component-mixture for each distribution above the optimal 

mixture model’s components would only produce worse ftting models, that is, higher 

BIC valued-models instead of lower BICs. These best-ftting mixtures under each dis-

tribution are subsequently highlighted in bold font in Tables 6.2 and 6.3. Finally, for 

the loss severity model, all the highlighted best-ft models were compared with each 

other to establish the overall best ftting model based on its low BIC. Following this, we 

can now fnally deduce that, overall, the 3-component Poisson fexible mixture model 

and the 2-component log-normal fexible mixture model provide the best ft for the loss 

frequencies and the loss severities respectively. 

The following table (Table 6.4) displays a comparison of the fexible mixture model 

ft with other comparable types of mixture models not based on the EM algorithm. 

The distributions tested are those that have been proposed in previous literature study-

ing such composite models, including Cooray and Ananda (2005); Miljkovic and Grun 

(2016); and Grun and Miljkovic (2019), among others. We test General Composite 

Models (GCMs) that model mixtures as truncated distributions, and composite mix-

ture models (CMMs) that ft the data to more than one type of distribution instead of 

just one, as we have done in fexible mixture modelling. The results are displayed in 

Table 6.4. Similar to Tables 6.2 and 6.3, the best-ftting models under each category 

are highlighted in bold font. 
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Table 6.4: Model Comparisons: Loss Severity 

Flexible Mixture Model (EM) 

Distribution NLL AIC BIC 

2-Component Log-normal mixture 74745.59 149501.2 149532.6 

General Composite Models (Newton-Raphson based) 

Distribution NLL AIC BIC 

Weibull-Loglogistic 80905.25 161818.5 161824.9 

Weibull-Burr 81376.64 162763.3 162771.3 

Weibull-Pareto 82317.72 164643.4 164649.8 

Weibull-Paralogistic 80050.61 160109.2 160115.6 

Lognormal-Pareto 83128.42 166264.8 166271.2 

Composite Mixture Models (Newton-Raphson based) 

Distribution NLL AIC BIC 

Weibull-Loglogistic 82943.89 165897.8 165905.8 

Weibull-Burr 80849.74 161711.5 161721.1 

Weibull-Pareto 81098.48 162207.0 162214.9 

Weibull-Paralogistic 81541.83 163093.6 163101.6 

Lognormal-Pareto 81098.48 162207.0 162214.9 

Note: The table gives comparisons between the ft characteristics of the fexible mixture 

models optimized via the EM algorithm, when compared to other mixture-type models based 

on Newton-Raphson algorithms, including general composite models and composite mixture 

models. The columns display the distributions analysed (Distribution), the Negative Log-

Likelihood (NLL), and the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion(BIC) which determine the most optimal models by ft. 
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Performance analytics for the best models chosen under each mixture type are 

further analysed and displayed in the table below, with factors including the model’s 

estimate stability and reliability; its computational time; and fnally its fexibility and 

adaptability characteristics. 
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From these two tables it is evident that the EM-based fexible mixture model pos-

sesses favourable performance statistics when compared to the other Newton-Raphson-

based composite models. We therefore progress with the chosen fexible mixture models 

to the next section, that is, catastrophe bond valuation and pricing. 

6.4.3 Model Application to Catastrophe Bond Valuation 

Following the valuation framework detailed in section 2, the claim severity and the 

claim frequency models are applied to generate the fnal compound distribution for 

the underlying aggregate claims process. The parameters generated from the fexible 

mixture ftting processes in Table 6.2 and Table 6.3 above are displayed below for the 

overall best mixture models based on the BIC, for the respective loss frequency and 

loss severity distributions. The matrices display the weights and parameters of the 

individual component distributions making up the fnal mixture distributions. 

For the loss frequency model i.e., the 3-component Poisson mixture   

component weight parameter 

1 0.5913 0.7951 

2 0.3468 1.8683 

3 0.1230 2.7973 

 

And for the 2-component log-normal mixture loss severity model, the parameters 

are;   

component weight µ σ 

1 0.9760 17.2173 1.1095 

2 0.0240 21.3226 0.9164 

 

The aggregate distribution is a Compound Poisson Flexible Mixture Model (CPFMM), 

and this is used to represent the aggregate claims process {Lt : t ∈ [0, T ]} (defned in 

sub-section 6.2.4) in the pricing equation. The CIR model (as defned in sub-section 

6.2.3) is applied to represent the interest rate process used to generate the discount 

factors. 
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The catastrophe bond valuation equation, previously defned in sub-section 6.2.5, 

is given as 

⎞ T 

Vt = e − 
t 

rsdsEQ[PCAT 
(1)|Ft] 

∞⎥ −λt(T −t) (λt(T − t))n 

= BCIR(t, T ) ρ + (1 − ρ) × e F ∗n(D) (6.40) 
n=0 n! 

for the principal-at-risk bond, given the catastrophe loss distribution F (x) and the 

claim arrival process Nt, where F ∗n(D) = Pr(X1 + X2 + ... + Xn ≤ D is the n-

fold convolution of F and BCIR represents the CIR discount rates. If ρ(0 ≤ ρ < 1) 

represents the proportion of principle recovered by the investor at maturity time T if 

the bond is triggered, then this bond is assumed have a payof of 1 if it fails to trigger 

and a payof of ρ if the bond is triggered. The bond value is then given by Vt, where 

T is the time to maturity and D is the triggering threshold. 

On the other hand, the valuation equation for the principal-and-coupon-at-risk CAT 

bond, also previously defned in sub-section 6.2.5 is given as 

⎞ T 

Vt = e − 
t 

rsdsEQ[PCAT 
(2)|Ft] 

∞⎥ −λt(T −t) (λt(T − t))n 

= BCIR(t, T ) ρ(c + 1) + (1 − ρ(c + 1)) × e F ∗n(D) (6.41) 
n=0 n! 

given the catastrophe loss distribution F (x) and the claim arrival process Nt. Similar to 

the principal-at-risk CAT bond equation above, F ∗n(D) = Pr(X1 +X2 +...+Xn ≤ D is 

the n-fold convolution of F and BCIR represents the CIR discount rates. ρ(0 ≤ ρ < 1) 

represents the proportion of principle and coupon recovered by the investor at maturity 

time T if the bond is triggered, and now there is the introduction of a fxed coupon 

c.This bond is thus assumed have a payof of c + 1 if it fails to trigger and a payof of 

ρ(c + 1) if the bond is triggered. The bond value is also given by Vt, where T is the 

time to maturity and D is the triggering threshold. 

We now assume an index-linked catastrophe bond with face value Z = US$1, 

proportion ρ = 0.7 and coupon c = 0.1 at time t = 0. The prices are determined 

at diferent thresholds D, based on the annual average loss interval, with the lowest 
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threshold representing a quarter of the average loss and the highest threshold repre-

senting three times the average loss; and for diferent terms to maturity T , ranging 

from 0.25 to 2.25 years. The the 3D plot of fnal CAT bond prices assuming the log-

normal mixture model are given in fgures 6.5a and 6.5b, for the principal-at-risk and 

the principal-and-coupon-at-risk catastrophe bonds respectively. 

(a) Principal-at-risk CAT bond prices (b) Principal-and-Coupon-at-risk CAT bond prices 

Note: The fgures represent the 3D plots of fnal CAT bond prices assuming 

the compound Poisson-log-normal fexible mixture model. Final catastrophe 

bond prices for the pay-of structures considered are given in fgure 6.5a, 

for the principal-at-risk CAT bond; and fgure 6.5b for the principal-and-

coupon-at-risk CAT bond. The plot includes the value of the bond in dollars 

(V($)), the bond term in years (T(yrs)), and the trigger threshold in mil-

lions of dollars (D($m)). 

Final catastrophe bond prices for the pay-of structures considered are given in 

fgure 6.5a, for the principal-at-risk CAT bond; and fgure 6.5b for the principal-and-

coupon-at-risk CAT bond. From these fgures we can make the following general de-

ductions; index-linked principal-at-risk CAT bond prices fall (higher risk for investors) 

with an increase in the term of the bond and a decrease in the threshold. This is be-

cause as the term increases, the amount of time available for the bond to be triggered 

also increases, thus increasing the bond’s risk. A lower threshold implies that the bond 
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could be triggered much faster (at a lower loss value) than an equivalent bond with 

a higher threshold. A decrease in the threshold therefore increases the risk of loss for 

an investor. The coupon bond’s higher prices also imply that the penalty for risk is 

lower when investors receive higher interest payments. These fgures prove that EM 

algorithm-based mixture processes can be efciently applied to the modelling of catas-

trophic loss processes for their subsequent use as input to catastrophe bond valuation 

models. 

The signifcant improvement in computational efciency, fexibility, and robustness, 

as detailed in sub-section 6.4.2, also proves this model’s superiority over other similar 

models for the modelling of heavy-tailed data. In addition, the model’s fexibility in in-

corporating heavy-tail characteristics of catastrophic loss data without over-smoothing 

the tails of the distributions and losing vital information about the specifc extreme 

value processes under consideration, and ensuring better modelling accuracy. In a 

world of increasing catastrophic losses as detailed in Section 6.1, which have led to 

more frequent heavier-tailed extreme loss processes (Swiss Re, 2023), the ability of 

a model to easily incorporate this structure for all types of heavy-tailed processes is 

especially useful. As these changes can no longer be ignored due to their key infuence 

in determining the level of risk that disaster risk security investors will be taking on, 

and the high cost of mispricing due to incomplete incorporation of information, it is 

important that better models are found instead. These model improvements are nec-

essary, especially if the catastrophe market expects to retain its investors and continue 

protecting its users from such high cost and often disastrous events. 

6.5 Conclusion 

This study set out to assess the suitability of the EM Algorithm in improving com-

putational efciency for catastrophe bond valuation. By formulating the convolution 

problem as an incomplete data problem, the EM Algorithm could be applied to the 

data to generate parameters for respective fnite mixtures that could then be used to 
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approximate the complex convolution function. The best-ftting mixture distribution 

based on the BIC, the 2-component log-normal mixture for loss severities; and the 3-

component Poisson mixture for loss frequencies, were chosen and used to construct the 

fnal aggregate loss distribution model, a Compound Poisson Flexible Mixture Model 

(CPFMM). This claims process was then used to approximate expected payofs under 

diferent catastrophic loss observations. Finally, these expected payofs are applied to 

estimate the fnal bond values of the two CAT bonds defned; a zero-coupon index-

linked CAT bond and a coupon index-linked CAT (with both the coupon and principal 

at risk). Plots are then generated to display the price distribution under diferent term 

to maturity and threshold assumptions. 

This study has confrmed that the EM Algorithm is a viable alternative for ap-

proximating the claim size distribution for heavy-tailed data, therefore contributing 

to the sparse literature on approximating heavy-tailed distributions. The approxima-

tion is also fexible in terms of weight distributions, as the practitioner can reallocate 

weights if their future assumptions difer form current catastrophic risk assumptions. 

The EM algorithm is also a numerically stable and fast machine learning technique, 

and thus more computationally efcient than some other techniques frequently applied 

to approximate the convolution e.g. Monte Carlo simulation techniques. 

Even though this study has successfully applied the EM algorithm in approximating 

the convolution function, it was only conducted for fve heavy-tailed distributions; the 

Burr, the log-normal, the gamma, the Birnbaum-Saunders and the Weibull. The EM 

Algorithm does not always converge for all distributions, and further tests still need to 

be conducted to assess such distributions further and propose extensions to the classical 

EM Algorithm that can improve the algorithm’s convergence properties. Some of these 

techniques include the Stochastic EM Algorithm (Celeux et al., 1996) and the Monte 

Carlo EM (Wei and Tanner, 1990) for simulating the expectation step when the E-step 

is complex, either because it is a large sum or a high-dimensional integral (Nielsen, 

2000); and the Generalized EM (GEM) and the Expectation-Conditional Maximization 

(ECM) (Ng et al., 2011) to facilitate simulation of the M-step. 
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In conclusion, this study has been able to recommend an alternative efcient tech-

nique for approximating the convolution that is both fexible and fast. This is useful 

especially for those practitioners looking to reduce their computational costs while still 

retaining fexibility of assumptions. The EM Algorithm also includes numerous exten-

sions that could be alternatively applied if the classical EM fails for a given model, 

thus providing robust and extensive application options. 



Chapter 7 

Moving Beyond ‘Independent and 

Identically Distributed’ 

Catastrophe Loss Processes via 

Hidden Markov Models and the 

Baum-Welch Algorithm 

In the recent years, shifting climate and demographic trends have led to a general rise 

in the occurrence and severity of catastrophe events. This has increased the need for 

extensive and efcient risk models to aid the risk assessment and decision-making pro-

cess. Due to the complexity of the catastrophe loss modelling process, however, there 

has been a heavy reliance on simplifying assumptions, key among these being that ob-

servations are independent and identically distributed. Many catastrophe loss processes 

rarely meet this assumption, however, and this efect has been further expounded by 

the changing climate and demographic trends. It is therefore important to fnd meth-

ods that incorporate both dependencies and seasonality into loss models. This study 

proposes a standardized approach that models loss clusters generated from dependent 

and non-stationary processes as catastrophe ‘states’ through the use of Hidden Markov 

Models and the Baum-Welch algorithm, a special case of Expectation-Maximisation al-

gorithms. We assess the presence, extent and distribution of clusters through extreme 
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value techniques, and thereafter use hidden markov models to identify the optimal de-

pendent mixture loss models for both loss severity and frequency. A compound markov-

dependent (CMDMM) mixture model is then generated for the chosen mixtures and 

used to generate aggregate losses that serve as input for a catastrophe bond valuation 

process. 

7.1 Introduction 

Climate change efects arising chiefy from human-activity-linked global warming and 

demography-based trends related to economic growth, urbanisation, asset accumula-

tion, and rising population densities, especially in high natural-peril exposure locali-

ties have continued to worsen the frequencies and magnitudes of losses stemming from 

catastrophic events, especially those linked to natural disaster events. According to 

Swiss Re’s Research Institute Sigma, such efects contributed to record losses within 

the past two decades, with the highest insured loss years all falling within the most 

recent two decades. These include the years 2022 ($125billion), 2005($155billion), 

2011($158billion), and fnally the year 2017($173 billion), which had the highest in-

sured loss values as of 2023 (Pande, 2023). This trend is expected to continue in 

the long-term, especially since projected long-term increases in global population from 

the current estimate of 8 billion to 10 billion in 2060 are expected to cause further 

increases in emissions and warming levels, according to the European Commission’s 

Joint Research Committee (Vesnic, 2023). This implies that, unless there is drastic 

intervention, the world will continue to bear heavier costs from catastrophic events as 

losses mount. 

So far, disaster risk insuring and fnancing institutions have had to bear the brunt of 

these rising costs, especially in more developed economies where insurance is a popular 

risk transfer option for individuals and institutions. As insurers generally rely on the 

pooling and diversifcation of risks to allow them to take on greater risk (see e.g., Rejda 

and McNamara, 2005), any extreme concentrations of risk can render such institutions 
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insolvent. It is therefore crucial, for their own survival, that institutions in the business 

of taking on such extreme losses make such decisions only after thorough due diligence 

and analysis of the risks involved and the costs borne in the worst-case scenarios. In 

addition, and due to the aforementioned changes in climate and demographics, the 

need for efciency in comprehensive risk assessment and modelling in light of these 

changes and trends is even greater, due to increasing volatility of losses introduced by 

trends (Swiss Re, 2023). For this reason, researchers have dedicated great efort over 

the years to the modelling of extreme loss events, to allow better risk incorporation 

for decision making. Some of these key studies on extreme event loss modelling are 

summarized below. 

Starting from the late 1980s and early 1990s, theoretical developments in the mod-

elling of univariate time series extremes proposed the most common approaches applied 

to date in catastrophe loss modelling. The most popular of these include the Fisher-

Tippett Theorem for block maxima modelling via the generalized extreme value (GEV) 

distribution(Fisher and Tippett, 1928; Falk, 1994; Gumbel, 1958) and the Pickands-

Balkema-de Haan Theorem for the exceedances over thresholds modelling via the gener-

alized pareto distribution (GPD) (Gnedenko, 1943; Balkema and Haan, 1974; Pickands, 

1975). Both approaches, though diferent, lead to closely related descriptions of ex-

tremes (Chavez-Demoulin and Davison, 2012). These techniques relied heavily on the 

assumption of independent and identically distributed data; and an implied data suf-

ciency above a given high threshold for their asymptotic theories of sample extremes to 

continue to hold (see e.g. McNeil (1997), Embrechts et al. (1997) and Resnick (1997)). 

The ‘independence and identical distribution’ (IID) assumption was essential to the 

simplifcation of the extreme value modelling process, making it straightforward to gen-

erate estimates and model heavy-tailed data via extreme value theory (McNeil, 1997) 

for an otherwise complex process. It is not always the case, however, that catastrophic 

events generate independent or even identically distributed data (Fawcett, 2013). Re-

cent climate trends and demographic changes, previously discussed in this section’s 

frst paragraph, however, have meant that relying on such simplifying assumptions can 
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no longer aid in generating models that serve as reliable representations of reality. As-

suming independence for dependent data would mean the under-estimation of standard 

errors for such a process (Davison and Smith, 1990), and assuming non-identically dis-

tributed observations possess identical distributions would lead to unreliable and even 

erroneous estimates. 

This diversion is especially evident in events that are seasonal by nature e.g., me-

teorological events like windstorms and hurricanes that lead to the clustering of losses 

within the time of the year when the event is said to occur most frequently. The At-

lantic and the East Pacifc seasons in the US, for example, imply higher meteorological 

event occurrences between June 1st and November 30th of every year, according to 

the US National Oceanic and Atmospheric Administration (NOAA) (NOAA, 2022). 

In addition, and according to Simpson et al. (2020), even in cases where the event 

is non-seasonal, there can be instances of clustering in the tails of the distribution, 

implying that extreme losses tend to occur together. This can complicate the analysis, 

since new analysis techniques then need to be generated to match with the event under 

consideration, and since these events are rarely similar in nature, this can lead to a 

myriad of models without a single standardized approach. 

Previously, researchers attempted to address these issues by focusing on the origin 

of the clustering and developing techniques to model such sources. This means that, of 

the two main sources of clustering historically identifed, i.e., seasonality and temporal 

dependence (see e.g., Davison and Smith (1990) and Fawcett (2013)), the developed 

modelling approaches focused only on one or the other. Studies that focused on ad-

dressing temporal dependence issues include Davison and Smith (1990) and Simpson et 

al. (2020), while those that studied seasonality include Davison and Smith (1990)(this 

was modelled as a separate issue from temporal dependence); Smith (1989), Towe et al. 

(2019), and Herrmann and Hibbeln (2021). These studies are further discussed in the 

subsequent literature review section. These two issues were rarely considered in tan-

dem, even though it has been shown that it is possible to encounter both in extreme 

event loss modelling (see e.g., Davison and Smith (1990) and Fawcett (2013)). In cases 
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where both sources underly the clustered nature of loss observations, addressing only 

one aspect leads to an incomplete loss model and subsequently inefcient valuation of 

disaster risk instruments. This can be costly, not only to the issuer, who then has 

to pay for the model-based risks that their investors have to take on due to model 

reliability limitations and any other perceived information asymmetries introduced by 

incomplete models. 

Furthermore, since these approaches focused heavily on modelling the tail depen-

dencies in the dataset by assuming this was an independent phenomenon, the possible 

causalities between tail dependence and main sample dependence were ignored. These 

dependencies are a real possibility, however, since some of the seasonal characteristics 

of an event, which we assume are the main cause of in-sample clustering, can magnify 

its heavier (tail) losses . It is widely understood, for example, that specifc events 

display heavier losses during specifc times of the year, like the previously mentioned 

US hurricane season between June 1st and November 30th (NOAA, 2022), or wild-

fre events that mainly occur during dry periods. In addition, it is within such seasons 

that heaviest event losses are observed, based on historical data (see e.g., NOAA, 2022; 

Swiss Re, 2023), and catastrophic tail risk increases signifcantly. 

To adequately address these issues therefore, we would need a more standardized 

technique that would focus on the typical structure of a non-IID dataset and attempts 

to adequately model this structure. Thereafter, the assumed origin of the observed 

structures could be used to explain the clustering structure or distributions observed 

for diferent processes, thereby accounting for most of the sources of such phenomena. 

We accomplish this by applying Hidden Markov Models (HMMs) and the Baum-Welch 

algorithm (a special case of Expectation-Maximisation algorithms) to model ‘clusters’ 

for a heavy-tailed loss process that exhibits both the characteristics of non station-

arity/seasonality and tail dependence. We also model this ‘clustering’ structure for 

both the underlying loss frequency and loss severity processes, as these both deter-

mine the extent of aggregate losses. We investigate the diferences in the clustering 

distributions, length of clusters, and the total number of required states to accurately 
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account for the cluster distributions. Thereafter, the recommended Hidden Markov 

Models (HMMs) are used to develop a Compound Markov-Dependent Mixture Model 

(CMDM) for the aggregate catastrophic loss process, whose estimates are then used as 

inputs in a catastrophe bond valuation model. 

Hidden Markov models, developed in the 1960s by Baum and Petrie (1966) and 

Baum and Eagon (1967), are a numerically efcient maximum likelihood optimization 

technique that have been shown to be reliable for modelling heterogeneous dataset, 

especially when the heterogeneity is unobserved (Zucchini et al., 2016). Since we 

assume that each cluster represents a ‘state’ of the loss process, Hidden Markov Models 

are useful for the identifcation of a loss process’s underlying states that drive the 

observed loss estimates. This technique also focuses on ‘general clustering’, whether 

due to dependence and stationarity, since both lead to non-IID observations. The 

fexibility in the state distributions and weights also guarantees that heavier tails can 

be incorporated into the model to account for increased loss severity due to climate 

and demographic trends on loss distributions. 

Our contribution is therefore as follows. First, we identify and assess the extent of 

‘clustering’ in heavy-tailed catastrophe loss data. Thereafter, we apply Hidden Markov 

models and the Baum-Welch algorithm (a special case of Expectation Maximisation 

Algorithms) to model these ‘clusters’ and propose ftting dependent mixture models 

for both the catastrophe loss severity and loss frequency processes. The proposed 

models, which, in our case are the 4-state Log-normal and the 3-state Poisson HMMs 

for the loss severity and loss frequency models respectively, are then used to formulate 

a compound mixture distribution for aggregate losses. These aggregate losses are then 

applied for catastrophe bond valuation and the respective price estimates plotted. 

The development of a Compound Poisson Markov-Dependent Model (CPMM) for 

the incorporation of seasonality and time-based dependence is of signifcant conse-

quence, especially now in the face of developing climate and demographic trends that 

have led to increased catastrophic loss frequencies and loss severities. Models that 

are able to incorporate changes introduced by these trends, especially those related 
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to dependence of losses and more extreme seasonality elements of disaster events are 

particularly necessary to allow for more comprehensive and fair pricing of disaster risk 

fnancing instruments, including catastrophe bonds. 

This study’s contributions are therefore of particular use to risk and catastrophe loss 

modellers, who are tasked with the role of incorporating all elements underlying catas-

trophic risk processes as comprehensively as possible; disaster risk fnancing security 

issuers, who use the results of such analysis to determine their disaster risk fnancing 

options and estimate market prices; and fnally, disaster risk security investors, who 

then rely on these models to set the prices ofered under each security based on its 

overall implied risks. This study therefore allows improvements in the overall disaster 

risk modelling, and ultimately fnancing, and risk management felds for catastrophic 

events in a changing climate and demographic landscape. 

The rest of this article is structured as follows: Section 7.2 summarises key liter-

ature in dependence and non-stationarity modelling, Section 7.3 specifes the model 

and the algorithms; Section 7.4 details the numerical analysis and model estimation 

process, including the model application to catastrophe bond valuation; and Section 

7.5 concludes the study. 

7.2 Previous Literature 

Prior to the turn of the century, heavy-tailed losses models had garnered considerable 

interest due to the increase in severity of high-loss events observed in the early 1990’s, 

especially, with Hurricane Andrew and the Northridge earthquake 1. This led to grow-

ing need for insurance securities that could address the capital fight from insurance 

and reinsurance markets due to the increase in event risk. Researchers during this time 

therefore proposed and applied extreme value models to the available heavy-tailed loss 

1https://www.verisk.com/verisk-review/archived-articles/top-10-historical-hurricanes-and-

earthquakes-in-the-u-s/ 

https://1https://www.verisk.com/verisk-review/archived-articles/top-10-historical-hurricanes-and
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data, mainly Danish Fire Insurance data 2, to provide a reference point for practition-

ers to base their own risk assessment and quantifcation models. These extreme value 

theories were neatly summarized by several authors, including McNeil (1997), Resnick 

(1997) and Embrechts et al. (1997). 

Original parametric techniques were heavily based on extreme value theories due 

to such developments in extreme event modelling theory and its applications. These 

include the Fisher-Tippett-Gnedenko theorem for Generalized Extreme Value distribu-

tions (Fisher and Tippett, 1928; Falk, 1994; Gumbel, 1958) and the Pickands Balkema-

De Haan theorem for the Generalised Pareto distributions (GPD)(Gnedenko, 1943; 

Balkema and Haan, 1974; Pickands, 1975). These theories all relied on the assumption 

that data was independent and identically distributed; and on the assumed sufciency 

of the samples in analysis, especially after accounting for the reduction in available 

sample sizes due to the high thresholds (McNeil, 1997). In cases of data insufciency 

however, these theories fall apart due to the low thresholds. Data insufciency is, un-

fortunately a common problem plaguing extreme value analysis problems, due to the 

long waiting intervals before extreme events occurred in the past, and limited access 

to the available data due to heavy costs of data collection and modifcation. Because 

of this, extreme event data is rarely available in sufciency, and rarely independent 

and identically distributed when available. The lack of independence and/or station-

arity can be due to either the underlying seasonal nature of the events; or temporal 

dependence characteristics, or both (Davison and Smith, 1990). 

To address these issues, past researchers focused on addressing each source of de-

viation separately. One of these sources; temporal dependencies as a result of serial 

correlation, has received considerable attention compared to other sources like season-

ality. Leadbetter et al. (1983) addressed extreme dependent processes by developing 

a theory to derive the maxima of dependent, but stationary extremes. The Leadbet-

ter’s condition allowed the long-range dependence of an extreme process to be weak 

2This data comprises of loss observations describing large fre insurance claims in Denmark between 

3rd January 1980 and 31st December 1990 (see e.g., McNeil (1997) ) 
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enough, thus lessening its impact on the asymptotics of an extreme value analysis 

(Fawcett, 2013). 

Due to this condition, tail dependence is rarely an issue in the block maxima ap-

proaches (Charpentier, 2016). This is because in most cases, we can comfortably 

assume that long-range dependence is weak and model the process as independent 

(Fawcett, 2013). Block maxima, however, wastes a lot of data in an already data-scarce 

process, and is therefore a less preferred approach when compared to the threshold ex-

ceedances approaches (Charpentier, 2016). 

For threshold exceedances, however, serial correlation is a major challenge, and 

the data would require modifcations to allow the application of Generalised Pareto 

Models for parameter estimation. This is because serial correlation is mainly observed 

in threshold exceedances, due to the structure of this approach; while the underlying 

theory assumes independent observations. This can be addressed through a number of 

techniques summarized in Fawcett (2013) and listed below. 

The frst approach involves extracting an approximately independent sample of 

threshold exceedances through a declustering approach e.g., the runs declustering 

method (Davison and Smith, 1990). This approach, though popular, has been shown 

by Fawcett and Walshaw (2012) to be sensitive to the choice of ‘declustering param-

eter’. The second approach ignores this dependence and fts the Generalised Pareto 

Distribution, thereafter the estimates are adjusted to refect the efects of dependence. 

The third approach directly models these dependencies through multivariate extreme 

value techniques (e.g., Simpson et al., 2020). 

The second source of deviation; non-stationarity in catastrophe loss processes, arises 

mainly due to inherent seasonality in catastrophic events; or due to changing climate 

trends (Davison and Smith, 1990; Smith, 1989). These efects have been shown to afect 

security valuation and yield volatilities for the respective events (e.g., Herrmann and 

Hibbeln, 2021). In addition, it has been shown that incorporating this non-stationarity 

could signifcantly improve models used in the risk assessment process (Towe et al., 

2019). 
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Contrary to temporal dependencies; there are no general theories to describe non-

stationary extremes. This means that non-stationarity is generally modelled by analysing 

the seasonal structures of the events under consideration (e.g., Rootzén and Katz, 

2013) and most models are therefore specifc to the event under consideration. Some 

approaches have been proposed in literature to address seasonality (Fawcett, 2013), 

and are summarised below. 

The frst approach involves ftting the model only to the season that displays the 

most extreme behaviour. This approach assumes that seasonal stationarity holds for 

these extreme seasons, which can be a limitation. In addition, the approach leads to 

signifcant wastage of data. The second approach attempts to ensure that seasonal 

stationarity holds better by assuming a longer timeline for the seasonal event. This 

approach picks an ‘extreme time of the year’ e.g., the Atlantic season for meteorolog-

ical events in the US that runs from June 1st to November 30th. Even though this 

approach fts the ‘seasonal stationarity’ assumption better than the single season ap-

proach, it faces limitations in a changing climate, as this assumption then no longer 

holds. In addition, the approach relies on the assumption that we can safely ignore the 

non-extreme period as it is assumed to add little information to observed extremes. 

However, this can be a dangerous assumption, especially given current climate trends. 

It has been observed that some events, for example, wildfres3 are now occurring further 

and further away from their expected ‘season’; and lasting longer than their seasonal 

timelines. The third approach, analysed in Fawcett and Walshaw (2006), focuses on the 

application of smoothly varying seasonal parameters for the Generalised Pareto pro-

cess. The authors found little improvement over the ‘extreme time’ seasonal approach 

above, however. 

Alternative approaches (Davison and Smith, 1990) include ‘pre-whitening’ (e.g., 

Pugh and Vassie, 1980; Tawn et al., 1989), which removes the identifed seasonal com-

ponents before modelling the observations; and the ‘separate seasons’ approach (e.g., 
3https://www.theguardian.com/world/2021/oct/10/wildfre-climate-emergency-us-west 

https://3https://www.theguardian.com/world/2021/oct/10/wildfire-climate-emergency-us-west
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Smith, 1989; Carter and Challenor, 1981); where the year is split into its respective 

seasons and separate models ftted to each season. This is the approach that is most 

similar to this study’s, with the exception that this study fts the season-states by opti-

mization, and this ft is accomplished for both temporal dependencies and seasonality. 

Other approaches include the use of a periodic function in the intensity parameter es-

timation process to account for seasonality (Hainaut, 2012) and the use of pre-season 

indicators (Zhang et al., 2022). 

Aside from models focusing on the sources of deviation; general ‘clustering’ ap-

proaches have also been applied in literature. The main approaches focused on mod-

elling the number of clusters and thereafter determining the underlying cluster dis-

tribution. This distribution was then merged with a suitable claim severity distribu-

tion and its cluster maxima derived (e.g., Mendes and Lima, 2005; Mendes, 2006). 

These approaches can be linked to Leadbetter’s approach for deriving cluster maxima 

(Leadbetter et al., 1983; Davison and Smith, 1990), and are therefore assumed to be 

particularly useful for temporally dependent processes. 

This study adopts a ‘general clustering’ approach as well, but instead of modelling 

the number of clusters, we assume the clusters are generated from interrelated pro-

cesses, and can therefore be grouped into descriptive states. These states would be 

much fewer than the number of clusters, since some clusters are seasonally recurrent. 

We model these states instead, through maximum likelihood optimization techniques, 

assuming they are the real drivers of the observed extremes. The next section details 

the hidden markov model that is used to accomplish this task. 

7.3 Model Specifcation 

7.3.1 The Hidden Markov Model 

A Hidden Markov Model (HMM) is an unsupervised machine learning technique that 

was developed as a way to handle processes displaying considerable heterogeneity in 
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observations. These include instances of over-dispersion from typically assumed dis-

tributions; or cases of serial dependence (Zucchini et al., 2016). In addition, HMMs 

allowed researchers to model unobserved ‘cycles’ or ‘hidden states’ in cases where ob-

servations were assumed to be generated from underlying hidden processes, efectively 

ensuring all underlying information was incorporated into the fnal model. Over time, 

HMMs have found applicability in signal processing, especially in speech recognition 

(Juang and Rabiner, 1991); in biological gene sequencing (Durbin et al., 1999); hydro-

logical event modelling; and in fnancial returns tracking. 

Under HMMs, observations are assumed to have been generated from an underlying 

unobserved state process satisfying the Markov property. The observation Xt at time 

t is stochastically generated, but the state S of this process is hidden, that is, it is not 

directly observable. The states are only observable through their observations. These 

hidden state process satisfes the Markov property, meaning that the state St at time 

t depends only on the previous state St−1 at time t − 1; assuming a frst-order Markov 

model. As the complete state sequence is not known, the expected log-likelihood 

is maximized as opposed to the direct log-likelihood maximization. To accomplish 

this, the Expectation-Maximization algorithm thus needs to be employed. For this 

specifc study, the observed data is represented by the catastrophic loss data, and 

the unobserved or hidden states are derived based on seasonal and time-dependent 

groupings of the data via the Expectation-Maximization (Baum-Welch in this case) 

algorithm. 

The joint distribution of the hidden state process and its respective observations 

process for this frst order HMM is expressed as (see e.g., Degirmenci (2014) and 

Rabiner (1989)); 

N⎧ 
P (S1:N , X1:N ) = P (S1)P (X1|S1) P (St|St−1)P (Xt|St) (7.1) 

t=2 

where S1:N = S1, ..., SN . Alternatively, Equation 1 can be written as; 

N N⎧ ⎧ 
P (X1:N , S1:N ) = P (S1) P (St|St−1) P (Xt|St) (7.2) 

t=1 t=2 
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The HMM is characterised by fve elements (see e.g., Helske and Helske (2019), Degir-

menci (2014), and Rabiner (1989)); 

1 The observed state sequence X = (X1, X2, ..., XT ) with distinct observations ω ∈ 

{1, ..., Ω}. 

2 The hidden state sequence S = (S1, S2, ..., ST ) with hidden states k ∈ {1, ..., K}. 

3 The initial state distribution, π, which is a K × 1 vector of probabilities {πk}. πk 

gives the probability of starting from hidden state k; 

πk = P (S1 = k); k ∈ {1, ..., K} (7.3) 

4 The state transition matrix, A, a K × K matrix {Akj }. Akj is the probability of 

transitioning from hidden state k at time t − 1 to hidden state j at time t; 

A{kj} = P (St = j|St−1 = k); k, j ∈ {1, ..., K} (7.4) 

where j Akj = 1. 

5 The emission matrix, B, an Ω × K matrix {Bk(ω)}. Bk(ω) is the probability of 

the hidden state k emitting the observed sate ω; 

Bk(ω) = P (Xt = ω|St = k); k ∈ {1, ..., K}; ω ∈ {1, ..., Ω} (7.5) 

7.3.2 Model Considerations 

Three considerations govern the applicability of HMMs to real-world applications, ac-

cording to Rabiner (1989). These include 

The Evaluation Problem 

Given the model parameters defned above, defne the HMM model θ as; 

θ = (A, B, π) (7.6) 
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Given θ and the sequence of observations X1, ..., XN , this problem involves determining 

the probability that the observation sequence X1, ..., XN was generated from the HMM 

model θ, that is; 

P (X1:N |θ) (7.7) 

This problem can also be summarized as; 

Given θ, X1:N −→ Estimate P (X1:N |θ) (7.8) 

This can be solved through the Forward Algorithm (see e.g. Murphy (2012), Degir-

menci (2014)). 

The Forward Algorithm 

In this algorithm, forward fltering is applied to derive fltered marginals P (St|X1:T ) 

through a two-step process (Degirmenci, 2014). The ‘prediction’ step uses the current 

computed probability to estimate the probability of the proceeding time step, that is; 

P (St|X1:t−1) = ... 

K (7.9)⎥ 
= P (St = j|St−1 = i)P (St−1 = i|X1:t−1) 

i=1 

This probability then acts as the new prior for time t. The ‘update’ step then applies 

the Bayes rule to the observations at time t to generate the forward probabilities; 

αt(j) ≜ P (St = j|X1:t) 

= P (St = j|Xt, X1:t−1) 
P (Xt|St = j, X1:t−1)P (St = j|X1:t−1) (7.10)

= 
j P (Xt|St = j, X1:t−1)P (St = j|X1:t−1) 
1 = P (Xt|St = j)P (St = j|X1:t−1)
Ct 

where Ct is a normalisation constant, given by; 

K⎥ 
Ct ≜ P (Xt|X1:t−1) = = P (Xt|St = j)P (St = j|X1:t−1) (7.11) 

j=1 

αt = P (St|X1:T ) is a K × 1 matrix. 
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The Decoding Problem 

Given the HMM model θ and observations X1, ..., XN , in this problem we would seek 

to determine the most probable hidden state sequence S1, ..., SN which would best 

explain the observations X1, ..., XN . This is solved using the Viterbi algorithm (see 

e.g. Murphy (2012), Degirmenci (2014)). 

Viterbi Algorithm 

The Forward Algorithm calculates P (X1:N |θ) by summing over all state sequences; but 

the Viterbi Algorithm approximates P (X1:N |θ) with P̂ (X1:N |θ), which uses the most 

probable state sequence instead of all state sequences. 

The Viterbi Algorithm fnds the most likely state sequence; 

P̂ (X1:N |θ) = maxS [P (X1:t, S1:t|θ)] (7.12) 

where S is the most likely state sequence. 

The probability of the most probable state of length t and ending at state j is given 

by 

δj (t) = maxS1,...,S(t−1)[P (X1:t, St = j|θ)] (7.13) 

Where S1, ..., St−1 is the most probable state sequence. As with the forward algorithm, 

δ can be derived recursively; 

δj (t) = maxi[δi(t − 1)Aij Bj (Xt)] (7.14) 

The Learning Problem 

The fnal problem, and the most important and complex, focuses on adjusting the 

HMM parameters to optimize P (X1:N |θ). This is solved through the Baum-Welch 

Algorithm (Baum et al., 1970; Baum, 1972; Welch, 2003), which also requires the 

forward and backward probabilities α and beta from the Forward-Backward algorithm 

as inputs. The Baum-Welch Algorithm is a special case of the EM Algorithm (Dempster 

et al., 1977) for hidden markov models, implying therefore, that this step is essentially 

completed via the EM Algorithm. 
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The Forward-Backward Algorithm 

Using the forward probabilities α from the Forward Algorithm, we can compute the 

backward probabilities and derive the smoothed marginals. We begin this process by 

defning the probability that the hidden state at time t is j; 

P (St = j|X1:N ) ∝ P (St = j.Xt+1:N |X1:t) 
(7.15) 

∝ P (St = j|X1:tP (Xt+1:N |Zt = j, X1:t) 

If we defne the smoothed posterior marginal by 

γt(j) ≜ P (Zt = j|X1:N ) (7.16) 

Equation 7.3.2 above can then be rewritten as 

γt(j) ∝ αt(j)βt(j) (7.17) 

with 

βt(j) ≜ P (Xt+1:N |St = j) (7.18) 

representing the conditional likelihood of future observations. Through recursion, β 

can now be computed as; 

βt−1(i) = P (Xt:N |St−1 = i) ⎥ 
= P (St = j, Xt, Xt+1:N |St−1 = i)...P (St = j, Xt|St−1 = i) 

j ⎥ (7.19)
= P (Xt+1:N |St = j)P (Xt|St = j, , St−1 = i)...P (St = j|St−1 = i) 

j ⎥ 
= βt(j)ψt(j)A(i, j) 

j 

The smoothed posterior γi is then given by 

αi ⊙ βi
γi = (7.20) 

j (αi(j) ⊙ βi(j)) 

The Baum-Welch Algorithm 

Given a sequence of observations X1, ..., XN we would like to solve 

⎥ 
argmaxθP (X; θ) = argmaxθ P (X, S; θ) (7.21) 

S 
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through maximum likelihood estimation. However, the summation function is com-

putationally complex, and the model parameters are therefore estimated through the 

EM Algorithm instead. This involves two steps; the Expectation Step (E-step) and 

the Maximisation Step (M-Step). 

The E-step is expressed as (Murphy, 2012; Degirmenci, 2014); 

γtk ≜ P (Stk = 1|X, θold) 
(7.22)αk(t)βk(t)= N 

j=1 αj (t)βj (t) 

ξtjk ≜ P (St−1,j = 1, Stk = 1|X, θold) 
(7.23)αj (t)Ajkβk(t + 1)Bk(Xt+1)= N 

i=1 αi(t)βi(t) 

In the M-step, the parameters maximising P (X1:N |θ) are determined as follows; 

E[N1] γ1k
π̂k = k = K (7.24)

N j=1 γ1j 

E[Njk] t=2 ξtjk 
Â 

jk = = K

N 

N (7.25) 
k ′ E[Njk] l=1 t=2 ξtjl 

N
ˆ E[Mjl] t=1 γtlXtj
Bjl = = N (7.26)

E[Nj ] t=1 γtl 

θnew = (A,ˆ B,ˆ θ̂) (7.27) 

This algorithm uses, as inputs, the forward and backward probabilities from the Forward-

Backward Algorithm. 

Baum-Welch Algorithm (Degirmenci, 2014) 

1. Input: X1:N , A, B, α, β 

2. for t = 1 : N do 

3. γ(:, t) = (α(:, t) ⊙ β(:, t))./sum(α(:, t) ⊙ β(:, t)); 

4. ξ(:, :, t) = ((α(:, t) ⊙ A(t + 1)) ⋆ (β(:, t + 1) ⊙ B(Xt+1))T )./sum(α(:, t) ⊙ β(:, t)); 
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5. π̂ = γ(:, 1)./sum(γ(:, 1)); 

6. for j = 1 : K do 

7. Â(j, :) = sum(ξ(2 : N, j, :), 1)./sum(sum(ξ(2 : N, j, :), 1), 2); 

8. B̂(j, :) = (X(:, j)T γ)./sum(γ, 1); 

9. Return π,ˆ A,ˆ B̂ 

7.4 Numerical Analysis 

7.4.1 Exploratory Data Analysis 

We test Hidden Markov Models on meteorological event4 data from the US’s Property 

Claim Services (PCS), which provides industry loss estimates of historical catastrophic 

events. The data, which consists of 3143 observations between 12th January 1985 and 

12th April 2014, 5 includes the afected states, the perils, and the loss estimates. This 

meteorological event data is extracted from a larger dataset of 3951 observations con-

sisting of all major loss events including earthquakes and wildfres. The meteorological 

events i.e., hurricanes, tropical storms and other wind and thunderstorm events;6 were 

chosen due to their common underlying drivers, their large sample size and the possible 

seasonal and tail dependent components in such events. The individual losses, which 

4As defned by Munich Re in https://www.munichre.com/topics-online/en/climate-change-and-

natural-disasters/natural-disasters.html 
5The data is only used for applicational purposes. The timeline from January 1985 to April 2014 

is a result of data unavailability due to extreme data costs for individual researchers after this period. 

The data was deemed acceptable to use as it was only used to ft the model and prove that the model 

could be applied to heavy-tailed data. Other recent studies have applied an even older dataset, the 

Danish Fire data, that spans the period beginning January 1980 and ending December 1990 for similar 

purposes (see e.g Miljkovic and Grün (2016)). 
6As defned by Munich Re in https://www.munichre.com/topics-online/en/climate-change-and-

natural-disasters/natural-disasters.html 

https://www.munichre.com/topics-online/en/climate-change-and
https://www.munichre.com/topics-online/en/climate-change-and
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were adjusted for infation to their 2014 values using the US Consumer Price Index 

(CPI), range from approximately 1 million US dollars at minimum to over 30 billion 

US dollars at maximum, showing just how dispersed this dataset is. 

The time series plot of this dataset is given in Figure 7.1 below; 

Figure 7.1: Time Series Plot of Meteorological Catastrophe Losses 

Note: This time series plot provides a graphical summary of catastrophic in-

dustry loss estimates from meteorological loss events, including hurricanes, 

tropical storms and other extreme wind and thunderstorm events. The data 

was provided by the US’s Property Claims Services (PCS) and spans the pe-

riod from January 1985 to April 2014. The individual loss estimates were 

adjusted for infation to their 2014 values using the US Consumer Price 

Index (CPI). Loss estimates are displayed in millions of US dollars on the 

y-axis, while the x-axis displays the respective dates. 

The time series plot allows us to identify the periods of most extreme losses and 

any signs of data clustering, especially in large losses. From Figure 7.1 we can see 
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that the years 1989, 1992, 2001, 2004-2005, 2008-2009, 2011 and 2012-2013 experi-

enced the most extreme catastrophic events. This periods coincide with the following 

catastrophic events respectively; Hurricane Hugo, Hurricane Andrew, Tropical Storm 

Allison, Hurricanes Frances, Jeanne, Katrina and Wilma in the 2004-2005 period, Hur-

ricane Ike in 2008, several extreme Wind and Thunderstorm events in 2011, and fnally, 

Hurricane Sandy in 2012. This is further supported by Figure 7.2a and Figure 7.2b 

below, that summarise the annual losses and annual frequency of the observations over 

time. 

(a) Annual Catastrophic Loss Severities (b) Annual Catastrophic Loss Frequencies 

Note: The two fgures above display the aggregate annual loss severity (left) 

and annual loss frequency (right) estimates for PCS’ meteorological indus-

try loss data, for the period beginning January 1985 and ending April 2014. 

The Annual Loss Severities plot summarises the annual catastrophic loss 

severity values, while the Annual Loss Frequencies plot gives a summary 

of the annual catastrophic loss frequency values. Loss estimates in mil-

lions of US dollars are displayed on the y-axis while the x-axis displays the 

respective year. 

From these plots, we can also see that some ‘clustering’ is evident. Further tests 

will prove that this is indeed the case, and provide an estimate of the extent of this 

clustering. 

For the moment, we conduct tests on the data to determine that it is indeed a 
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heavy-tailed process. The QQ plot and the plot of the sample mean excess function 

are used to support the heavy-tailed nature of the data. 

Figure 7.3: Exploratory QQ plot 

Note: The fgure displays the exploratory quantile-quantile plot against the 

exponential distribution (Exploratory QQ-plot), used to visually test the 

PCS meteorological data’s heavy-tailed properties. Concave departures from 

the medium-tailed exponential distribution’s straight line indicate that the 

data is heavy-tailed while Convex departures indicate shorter-tailed data. 

The QQplot against the exponential distribution visually examines whether the 

data is derived from an exponential distribution i.e. a medium-tailed distribution. 

Any concave departures, as observed in Figure 7.3, indicate that our data is heavy-

tailed while convex departures indicate shorter-tailed data. This plot proves that our 

data is heavy-tailed, and this is further reinforced by the plot of the sample mean 

excess function. 
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Figure 7.4: Sample Mean Excess Plot 

Note: The plot of the sample mean excess function is used to further test 

and confrm heavy-tailed properties of the PCS meteorological data. As the 

medium-tailed exponential distribution would give an approximately hori-

zontal line in this case, an upward trend in the line would indicate Pareto 

heavy-tailed behaviour. 
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In this plot, an upward trend indicates heavy-tailed behaviour, since the exponential 

data would give an approximately horizontal line. Figure 7.4 proves the heavy-tailed 

nature of our data through its reasonably straight line with positive gradient. 

The next set of tests assesses the presence and extent of ‘clustering’ in our data. We 

apply a variety of tests, including the ACF for serial correlation; the Ljung-Box Test 

for Independence; and fnally the extremal index for clustering extent quantifcation 

and plotting. The tests are described below. 

We frst test for independence of observations using the Ljung-Box test for inde-
(−16)pendence (Ljung and Box, 1978). The results of this test i.e. a p-value < 2.2e , 

lead to the rejection of the null hypothesis (independence of observations) in favour of 

the alternative hypothesis (evidence for dependence) at the 99.9999% confdence level. 

The presence of serial correlation is then tested through the sample autocorrelation 

function (ACF), and the results displayed in Figure 7.5. 
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Figure 7.5: Sample Autocorrelation Function 

Note: The sample autocorrelation function plot is used to test for serial 

correlation in the PCS meteorological data, as a preliminary step to deter-

mining the presence and extent of ‘clustering’ in the data. A larger number 

of spike points above the blue confdence band would be proof of serial corre-

lation. Furthermore, the persistence of these spikes over higher and higher 

lags would also be an indication of long-range dependence as opposed to 

short-range dependence. 
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The large number of spikes falling above the blue confdence band indicate that the 

data is serially correlated. In addition, the persistence of the spikes over higher and 

higher lags is also an indication that we are dealing with long-range dependence as 

opposed to short-range dependence. This implies that we cannot assume independence 

by relying on the presence of only short-range dependence; and can only model the 

data as a dependent non-stationary process. 

Finally, the extent of clustering is quantifed and plotted through the use of the 

extremal index (Embrechts et al., 1997). Using the Ferro-Segers ‘intervals method’ 

(Ferro and Segers, 2003), we get an estimated index value of 0.4517447 (Confdence 

interval: 0.3703886 - 0.5610667) at the 95% confdence level. This proves our original 

deduction that clustering is evident in the data, since an independent dataset would 

give an extremal index of 1, with this value decreasing with the extent of clustering 

observed. We also compare diferent extremal index estimates to further support this 

deduction, including the blocks method, the reciprocal mean cluster size method and 

the runs method (see Embrechts et al. (1997) for further explanation). These methods 

give even lower estimates, further reinforcing our assumption. The summary plot is 

given in Figure 7.6, where the blocks, reciprocal and runs estimates are plotted by the 

black line, the green triangles, and the blue x’s respectively. 
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Figure 7.6: Extremal Index Estimation 

Note: Once clustering has been established in data, its extent is quantifed 

and plotted through the extremal index above. Three diferent techniques for 

extremal index estimation are used to arrive at these values, including the 

blocks method, the reciprocal mean cluster size method and the runs method 

(see e.g., Embrechts et al. (1997)). These results are displayed in the ex-

tremal index plot above, where the blocks, reciprocal and runs estimates are 

plotted by the black line, the green triangles, and the blue x’s respectively. 
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7.4.2 Hidden Markov Model Fitting 

Once the presence and extent of ‘clustering’ has been established, we model this using 

the hidden markov model and the Baum-Welch algorithm. For this purpose we apply 

the R packages HiddenMarkov (Harte, 2021) and depmixs4 (Visser and Speeken-

brink, 2010). We estimate two models; one representing the loss severity, and the other 

representing the loss frequency. Table 7.1 displays the model specifcation and ft re-

sults. The columns display the mixture distribution type (Distribution), the number 

of states of the distribution ftted to the data (No. of states (K)), the Negative Log-

Likelihood, and the the Akaike Information Criterion (AIC) and Bayesian Information 

Criterion (BIC) to enable the identifcation of the most optimal ft distribution and 

states. The states with the lowest BIC values are highlighted in bold font, representing 

the hidden Markov models under each distribution that provides the best ft. 



188 7.4. Numerical Analysis 

Table 7.1: Hidden Markov Models ftted to Meteorological Loss Data 

Distribution No. of states (K) 

Loss Frequency Model 

Negative Log-Likelihood AIC BIC 

Poisson 1 

2 

3 

4 

2118.067 

1805.326 

1774.287 

1768.954 

4238.134 

3620.653 

3570.574 

3575.954 

4242.737 

3643.666 

3621.202 

3663.357 

Distribution No. of states (K) 

Loss Severity Model 

Negative Log-Likelihood AIC BIC 

Exponential 1 

2 

16247.96 

16333.51 

32499.91 

32673.02 

32512.02 

32674.01 

Lognormal 1 

2 

3 

4 

5 

16247.96 

15932.00 

15779.48 

15724.26 

15724.26 

36862.82 

31874.00 

31574.96 

31470.52 

31476.52 

36,868.87 

31,870.99 

31574.96 

31455.51 

31455.51 

Gamma 1 

2 

3 

4 

5 

17607.62 

16252.21 

15992.87 

15934.65 

15934.65 

35219.24 

32514.42 

32001.74 

31891.3 

31897.3 

35231.35 

32511.41 

31992.73 

31876.9 

31876.9 

Note: The table above shows the results of the Hidden Markov Models (HMMs) and the 

Baum-Welch Algorithm ft to both the loss severity and the loss frequency data via the R 

software packages HiddenMarkov and depmixs4. The table columns represent the mixture 

distribution type (Distribution), the number of states of the distribution ftted to the data 

(No. of states (K)), the Negative Log-Likelihood, and the the Akaike Information Criterion 

(AIC) and Bayesian Information Criterion (BIC) to enable the identifcation of the most 

optimal ft distribution and states. The states with the lowest BIC values are highlighted in 

bold font, representing the hidden Markov models under each distribution that provides the 

best ft. 
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For the frequency model, we use a Poisson mixture distribution to model the arrival 

times while for the loss severity model, several medium and heavy-tailed distributions 

are tested using the available packages, with the top three distributions by ft being 

included in the table.7 The fnal loss frequency and loss severity HMMs are chosen 

with regards to the best ft characteristics based on the AIC and the BIC. These are 

the 3-state Poisson hidden markov model and the 4-state lognormal hidden markov 

model for loss frequency and loss severity respectively. The model parameters and 

their respective residual plots, which are generated as part of the model ftting process 

above, are given below. 

For the Loss Frequency Model, that is, the 3-State Poisson HMM, 

Parameter Estimates 

Given the Hidden Markov Model as defned in Section 7.3, the model parameters are 

given as follows; 

θ = (A, B, π) (7.28) 

For the 737 loss frequency observations extracted from the individual loss severity data; 

the initial state probabilities are given by; 

+00 −86 +00π = 1.0000e 2.2657e 0.0000e 

The transition matrix;  

A = 

 

0.7076 0.2540 0.0384 

0.4167 0.4776 0.1057 

0.4755 0.4247 0.0999 

 

And the state parameters defning the Emission matrix B;   
State 1 2 3  
λ 2.1695 6.0853 13.8355 

Residual Plots 

The histogram and normal QQ-plots of the loss frequency model are displayed below; 
7This list is not yet exhaustive, and the author plans to extend the hidden markov models to other 

heavy-tailed distributions not currently included in the available statistical packages. 



190 7.4. Numerical Analysis 

Figure 7.7: Histogram and Normal QQ-plot of residuals for the Loss Fre-

quency model 

(a) Histogram of Residuals (b) Normal QQ-Plot of Residuals 

Note: The histogram of residuals and Normal QQplot of residuals plots 

above are used to assess the ft of the chosen hidden markov model (i.e., 

the 3-state Poisson HMM) to the PCS loss frequency data. The better ftting 

models are expected to produce a histogram that is as close to the normal 

bell-shape as possible, and a normal QQ-plot that is as close to the diagonal 

line as possible. 
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And for the Loss Severity Model, that is, the 4-State Lognormal HMM 

Parameter Estimates 

With the Hidden Markov Model 

θ = (A, B, π) (7.29) 

The initial state probabilities are given by; 

π = 0 1 0 0 

The transition matrix;  

A = 

 

9.0052e − 01 7.9756e − 05 0.0046 0.0948 

2.6939e − 12 9.8246e − 01 0.0143 0.0033 

1.7890e − 06 3.8507e − 02 0.6104 0.3511 

7.9970e − 02 5.2100e − 03 0.0864 0.8285 

 

And the state parameters defning the Emission matrix B;   

State 1 2 3 4 

µ 3.1476 2.7594 5.3798 3.9922 

σ 0.5928 1.1130 1.6622 0.9696 

 

Residual Plots 

The histogram and normal QQ-plot of residuals are displayed below; 
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Figure 7.8: Histogram and Normal QQ-plot of residuals for the Loss 

Severity model 

(a) Histogram of Residuals (b) Normal QQ-Plot of Residuals 

Note: The histogram of residuals and Normal QQplot of residuals plots 

above are used to assess the ft of the chosen hidden markov model (i.e., 

the 4-state Lognormal HMM) to the PCS loss severity data. The better 

ftting models are expected to produce a histogram that is as close to the 

normal bell-shape as possible, and a normal QQ-plot that is as close to the 

diagonal line as possible. 
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The residual plots for the severity model indicate slightly better fts compared to the 

residual plots for the frequency model. It should be noted, however, that the multi-

state frequency model is still a better ft for the data than a single-state frequency 

model i.e., the single Poisson distribution. 

In addition, the multi-state frequency HMM’s residuals were compared to a typical 

non-homogeneous Poisson process ft for the frequency data based on estimation of 

Poisson processes resulting from a peak-over-threshold approach (Cebrián et al., 2015), 

and these non-homogeneous plots found to be of a worse ft compared to the multi-

state HMM ft. The multi-state HMM, is also, in its own right, a form of a fnite 

non-homogeneous Poisson process, since its intensity functions are stochastic and state-

dependent. Due to these advantages, we progress with the Poisson 3-state HMM for 

frequency modelling and the lognormal 4-state HMM for severity modelling in the 

application stage. 

7.4.3 Model Application to Catastrophe Bond Valuation 

The aggregate claims process 

Assume the stochastic process N represents the number of claims occurring until time 

t; and Xn, n = 1, ..., N the size of the individual claims to time t. Xn’s have a common 

distribution function P (x) = P {Xn < x} , which, in our case, represents the HMM 

distribution. 

Assuming the number of claims N is independent of the size of claims Xn, the 

aggregate loss process S can be defned as; 

N⎥ 
S = Xn (7.30) 

n=0 

and S = 0 when N = 0. S is assumed to follow a Compound Poisson Markov-dependent 

Mixture distribution. These assumptions are based on the Cramer-Lundberg collective 

risk model (Livshits, 1999; Boikov, 2003). 



� �

�




194 7.4. Numerical Analysis 

The Compound Poisson Markov-Dependent Mixture Distribution 

The distribution of the random aggregate loss process S = X1 + X2 + · + XN is termed 

a compound distribution (Teugels et al., 2004). Compound distributions are used to 

model aggregate losses, especially in insurance claims models. The distribution of N , 

also known as the primary distribution, generates the loss frequencies, values which 

are then used to generate individual losses for each loss frequency. These individual 

losses (Xn’s), are then summed up to give the fnal aggregate loss values (S) that are 

used in pricing applications (Willmot and Lin, 2001). 

The distribution of S, for the compound Poisson markov-dependent mixture distri-

bution, can be expressed as 

∞ M⎥ ⎥ eλi λn 

FS (x) = wi
i P ∗n(x) (7.31) 

n! n=0 i=1 

where P ∗n(x) = Pr(X1 + X2 + ... + Xn ≤ x. M represents the number of distributions 

included in the Markov-dependent mixture model; wi denotes mixture component i’s 

Mweight; and i=1 wi = 1. 

We generate this compound distribution using loss frequency observations from 

the 3-state Poisson HMM and individual loss severity observations from the 4-state 

Lognormal HMM. These loss severity values are then aggregated at each loss frequency 

to generate the fnal aggregate loss values used in the catastrophe bond valuation model. 

The Catastrophe Bond Pricing Model 

We consider two index-linked CAT bonds8; a zero-coupon CAT bond and a coupon-

paying CAT with only the coupons at risk if a catastrophe occurs. The zero-coupon 

CAT bond with pay-of (PayofCAT 
(1)) and maturity T > 0 can be expressed as;  1, if ST < D. 

PayofCAT 
(1) = (7.32) ρ, if ST ≥ D. 

8an index linked CAT pays out to the issuer if the losses from the pre-specifed event exceed losses 

on a certain catastrophe loss index 
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where ST represents the aggregate claims at time T , D is the threshold level that 

triggers a payout, and ρ(0 ≤ ρ < 1) represents the proportion of principal recovered by 

the investor at time T if the bond is triggered. The value of this bond at time t given 

the catastrophe loss distribution P (x) and the claim arrival process Nt is then given 

by (see e.g., Ma and Ma (2013)); 

⎞ T 

Vt = e − 
t 

rsdsEQ[PayofCAT 
(1)|Ft] 

= BCIR(t, T ) [ρ + (1 − ρ) × FS (D)] 
∞ M λi λn⎥ ⎥ e i ∗n(D)= BCIR(t, T ) ρ + (1 − ρ) × wi P (7.33) 

n! n=0 i=1 

Under the risk-neutral probability measure Q, P ∗n(D) = Pr(X1 +X2 +...+Xn ≤ D 

is the n-fold convolution of P ; and 

−B(t,T )rtBCIR(t, T ) = A(t, T )e , 

+h)(T −t)/2 
2 
σ
ab 
22he(a+λr 

A(t, T ) = ,2h + (a + λr + h)(e(T −t)h − 1 
(T −t)h − 12e 

B(t, T ) = ,2h + (a + λr + h)(e(T −t)h − 1 q 
h = (a + λr)2 + 2σ2 (7.34) 

is the Cox-Ingersoll-Ross interest rate process (Cox et al., 1985). 

Next consider the coupon-paying CAT bond with a constant coupon c > 0 and the 

pay-of structure;  c + 1, if ST < D. 
PayofCAT 

(2) = (7.35)ρ(c) + 1, if ST ≥ D. 

where ST represents the aggregate claims at time T , D is the threshold level that 

triggers a payout, and ρ(0 ≤ ρ < 1) represents the proportion of coupon recovered by 

the investor at time T if the bond is triggered. The value of this bond at time t given 

the catastrophe loss distribution P (x) and the claim arrival process Nt is then given 
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by; 
⎞ T 

tVt = e − rsdsEQ[PayofCAT 
(2)|Ft] 

= BCIR(t, T ) [(ρc + 1) + ρc × FS (D)] 
∞ M⎥ ⎥ eλi λn 

= BCIR(t, T ) (ρc + 1) + ρc × wi
i P ∗n(D) (7.36) 

n! n=0 i=1 

where P ∗n(D) = Pr(X1 + X2 + ... + Xn ≤ D is the n-fold convolution of P and 

BCIR(t, T ) represents the Cox-Ingersoll-Ross discount rates defned above. 

Bond Valuation 

Assuming an index-linked CAT bond with face value Z = US$1, proportion ρ = 0.7 

and coupon c = 0.1 at time t = 0. We estimate bond values at diferent thresholds D, 

determined on the annual average loss interval, with the lowest threshold representing 

a quarter of the average loss and the highest threshold representing three times the 

average loss (see e.g. Shao et al. (2017)); and for diferent terms to maturity T , ranging 

from 0.25 to 2.25 years. 

The resulting 3D plots of fnal CAT bond values are given in fgures 7.9 for the 

zero-coupon CAT bond (principal-at-risk) and 7.10 for the coupon paying CAT bond 

(principal-and-coupon-at-risk). 
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Figure 7.9: Principal-at-risk CAT bond 

Note: The fgure gives the 3D plot of catastrophe bond prices generated 

assuming a compound Markov dependent mixture model for the aggregate 

loss values and the CIR interest rate model for the discount rates. The 

payofs are derived for the principal-at-risk catastrophe bond, and the plot 

displays the catastrophe bond value in US dollars (V($)), the catastrophe 

bond term in years (T(yrs)), and fnally the catastrophe bond triggering 

threshold in millions of US dollars (D($m)). 
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Figure 7.10: Principal-and-coupon-at-risk CAT bond 

Note: The fgure gives the 3D plot of catastrophe bond prices generated 

assuming a compound Markov dependent mixture model for the aggregate 

loss values and the CIR interest rate model for the discount rates. The 

payofs are derived for the coupon-at-risk catastrophe bond, and the plot 

displays the catastrophe bond value in US dollars (V($)), the catastrophe 

bond term in years (T(yrs)), and fnally the catastrophe bond triggering 

threshold in millions of US dollars (D($m)). 

Figures 7.9 and 7.10 show that higher risk bonds i.e., lower bond prices are char-

acterised by lower thresholds and longer time to maturities. These results are in line 

with observations from real catastrophe bond price regression models (see e.g. Braun 

(2016)). These 3D plots serve as proof that Hidden Markov Models and the Baum-

Welch algorithm can be applied to incorporate efects of seasonality and temporal 

dependence in catastrophic loss datasets, especially for events that typically occur sea-

sonally like meteorological events. It also shows that dependent and non-stationary 
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processes can be efciently modelled without incurring excessive computational costs 

or losing model robustness; and that these models can be applied to the valuation of 

catastrophe-linked securities to ensure completeness. 

These results are crucial to providing the industry with a way to incorporate unique 

and often complex elements of dependent catastrophic loss processes into valuation 

models, in order to ensure that such unique elements are also efciently priced into 

the fnal models used to determine the costs of catastrophic risk processes. This is 

especially important since, and similar to Chapter 6’s conclusions, model accuracy, 

completeness, and efciency, are key factors to ensuring that information asymmetries 

are reduced, and that investors and issuers can trust that the pricing process within 

the disaster risk fnancing market remains efcient to a reliable degree. Only in this 

way, can the market serve to both protect individuals, institutions, and even nations 

facing the threats of catastrophic losses, while ensuring that those investors who are 

willing to take on such risks are fairly compensated. Only this way can there be hope 

that those at risk can fnd protection against catastrophes which often are too costly 

for any other institutions to take on. Only this way can future survival be guaranteed 

against extreme losses. 

7.5 Conclusion 

This study set out to identify and quantify deviations from the ‘independent and 

identical distribution’ of observations assumption. This was accomplished through a 

standardised approach involving the application of Hidden Markov Models (Zucchini 

et al., 2016) and the Baum-Welch algorithm (Baum et al., 1970; Baum, 1972; Welch, 

2003) to data ‘clusters’ in order to generate the best state-dependent distributions. 

The Hidden Markov Models were applied to both the loss frequency and loss severity 

data, and the model parameters then used as inputs in the generation of a compound 

mixture distribution for aggregate losses. These aggregate losses were then applied in 

a catastrophe bond valuation model to generate bond value estimates under diferent 
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threshold and time to maturity assumptions. 

The study’s results show that, for extreme meteorological event data covering hur-

ricanes, tropical storms and other related wind and thunderstorm events, individual 

loss severities can be modelled via a 4-state Log-normal hidden markov model; while 

loss frequencies can be modelled via a 3-state Poisson hidden markov model. A com-

pound mixture distribution can also then be generated for these model combinations 

to estimate aggregate losses. The Hidden Markov Model (HMM) has been shown to be 

reliable for the modelling of ‘clustered’ data, and especially useful in the identifcation 

of underlying hidden catastrophic states determining catastrophe loss observations. In 

addition, the fexibility of the HMM implies that these models can be applied to a 

variety of distributions and state processes. This is especially useful in the changing 

catastrophe climate. 

Future research opportunities include the comparison of seasonal events with non-

seasonal events like earthquakes in order to establish the diferences in the evolution of 

loss distributions or pricing factors, and the exploration of multivariate dependencies 

via ‘correlated clustering’ approaches. These cluster-based dependencies could then be 

compared to the popular multivariate dependence modelling approaches that focus on 

copula-based techniques. Other extensions focusing on further automating the HMM 

optimization process will be explored in future studies, to further improve efciency. 

In conclusion, this study has proposed a standardised hidden-markov-based ap-

proach to modelling both inherently seasonal and non-seasonal but tail dependent 

processes via the Baum-Welch algorithm. This is useful especially for practitioners 

looking to improve the precision of estimates used in model prediction, risk assess-

ment and decision-making for events deviating from the ‘independent and identically 

distributed’ observations assumption. 



Chapter 8 

Conclusion 

Through the application of mathematical optimization i.e., the Expectation-Maximization 

(EM) algorithm to climate-based catastrophic loss modelling and pricing disaster risk 

fnancing instruments i.e., the catastrophe bond, we have shown that these models can 

be applied to improve efciency and tractability of current catastrophic loss models, 

thus improving model reliability for planning and decision making. This can then con-

tribute to better priced fnancing options, subsequently boosting extreme disaster risk 

resilience and adaptation. To reach these aims, this study has followed the following 

structure. 

A historical background of disaster occurrence and disaster risk management pro-

cesses was analysed in Chapters 2 and 3, followed by a background of mathematical 

optimization and the EM algorithm in Chapter 4. These chapters provided a reference 

for the ft of this study with previous and present developments within the feld, and 

gave this study a continuation point in the literature. 

After the background was established, the study then focused on the modelling 

of catastrophic risk processes with Expectation-Maximization (EM) algorithms. The 

frst of these tests, detailed in Chapter 5, focused on the modelling of volatility in 

catastrophe bond pricing among issuers whose bonds have similar characteristics. As 

the catastrophe bond’s underlying risk is unrelated to the state of the issuer but rather 

dependent on the risk characteristics of the underlying catastrophe, there should not 

have been any signifcant diferences in the prices of a bond with similar underlying 

but issued by diferent issuers in the market. Any diferences would therefore have 
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been a result of an inefciency within the market, which could be a consequence of 

investor-based behavioural factors. The study therefore uses an EM-based random 

efects model to test for this efect on catastrophe bond prices available since market 

inception. The model identifes any collective volatility clustering efects between the 

diferent classes of data, with the ‘class’ representing a specifc issuer, and fnally its 

signifcance is determined. Our signifcant results prove that these efects still exist, 

signifying that the catastrophe bond market is still inefcient to some degree. Further 

analysis also shows that the efects are worse for less frequent issuers and for companies 

in the business of conducting insurance, as opposed to reinsurance or multi-business 

companies. 

These results are particularly useful to new issuers seeking protection who may need 

to understand fully the factors that drive their pricing, including factors beyond the 

logical risk-based factors. In addition, market practitioners could beneft from these 

results as they give an indication of the state of the market and areas that may require 

improvement in order to make the market more attractive to both investors and bond 

issuers. This also gives a possible area for future research, where as time goes by, a 

larger dataset could enable this trend to be fully fushed out, and any improvements 

clearly identifed within seasonal data splits. In addition, these behavioural factors 

could be assessed further to determine the exact cause of such pricing volatilities among 

the diferent classifcations of issuers. 

Next, in Chapter 6, the study shifts its focus to the actual modelling of the catas-

trophic loss processes that underly catastrophic risk pricing instruments, including 

catastrophe bonds. In this second project, analysis is focused on the application of an 

EM-based fnite mixture model (FMM) to the modelling of heavy-tailed catastrophic 

loss processes, especially those that underly the catastrophic industry loss index pro-

vided by Property Claims Services (PCS), a US-based company that collects such 

claims data for extreme events. As heavy-tailed loss modelling can often be intractable 

and computationally inefcient due to the complexity of the fnal equations, the EM al-

gorithm provides an optimization technique to enable efcient modelling techniques to 
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be applied to the data, and reduce computational costs. The fnite mixture models tests 

a number of heavy-tailed distributions to the data and determines the mixture distribu-

tions that best explain both the loss severity and the loss frequency observed, which in 

this case was the 2-component log-normal mixture and the 3-component Poisson mix-

ture respectively. We then use these models to generate a compound distribution for 

the simulation of a complete dataset, which is then used to value catastrophe bonds 

with diferent payof functions. The fnite mixture models are also compared with 

other non-EM-based types of mixture models including composite models and com-

posite mixture models and found to be superior. For this reason, the study is able to 

propose a computationally efcient and tractable modelling technique for catastrophic 

risk modelling and pricing. 

Such results are useful for risk modellers looking to boost the efciency of their 

recommended models and for market practitioners hoping to better understand or 

individually model such processes. The study also provides the possibility for further 

research on EM-type algorithms that can further improve efciency, including some 

new algorithms that combine both Newton-based algorithms, Monte Carlo techniques 

etc., into their functionality to further improve the algorithm’s speed. In addition, 

other loss frequency models apart from the popular Poisson could also be modelled 

and more efcient mixture models introduced for the loss frequency processes, which 

have seen little extension from the Poisson distribution-based models so far. 

Finally in Chapter 7, the study tested the applicability of EM-based algorithms 

to the modelling of unique factors in catastrophic loss modelling processes, here fo-

cusing on the modelling of time-based dependencies in single event catastrophic loss 

observations. A Baum-Welch Hidden Markov Model (HMM), which relies on the EM 

algorithm for optimization, was used to accomplish this. The model was ft to meteoro-

logical event data from PCS and state-based distributions for the loss frequencies and 

loss severities derived, similarly to the techniques applied in the fnite mixture mod-

elling process above. In this case, the results showed that the 4-state lognormal HMM 

model and the 3-state Poisson HMM model provided the best ft for the loss severity 
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and the loss frequency respectively. The model fts were then confrmed through resid-

ual models and QQ plots, and the loss frequency model ft further compared with a 

non-homogeneous Poisson model ft and found superior. The models were then applied 

to generate a Compound Poisson HMM model for the aggregate data, and this model 

used to simulate data for the valuation and fnally pricing of catastrophe bonds with 

diferent payof functions. 

This study, like the FMM study above, also provides an efcient model for the 

analysis of dependencies and efects of seasonality on catastrophic loss observations, 

and fnally pricing. This model is especially useful as it provides a starting point for 

practitioners seeking a way to incorporate unique elements of extreme event data into 

their pricing models for more efcient pricing of disaster risk. This also ensures that 

the previously-observed difculty in incorporating loss dependencies in catastrophe 

models can fnally be addressed more efectively. In addition, this study provides 

future research opportunities in multi-event dependence modelling, and other unique-

trend modelling applications, especially with climate change and its efects on the pace 

and severity of disasters. 

The three focused studies have shown that we can model both issuer-specifc pricing 

volatility, tails and dependence structures in catastrophic loss observations with just 

one class of algorithms, and thus improve the efciency of extreme loss modelling 

practices. These deductions are especially useful for catastrophic risk modelling due to 

the complexity of the models and equations applied to accomplish this process, which 

then often lead to computationally expensive solutions with little real-life applicability. 

As climate change is an ongoing process, the feld of climate modelling keeps ex-

panding (see e.g., Froot, 1999a; Cummins, 2008; SOQS, 2019; Crutzen and Stoermer, 

2021; Quéré et al., 2021), and this has increased the need for both practitioners and 

academics to fnd techniques that are better suited to adapt to new trends and ob-

servations in loss processes, as static models easily become obsolete with time. The 

EM provides a class of algorithms with signifcant adaptability potential (Dempster 

et al., 1977; Rabiner, 1989; McLachlan and Krishnan, 2007; Raudenbush and Bryk, 
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2010) and can therefore be a good option for modelling the dynamism of climate pro-

cesses. It can also be easily modifed and used in combination with other optimization 

algorithms including Monte Carlo and Quasi-Monte Carlo techniques in special-case 

situations, further boosting its potential. 

Future studies will therefore focus on this ‘boost of potential’, aiming at introduc-

ing further possible applications, trends and special-case scenarios to make the EM 

algorithm a truly versatile optimization option for climate risk modelling and disaster 

risk fnancing. In addition, modifed structures of disaster fnance instruments bet-

ter suited for specifc disaster scenarios will also be created and modelled with such 

techniques to provide more fnancing and insurance options, especially for vulnerable 

communities that require such fnancing the most when extreme disasters strike. This 

will further contribute to the goal of improving disaster resilience, especially for vul-

nerable communities, thus supporting the goals of the Sendai Framework for Disaster 

Risk Reduction (SFDRR), and the eforts of the World Bank’s Disaster Risk Financing 

Facility to protect communities. 
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APPENDICES 

.1 Summary of Issuer Characteristics 



Table 1: Catastrophe bonds by issuer 

Issuer Size ($m) % Size Obs. (No) % Obs. Premium (%) EL (%) P/EL EER (%) Term 

Achmea Re 54.70 0.06% 1 0.14% 3.30% 1.29% 2.56 2.01% 36.00 

AGF 129.00 0.13% 2 0.28% 4.29% 0.69% 8.56 3.60% 60.00 

AIG 1,325.00 1.37% 8 1.10% 6.53% 1.72% 4.03 4.81% 29.25 

Aioi Nissay Dowa Insurance 167.90 0.17% 2 0.28% 3.00% 0.83% 4.00 2.17% 41.50 

Allianz SE 1,755.00 1.81% 16 2.21% 10.36% 3.24% 4.80 7.12% 37.50 

Allstate Insurance Company 2,725.00 2.81% 12 1.66% 5.30% 1.04% 5.06 4.27% 46.58 

Am Family Mutual 200.00 0.21% 2 0.28% 7.48% 2.72% 3.04 4.76% 37.50 

Am Re 176.80 0.18% 2 0.28% 4.24% 0.40% 13.14 3.84% 17.00 

American Coastal Insurance 383.00 0.40% 2 0.28% 4.19% 0.46% 9.29 3.73% 21.00 

American Modern Insurance 75.00 0.08% 1 0.14% 3.55% 0.57% 6.23 2.98% 36.00 

American Re 116.40 0.12% 1 0.14% 5.58% 0.75% 7.44 4.83% 12.00 

American Strategic Insurance 600.00 0.62% 4 0.55% 5.07% 1.85% 2.98 3.22% 38.25 

Amlin AG 500.00 0.52% 3 0.41% 10.06% 3.63% 2.91 6.42% 44.00 

AmTrust Financial Services 100.00 0.10% 1 0.14% 3.80% 1.19% 3.19 2.61% 47.00 

Argo Re 372.00 0.38% 5 0.69% 13.44% 5.25% 2.82 8.19% 39.60 

Arrow Re 162.80 0.17% 3 0.41% 3.95% 0.59% 34.68 3.37% 12.00 

Arrow Re/St Farm 52.20 0.05% 1 0.14% 4.62% 0.63% 7.33 3.99% 12.00 

Aspen Insurance Holdings 325.00 0.34% 2 0.28% 5.83% 2.29% 2.64 3.54% 30.00 

Assicurazioni Generali 486.60 0.50% 2 0.28% 2.66% 1.66% 1.73 1.00% 42.00 

Assurant 605.00 0.62% 9 1.24% 8.82% 2.06% 4.78 6.76% 36.00 

Continued on next page 



Table 1 – continued from previous page 

Issuer Size ($m) % Size Obs. % Obs. Premium (%) EL (%) P/EL EER (%) Term 

Avatar P&C 100.00 0.10% 3 0.41% 8.45% 4.68% 2.66 3.77% 35.00 

AXA Global Re 1,105.30 1.14% 4 0.55% 3.32% 1.28% 2.68 2.04% 41.75 

AXIS Re 915.00 0.94% 4 0.55% 7.53% 3.73% 2.22 3.80% 41.25 

Balboa Insurance Company. 

Bayview Opp Fd 

Brit Insurance Holdings plc 

California Earthquake Authority (CEA) 

California State Compensation Insurance Fund 

Castle Key Insurance & Indemnity 

Catlin Group 

Central Re Corp 

Centre Solutions (Bermuda) Ltd (Zurich Group) 

Chubb Group 

Citizen’s Property Insurance 

Converium 

50.00 

225.00 

140.00 

3,725.00 

660.00 

700.00 

1,041.80 

100.00 

113.15 

1,745.00 

3,350.00 

100.00 

0.05% 

0.23% 

0.14% 

3.85% 

0.68% 

0.72% 

1.08% 

0.10% 

0.12% 

1.80% 

3.46% 

0.10% 

1 

2 

2 

13 

3 

2 

6 

1 

2 

12 

6 

1 

0.14% 

0.28% 

0.28% 

1.80% 

0.41% 

0.28% 

0.83% 

0.14% 

0.28% 

1.66% 

0.83% 

0.14% 

3.04% 

4.57% 

4.57% 

5.14% 

2.75% 

4.44% 

7.48% 

4.11% 

3.75% 

7.60% 

8.48% 

5.48% 

0.82% 

1.75% 

0.78% 

2.09% 

0.25% 

0.78% 

2.42% 

0.73% 

0.80% 

1.78% 

2.47% 

1.07% 

3.71 

3.16 

12.60 

2.80 

11.90 

5.89 

6.91 

5.63 

4.69 

4.90 

3.33 

5.12 

2.22% 

2.82% 

3.79% 

3.05% 

2.51% 

3.67% 

5.06% 

3.38% 

2.95% 

5.81% 

6.00% 

4.41% 

36.00 

35.00 

36.00 

37.85 

45.33 

41.50 

36.50 

34.00 

12.00 

44.00 

33.67 

60.00 

Dominion Resources 50.00 0.05% 1 0.14% 20.78% 1.54% 13.49 19.24% 7.00 

Electricite de France 232.50 0.24% 2 0.28% 2.74% 0.28% 41.66 2.46% 60.00 

Endurance Specialty Holdings 

Equator Re Ltd 

Everest Re 

125.00 

250.00 

4,200.00 

0.13% 

0.26% 

4.34% 

1 

1 

19 

0.14% 

0.14% 

2.62% 

8.11% 

3.80% 

8.58% 

1.13% 

1.34% 

4.78% 

7.18 

2.84 

1.99 

6.98% 

2.46% 

3.80% 

18.00 

36.00 

52.32 

First Mutual Transportation Assurance (MTA) 325.00 0.34% 2 0.28% 4.16% 2.07% 2.12 2.09% 35.50 

Continued on next page 
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Issuer Size ($m) % Size Obs. % Obs. Premium (%) EL (%) P/EL EER (%) Term 

Flagstone Re 

FM Global 

489.00 

300.00 

0.50% 

0.31% 

7 

1 

0.97% 

0.14% 

12.07% 

3.17% 

3.37% 

0.71% 

4.74 

4.46 

8.69% 

2.45% 

36.00 

36.00 

FONDEN, Mexico 315.00 0.33% 3 0.41% 7.86% 3.71% 2.23 4.15% 38.00 

Frontline 350.00 0.36% 2 0.28% 9.51% 5.77% 1.70 3.74% 47.00 

Gerling 

Glacier Re 

180.00 

255.00 

0.19% 

0.26% 

2 

4 

0.28% 

0.55% 

4.41% 

10.05% 

0.60% 

2.80% 

7.77 

3.87 

3.81% 

7.25% 

48.00 

36.00 

Great American Insurance Co. 285.00 0.29% 3 0.41% 4.99% 1.67% 3.24 3.32% 39.00 

Groupama 

Gulfstream Ins.(for Vivendi) 

Hannover Re 

292.00 

175.00 

5,081.20 

0.30% 

0.18% 

5.25% 

1 

2 

26 

0.14% 

0.28% 

3.59% 

3.65% 

6.64% 

7.51% 

0.89% 

1.18% 

3.11% 

4.10 

6.35 

3.03 

2.76% 

5.46% 

4.40% 

36.00 

43.00 

40.81 

Hartford Fire Insurance 915.00 0.94% 7 0.97% 5.88% 0.93% 6.99 4.95% 45.00 

Heritage P&C 

Hiscox Syndicate 

IBRD - Chile 

852.50 

33.00 

500.00 

0.88% 

0.03% 

0.52% 

8 

1 

1 

1.10% 

0.14% 

0.14% 

6.56% 

6.84% 

2.53% 

3.22% 

1.14% 

0.86% 

2.38 

6.00 

2.94 

3.34% 

5.70% 

1.67% 

42.00 

36.00 

36.00 

IBRD - Colombia 400.00 0.41% 1 0.14% 3.04% 1.56% 1.95 1.48% 36.00 

IBRD - Mexico 1,105.00 1.14% 9 1.24% 6.70% 4.11% 1.98 2.58% 36.44 

IBRD - Peru 200.00 0.21% 1 0.14% 6.08% 5.00% 1.22 1.08% 36.00 

IBRD - Philippines 

ICAT Syndicate 4242 

Kemper 

Lehman Re 

225.00 

164.50 

80.00 

499.50 

0.23% 

0.17% 

0.08% 

0.52% 

2 

2 

1 

3 

0.28% 

0.28% 

0.14% 

0.41% 

5.66% 

5.07% 

3.74% 

4.39% 

2.97% 

2.89% 

0.50% 

0.49% 

1.90 

2.03 

7.48 

10.20 

2.69% 

2.19% 

3.24% 

3.83% 

36.00 

37.00 

37.00 

18.67 

Continued on next page 
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Issuer Size ($m) % Size Obs. % Obs. Premium (%) EL (%) P/EL EER (%) Term 

Liberty Mutual 

Louisiana Citizens 

1,175.00 

565.00 

1.21% 

0.58% 

7 

5 

0.97% 

0.69% 

9.46% 

6.13% 

1.53% 

2.23% 

7.04 

2.62 

7.93% 

3.90% 

34.29 

38.40 

Markel Bermuda 100.00 0.10% 1 0.14% 2.79% 0.14% 19.93 2.65% 37.00 

Mitsui Sumitomo 640.00 0.66% 5 0.69% 2.69% 0.97% 2.81 1.72% 52.80 

MMM IARD SA+ 239.22 0.25% 3 0.41% 6.64% 5.31% 1.28 1.33% 48.33 

Montpelier Re 

Munich Re 

150.00 

4,051.40 

0.15% 

4.18% 

2 

30 

0.28% 

4.14% 

13.31% 

7.12% 

3.51% 

1.99% 

3.80 

4.26 

9.80% 

5.14% 

36.00 

39.50 

National Union Fire Insurance 1,850.00 1.91% 8 1.10% 9.19% 1.86% 5.38 7.33% 34.50 

Nationwide Mutual 2,640.00 2.73% 18 2.49% 6.58% 2.40% 3.34 4.18% 38.78 

Natixis SA 214.60 0.22% 2 0.28% 7.36% 3.56% 2.09 3.80% 57.00 

NC Insurance Underwriting Association 

Nephila Capital Ltd. 

Oak Tree Assurance 

550.00 

240.00 

400.00 

0.57% 

0.25% 

0.41% 

2 

3 

1 

0.28% 

0.41% 

0.14% 

5.58% 

3.85% 

2.79% 

2.02% 

0.65% 

0.80% 

2.79 

29.30 

3.49 

3.56% 

3.21% 

1.99% 

35.00 

32.00 

39.00 

OCIL (Oil Casualty Insurance Ltd.) 

Oriental Land 

405.00 

100.00 

0.42% 

0.10% 

3 

1 

0.41% 

0.14% 

4.55% 

3.14% 

0.89% 

0.42% 

16.17 

7.48 

3.66% 

2.72% 

36.00 

60.00 

Palomar Specialty Ins. 

Passenger Railroad Ins. 

Platinum 

166.00 

275.00 

200.00 

0.17% 

0.28% 

0.21% 

3 

1 

1 

0.41% 

0.14% 

0.14% 

4.39% 

4.56% 

4.82% 

2.49% 

1.99% 

0.56% 

1.92 

2.29 

8.61 

1.90% 

2.57% 

4.26% 

36.00 

38.00 

36.00 

PXRE 550.00 0.57% 4 0.55% 7.10% 1.18% 7.33 5.92% 48.00 

Renaissance Re 550.00 0.57% 3 0.41% 7.70% 2.95% 2.73 4.75% 39.33 

Safepoint Insurance 435.00 0.45% 7 0.97% 7.71% 3.68% 3.08 4.04% 35.86 

Continued on next page 
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Issuer Size ($m) % Size Obs. % Obs. Premium (%) EL (%) P/EL EER (%) Term 

SCOR 2,716.60 2.80% 21 2.90% 9.00% 2.47% 8.15 6.53% 39.43 

Sempra En, SD G&E, S C 125.00 0.13% 1 0.14% 4.06% 0.21% 19.33 3.85% 36.00 

Sompo Japan Nipponkoa 878.00 0.91% 4 0.55% 2.53% 0.88% 3.02 1.65% 48.25 

Sorema 34.00 0.04% 2 0.28% 5.07% 0.43% 16.30 4.66% 24.00 

State Farm 3,158.60 3.26% 10 1.38% 2.37% 0.28% 51.80 2.09% 35.90 

Swiss Re 10,868.00 11.22% 173 23.90% 9.51% 2.96% 8.07 6.56% 29.56 

Texas Windstorm Insurance Association (TWIA) 600.00 0.62% 2 0.28% 3.93% 1.89% 2.07 2.04% 36.00 

Tokio Marine 985.00 1.02% 6 0.83% 2.53% 0.62% 6.95 1.91% 49.67 

Tokio Millenium Re 630.00 0.65% 3 0.41% 5.66% 1.47% 4.94 4.19% 43.33 

Transatlantic Re 500.00 0.52% 3 0.41% 6.00% 2.49% 2.59 3.51% 47.00 

Travellers Group 2,350.00 2.43% 7 0.97% 4.72% 1.01% 5.03 3.70% 39.29 

Turkish Cat Ins Pool 500.00 0.52% 2 0.28% 2.92% 1.23% 2.40 1.69% 36.00 

UnipolSai Assicurazioni 276.11 0.29% 2 0.28% 3.37% 0.38% 8.58 2.99% 39.50 

United P&C & afliates 300.00 0.31% 5 0.69% 8.60% 5.02% 2.22 3.58% 19.40 

US Fidelity and Guaranty 65.30 0.07% 3 0.41% 6.88% 2.00% 5.22 4.88% 12.00 

USAA 8,199.18 8.46% 74 10.22% 9.24% 3.62% 4.69 5.61% 38.30 

Validus Re 400.00 0.41% 3 0.41% 9.21% 5.01% 1.85 4.20% 48.00 

Vesta Fire Ins. 41.50 0.04% 1 0.14% 4.16% 0.70% 5.94 3.46% 36.00 

XL Insurance (Bermuda) 2,200.00 2.27% 18 2.49% 9.09% 4.97% 2.11 4.12% 41.50 

Zenkyoren (Japan) 3,445.00 3.56% 15 2.07% 2.68% 0.69% 4.93 1.99% 56.13 

Zurich Insurance Group 842.00 0.87% 5 0.69% 6.70% 1.33% 5.33 5.38% 34.40 

Continued on next page 
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Issuer Size ($m) % Size Obs. % Obs. Premium (%) EL (%) P/EL EER (%) Term 

Grand Total 96,871.36 100.00% 724 100.00% 7.64% 2.60% 6.35 5.04% 37.02 

Note: This table shows the aggregate characteristics of CAT bonds issued by all the issuers in the CAT bond market since inception. The table displays 

the total issue size (in millions of US dollars), total number of issues (Obs), the average premium, average expected loss (EL), the average multiple of the 

premium with respect to the expected loss (P/EL), the expected excess return (EER) and the average bond term in months for each issuer. In addition, 

the total issue size and number of observations for each issuer are displayed as a percentage of the total. These characteristics are given for CAT bonds 

issued between June 1997 and March 2020 in the primary market. 

https://96,871.36
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.2 Multilevel Analysis 

Multilevel models are an extension of linear or generalised linear models (Gelman and 

Hill, 2007) that are used to assess the extent of grouping in a sample. With multilevel 

models, however, the assumption of independent observations applied to ordinary least 

squares models no longer holds. Depending on the dependence structure, we can vary 

either the intercept, the slope, or both the intercept and the slope. The choice of this 

random efect depends on the underlying theoretical support. In the random intercept 

model, only the intercept varies by group while all the other predictors are fxed. The 

between-group variability is assumed to only afect the baseline or mean values of the 

dependent variable, depending on how the data is centred. It does not afect the 

manner in which the other predictors afect the dependent variable. For a two-level 

model, the equation then becomes (Raudenbush and Bryk, 2010), 
p⎥ 

Yij = β0j + βkj Xijk + εij (1) 
k=1 

β0j = γ00 + u0j , 

βkj = γk0, 

with εij ∼ N(0, σ2 
e) and u0j ∼ N(0, σ2 

u0), assuming the error terms are random and 

uncorrelated (Tolmie et al., 2011). The additional level, representing the group (the 

issuers), is introduced by the subscript j. With a random slope model, only the slope 

varies while the intercept and other predictor efects remain fxed. The assumption is 

that the group efect only afects the strength of the relationship between the other 

predictors and the dependent variable, but the mean or base value of the dependent 

variable remains fxed. The structure is given by Eq. (1) with 

β0j = γ00, 

βkj = γk0 + ukj , 

and ukj ∼ N(0, σ2 
uk). When we allow both intercept and slope to vary by group, then 

we get Eq. (1) with 
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251 .3. EM Algorithm for Multilevel Analysis 

β0j = γ00 + u0j , 

βkj = γk0 + ukj , 

and ukj ∼ N(0, σ2 
uk). In all three cases, the overall equation remains the same, but 

the parameters are either fxed or random depending on the model assumption. 

.3 EM Algorithm for Multilevel Analysis 

Following from the equations in Appendix .2, we get the following linear mixed efects 

model for a random intercept model; 

Yij = γ00 + u0j + xijk 
T γk0 + εij (2) 

with εij ∼ N(0, σ2 
e) and u0j ∼ N(0, σ2 

u0), assuming the error terms are random and 

uncorrelated; and j represents the additional level introduced by issuer variance. In 

this case, the unknown parameters are given by δ = (γ00, γk0, σ
2 

e, σ
2 

u0), and their joint 

likelihood is 
m m ⎫⎧ ⎧ 

L(δ) = f(yi) = f(yi, uoj )duoj 
i=1 i=1 
m ⎫ ni⎧ ⎧ 

= f(yi|uoj )f(uoj )duoj 
i=1 j=1 

m ⎫ ni 2⎧ ⎧ 1 (yij − γ00 − uoj − xijk 
T γk0)2 1 uoj= √ exp − × √ exp − duoj 

i=1 j=1 2πσe 2σe 
2 2πσu 2σu 

2 

(3) 

This joint likelihood can now be written as   ⎧m √  1 ⎥ni  aib
2 
iL(δ) = ci 2πaiexp − (yij − γ00 − xijk 

T γk0)2  
exp (4)2σe 

2 2i=1 j=1 

where 

ni 
√ 1 √ 1 ci = ,2πσe 2πσu 

−1 ni 1 ai = + 2 ,2σe σu 

1 nibi = 
σe 2 j=1(yij − γ00 − xijk 

T γk0), 
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The maximum likelihood estimator of δ is therefore; 

δ̂  = argmax L(δ) (5) 
δ 

The complete data is then given by (yi, uoj), and the observed data is (yi). The complete 

data log-likelihood is then; 
m m ni ni1 ⎥ m 1 ⎥⎥ 1 ⎥ 2l(δ; y, u) = − ( ni) log(2πσe 

2)− log(σu 
2)− (yij −γ00−uoj −xijk 

T γk0)2− uoj2 2 2σ2 2σ2 
i=1 e i=1 j=1 u j=1 

(6) 

.4 ANOVA Test for Homogeneity of Variance 

Table 2: ANOVA Table for Homoscedasticity 

Dof Sum Sq. Mean Sq. F value Pr(>F) 

Issuers 100 2388.3 23.883 0.6977 0.9867 

Residuals 603 20640.7 34.23 

Note: This table displays the results of the Analysis of Variance (ANOVA) test for ho-

moscedasticity of level 1 (individual catastrophe bonds) residual variance. The columns dis-

pay the degrees of freedom applied in the test (Dof), the sum of squares (Sum Sq.) and mean 

square (Mean Sq.) values, and fnally the F value and its corresponding p-value (Pr(>F)). 

The signifcance of each of these values is also indicated. Signifcance at 90%, 95%, and 99% 

confdence levels are indicated by *, **, and ***, respectively. It is assumed, for this test, 

that the variance is equal across the level 1 subjects. This is tested through the F test, which 

in this case is insignifcant. 
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	In this manner, the study ensures a fuller view of climate processes and their interactions, generates more efficient catastrophic loss models, and improves model applicability to incorporate newer trends in climate change and climate risk financing, while ensuring better model efficiency in terms of both computational performance and tractability. In this manner, the study thus contributes to the very important need for better disaster resilience among communities and societies, a key goal of recent climat
	In this manner, the study ensures a fuller view of climate processes and their interactions, generates more efficient catastrophic loss models, and improves model applicability to incorporate newer trends in climate change and climate risk financing, while ensuring better model efficiency in terms of both computational performance and tractability. In this manner, the study thus contributes to the very important need for better disaster resilience among communities and societies, a key goal of recent climat
	-
	-

	and development-based organisations handling issues of climate and disaster risk, disaster financing, and applied mathematics. In addition, any individual interested in climate impact, mitigation and adaptation can derive value from other elements of the study beyond just its results, including the historical and geological connections that have been discussed. 
	-


	To this effect, therefore, the study focuses on the application of mathematical optimization, with the Expectation-Maximization (EM) algorithm in particular, to improve climate-based catastrophic loss modelling and pricing of catastrophic disaster risk financing instruments, and the catastrophe bond in particular. Three main studies are conducted, with the first aiming to assess the catastrophe bond market’s efficiency by analysing the ‘fairness’ of its issuer-specific prices through multi-level random effe
	-
	-
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	Chapter 1 


	Introduction 
	Introduction 
	“Unless there is a global catastrophe, mankind will remain a major environmental force for many millennia. A daunting task lies ahead” -Paul Crutzen, Nobel Prize winner and originator of Anthropocene as an epoch 
	In the year 2000, Nobel Prize winner Paul Crutzen and Eugene Stoermer proposed an epoch change, from the Holocene to the Anthropocene, a new geological time unit for which human activities had the most significant role in the formation of prevailing climate systems (Crutzen and Stoermer, 2021). Over twenty years since their recommendation, the proposal has gained much traction, with the increase in supporting evidence (see e.g., Ring et al., 2012; SOQS, 2019; Milfont et al., 2021) and the formation of a spe
	-
	-

	While the formal application for this new epoch is still under review, the theory is seeing much support from the scientific community, and even the world at large, especially as human-origin climate change effects continue to be observed worldwide. The soaring of greenhouse gas concentrations in the atmosphere within the past century and its resultant effects of the planet’s aggregate temperature has also provided further proof for this phenomenon (see e.g., Brown, 1994; Nordell, 2003; Ibrahim Dincer, 2013
	1 
	sea levels, heat waves, droughts, and flash floods (see e.g., Intergovernmental Panel on Climate Change, 2018; NASA, 2023); the reality of such a human-induced long-term climate effect is becoming increasingly difficult to dismiss. Currently, the only leftover scepticism has been shown to be a consequence of behavioural factors like the roles of gender, political conservatism, and other system justifying ideologies in limiting the acceptance of climate change evidence (see e.g., Milfont et al., 2021). 
	This study proceeds with these observations in mind, using these developments to assess the current state of our planet’s resilience, and our disaster risk resilience tools. It assesses the effectiveness of the available disaster risk financing and insurance tools, with greater emphasis on insurance-linked securities, proposed to fill the gap in funding observed in the early 1990s after the occurrence of extreme loss events like Hurricane Andrew and the Northridge Earthquake (Froot, 1999a). In addition to a
	To achieve these aims, this introduction flows through four key subsections; the first subsection focuses on the background and history of climate processes and events, trends, and climate research. The second subsection discusses the key challenges that are encountered in conducting climate research, and the research gaps observed in climate research, more especially in catastrophic events’ loss modelling applications under current climate (change) trends. The third subsection discusses how this study inte
	To achieve these aims, this introduction flows through four key subsections; the first subsection focuses on the background and history of climate processes and events, trends, and climate research. The second subsection discusses the key challenges that are encountered in conducting climate research, and the research gaps observed in climate research, more especially in catastrophic events’ loss modelling applications under current climate (change) trends. The third subsection discusses how this study inte
	-

	organizations seeking to protect vulnerable communities from the effects of climate change and increased event risks. 

	We now begin with the background of climate events and processes, linking this background with the state of current climate research. Whether formalised as a geological time unit or not, the Anthropocene’s evidential existence still serves as proof that the planet’s future climate processes will be heavily and disproportionately influenced by human activity in the future, even with the current proposed changes to reduce this impact (see e.g., Maizland, 2022). As human energy consumption needs continue to gr
	-
	-
	-

	All is not completely bleak though, as climate observations have also shown that it is possible to survive this impending reality, as solutions still exist. In some cases, it has also been shown that conditions can be sustainably improved once the necessary changes are made (see e.g., Intergovernmental Panel on Climate Change, 2018; Quéré et al., 2021). In particular, the reduction in greenhouse gas emissions observed during the Covid-19 pandemic (Quéré et al., 2021) when many parts of the world were locked
	All is not completely bleak though, as climate observations have also shown that it is possible to survive this impending reality, as solutions still exist. In some cases, it has also been shown that conditions can be sustainably improved once the necessary changes are made (see e.g., Intergovernmental Panel on Climate Change, 2018; Quéré et al., 2021). In particular, the reduction in greenhouse gas emissions observed during the Covid-19 pandemic (Quéré et al., 2021) when many parts of the world were locked
	further proves that nature possesses an outstanding level of resilience, and only requires time away from human degrading activity. In fact, even the most toxic of environments, like the radiation polluted site of Chernobyl in Ukraine, has still managed to sustain some life since its abandonment after the 1986 disaster (Kovalchuk et al., 2004). 

	The planet requires time to sustain itself but rising energy demands have made it almost impossible for human beings to allow it the required time. Vulnerable communities, in particular, have rarely had a choice but to survive, as they lose not only their livelihoods due to increasingly unsupportive external environments, but are also then forced to migrate to urban centres (see e.g., ADB, 2021; ICRC, 2021; UNDP, 2023). These migrations then raise the urban populations of their cities of settlement, which i
	-

	Governments, supranational organisations, individuals, and other humanitarian organisations have been at the forefront; enacting climate sustainability policy, climate agreements, or making deliberate choice towards protecting the earth for its inhabitants, both present and future (see e.g., Intergovernmental Panel on Climate Change, 2018; ADB, 2021; ICRC, 2021; UNDP, 2023; Vesnic, 2023). Despite this, these stakeholders often have significant internal constraints that limit just how much they can reasonabl
	Governments, supranational organisations, individuals, and other humanitarian organisations have been at the forefront; enacting climate sustainability policy, climate agreements, or making deliberate choice towards protecting the earth for its inhabitants, both present and future (see e.g., Intergovernmental Panel on Climate Change, 2018; ADB, 2021; ICRC, 2021; UNDP, 2023; Vesnic, 2023). Despite this, these stakeholders often have significant internal constraints that limit just how much they can reasonabl
	-
	-
	-
	-

	also significantly complicated, and in some cases, impeded mitigation and adaptation efforts (see e.g., Froot, 1999b; Vesnic, 2023). 

	The pace of climate events has meant that there is often little time to recover and pool resources before the next event hits, and that countries can no longer fully rely on humanitarian aid to meet their recovery needs, as this requires time to be sourced. Aid also seems to favour more ‘trending’ events over long-standing events. It has been noted, for example, that the efforts to gain aid for the Somalia famine in 2022, which has been shown to have led to over 43,000 deaths and 2.9 million internal displa
	This brings us to our second subsection, which focuses on disaster-based resilience-maximizing solutions that have historically been available to us; and why these solutions have, in the past three decades especially, increasingly begun to prove insufficient. We also briefly discuss the financial security that was introduced to cover this gap in extreme event insurance in the early 1990s, i.e., the catastrophe bond. We then address the challenges faced in the modelling of underlying catastrophic loss proces
	-
	-
	-

	For centuries, insurance and reinsurance have been the most popular way to fund uncertain and extreme events (Trenerry, 1926; Coppola, 2006; Holland, 2009; Swiss Re, 2017). In recent decades, however, the increased frequency and severity of extreme events has overwhelmed the industry, making it difficult for the industry to offer comprehensive insurance for catastrophic events without risking their own solvency in turn. This capital flight observed especially after extreme events like Hurricane Andrew in 
	For centuries, insurance and reinsurance have been the most popular way to fund uncertain and extreme events (Trenerry, 1926; Coppola, 2006; Holland, 2009; Swiss Re, 2017). In recent decades, however, the increased frequency and severity of extreme events has overwhelmed the industry, making it difficult for the industry to offer comprehensive insurance for catastrophic events without risking their own solvency in turn. This capital flight observed especially after extreme events like Hurricane Andrew in 
	-

	1992 and the Northridge earthquake in 1994 was the motivation behind an alternative source of capital that could better cover the insurance needs of protection seekers. The Insurance Linked Securities (ILS thereafter) market and its catastrophe bond market was developed as a result (Swiss Re, 2012). 

	Though small in scale when compared to traditional insurance and the reinsurance markets, its ability to provide an alternative source of capital when traditional markets are strained has made the ILS market, and the catastrophe bond market particularly, a key source of extreme-event risk financing (see e.g., Froot, 2001; Cummins, 2008; UNCDF, 2021). The market provides the necessary funding to aid short-term recovery efforts, whose costs have been on the rise with the increased frequency and severity of ca
	-
	-

	The catastrophe bond market has been in existence since the early 1990s, and continues to broaden in both size and number of issues, as the catastrophe bond has proven the most popular of the available ILS instruments (UNISDR, 2004; Cummins, 2008; Artemis, 2023). As the instrument becomes one of the most important sources of extreme disaster funding, modelling efforts to expand its pricing capabilities under the changing climate and loss trends are becoming increasingly necessary. This is because the change
	The challenge arises, however, in the structure of the modelling process itself. The catastrophe bond pricing process, for example, applies comprehensive models that already incorporate other underlying models for each of the underlying loss severity 
	The challenge arises, however, in the structure of the modelling process itself. The catastrophe bond pricing process, for example, applies comprehensive models that already incorporate other underlying models for each of the underlying loss severity 
	processes, loss frequency processes, interest rate processes, and finally the bond pricing model itself (see e.g., Vaugirard, 2003a; Vaugirard, 2003b; Burnecki et al., 2005; Ma and Ma, 2013; Shao et al., 2017; Burnecki et al., 2019). The number of underlying variables increases the complexity and thus intractability of the modelling process, making it difficult to incorporate further trends that would further complicate the pricing process into the model. The increased computational complexity and model int

	This can be costly to protection seekers, as the inability to comprehensively model their key sources of risk could mean a failure to access recovery funding for their changing needs. In addition, investors have been shown to be unwilling to fund perils they do not fully understand or fund them at exceptionally high risk premiums in the catastrophe bond market (Bantwal and Kunreuther, 2000). 
	Having established the catastrophic loss modelling challenges, and why it is necessary that these be addressed, we focus this chapter’s third subsection on the proposition of models that can effectively address the previously discussed issues. We discuss three main challenges and propose models to address each in turn. This study contributes towards improving the efficiency of the modelling process underlying catastrophe bond loss modelling and pricing, with the goal of improving its adaptability to observe
	-
	-

	This is accomplished through the application of Expectation-Maximization (EM) algorithms, a class of local optimization algorithms formally proposed by Dempster et al. (1977) for the modelling of latent variables or missing data problems, and extensively used in other applications, including in gene sequencing, image processing, pattern recognition, and linguistics, among others (see e.g., Couvreur, 1997; Rabiner, 1989). 
	Since the three aforementioned effects of (i) volatility, (ii) heavy-tail characteristics, and (iii) dependency can be structured as missing or latent variable problems, the EM algorithms provide efficient and robust techniques to allow the incorporation of such effects without significantly affecting model tractability and complexity. These three main problems are considered in this study, and their respective EM-based models are further discussed below. The first effect considered is the presence and exte
	This effect is tested in the first empirical chapter, Chapter 5 , using a large dataset of primary catastrophe bonds issued from the early stages of the market, i.e., January 1997 and until March 2020. The pricing volatility among issuers is assessed through a proposed random effects model (an application of Expectation-Maximization algorithms to variance component analysis), which analyses the variations in catastrophe bond premiums introduced by the differences between issuers. The results indicate that t
	This effect is tested in the first empirical chapter, Chapter 5 , using a large dataset of primary catastrophe bonds issued from the early stages of the market, i.e., January 1997 and until March 2020. The pricing volatility among issuers is assessed through a proposed random effects model (an application of Expectation-Maximization algorithms to variance component analysis), which analyses the variations in catastrophe bond premiums introduced by the differences between issuers. The results indicate that t
	-
	-

	multiline issuers. 

	The second issue we examined and is covered in Chapter 6 , deals with the improvement in the modelling of heavy-tailed catastrophic losses for the valuation and pricing of disaster risk financing instruments, that is, the catastrophe bond. This is accomplished by the proposition of an EM-based approximation technique based on finite mixture modelling for Property Claims Services (PCS)’s industry loss data spanning the period beginning January 1985 and ending in April 2014. 
	-
	-

	The approximation model is applied to find the mixture distribution that best suits such heavy-tailed data from a set of heavy-tailed and general distributions; both for frequency distribution estimation and severity distribution estimations. The resulting model, which in this case is found to be the 2-component log-normal mixture for loss severity and the 3-component Poisson mixture model for the loss frequency, is then used to generate aggregate loss values that form the basis of the catastrophe bond pric
	-

	The third and final issue this study tackles in Chapter 7 is the modelling of dependencies in catastrophe losses over time, especially compounded by the observed climate-based and demographic impacts on extreme event loss frequencies and loss severity. The independence and identical distribution assumption, commonly used to simplify modelling processes, is discarded, and our loss processes are assumed to neither be independent nor identically distributed. The loss process is assumed to 
	The third and final issue this study tackles in Chapter 7 is the modelling of dependencies in catastrophe losses over time, especially compounded by the observed climate-based and demographic impacts on extreme event loss frequencies and loss severity. The independence and identical distribution assumption, commonly used to simplify modelling processes, is discarded, and our loss processes are assumed to neither be independent nor identically distributed. The loss process is assumed to 
	-

	display both dependencies over time and seasonality, and this is tested and modelled by the proposed Baum-Welch (a special case of Expectation-Maximization(EM) algorithms) algorithm-based Hidden Markov Model. This standardized approach models loss clusters generated from such dependent and non-stationary processes as catastrophe ‘states’. Using single-event data from Property Claims Services (PCS), the presence, extent, and distribution of these clusters is established through extreme value techniques. Hidd
	-
	-
	-
	1 


	A number of both heavy-tailed and general distributions are tested with the most optimum loss models found to be the three-component Poisson dependent mixture for the loss frequency and the four-component log-normal dependent mixture for the loss severity. The dependent mixture Poisson model’s results are then compared to a more common Poisson-based frequency model, i.e., the non-homogeneous Poisson frequency model based on the peak-over-threshold approach, with the latter’s plots found to be a worse fit fo
	The three models applied in these three assessments (i.e., Chapter 5, Chapter 6, and Chapter 7) prove the efficiency and applicability of EM-type algorithms to heavy-tailed problems, with improved fit statistics and stability of estimates when compared to similar Newton-Raphson based models. 
	Lastly, in this chapter’s fourth and final subsection, we discuss the value and impact 
	The selected dataset is drawn from a larger original dataset of 3951 individual observations that further included non-meteorological events including earthquakes and wildfires from the US-based Property Claims Service (PCS) 
	1

	of this study to numerous stakeholders and the wider society. In this subsection, a case is made for why this study’s contributions have a place in furthering our efforts towards the improvement of overall societal conditions, especially with regards to strengthening our disaster risk resilience capacities. 
	We begin by assessing the impact of this study on extreme event protection-seekers. These include individuals seeking to insure themselves from the effects of extreme events, governments seeking to boost resilience among their societies and supranational organisations seeking to ensure marginalised and vulnerable communities are not left at risk, especially since they normally bear the greatest losses due to conditions stemming from the lack of recovery and insurance funding and other resources when such di
	In times of increasing frequency and severity of catastrophic losses, it is especially important that protection-seekers can not only access such funding, but also access it at fair prices for the market to truly contribute towards improving insurance capacity for those at risk. This is as opposed to adding higher costs to already costly events because of mispricing or unreliable pricing risks. This study contributes to improving this outreach and access to funding for all those that may need such protectio
	The second group of stakeholders are the insuring institutions. These include insurance and reinsurance companies. As extreme events become more prevalent, these insurers find themselves having to struggle to maintain their solvency. As the principles of pooling and diversification begin to fail due to risk and loss concentration, the concept of insurance becomes difficult to profitably sustain for the insurer. Capital flight and funding limitations brought on by these increased extreme event risks also pos
	-
	-

	Financial markets, through insurance-linked securities and especially catastrophe 
	Financial markets, through insurance-linked securities and especially catastrophe 
	bonds have evolved to fill this gap. Yet these markets are still young and represent only a fraction of the mainstream insurance/reinsurance markets. Prior studies to improve valuation and product structuring, including this current study, contribute towards making such markets more accessible for all that may need its protection, especially in times where conventional insurance fails due to the nature of such losses. 

	Thirdly, we discuss the importance of this thesis to an alternative group of protection sellers not in the direct business of providing insurance, that is the security market investors. These are stakeholders whose objectives include seeking suitable returns on investment and identifying viable and niche return sources for themselves and for those companies, institutions, or individuals whose funds they manage, as well as seeking sources of diversification for their investments to minimize their underlying 
	-

	Insurance-linked security markets are known to be a great source of diversification as their returns are typically uncorrelated with those of other financial market sectors (Froot, 2001; Cummins et al., 2002; Cummins, 2008). Such markets also provide higher returns due to the riskier nature of the tradable instruments, making them a suitable investment for investors that seek high returns and potential speculators. Our study into improvement of valuation of insurance-linked securities is of importance to al
	Finally, we discuss two groups of stakeholders who may perhaps be the most keenly interested in this study and its results. We begin with valuation companies and investment banks involved in insurance-linked securities’ underwriting processes. The analysis, results and conclusions of this thesis are most directly useful to these end users since we are working under similar objectives, that is to provide a more accurate and suitable valuation process for such instruments. In line with the objective of this t
	Finally, we discuss two groups of stakeholders who may perhaps be the most keenly interested in this study and its results. We begin with valuation companies and investment banks involved in insurance-linked securities’ underwriting processes. The analysis, results and conclusions of this thesis are most directly useful to these end users since we are working under similar objectives, that is to provide a more accurate and suitable valuation process for such instruments. In line with the objective of this t
	-
	-

	holders. They also seek to ensure prices reflect true conditions as best as possible, thereby reducing forecasting errors and promoting trust between sellers and buyers of such financial instruments. 

	Apart from the previous end users, the findings of this thesis are also of particular importance to academics, researchers, and consultants, especially in the field of extreme event disaster risk management. There are multiple objectives that these groups intend to meet, with the most applicable being discussed and linked to this study’s objectives and contributions. In seeking to ensure that market processes are efficient and that all relevant instruments created truly suit their purpose, this thesis contr
	As this group of end users also seeks to propose new and more efficient financing and insurance tools for an ever-changing climate landscape, and ensure availability of protection for all including those vulnerable and unable to access funding by themselves, we address this gap in the current literature by pricing instruments that provide funding in the most extreme cases and are frequently used by organisations aiming to protect the most vulnerable communities, including supranational organisations, govern
	Finally, there is the aim to assess and critique present solutions and use this knowledge to propose even better future disaster risk funding solutions. By proposing the use 
	Finally, there is the aim to assess and critique present solutions and use this knowledge to propose even better future disaster risk funding solutions. By proposing the use 
	-

	of expectation-maximization-based algorithms that have better ability to pick out and isolate hidden effects that either could not be modelled through normal processes, or might be entirely ignored, this thesis contributes to the improvement of available disaster risk financing solutions and helps in reducing computational costs of the relevant modelling processes. 
	-


	In conclusion, even beyond key stakeholders, this study retains the over-arching objective of providing better disaster risk management solutions for the sustainability and resilience of the planet, which in a sense, is the end-goal of all solution-seekers. It therefore not only accomplishes its task of proposing a new class of models for heavy-tailed data than can better incorporate and assess the trends in extreme event modelling and climate change science as well as their impact on the pricing of disaste
	The rest of the thesis is structured as follows. Chapters 2 and 3 give an overall historical background of both climate disaster risk and disaster risk management. Chapters 4 explains the origins and development of optimisation and the EM algorithm, while chapters 5, 6, and 7 apply the EM algorithm to catastrophic loss modelling, through multilevel random effects models, finite mixture models, and hidden Markov models respectively. The thesis concludes in chapter 8, where we discuss the implications of the 
	-
	-
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	2.1 Geological History: Climate and Natural Disasters 
	2.1 Geological History: Climate and Natural Disasters 
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	“To focus solely on endings is to trade conclusions for the very beginnings that created them. And if this cycle should persist, we will likewise miss the beginning that will follow this ending.” Craig D. Lounsbrough, Author 
	2.1.1 Introduction 
	2.1.1 Introduction 
	The comprehension and appreciation of the geological roots underlying natural disaster occurrence necessitates understanding the structure of the planet and/or universe in both its current and previous states. For this to be achieved, knowledge of the processes underlying landscape, oceanic and atmospheric formation is essential to address the link between such events and creation and/or evolution. After all, occurrences bearing the label ‘natural hazards’, and consequently ‘natural disasters’ are rarely in
	15 

	2.1. Geological History: Climate and Natural Disasters 
	2.1. Geological History: Climate and Natural Disasters 
	al., 2008; Tang et al., 2021; Goldammer et al., 2005); and extinction and speciation that arise due to geological cycles, for evolution and diversity (Raup, 1994). Geological cycles, which include the tectonic cycle (Nance et al., 2014), the rock cycle (Abbott, 2022)(Abbott, 2016), the hydrological cycle (Oki, 2006), and the biogeochemical cycle (Galloway et al., 2014). Arneth et al. (2010) provide proof of this interconnectivity. The universe is also in a constant state of change, evolving due to both geol
	The dichotomy of roles in natural events arises only due to these events’ effect on the affected communities. Only in cases of significant exposure and in some cases coupled with limited capacity to handle such effects, is the source event then termed a natural hazard. The United Nations Office for Disaster Risk Reduction (UNDRR) defines a hazard as ‘a process, phenomenon or human activity that may cause loss of life, injury or other health impacts, property damage, social and economic disruption, or enviro
	-
	-
	-
	-

	The UNDRR also defines a disaster as ‘a serious disruption of the functioning of a community or a society at any scale due to hazardous events interacting with conditions of exposure, vulnerability, and capacity, leading to one or more of the following: human, material, economic and environmental losses and impacts’ (UNDRR, 2016). 
	-
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	2.1. Geological History: Climate and Natural Disasters 
	This implies that only when the natural hazard results in the actual realization of a threat or disruption is it then referred to as a ‘natural disaster’, and once the level of loss and destruction is large enough, i.e., beyond a given minimum threshold, the disaster is then labelled a catastrophe (Hyndman and Hyndman, 2016). The following table displays the costliest global catastrophic events by economic lossessince 1900. 
	1
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	Table 2.1: Top 10 Costliest Global Economic Loss Events (1900-2022) 
	Table 2.1: Top 10 Costliest Global Economic Loss Events (1900-2022) 
	Table 2.1: Top 10 Costliest Global Economic Loss Events (1900-2022) 

	Economic 
	Economic 
	Economic loss 

	Date(s) 
	Date(s) 
	Event 
	Location 
	Loss (Nominal $ billion) 
	(2022 $ billion) 

	March 11, 2011 January 16, 1995 August, 2005 
	March 11, 2011 January 16, 1995 August, 2005 
	Tohoku Earthquake/Tsunami Great Hanshin Earthquake Hurricane Katrina 
	-

	Japan Japan United States 
	235 103 125 
	314 203 190 

	May 12, 2008 August, 2017 September, 2017 
	May 12, 2008 August, 2017 September, 2017 
	Sichuan Earthquake Hurricane Harvey Hurricane Maria 
	China United States Puerto Rico, Caribbean 
	122 125 90 
	168 152 109 

	TR
	Continued on next page 


	The risk management and consulting company Aon, for example, defines catastrophes as ‘natural disasters that cause at least $25 million in insured losses; or 10 deaths; or 50 people injured; or 2,000 filed claims or homes and structures damaged.’ 
	1

	Economic loss, in this case, includes ‘any direct physical damage or direct net loss business interruption costs’, according to Aon. 
	2
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	Economic 
	Economic 
	Economic loss 

	Loss (Nominal 
	Loss (Nominal 
	(2022 $ 

	Date(s) 
	Date(s) 
	Event 
	Location 
	$ billion) 
	billion) 

	October, 2012 
	October, 2012 
	Hurricane Sandy 
	United States, 
	77 
	99 

	TR
	Caribbean, 

	TR
	Canada 

	September 
	September 
	Hurricane Ian 
	United States, 
	96 
	96 

	2022 
	2022 
	Cuba 

	September, 
	September, 
	Hurricane Irma 
	United States, 
	77 
	93 

	2017 
	2017 
	Caribbean 

	January 17, 
	January 17, 
	Northridge 
	United States 
	44 
	90 

	1994 
	1994 
	Earthquake 


	Source: Aon 2023 Catastrophe Insight 
	Of note is the observation that all the costliest natural disasters have occurred in the most recent two decades. This could either mean that natural disasters have increased in frequency, or the severity of losses from such disasters has increased. Alternatively, it could signify a parallel increase in both frequency and severity of natural disasters. This deduction is supported by evidence from earth’s external environment, especially with regards to the observed changes in the climate system and its cons
	It has always been important to understand that as the universe is constantly chang
	-
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	ing, natural events will likely keep occurring. As such, knowledge of how to best adapt to and coexist with these occurrences is essential. Understanding a natural hazards’ underlying processes and its origins enables the proposal of efficient and optimal solutions to any risks that could potentially arise as a result. Society’s resilience is then not only strengthened, but through a deeper understanding of the risks introduced at each stage of the disaster processes, such risks can even be further converte
	-



	2.2 History and Natural Disasters 
	2.2 History and Natural Disasters 
	Throughout history, the field of disaster risk management has aimed to achieve this sustainability in one way or another, and using the resources available to civilization at the time. Before civilization began, hunter gatherer populations ruled the land. These were originally quite sparse in comparison to the land size, but as populations grew, increased competition for available resources began to lead to conflicts (Bogucki, 2008). Early civilizations arose consequently, i.e., out of the need to better ma
	Despite these developments, the solutions were not always enough, nor sustainable, since for many of these civilizations later failures would in a large proportion be attributable to climate change. This is because environments that supported agriculture and ensured society’s safety were especially dynamic due to factors both internal to 
	-
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	the ecosystems and human related after-effects of settlement. The Minoan civilization of Crete, for example, was made vulnerable by a combination of volcanic eruptions, earthquakes, and tsunamis, which eventually weakened them to attacks from their enemies (Antonopoulos, 1992). The Angkor civilization of Cambodia was weakened by drought-flood cycles (Penny et al., 2019); the ancient Mayans of Central America by deforestation, erosion, and environmental degradation; the Moche of Peru by drought-flood cycles 
	-
	-

	All this notwithstanding, however, Disaster Risk Management has existed in one form or another for as long as change has affected human existence and has continued to evolve to fit the requirements of the prevailing systems and civilizations. Disaster risks have been defined as ‘a function of hazard, exposure, vulnerability, and capacity’ by the Organization for Economic Cooperation and Development (OECD) (OECD, 2017). In this case, exposure is defined as ‘a measurement of the value at risk of damage and lo
	-
	-

	Natural disasters were explained through myths, folklore, legends, and other forms of spirituality. Overall, these creations served multiple purposes, including explaining 
	3 

	A myth is a story, considered sacred, from the past, that explains either the origin of the universe 
	3
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	disasters, warning about disasters, coping with the effects of disasters both mental and physical, and seeking solutions to disasters. Other solutions were also sought in a consequent manner i.e., through sacrifices, chants, lamentations, and prayers (Bentzen, 2013). 
	These practices subsequently provided the foundation for later developments in disaster risk management. At the time, however, risk acceptance was the predominant risk management strategy (Cashman and Cronin, 2008), with divine providence relied upon more than mitigation. This could be because of the helplessness early civilizations would have experienced under such circumstances, further compounded by the lack of knowledge and/or tools to provide better understanding and management of disasters. Evidently,
	-
	-
	th 
	and life or expresses a culture’s moral val
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	sualties for events that could otherwise have been better handled. In addition, the passivity arising due to a transfer of responsibility could also lead to the persistence or worsening of environmental degradation and pollution, key causes of climate change. 
	As civilizations expanded and human population increased over time, more individuals became exposed to natural hazards due to their areas of settlement and reduced resources to enable relocations from hazard-prone areas. In earlier civilizations, communities could easily relocate to more conducive geographical areas if their current settlements were deemed uninhabitable due to climactic and environmental effects. Proof of this can be deduced from the many abandoned historical cities e.g., the Incan lost cit
	-
	-
	-
	-
	-
	-

	An early warning system in disaster risk management refers to ‘an integrated system of hazard monitoring, forecasting and prediction, disaster risk assessment, communication and preparedness activities, systems and processes that enables individuals, com
	-
	-
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	munities, governments, businesses and others to take timely action to reduce disaster risks in advance of hazardous events’ (UNDRR, 2016). These systems allow societies to anticipate disasters and take action to protect lives and livelihoods pre-disaster. Mythology, folklore and other oral tradition provided the earliest forms of early warning systems against natural hazards, and have been shown to play this role even in recent times for indigenous societies (Lauer, 2012; Syahputra, 2019). During the 2004 I
	-

	Oral tradition, mythology and folklore have also provided a way for both past and present societies to identify, explain and understand historical disasters. The field of geo-mythology, which applies myths and legends to provide context for geological events, arose as a direct result. Geo-mythologists are defined as those who ‘seek to find the real geological event underlying a myth or legend to which it has given rise’ (Vitaliano, 1968; Vitaliano, 1973). They also served as a record of past natural disaste
	-
	-

	In addition, coping techniques for natural disasters have been an important consequence of these ancient practices. Natural disasters have been identified as one of the origins of religiosity (Bentzen, 2013), with disaster survivors using stories, rituals 
	-
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	and ceremonies to reduce trauma, pain and guilt, and consequently restore hope for the future (Hirono and Blake, 2017). Psychological theories, including uncertainty hypothesis, supernatural punishment hypothesis, and religious coping hypothesis have all been identified as techniques for coping with disasters (Bentzen, 2013), with spirituality playing a central role in mental health improvement post-disaster. 
	-

	Finally, mythology, legends and folklore provided the foundation for disaster risk management to develop and evolve over time, with occurrence of the disaster itself also providing the opportunity for study and improvement of disaster management (Mauch and Pfister, 2009). The next section details some of the key developments in disaster risk management over time. 
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	2.3 Evolution of Disaster Risk Management 
	Early civilizations’ shift from hunter-gathering to plant and animal domestication during the Neolithic revolution (Childe, 1936) provides the first formal manifestation of practices in natural hazard mitigation and disaster management. Earliest archaeological evidence of agriculture has been discovered from settlements of the Ayn Ghazal civilization (circa. 7200BCE -5000BCE (Smit, 2019)), located in modern-day Jordan (Kafafi, 2014); and the Çatalhöyük civilization (circa. 7500BCE-5700BCE (Smit, 2019)) in c
	-
	-
	-
	-
	-
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	Despite the developments that accompanied the rise of permanent settlements and agriculture, civilization also presented its challenges, especially with the rise of disease due to weakened immune systems from unsanitary living conditions and less varied diets compared to the hunter-gatherer diet (Hart-Davis, 2012). While religion and spirituality were applied extensively as an early method of surviving the worsening conditions that would be further exacerbated during times of natural disasters e.g., drought
	Evidence of risk transfer can be found as early as 1800BC, with the ancient Babylonian Code of Hammurabi (King, 2005; Harper, 1999), that included an early form of marine insurance, also known as ‘bottomry’, whereby merchants who sought loans to fund shipments would pay an additional sum to the lender who would then guarantee loan cancellation if the shipment was lost at sea (Smyth, 2013). These bottomry contracts have been shown to bear similarities to modern day catastrophe bonds (Holland, 2009). These sa
	-
	-
	-

	Risk sharing was formalised around 1000 BCE (Golding,1931 (cited in Holland (2009)); Prudential Insurance Company of America (1915)), with the advent of maritime laws including the Lex Rhodia, or the Rhodesian Sea Laws, that have been credited as a key propagator of the fundamental insurance principle of contribution (Prudential Insurance Company of America, 1915). According to Prudential Insurance Company of America (1915), part of the translation provided that ‘If a ship is caught 
	-
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	in a storm and makes jettison of its cargo, and breaks its sailyards and mast and tillers and anchors and rudders, let all these come into contribution together with the value of the ship and of the goods which are saved’. In this statement, it is evident that the loss of one was settled by all, through subdivision. The Babylonian Talmud, circa 586 BCE, also provided rules for loss sharing with regards to any cargo lost at sea, and included the provision for replacement of a lost ship (Rodkinson et al., 190
	Around 600BCE, the earliest forms of life and health insurance through risk sharing developed in Greek and Roman societies by the creation of guilds known as ‘benevolent societies’ (Swiss Re, 2017). These provided support to the bereaved families and paid members’ funeral costs (Trenerry, 1926). These forms of societies are not limited to the past, as they have survived in different forms to the present, including as mutual aid societies (farmers in the Alps in the early 16century) CE, mutual life insurance
	th 
	-
	th 

	The first stand-alone insurance transactions, especially in marine insurance, were developed later in the Middle Ages. These were motivated by developments within the church and with trends in disaster occurrence and loss management. A ban on sea loans by Pope Gregory IX in 1236 led to increased need for alternative forms of financing, 
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	with emphasis on the separation of marine insurance from other forms of insurance in order to avoid the label of usury that had led to their original ban. Stand-alone marine insurance thus developed consequently (Kohn, 1999; Sibbett, 2006), with the first authenticated record of marine insurance dating back to the year 1347 CE (Masci, 2011). Around this time, earliest forms of burglary insurance also developed, contracts which survived to the end of the 18century CE (Manes, 1942; Masci, 2011). The ban on se
	th 

	Around this time, the roots of other forms of DRM, especially in relation to landscape management and optimization, were also taking shape within early North and South American civilizations. The Incan civilization occupied the Andes mountains of South America between the 13and 15centuries CE (Sassa et al., 2005). At first glance, the Incan settlements would seem a curious choice, especially given their locations. The Incas deliberately constructed their settlements on jagged mountain peaks located along fa
	-
	th 
	th 
	-
	-
	-
	-
	-
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	the transformation of a hazardous environment into and advantageous one for human settlement, proving that this is possible with a sufficient understanding of geological systems and processes. 
	Other forms of disaster protection also began taking shape from the 15th century onwards, chief among these being fire management practices. Although formal fire insurance took shape especially after major events like the Great Fire of London in 1666 (ICMIF, 2020) which destroyed 13,200 houses (Alagna, 2003), foundations of both fire management, firefighting and other emergency services had been set earlier in the 1century CE by the Romans, during the reign of Emperor Augustus. The Romans had previously use
	-
	st 
	-
	-
	th 

	Later developments include intercontinental expansions of disaster risk management practices, with emphasis on fire, property, and life insurance in the 18, 19and 20centuries CE, including expansions to the US, Central and Eastern Europe, and Africa (ICMIF, 2020). World Wars in the 20century CE and the rise in terrorist activities especially in the early 21century CE, and technological developments and associated cyber risks (OECD, 2021), have also increased the need for protection against not only natural 
	th
	th 
	th 
	th 
	st 

	Though insurance has so far served as the main form of disaster management and protection, it is still limited in scope and impact, as these instruments have mostly been available only to rich nations (UNDRR, 2022; GRFF, 2021). Disaster losses, 
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	however, are felt to a larger degree by poorer and emerging nations, especially in terms of overall losses that include both human and economic losses, creating a mismatch between the instrument’s role and its applicability. The table below displays, for example, the largest catastrophic overall mortality losses and their respective locations between the years 1900 and 2023. It is evident from Table 2.2 that the locations of significant mortality over the past seventy years have been greatly concentrated am
	-

	Table 2.2: Top 10 Global Human Fatality Events in the Modern Era (19502022) 
	-

	Economic Loss (Nominal $ Date(s) Event Location billion) Fatalities 
	November 12, Cyclone Bhola Bangladesh 0.7 300,000 
	1970 
	July 27, 1976 Tangshan China 36 242,769 Earthquake 
	July 30, 1975 Super Taiwan, China 6.6 230,029 Typhoon Nina 
	December 26, 
	December 26, 
	December 26, 
	Indian Ocean 
	Indian Ocean 
	29 
	227,898 

	2004 
	2004 
	Earthquake/ Tsunami 
	Basin 

	January 12, 2010 April 1991 May 2008 
	January 12, 2010 April 1991 May 2008 
	Port-au-Prince Earthquake Cyclone Gorky Cyclone Nargis 
	Haiti Bangladesh Myanmar 
	11.0 3.9 17.8 
	160,000 139,000 138, 366 Continued on next page 
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	TR
	Economic Loss 

	TR
	(Nominal $ 

	Date(s) 
	Date(s) 
	Event 
	Location 
	billion) 
	Fatalities 

	August 1971 
	August 1971 
	Vietnam 
	Vietnam 
	N/A 
	100,000 

	TR
	Floods 

	October 8, 
	October 8, 
	Kashmir 
	Pakistan 
	10.0 
	88,000 

	2005 
	2005 
	Earthquake 

	May 12, 2008 
	May 12, 2008 
	Sichuan 
	China 
	167 
	87,652 

	TR
	Earthquake 


	Source: Aon 2023 Catastrophe Insight 
	There is increasing need, therefore, for financial aid and tools to improve access to such tools for poorer nations that need it the most, in addition to better structured tools to address the needs of those at greater peril of natural disasters. 
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	-

	As natural disaster losses have risen over the years (see figure 2.1 below) due to increases in both frequency and severity, the systematic study of disaster risk management acquired greater importance among both academics and practitioners. 
	-
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	Figure
	Figure 2.1: 1970-2020 Natural Catastrophe Losses 
	Figure 2.1: 1970-2020 Natural Catastrophe Losses 


	Source: Compiled by author with data obtained from Swiss Re 
	Over the years of study, emphasis has slowly shifted to a more holistic approach that includes not only the hazards, but also the vulnerability, exposure, and capacity of populations to adapt to such events (Alexander, 2020). Due to this shift in view, recent developments in DRM have focused on ensuring that all pertinent factors determining a hazard’s effect on the society have been incorporated into study models, and that proposed solutions account for all vulnerabilities. Some of the recent (20and 21cent
	th 
	st 

	According to UNDRR, the 1960s saw some notable extreme events put the spotlight on the need for formalised disaster risk policies to address increasing losses. Notable events include the Iranian Buyin-Zara earthquake in September of 1962 that killed over 12000 people, injured over 2700, damaged over 21,300 houses and killed 35% of the local livestock (Ambraseys, 1963); the July 1963 Skopje earthquake in Yugoslavia that killed more than 1000 people, injured over 4000, displaced over 200,000, and destroyed 80
	2.4. Recent Developments in Disaster Risk Management 
	2.4. Recent Developments in Disaster Risk Management 
	disaster. These disasters led to creation of special reconstruction funds and the passing of resolutions for assistance by the UN; and improved solidarity towards humanitarian aid provision at a time when the world was divided by the cold war (Niebyl, 2021). 
	Assistance provision was then better formalised in the 1970s and the early 1980s. This period saw developments in pre-disaster planning at both national and international levels, and increased application of technology and scientific research for mitigation, prevention, and control of natural disasters. In 1971, the UN Disaster Relief Office (UNDRO) was created (UNDRR, 2023b; Lambert and Scott, 2019), with the coordinator authorized to ‘promote the study, prevention, control, and prediction of natural disas
	-
	-
	-

	Multiple disasters around 1988, including floods, typhoons, hurricanes, and locust infestations motivated the UN to proclaims the 1990s as a decade of international cooperation in risk reduction, in an effort to motivate development of an action framework to handle natural disasters, especially for developing countries (UNDRR, 2023b). In 1989, the International Decade for Natural disaster Reduction (IDNDR) was proclaimed, to begin on the 1of January 1990, with the second Wednesday of October designated as t
	-
	-
	-
	st 
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	In 1997, the Kyoto Protocol, the first greenhouse gas (GHG) emission reduction 
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	treaty was adopted. This agreement defined most of the 2000s, as it only entered into force on 16 Feb 2005 after 7 years. This process took a long time due to a complex ratification process, and it was Russia’s ratification that finally brought treaty into force (SDDG, 2011). The agreement targeted to reduce six major greenhouse gas (GHG) emissions by 5.2% by 2012 relative to 1990 levels. These gases included carbon dioxide, methane, nitrous oxide, hydrofluorocarbons, perfluorocarbons, and sulphur hexafluor
	The 2010s saw significant development in climate disaster risk management, as the world was increasingly becoming aware of climate change and its effects on the environment. The establishment of the Green Climate Fund in 2010 (Schalatek et al., 2019); and the Paris Agreement, Sustainable Development Goals (SDGs), and the Sendai Framework for Disaster Risk Reduction in 2015 are some of the key developments that brought climate protection to the forefront of disaster planning and management (UNDRR, 2022). The
	-
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	3.1 Financial Disaster Risk Management 
	3.1 Financial Disaster Risk Management 
	As the frequency and severity of natural disasters increases with human-induced changes in climate, there is greater need for resources to support mitigation and adaptation efforts. This need for better investments and funding of climate change projects (Gamper, 2018) has led an increasing focus in financial disaster risk management (FDRM). According to the UNDRR, disaster events are projected to reach 560 a year, or 1.5 a day by 2030, with investments in disaster risk reduction yielding significant benefit
	-

	Risk transfer tools including insurance, reinsurance, and alternative risk transfer tools e.g., catastrophe bonds and other weather derivatives (UNISDR, 2004). Risk retention tools include government revenue and budget allocation, contingency and reserve funds, extrabudgetary funds, budget reallocations and alignment, and taxation (UNCDF, 2021; ADB, 2018; Cissé, 2021). External risk finance sources include grants loans and other funding sources, including traditional disaster risk reduction, develop
	-
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	ment and climate finance; contingent credit/catastrophe deferred drawdown options; disaster response banking tools; disaster risk finance facilities; bonds including green and blue bonds; humanitarian assistance; forecast-based financing; and other private sector responses (UNCDF, 2021). All these tools then complement each other, and can thus be adopted together, each to address specific risks that they are better suited to, with risk retention being favoured for low severity high frequency events, and ris
	Figure
	Figure 3.1: Disaster Risk Financing Layers 
	Figure 3.1: Disaster Risk Financing Layers 


	Source: Adapted from Asian Development Bank (2018, p.2) 
	Even though risk transfer instruments have seen increased uptake in the past decade, external finance, especially in the form of humanitarian assistance, still dominates as the main funding source for climate and disaster risk management (CDRF) (Stander, 2017). Progress in uptake and innovation has mainly been observed with risk transfer and external risk finance tools. 
	-
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	Of the sovereign risk insurance and regional insurance pools, the Caribbean Catastrophe Risk Insurance Facility (CCRIF) established in 2007 to reduce the financial costs of earthquakes and hurricanes by providing short-term liquidity to member countries (Ghesquiere et al., 2006) has seen the highest participation, attracting 19 Caribbean and 3 Central American members as of date. These high participation rates have enabled the facility to perform efficient risk pooling (GRFF, 2021), with 58 pay-outs totalli
	-

	Of the disaster financing tools available, catastrophe bonds and other insurance-linked products are only sought in the most extreme of cases, when both insurance, reinsurance, and other financing capacity has been exhausted, or is unavailable for those in need. With recent observed environmental changes, however, these extreme loss instruments have seen growing popularity, which has then increased the need for better modelling and pricing to increase reach and capacity of such instruments. This study focus
	-
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	tools that fit majority of the current and possible future climates. The next section thus discusses this financing tool in detail, including developments within the catastrophe bond and insurance-linked securities market over the years. 
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	-

	Catastrophe bonds were first introduced in the 1990s, following the loss in insurance capacity observed after the extreme loss events of Hurricane Andrew in 1992 and the Northridge earthquake in 1994. Hurricane Andrew was a Category 5 hurricane, based on the Saffir-Simpson Hurricane Scale (Zhang and Peacock, 2009), that struck north-western Bahamas, south of the Floridian peninsula, and south-central Louisiana (Rappaport, 1993) in August of 1992. Economic losses were estimated to reach US $30 billion (Muerm
	This lack of capacity prompted protection-seekers to seek alternative sources of funding, in this case, securities markets. In an attempt to address this issue, the Chicago Board of Trade (CBOT) launched catastrophe futures in December of 1992 based on aggregate loss indices from the Property Claims Services (PCS) (Cummins, 2008; Cummins and Weiss, 2009), though these securities were later withdrawn due to lack of trading volume (Cummins, 2008). The lack of trading volume was a consequence of the scarcity o
	3.2. Catastrophe Bonds: History and Market Development 
	3.2. Catastrophe Bonds: History and Market Development 
	The Northridge earthquake, which struck California in January 1994, compounded this effect. The magnitude 6.7 (Hauksson et al., 1995) earthquake was the most destructive and costly Californian earthquake since 1906 (Jones, 1994). The earthquake’s economic losses were estimated at US $ 49.3 billion, with US $ 41.8 billion of this being direct economic losses (RMS, 2004). These two events’ losses (Hurricane Andrew and the Northridge Earthquake) were in comparison to the previous decade’s (1980-1992) losses of
	-
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	Catastrophe bonds are debt securities sold in financial markets to provide insurance against catastrophic disasters. Like other bonds in the market, they pay regular coupons and principal at maturity. The principal repayment in a catastrophe bond, and sometimes the interest depending on the structure and conditional on the specified catastrophe not occurring, since the if the catastrophe occurs investors lose part or all their principal, and in some cases their interest. There are some similarities in struc
	-
	-
	-

	Due to this difference in the source of default between high-yield bonds and CAT bonds, catastrophe bonds are favoured by investors as instruments of diversification, as their returns are generally uncorrelated with the broader financial market (Cummins, 2008). Most catastrophe bonds are issued through a Special Purpose Vehicle (SPV). The SPV is a company created for the express purpose of providing reinsurance to the 
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	issuer if a catastrophe occurs. The company receives premiums from the issuer and in turn issues CAT bonds in the financial markets using the premiums as collateral. The proceeds from the bond issue, together with the premiums paid by the issuer, are invested in a collateral account consisting of high-quality assets. These investments are used to fund coupon and principal repayments to investors if the pre-specified catastrophe does not occur, and used to provide reinsurance to the issuer otherwise (Partner
	Figure
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	Source: Created by author 
	The coupon paid to the investor consists of the premium and a baseline return in the market, which in the past, has generally been the London Interbank Offered Rate (LIBOR). The premium, also known as the spread, is composed of the expected loss on the underlying peril and a risk load (PartnerRe, 2015). 
	The Catastrophe and other Insurance Linked Securities (ILS) market has developed over time in key phases. The first phase, the market onset, is the direct result of 
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	Hurricane Andrew and other major events observed around the early 1990s, lasting until the mid-1990s. This was a period of experimentation, marketing, and research into these new instruments. Academic literature also followed a similar trend, with early literature, according to Cummins and Weiss (2009), focused on explaining and analysing insurance derivatives (Cox and Schwebach, 1992; D’arcy and France, 1992), comparing derivatives to insurance (Niehaus and Mann, 1992), and discussing hedging strategies to
	Following the Northridge earthquake in 1994, the first successful US $85 million catastrophe bond was issued by Hannover Re through its KOVER transaction (Zeller, 2007). Hannover Re, then a wholly owned subsidiary of a German mutual insurer, was heavily capital constrained at a time when insurance markets exhibited little capacity, and this proved a motivating factor to explore insurance securitization as a form of funding instead (Zeller, 2007). Securitization attempts continued through to 1995, since the 
	-
	-

	The period between the years 1996 and 2000 saw the first ‘true, widely syndicated’ catastrophe bond transactions being issued, starting with the GeorgeTown Re Ltd. Transaction in December 1996. This was a US $68.5 million bond issued by St Paul Re, and structured by Goldman Sachs, with AIR Worldwide as the risk modelling agents. The bond covered ‘worldwide all perils, including marine and aviation’, and included an indemnity trigger (Evans, 2021). The bond later suffered some losses due to events like Hurri
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	out approximately US $0.5 million (Artemis, 2023). Regarding other securities, the Bermuda Commodities Exchange (BCE) attempted to develop a catastrophe options market in 1997, but this would be withdrawn two years later due to lack of trading (Cummins, 2008). The catastrophe bond market however thrived in 1997, with the United Services Automobile Association (USAA), one of the most consistent issuers in the catastrophe bond market to date (Artemis, 2023), issuing their first catastrophe bond, through the U
	According to Lane (2021), between 1996 and 2001, 36 deals were issued in total, with varied results. These deals were considered majorly experimental, with many being issued at a discount, and covering 5 or 6 perils including Space Launch, Oil Rig, Weather, Aviation, and Man-Made risks, according to Lane (2021). In addition, their risk assessment levels were non-comprehensive, with many having very high coupon rates (Lane, 2021). According to Cummins et al. (2004), for example, catastrophe bond premiums wer
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	Source: , Deal Directory, retrieved 15th June 2023 
	www.Artemis.bm
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	According to Figure 3.3, the market observed an increase in unique-risk catastrophe bonds in the period between 2001 and 2004 including bonds that covered against non-natural disaster risks including terrorism. This was in response to the rise of terrorist attacks including the September 2001 attacks on the USA. In 2003, for example, the Federation Internationale de Football Association (FIFA) issued the Golden Goal Ltd 2003 catastrophe bond to protect against the risk of event cancellations due to such man
	-
	-

	Different theoretical frameworks for bond pricing were also explored around this time (Burnecki and Giuricich, 2017), following the pioneering works of Froot and O’Connell (1997) and Froot and O’Connell (1999), Froot and Posner (2000). Utility-based approaches were proposed by Cox and Pedersen (2000) and Egami and Young (2008); and arbitrage free approaches by Baryshnikov et al. (2001), Burnecki and Kukla (2003) and Vaugirard (2003a); in addition to standard actuarial pricing methodologies (e.g., Lane, 2000
	The year 2005 brought significant changes to the catastrophe risk insurance market, especially because of the multiple extreme loss events observed in the US, including Hurricanes Katrina, Rita, and Wilma. Hurricane Katrina, especially, deserves mention, as it was considered the costliest natural disaster in US history, with insured losses 
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	hitting US $62 billion, further depleting reinsurance capacity (Difiore et al., 2021). This was a category 5 hurricane, according to the Saffir Simpson hurricane wind scale (SSHWS), that hit the US Gulf Coast in August of 2005, especially devastating the city of New Orleans (Reid, 2019). The losses from these events refocused the spotlight back on the catastrophe bond and ILS market as a source of insurance protection, leading to record issuance in the two years following the events. Figure 3.4 below displa
	Figure
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	, Deal Directory, retrieved 15th June 2023 
	Source:www.Artemis.bm

	Dieckmann (2010) analysed these extreme catastrophic events, chiefly Hurricane Katrina, and finally addressed the high bond spread (Coupon rate minus Expected loss) question that had been brought up during the catastrophe bond market’s early trading years by researchers including Froot (2001) etc. Dieckmann found that large consumption shocks similar to those of Hurricane Katrina were significant enough to 
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	affect bond spreads, implying that even though bond spreads had reduced overall, the existence of such shocks would always make it unlikely for such spreads to converge to the risk-free rate. Carayannopoulos et al. (2022) support this finding by studying market prices for the period 1999-2016 and find that despite an overall decrease in price of expected loss risk, large catastrophes increased this price by 34% on average. Herrmann and Hibbeln (2023), observing secondary trading activity in the catastrophe 
	The year 2007 also saw further attempts at catastrophe derivatives market development in response to Hurricane Katrina. According to Cummins and Weiss (2009), futures and options on US Hurricane risk were introduced by two separate exchanges, the Chicago Mercantile Exchange (CME) and the New York Mercantile Exchange (NYMEX). The market continued adapting through this period, changing to better suit the needs arising due to not only the increasing frequency of extreme disaster, but also the possibility that 
	-
	-

	In addition, the financial crisis led to an interesting phenomenon where a catastrophe bond made losses, not because of a natural event, but because of a financial event i.e., the bankruptcy of Lehman Brothers in 2008. Four bonds, Carillon A-1 Ltd, Ajax Ltd, Willow Re Ltd, and Newton Re 2008 A-1 Ltd, experienced losses due to their LIBOR arrangement with Lehman Brothers, who defaulted (Lane, 2021), leading to an instance of counterparty risk causing catastrophe bond losses. This prompted improvements in the
	-
	-
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	In the 2010’s there was an increase in research into factors affecting the price of catastrophic risk securities, and the impact of external factors unrelated to the catastrophic event or risk on the prices of such instruments. In particular, there was an increased exploration of econometric pricing techniques to explain cat prices, for example in research done by Braun (2016), Galeotti et al. (2013), and Gürtler et al. (2016). These techniques are further discussed in a later application chapter on the stu
	-
	-

	In addition, heavy loss events marking the start of the decade increased the need for disaster risk solutions, especially for developing countries that were poorer and could not access direct insurance. The Great Tohoku earthquake and the Thailand floods in 2011 wreaked havoc on the east Asian nations of Japan and Thailand. The magnitude 
	9.0 Tohoku earthquake, for example, was the most devastating earthquake in Japanese history, and the fourth most powerful earthquake ever recorded since 1900 (Lay et al., 2013; Stimpson, 2011). The earthquake’s direct effects were much more limited than their indirect effects, which caused most of the damage (Stimpson, 2011). The tsunami that followed as a direct result of the earthquake, for example, is said to have caused 98% of the damage (NCEI, 2021), including nuclear meltdowns in Fukushima. This event
	The final half of the decade also brought with it extreme events, marking the decade with the heaviest insured losses ever recorded. Hurricanes Harvey (17 Aug 2017 3 Sept 2017); Irma (30 Aug 2017 13 Sept 2017) and Maria (16 Sept 2017 2 Oct 2017) combined with wildfires and other catastrophes to make 2017 the most expensive year on record for US disasters, according to the National Oceanic and Atmospheric Administration. With extreme losses estimated at US$519 billion by Aon, it was inevitable that some of t
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	market. At least 25 SPVs were triggered by these combined events, according to recent statistics from Artemis, an ILS-dedicated service, marking the year with the largest number of triggered SPVs. 
	The World Bank pandemic bond, the IBRD CAR Series, was also issued during this time (Piantedosi, 2020), and later paid out due to Covid-related losses in 2020 (Artemis, 2023), an instance of a successful pandemic-cover catastrophe bond. The World Bank, through its disaster risk financing facilities, has continued to support governments and other disaster resilience efforts by issuing catastrophe bonds in conjunction with governments or sovereign risk pools to finance short-term liquidity needs of nations fr
	-

	In 2018, the California Camp Fire and Hurricane Michael contributed to heavy losses for the US, while Typhoon Jebi generated heavy losses for the Japanese insurance industry, the costliest since the 2011 Tohoku events (Simic, 2019). 
	The years 2019-2022 have seen even more extreme events, with 2021’s US$ 329 billion total damage costs now holding the record for the third costliest inflation-adjusted year after 2005 (US$ 351 billion) and 2017 (the costliest at US$519 billion), according to Aon, and the second costliest together with 2005 and 2011, according to Munich Re. In 2022, Hurricane Ian, a category 5 hurricane based on the Saffir-Simpson Hurricane Wind Scale (SSHWS), was the most expensive single event, according to Munich Re, wit
	It is now widely accepted that the frequency and severity of catastrophic events has increased (MIS, 2023) either due to changes in climate or other geological factors like seasonality. The focus on climate change adaptation over the last few years, especially after the 2015 climate agreements like the Paris Agreement, the Sustainable Development Goals, and the Sendai Framework for Disaster Management (UNDRR, 2022), 
	-
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	and the occurrence of pandemics like the Covid 19 crisis, have also made such disaster financing instruments more valuable (Schwarcz, 2020) to not only institutional issuers, but also local governments and supranational organizations like the World Bank. As the world finds ways to adapt to a changing climate, the role of these instruments in the recovery and reconstruction of lives and livelihoods will continue to increase in importance, further motivating the proposal of better and more comprehensive tools
	30 years since inception, the insurance linked securities (ILS) market, of which the catastrophe bond market dominates, has expanded to a with 2023 issuance alone standing at US$6 billion as of May 2023. This is in comparison to the 1997 outstanding issuance levels of US$785.5 million, according to Artemis. Overall cumulative issuance as of May 2023 stands at US$151 billion. Even though these figures are still much lower than those of the reinsurance market (Cole, 2019), it is important to remember that cat
	capacity of US$39.66 billion, 
	-
	-
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	“Nothing takes place in the world whose meaning is not that of some maximum or minimum.” Leonhard Euler 
	Optimization is the formula of life. The concept of optimality is found in all of nature, though it acquires different names in different fields. Physicists and mathematicians use labels including the ‘principle of least action’(e.g., Maupertuis, 1744; Maupertuis, 1746; Euler, 1744), economists the point of highest utility, evolutionary biologists have called it ‘survival of the fittest’, or ‘natural selection’ (e.g., Darwin, 1859; Spencer, 1872), and financial analysts use the ‘highest return for a given r
	-
	-
	-
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	While optimization as a concept exists and has always existed in all of nature’s dynamism, Ancient Greek philosopher-mathematicians were among the earliest to turn these natural transformations into abstractions useful for the generalization of relationships. The earliest of these was Euclid, around 300 BCE (Fitzpatrick, 2008). Often regarded the ‘Father of Geometry’ (Campbell and Hayhurst, 2015; Sialaros, 2015), Euclid was among the first mathematicians to compile all the mathematical developments of the t
	-
	-
	-
	-

	The next philosopher to actively consider optimization problems is reported in the works of Pappus of Alexandria, who lived around 300AD. The ‘Synagoge’ or ‘Mathematical Collection’ of Pappus (Simmons, 2007) is considered one of the most important references to mathematical works of Greek antiquity, as Pappus was among the last of the Greeks to compile the works of many Greek mathematicians in a time when philosophy and mathematics was undermined in favour of Christian religious views, thus retaining a reli
	-
	-
	-

	Zenodorus is considered the first Greek mathematician to consider Dido’s problem in his treatise ‘On Isoperimetric figures’, which though lost to time, can be found in excerpt form in the works of Pappus of Alexandria, Theon of Alexandria, and Proclus. 
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	Dido’s problem, an isoperimetric problem, involves the finding of the greatest area that can be enclosed by a given perimeter or length. It is mentioned in the epic poem the Aeneid of Roman poet Publius Vergilius Maro (70 19 B.C.), more popularly known as Virgil. Here is the excerpt containing a description of Dido’s problem; 
	"The Kingdom you see is Carthage, the Tyrians, the town of Agenor; 
	But the country around is Libya, no folk to meet in war. 
	Dido, who left the city of Tyre to escape her brother, 
	Rules here--a long and labyrinthine tale of wrong 
	Is hers, but I will touch on its salient points in order.... 
	Dido, in great disquiet, organised her friends for escape. 
	They met together, all those who harshly hated the tyrant 
	Or keenly feared him: they seized some ships which chanced to be ready... 
	They came to this spot, where to-day you can behold the mighty 
	Battlements and the rising citadel of New Carthage, 
	And purchased a site, which was named 'Bull's Hide' after the bargain 
	By which they should get as much land as they could enclose with a bull's 
	hide."’ 
	The maximum ‘land as they could enclose with a bull’s hide’ turned out to be a semicircle, with the shoreline as the starting point and the fixed border. Zenodorus analysed this problem and formalized it in an overall context, which, according to Nahin (2003), include these two important conclusions; 
	‘the area of a regular n-gon is greater than the area of any other n-gon with 
	the same perimeter;’ 
	‘given two regular n-gons with the same perimeter, one with 
	n = n1, and the other with n = n2 >n1, then the regular 
	n2-gon has the larger area.’ 

	4.1. A Brief History of Mathematical Optimization 
	4.1. A Brief History of Mathematical Optimization 
	Which shows that the circle has the greatest area of any polygons with the same perimeter. 
	Zenodorus also made contributions to catoptrics, as mentioned in Diocles’s work ‘On Burning Mirrors’ (Toomer, 1976). Major contributions to catoptrics were however made by a different philosopher-mathematician around 100BCE, Heron or Hero of Alexandria (O’Connor and Roberston, 1999), who proved in his work, Catoprica, (Smith, 1999) that light reflected from a mirror travelled between two points through the path of shortest length. Though at the time Hero gave no proof of this deduction, the principle provid
	-
	th 

	After the Greek philosopher-mathematicians, a time gap exists in the development of optimization, with further discoveries only formalized beginning in the 16and 17centuries CE in Europe. At this time, according to Grabiner (1983), European mathematicians had familiarized themselves with both Greek mathematics and the Islamic world’s algebraic developments enough to extend these concepts on their own. 
	th 
	th 

	A revolution thus began with the French mathematician Francois Vieta’s invention of symbolic algebra in 1591, and the invention of analytic geometry in the 1630’s independently by Descartes and Fermat (Grabiner, 1983). We will discuss some of the notable discoveries and inventions during this period in detail, starting with the German mathematician-astronomer Johannes Kepler (1571-1630) in 1615. Two major developments in applied optimization are attributed to Kepler, including the determination of the optim
	-
	-
	-
	-
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	barrel that would guarantee the most wine. Suffice it to say, Kepler proved that the wine seller’s technique had been close to accurate all along! He later wrote a book regarding his experiments, known as Nova stereometria doliorum vinariorum (New solid geometry of wine barrels), a key contribution to Archimedes’ works on solid geometry (Knobloch, 2017). The other major development was that of the ‘secretary problem’ or the ‘marriage problem’, which Kepler had earlier encountered when choosing said second w
	-

	A further development in applied optimization is seen later in 1638, when Italian astronomer Galileo Galilei (1564-1642) tried to determine the shape of a flexible hanging chain of uniform linear mass density, but erroneously concluded it to be a parabola (Kunkel, 2016; Renn and Damerow, 2003). Theoretical optimization also picked up around this time, beginning with the works of French mathematician Pierre de Fermat (1601-1665). 
	-

	Together with French philosopher Rene Descartes (1596-1650), Fermat is considered one of the founders of the analytic geometry. According to Grabiner (1983), this meant that curves could be now represented by equations and that every equation determined a curve. 
	Fermat is said to have ‘laid the technical foundations for differential and integral calculus’; together with French mathematician Blaise Pascal (1623-1662), was instrumental in establishing the foundations of probability theory; and established modern number theory Mahoney (1994). He proved that the necessary condition for a minima or maxima for a real-valued function on one variable is that the derivative must be zero (Neunzert and Siddiqi, 2000). Fermat also applied the concept of minima and maxima to op
	-
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	contention between Fermat and Descartes, who believed that light travelled faster in denser mediums (Ferguson, 2004). Suffice it to say, Fermat was right. Subsequently, these studies of the concepts of extremes laid the foundation for the development of the techniques collectively labelled the ‘calculus of variations’. 
	The label ‘calculus of variations’ is a construct of Swiss mathematician Leonhard Euler (1707-1783), derived from his analysis of Italian-French mathematician Joseph-Louis Lagrange (1736-1813)’s works. This is a branch of mathematics that deals with optimizing, i.e., finding the maximum or minimums, of a function defined by an integral. In a way, this was the first attempt to formalize the concepts of optimization into mathematical formulas. The mathematical basis surrounding the calculus of variations were
	th 
	1

	Newton’s studies on the motion of bodies in resisting mediums, found in his book Philosophae naturalis principia mathematica (Principia) in 1685, is considered one of the first real problems in the calculus of variations (Ferguson, 2004; Dacorogna, 2007; Goldstine, 2012). In addition, the brachistochrone problem, which had been formulated by Galileo Galilei (1564-1642) in 1638, was finally solved by Swiss mathematician Johann Bernoulli (1667-1748) in 1696, and then by Leibniz, Newton, the French Mathematici
	-
	-
	-
	-

	The brachistochrone problem is one of the most famous problems in the calculus 
	Different sources give different birth dates, with some placing it on the 25December 1642 and others on the 4of January 1643. 
	1
	th 
	th 
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	of variations (Dacorogna, 2007), and is also responsible for showing the connection between the least time principle of Fermat and the least time nature of the Brachistochrone (Ferguson, 2004). Leibniz and the Bernoulli brothers are also responsible for the solution of many problems in infinitesimal calculus i.e., the theory of differentiation and integration, and variational calculus using modern methods (Gårding, 1977). 
	-

	The brachistochrone problem can be considered the birth of calculus of variations, but the field was generalised later in the 18century by the Swiss mathematician Leonhard Euler (1707-1783), who had, for a time, had Johann Bernoulli for a mentor (Ferguson, 2004). 
	th 

	Applied optimization problems considered during this century include the honeycomb problem considered by German mathematician Johann Samuel König (1712-1757) around 1739, in reply to a question posed by French scientist René Antoine Ferchault de Réaumur that went as follows; 
	-

	"Of all possible hexagonal cells with pyramidal base composed of three 
	equal and similar rhombs, to find the one whose construction would need 
	the least material." 
	For which König’s answer was ‘the cell that had for its base three rhombs whose large angle was 109 deg 26', and the small 70 deg 34'’, showing that the hexagonal structure of honeycombs is optimal. These results that were similar to earlier calculations by the Italian-French mathematician Giacomo Filippo Maraldi(or Jacques Philippe Maraldi) (1665-1729) (Maeterlinck, 1901). König is also more famously known for his dispute with French mathematician Pierre Louis Moreau de Maupertuis (1698-1759) regarding the
	In Euler’s 1744 book on the calculus of variations titled Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solution problematis isoperimetrici latissimo sensu accepti, or A method for discovering curved lines that enjoy a maximum or minimum property; or the solution of the isoperimetric problem taken in the widest sense, he extended the methods of calculus of variations, forming and solving differen
	-
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	tial equations for optimizing single-integral variables; showed how such equations could be used to represent equilibrium positions of elastic and flexible lines, and ‘formulated the first rigorous dynamic variational principle’ (Fraser, 2005). This book is considered by some to represent the birth of the theory behind the calculus of variations (Kreyszig, 1994a; Kreyszig, 1994b; Ferguson, 2004). The techniques were then later extended and simplified by Joseph-Louis Lagrange. 
	The principle of least action, heavily applied in mechanics, follows the general idea that nature follows the path of least action, or that ‘nature is thrifty in all its actions’, popularized by Maupertuis in 1744 (Maupertuis, 1744) and 1746 (Maupertuis, 1746). Euler also made an independent formulation of this principle at the same time as Maupertuis (Euler, 1744), but claimed no priority. This principle is important due to its applicability in the generation of equations of motions for mechanical systems,
	Around 1760, the Plateau problem, named after Belgian physicist Joseph Plateau (1801-1883), was formulated by Joseph-Louis Lagrange. This is a problem of finding the surfaces of least area within a given boundary. Plateau’s experimentations in 1849 proved that this surface could be found by immersing a wire frame into soapy water, with the wire frame representing the boundaries (Harrison, 2014). Later studies by American mathematician Jesse Douglas in 1931, Hungarian-American mathematician Tibor Radó (1895-
	-
	-
	-
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	Helms Fleming (1928-2023) in the 1950s, and by Enrico Bombieri in the 1970s, extended and specialized the study of minimal surfaces, earning Douglas and Bombieri Field Medals for their work (Almgren Jr and Montgomery, 1974). 
	-

	A further optimization development of note arising out of the 18century is that of French mathematician Gaspard Monge, known as the transportation problem. This was a problem formulated by Monge in 1781 whereby he intended to find the optimal way of moving a pile of sand between military embankment sites at minimal cost (Monge, 1781; Peyré and Cuturi, 2019). This problem was later reformulated by Russian mathematician Leonid Kantorovich in 1942 (Kantorovich, 1942), who intended to solve practical concerns o
	th 

	In the 19century optimization developed mainly as an abstract concept, and the first rigorous definitions of calculus were formulated, especially with the works of the ‘father of modern analysis’ (Baker, 1996), German mathematician Karl Theodor Wilhelm Weierstrass (1815-1897), and French mathematician Augustin-Louis Cauchy (1789-1857) (Grabiner, 1983; Borovik and Katz, 2012). It also saw some application, especially in the field of economics. Further improvements to previously defined theories and concepts 
	th 
	-

	The major developments of this period began in 1805, when French mathematician Adrien-Marie Legendre’s published his least squares method for algebraic fitting (Legendre, 1806), which was then later statistically backed by German mathematician Carl Friedrich Gauss (1777-1855) (who also claimed to have invented the least squares method much earlier (Stigler, 1981), to the ire of Legendre (Stigler, 1977)) and French 
	-
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	mathematician Pierre-Simon, marquis de Laplace (1749-1827), among others. 
	Between the years, 1813-1815, the economic Law of Diminishing Returns, which is based on the (quasi) concave function began to take shape (Cannan, 1892), culminating in the works of Thomas Robert Malthus, Robert Torrens, Edward West, and David Ricardo, all published within a three-week period in 1815 (Brue, 1993). According to Brue (1993), this law was developed and applied to land rent, in an attempt to explain the fall in grain prices observed in England at the time. This fall was found to be caused by th
	The year 1826 marks the beginning of the story of linear programming, when the linear programming problem was formulated by French mathematician and physicist Jean-Baptiste Joseph Fourier (1768-1830) (Fourier, 1826). Fourier is believed to have contributed in the following ways (Prékopa, 1980): first, he ‘anticipated’ the linear programming problem in 1824 (Grattan-Guinness, 1970); second, he formulated the inequality for the mechanical equilibrium in 1798 (Fourier, 1798); and third, he proposed a parametri
	2
	-
	th 
	th
	-

	Some authors, e.g., Biggs (2021) attribute this beginning to a much earlier date, the 13century, with Fibonacci’s rules for mixtures using the Hindu-Arabic arithmetic system. As these were written in word form they did not gain much traction till the invention of algebraic symbols in the 17century. 
	2
	th 
	th 
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	Farkas, 1901; Biggs, 2021). The Farkas lemma uses the fundamental linear inequality theorem to determine the necessary optimality conditions for non-linear programming, conditions that were later used to provide proof of the (Karush)-Kuhn-Tucker theorem in 1951 (Kuhn and Tucker, 1951; Prékopa, 1980), and to support further application of linear programming in optimization. Farkas’s contributions to linear programming and optimization include (Prékopa, 1980): proving the basic theorem of linear inequalities 
	-

	Renewed interest in linear programming and its applications was subsequently observed during the Second World War as the need for resource optimization increased (Chakraborty et al., 2020), but the application of linear programming for the optimal resource allocation began with the work of Russian mathematician Leonid Kantorovich (Boldyrev and Düppe, 2020) in 1939 when he published his Mathematical Methods of Organizing and Planning Production (Kantorovich, 1960; Koopmans, 1960), subsequently developing an 
	-
	-

	During the Second World War, scientists focused on optimising linear functions over a set of linear inequalities as a way to ensure resource optimization (Chakraborty et al., 2020). This began with the ‘simplex method’ for solving US Airforce planning problems of American mathematician George Dantzig (1914-2005) and Dutch-American mathematician Tjalling Koopmans (1910-1985)’s application of linear programming models for analysis of classical economic theories in 1947 (Schrijver, 1998). Later developments in
	-
	-
	-
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	(Khachiyan, 1979); and the introduction of interior point methods for solving linear programming problems by Indian mathematician Narendra Karmakar in 1984 (Karmarkar, 1984). Over time, linear programming and extensions have also evolved in application, moving beyond its original military and economic roots, to be applied in a broad range of fields, including in agriculture, manufacturing, healthcare, and in energy and transportation. 
	-

	In the 19th century, after Fourier, optimization applications to forest economics were considered by German forester Martin Faustmann (1822-1876) in the mid-19century (Scott, 2008). The optimum forest rotation problem involved attempting to maximize Faustmann’s present value of the forest rotation income stream problem, which was later formally solved by Bertil Ohlin in 1924 (Findlay et al., 2002), though it is believed that this solution was known to researchers as early as the 1849 (Viitala, 2006). 
	th 

	Around this time, Augustin Louis Cauchy also presented the gradient descent (or steepest descent) method applied in nonlinear optimization in the 1847 publication Méthode générale pour la résolution des systemes d'équations simultanées (General method for solving systems of simultaneous equations) Cauchy (1847). This was an alternative to the model-based unconstrained nonlinear optimization techniques first developed by Newton (Nazareth, 1994). Cauchy developed this method to aid in solving complex quadrati
	-
	-

	The early 20century saw developments in convex analysis, through the works of Hermite (1883) and Hadamard (1896) (Krtinic and Mikic, 2018), Holder (1889), Jensen (1906), Minkowski (1910), and Minkowski (1911), among others, giving rise to famous probabilistic inequalities for convex functions, including the Jensen’s inequality Burnside (1975) and the Hermite-Hadamard inequality (Sezer, 2021). 
	th 

	Optimization concepts were also applied in biology to explain the distribution of 
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	natural forms and the source of natural changes by Scottish biomathematician D’Arcy Wentworth Thompson (1860-1948) in 1917 (Thompson d’Arcy, 1917); and in finance for the determination of optimal portfolios by Markowitz in 1952 (Markowitz, 1952), Tobin (1958) and Marschak (1938). 
	Other notable 20century contributions to optimization include the advent of combinatorial optimization techniques by Ford and Fulkerson (1956) and Ford and Fulkerson (1962), the development of optimal control theory in 1956 (Pontryagin, 1987) as a result of developments in dynamic programming concepts, especially due to the works of Bellman (1952) and Bellman (1956), the rise of computers, and the aerospace applications of initial programming ideas (Sargent, 2000). The sequential quadratic programming algor
	th 

	Even though there were further developments in other aspects of optimization as the subject area broadened in both theory and application, of interest to us are the mid-tolate 20th century developments in unconstrained optimization algorithms for both local and global optimization, including conjugate gradient methods, quasi-Newton methods, approximation methods, etc. It is these developments that motivated the search for specific-case algorithms to supplement their limitations. For purposes of parameter es
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	4.2 Background to the Expectation-Maximization (EM) Algorithm 
	"I felt like the old minstrel who has been singing his song for 18 years and now finds, with considerable satisfaction, that his folklore is the theme of an overpowering symphony" -Herman Hartley 
	When the Expectation-Maximization (EM) algorithm, an optimization technique for parameter estimation given missing or hidden data was formally proposed by Dempster et al. (1977) in 1977, it cemented this algorithm’s place in the timeline of optimization. Dempster et al. (1977)’s paper was later supplemented by Boyles (1983), Wu (1983), and Redner and Walker (1984) (Bagozzi, 1994). The EM is a better-converging alternative to both general optimization methods like the Newton-Raphson methods and conjugate gra
	-
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	The intuition behind the EM algorithm, despite being formalized in 1977, however, was not a new concept, with Dempster et al. (1977) even noting that the algorithm had been "proposed many times in special circumstances". The next few paragraphs thus gives an overview of the ‘roots’ of the concepts driving the EM algorithm, and the historical developments that culminated in Dempster, Laird and Rubin’s 1977 study. 
	The development of the EM algorithm can be traced back to the end of the 19century, with the first EM-type algorithm being referenced by Newcomb (1886) and Pearson (1894) and applied to model parameter estimates for finite mixture models 
	th 
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	(McLachlan and Krishnan, 2007; Bagozzi, 1994). This development has also been attributed to Fisher(1925)’s statistical identities (Meng and Dyk, 1997), and McKendrick (1926)’s ‘Applications of mathematics to medical problems'(see e.g., Dietz, 1997). 
	-

	The 1950s saw much improvement in the development of EM-type methods and their application. In 1955, these techniques were applied in gene-counting for the estimation of gene frequencies by Cedric Smith, Ruggero Ceppellini, and Marcello Siniscalco in 1955 (Ceppellini et al., 1955; Smith, 1957); reformulated for use in randomized block design by Healy and Westmacott (1956); and a version of the EM algorithm that provided the basis for the Dempster et al. (1977) formulation proposed by Herman Hartley in 1958 
	-
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	In the 1960s, EM-type algorithms were formulated and applied, especially to Markov models with the works of Leonard Baum, Ted Petrie, and John Eagon (Baum and Petrie, 1966; Baum and Eagon, 1967), who introduced hidden Markov models (HMMs) to the world. These HMM models have been popular in applications including speech recognition (Juang and Rabiner, 1991), signal processing, and gene sequencing, etc. 
	Baum and Petrie extended their studies and provided a more comprehensive results of their model in their 1970 paper, together with George Soules and Norman Weiss (Baum et al., 1970). Orchard and Woodbury (1972) define their contribution in their paper ‘A missing information principle: theory and applications’ as follows ‘present a general philosophy for dealing with the problem of missing information, and to give a method which will lead quite easily to maximum likelihood estimates of the parameters obtaine
	The Richardson-Lucy algorithm, a nonlinear iterative technique for image deblurring and restoration developed independently by William Richardson in 1972 and Leon Lucy in 1974 is also a type of EM algorithm (McLachlan and Krishnan, 2007). Carter and Myers (1973) show how the maximum likelihood parameter estimation problem for a linear combination of probability functions can be solved through an iterative 
	-
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	algorithm that reduces the problem to a complete data problem, which is the EM algorithm. 
	Other key sources cited in Dempster et al. (1977) include the ‘self-consistency principle’ of Efron (1967) and a later extension of Efron (1967)’s idea by Turnbull (1976) to incorporate not only single-censored data, but also other grouped and truncated data; and Sundberg (1974), Sundberg (1976), and Orchard and Woodbury (1972) for the theory behind the EM algorithm, among others. 
	-

	The EM algorithm has gained much popularity over the years especially due to its attractive convergence properties and computational efficiency (McLachlan and Krishnan, 2007). In addition, it provides a simple and straightforward class of algorithms that can be modified for multiple applications and extended or improved by merging it with other general optimization algorithms like the Newton-Raphson algorithms to further improve its efficiency. Because of this, EM algorithms have seen broad applicability, i
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	Catastrophic loss modelling, on the other hand, can be complicated to accomplish, especially due to the intractable nature of most of the modelling and subsequent pricing equations. Because of this, many techniques used to accomplish the modelling process tend to be computationally expensive, especially due to the simulations required for each of the equations involved (see e.g., Ma and Ma, 2013; Burnecki and Giuricich, 2017). The techniques underlying the EM algorithm can bypass this problem, as the losses
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	difficult to incorporate into normal models (Dempster et al., 1977; Baum and Petrie, 1966; Rabiner, 1989), including elements like dependency and heavy tail modelling. It is for these reasons that this study applies the EM algorithm to climate risk modelling, as it provides more comprehensive modelling options for not only the observed catastrophic losses, but also for catastrophe bond price analysis. 
	-

	The following sections will thus focus on the application of the EM algorithm to catastrophic loss modelling and catastrophe bond pricing and analysis, with the aim of ensuring more robust and comprehensive models and thus ‘fair’ pricing for catastrophic risk finance instruments that then provide protection against the risks of such catastrophes. The first application involves an application of the EM algorithm for variance component analysis, with the goal of determining whether internal issuer factors hav
	-
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	Exploring Inefficiencies in the Primary Catastrophe Bond Market 
	with a Focus on the ‘Issuer Effect’
	1 

	The COVID pandemic has highlighted the importance of hedging against catastrophic events, for which the catastrophe bond market plays a critical role. Most catastrophe bonds issued in the primary catastrophe bond market are sold by the same issuers every year, and within each year. Significant similarities in the bond characteristics are therefore anticipated, which ultimately leads to similarities in pricing for these bond issuers over time. Using a very rich database with primary catastrophe bond data fro
	-
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	This section of the study has already been published in the International review of Financial Analysis, as Chatoro, M., Mitra, S., Pantelous, A. A., & Shao, J. (2023). Catastrophe bond pricing in the primary market: The issuer effect and pricing factors. International Review of Financial Analysis, 85, 102431. 
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	pricing effects, therefore providing more credible pricing factor results. We find that bond pricing and volatility are heavily impacted by the issuer, causing 26% of total price variation. We also identify specific issuer characteristics significantly impact bond pricing and volatility, and can account for up-to 36% of total price variation. We further find that issuer effects are significant over different market cycles and time periods, causing substantial price variation. The size and content of our dat
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	The COVID-19 pandemic was catastrophic for many economies and societies. Previously, and despite the constant depiction of contagious disease outbreaks in popular entertainment, a real-life global pandemic of this scale was never truly considered. Although some previous events have been insured e.g. the Wimbledon tennis tournament, which had been insured against the SARS outbreak since 2003, leading the organisation’s policy to pay out US$142 million to cover the cost of cancelling the 2020 tennis tournamen
	-
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	e.g. in the Wimbledon case, the coverage was not renewed in 2021 due to an increase in premiums . The rarity of such events, in addition to their high insurance costs, implies that in most cases, these high cost disasters go uninsured. Alternative tools that provide protection against possible disaster in the form of high-yield debt instruments, such as the catastrophe (CAT) bond, were therefore introduced to tackle such issues. 
	3
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	The CAT bond market developed largely in response to the reduction in reinsurance capacity observed after Hurricane Andrew in 1992. It was established as an alternative platform for companies to acquire reinsurance protection as reinsurance companies were overwhelmed by increasing losses due to catastrophic events (Swiss Re, 2012). Similar to other debt securities, CAT bonds pay regular coupons and the principal value at maturity. However, the coupon paid to the investor consists of a baseline return and a 
	4 
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	https://www.insurancetimes.co.uk/news/wimbledon-set-for-coronavirus-windfall-in-huge-payout-from-pandemic-insurance/1433146.article 
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	https://www.insurancetimes.co.uk/news/wimbledon-boss-confirms-the-championship-will-nothave-pandemic-insurance-in-2021/1433726.article 
	3
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	In the past, it has generally been based on the London Interbank Offered Rate (LIBOR), or a similar well-known index (Cummins, 2008). 
	4

	The mathematical expression is given by P remium(P )= Expected Loss (EL) + Risk Load (RL). 
	5
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	the bond characteristics and other external factors including the bond’s underlying peril, the trigger, the bond rating, the bond issuer, the time of issue, the reinsurance cycle and the state of the competing financial market, among others (e.g., Lane and Beckwith, 2008; Bodoff and Gan, 2009; Papachristou, 2009; Braun, 2016; Gürtler et al., 2016). The principal repayment (and sometimes the coupons, depending on the structure) is conditional on the specified catastrophe not occurring. If the catastrophe occ
	6 

	To date, over $123 billion worth of CAT bonds have been issued. Figure 5.1 shows the development of CAT bond issues in US$ and the number of deals over the years in the primary market.
	7 

	There are some similarities in structure between a CAT bond and a high-yield or junk bond (Cox and Pedersen, 2000). Both are priced based on the risk of default to the investor. For high-yield or junk bond the default stems from the issuer defaulting on payments due to underlying issuer factors, or external factors affecting the issuer. For a CAT bond, however, the risk of default stems from the occurrence of a catastrophe, which in most cases occurs independently of the issuer’s condition or financial mark
	6

	on 22nd June 2020) 
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	Figure
	5.1. Introduction 
	The catastrophe bond market is still in its expansion stage, only having been formally in existence for approximately 20 years. To ensure its successful growth and wider investor participation, it is important that inefficiencies are identified and solutions proposed to improve participation rates. One of the most common characteristic of primary CAT bond issues is that they are issued by the same issuers every year, or even within the year (Major, 2019). These issues usually have similar characteristics, s
	-
	-
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	This is not always the case in practice, however, as frequent issuers may receive better deal terms and pricing over time than infrequent issuers due to the relationships developed with investors (Spry, 2009). The Covid-19 pandemic has also further attracted new issuers to the market looking to benefit from both the protection and diversification potential offered by ILS instruments. These issuers would be interested in understanding the specific risks faced by newer entrants before formally participating i
	-
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	The SPV is a company created for the express purpose of providing reinsurance to the issuer if a catastrophe occurs (e.g., Cox and Pedersen, 2000; Zimbidis et al., 2007; Pearce II and Lipin, 2011). The company receives premiums from the issuer and in turn issues CAT bonds in the financial markets using the premiums as collateral. The proceeds from the bond issue, together with the premiums paid by the issuer, are invested in a collateral account consisting of high-quality assets. These investments are used 
	8

	Once the issuing company has transferred the premiums, which serve as collateral for the CAT bond, the SPV takes up the responsibility for ensuring full and timely cash flow payments are provided to investors. 
	9
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	seems keen on introducingcan only be successful if the necessary issuer screening and market efficiency analysis is conducted to determine suitability. Issuer considerations will therefore need to be incorporated into pricing models to ensure that the models are exhaustive and complete. 
	10 

	Research analysing the effect of the issuer on CAT bond premiums is scarce. Of the major studies assessing factors that affect CAT bond premiums, only Major and Kreps (2002), Braun (2016) and most recently, Goetze and Gürtler (2020) explicitly study the impact of the issuer. These studies, however, are either limited by their small sample size (Major and Kreps, 2002), or number of issuers analysed (Braun, 2016), or are focused only on the secondary market (Goetze and Gürtler, 2020). Distinctly to Goetze and
	The present paper assumes that, even after controlling for all the other factors that affect CAT bond prices, base premiums still vary based on who sponsors the bond. To determine the significance of this observation on CAT bond pricing, this study applies multilevel modelling techniques to estimate the level of variation in bond premiums as a result of pricing differences between issuers in the primary market. Multilevel analysis allows us to separate the effects of the issuer from those of the other expla
	bond-market-can-grow-to-50bn-pandemic-risk-esg-aredrivers-swiss-re/ 
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	variables believed to impact premiums, in addition to quantifying the level of variation in premiums between issuers arising as a result of their inherent differences. We find this issuer effect to be significant, implying that variations in base premiums due to the issuer exist. Around 11% of the variation in premiums appears to be as a result of between issuer differences. Furthermore, this variation is reported to be much larger for smaller issuers based on issue size, for issuers that have issued less i
	The contribution of this research is therefore as follows. First, we develop a two-level model on the largest sample size to date to determine the effect of issuer variations on issuer premiums. We also quantify the magnitude of this issuer effect to better establish the amount of volatility introduced by the differences between issuers. The magnitude of the effect of the other major explanatory variables (those whose effect on premiums does not change as the issuer changes) is also calculated to enable ide
	5.2. Development of Hypotheses 
	5.2. Development of Hypotheses 
	5.2. Development of Hypotheses 
	considered here can be exploited by future first-time issuers, who can use them to pick the optimal avenue through which to issue new bonds. These results can also provide an understanding of the factors to consider before introducing a new product to the ILS market, especially when conducting issuer screenings. This will further lead to increased participation and growth of the ILS markets. 
	The rest of this article is structured as follows: Section 5.2 introduces the hypotheses to be assessed in determining the factors that affect CAT bond pricing. Section 5.3 describes the sample selection and data characteristics. Section 5.4 gives the methodology and empirical analysis, while Section 5.5 discusses potential implications for CAT market participants. Section 5.6 concludes the article and an appendix follows thereafter. 
	-
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	5.2 Development of Hypotheses 
	To assess the effect of issuer differences on bond premiums, we incorporate both the effect of the issuer (i.e., random effect) and that of other explanatory factors (i.e., fixed effects). Random effects represent the factors that lead to variable premiums as we move between the groupings created by the previously mentioned factors. They introduce an additional source of variation to the model, in addition to the error term that represents the unexplained variation (Raudenbush and Bryk, 2010). Fixed effects
	Based on Lane (2018), we establish our hypotheses using common factors affecting CAT bond pricing, such as (1) the expected loss, (2) the CAT bond deal structure, 
	(3) the reinsurance cycle, (4) the bond issue or sponsor and (5) the competitive fixed 
	5.2. Development of Hypotheses 
	income financial markets. In addition, other factors, including maturity, issue date and bond rating, are assessed. Hypotheses are generated for each of these explanatory 
	factors as follows. 
	5.2.1 Issuer 
	Issuer characteristics are assumed to affect the impact of the issuer on the premium, with higher or lower premiums charged depending on underlying characteristics. In previous treatments, the issuer effects are either included as dummy variables (Braun, 2016) or not included at all (Lane, 2018). However, there are challenges that arise with the use of dummy variables to incorporate issuer effects. Observing our dataset, over 100 issuers have participated in the CAT bond market since inception, and unless t
	In a single-level model with only one error term that represents the fixed effects, the issuer-specific differences are not sufficiently considered. This leads to under-estimation of standard errors and over-estimation of the significance of explanatory variables, and thus, to incorrect inferences. As a result, a multilevel model is recommended instead (see, e.g., Raudenbush and Bryk, 2010; Nezlek, 2012). 
	In the corresponding pricing literature, very few of the CAT bond studies actually apply a multilevel model for their analysis. Major and Kreps (2002) are among the first to consider it to assess the impact of “client-specific factors” on pricing, which they find to be significant. It should be noted, however, that their dataset was much smaller, and with a much smaller number of issuers compared to the present study’s dataset. In addition, the “client-specific factors” are not subsequently broken down to i
	5.2. Development of Hypotheses 
	sponsor-specific variables on premiums in the secondary market. Distinctly to them, we test for the existence of the issuer effect in the primary market issues to assess the penalty “at issue”. 
	In a multilevel structure, units belonging to a lower level would be grouped into units at a higher level (Wang et al., 2011). If the individual data points can be clustered based on an identifying characteristic of each group, then the individual data points will comprise the lower (micro) level, while the grouping characteristic will form the units for the higher (macro) level. In our case, most of the bonds are issued by the same issuers every year, or even within the year. Since most of these issuers co
	In addition, other supporting hypotheses are tested to identify the characteristics of the issuers that introduce the greatest volatility into premiums. These supporting hypotheses include: Hypothesis 1b: Issuers with a higher total issue volume will have lower volatility in premiums arising as a result of the issuer effect compared to those with a lower total issue volume. 
	5.2. Development of Hypotheses 
	Hypothesis 1c: The longer the issuer has participated in the primary CAT bond market, the lower their premium volatility will be due to the issuer’s characteristics. Hypothesis 1d: Issuers in the insurance industry will have higher volatility than issuers in other lines of business such as reinsurance or multi-line. 
	5.2.2 Additional factors 
	Peril 
	Following Cummins and Mahul (2009), we break down our perils into four major categories: Peak are US-based perils including US hurricanes and earthquakes, non-peak includes European wind storms and Japanese earthquakes, diversifying includes all other non-US perils, e.g., Mexican earthquakes, Australian earthquakes and hurricanes, and multi-perils combines peak and non-peak perils in the same transaction. 
	-

	It is assumed that peak CAT bonds will normally have higher premiums than non-peak (non-US) bonds (Cummins, 2008). This is because the peak regions are more prone to natural disasters such as hurricanes, typhoons, earthquakes, tornadoes etc. In addition, peak bonds do not offer as much diversification benefit as non-peak bonds, due to the concentration of investor portfolios in peak regions. Multi-peril bonds are also assumed to have higher spreads due to the complexity of the deal structure (Gürtler et al.
	Trigger 
	There are five major trigger types in the CAT bond market: indemnity, parametric, industry loss, modelled loss and a hybrid trigger -representing a combination of any of the other four. Indemnity triggers provide a perfect hedge, where pay-outs are based on the issuer’s actual losses. All the other triggers are non-indemnity triggers based on a specified index. Industry loss triggers pay out if the value of industry 
	5.2. Development of Hypotheses 
	losses exceeds a specified level. Parametric triggers pay out based on the CAT bond meeting pre-defined physical parameters, e.g., wind speed and location of a hurricane or magnitude and location of an earthquake, while a modelled loss is determined by running the catastrophe’s physical parameters on the modelling firm’s database of industry exposures (MMC Securities, 2007). Non-indemnity triggers are an imperfect hedge and do not always fully cover the issuer’s actual losses. 
	Indemnity-triggered bonds would be expected to have higher spreads because of the reduced basis risk to the sponsor and the increased moral hazard risk to the investor (Doherty and Richter, 2002). There are also increased transaction costs because of the more extensive due diligence that would need to be carried out compared to a non-indemnity bond (Cummins and Weiss, 2009). Empirical studies on the effects of the trigger on a CAT bond’s price have derived mixed results. Gürtler et al. (2016) report no sign
	We also assume that bonds with hybrid triggers will have higher risk premiums due to the complex nature of the bonds. An additional hypothesis then becomes: Hypothesis 4: Bonds with multiple triggers have higher risk premiums than bonds with a single trigger. 
	Rating 
	Ratings give investors an indication of what the bond’s risk of default might be and help companies reduce their cost of capital by providing credit enhancements (White, 
	5.2. Development of Hypotheses 
	2013). In analysing CAT bond ratings, we focus on two aspects: the impact of the lack of a bond rating, and the impact of a specific rating, on the bond premium. In the first case, we seek to determine whether the lack of a rating on CAT bonds impacts the premiums compared to similar bonds with a rating. The majority of CAT bonds issued within the past eight years do not have a rating. This either means that investors are capable of conducting their own due diligence, or that ratings would not add any other
	We also analyse whether specific types of ratings still influence the bond premium. Past literature supports the view that stronger ratings lead to lower premiums. Gürtler et al. (2016) find that, as the rating declines, premium increases, and this result is similar to those of Galeotti et al. (2013) and Braun (2016). As CAT bonds drop ratings, though, this effect might not be observable in the long term. We test two hypotheses, one for the impact of a given rating and the other for the impact of no ratings
	Issue date/quarter 
	This will be used to test for the significance of the issuance season, especially the preversus post-hurricane seasons. Most issues occur in the second (Q2) or fourth (Q4) quarter, and Q2 precedes the hurricane season; therefore, it is assumed that there will be higher spreads allocated to this period compared to the other quarters due to an increase in perceived risk (e.g., Patel, 2015). Seasonal effects are tested in Galeotti et al. (2013) using the seasonal index proposed in Lane and Beckwith (2009). The
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	a misspecified index. We specify the hypothesis below: Hypothesis 7: Issues in Q2 have a higher risk premium than issues in the other quarters. 
	Maturity 
	On average, CAT bonds have a maturity period of about three years, but maturity has been observed to be as short as five months and as long as six years. Investment literature suggests that longer-term bonds should have higher risk due to the increased sensitivity of their prices to fluctuations in interest rates (e.g., Bodie et al., 2014). They would therefore be expected to have higher premiums. To determine whether this assumption holds, we specify the following hypothesis: Hypothesis 8: Longer-maturity 
	Cyclic index 
	The insurance market faces cycles; prices have been observed to increase after significant catastrophic events or capital outflows due to other economic events, and they decrease due to capital inflows and stability in the catastrophe losses (see, Lane and Mahul, 2008; Cummins and Weiss, 2009; Lane, 2018; Swiss Re, 2019). There can be hard, soft and neutral markets representing, respectively, increasing, decreasing and stable prices. Whether the bond is issued in a hard, soft or neutral market will affect i
	-
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	20), a hard market represents a period of more ‘more aggressive demand for protection from issuers than the appetite for assuming risk among investors (pg.8)’ and therefore premiums rise in turn, while a soft market represents a period of less demand from issuers compared to investor risk appetite and thus premiums fall. Neutral markets exist in times when the demand for protection balances out with investor risk appetites. 
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	in risk perception (Patel, 2015; Lane and Beckwith, 2007). 
	Similar to Gürtler et al. (2016), we apply a property catastrophe cyclic index by Guy Carpenterto test the effect of these cycles on premiums. Hypothesis 9: CAT bond premiums increase in line with the cyclic index. 
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	Competing financial environment 
	Since CAT bonds are similar to defaultable bonds with an equal rating (Cox and Pedersen, 2000), investors have a choice of either investing in the corporate or the CAT bonds (or both). If the CAT bond market intends to attract investors, it has to price these bonds with reference to the prices in the competing market. The premiums can be slightly lower or higher depending on the diversification benefit provided by each bond, but premiums on corporate bonds still provide a benchmark for assessing premiums in
	5.3 Data 
	5.3.1 Sample selection 
	Our sample is an original dataset of 724 CAT bonds issued in the primary CAT bond market between June 1997 and March 2020. For each bond, we have information on the issuer, underwriters, size of issue (in millions of US dollars), issue rating, term, issue and maturity month, spread per annum, expected loss, peril and geographical location, trigger, probability of first loss and the conditional expected loss. The data is acquired from Lane Financial LLC’s trade notes and cross-checked with other sources 
	13

	Year-End: The Market Goes Mainstream (Retrieved 11 end-the-market-goes-mainstream/ 
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	The Catastrophe Bond Market at 
	September 2020) https://www.gccapitalideas.com/2008/02/28/the-catastrophe-bond-market-at-year
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	For bonds with multiple ratings, we picked the lowest rating. 
	13
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	to include missing information. Some of these other sources include the Insurance Market Updates, Munich Re and Guy Carpenter reports, the Institute and Faculty of Actuaries’ publications and Froot (1999a). The raw dataset is made up of 749 bonds, but 25 observations are excluded, either due to missing values of key variables or different payment structures from those of a typical CAT bond.We also exclude all life and health bonds as they have different underlying variables that determine their pricing. 
	Linked Securities’ (ILS) portal Artemis.bm, Aon’s Annual ILS Reports, Swiss Re’s ILS 
	14 

	5.3.2 Issuers 
	The data, once grouped based on issuers, consists of 101 individual issuers, with Swiss Re (173 bonds), USAA (74 bonds), Munich Re (30 bonds), Hannover Re (26 bonds) and SCOR (21 bonds) representing the top five issuers by number of tranches. Swiss Re (11.22%), USAA (8.46%), Hannover Re (5.25%), Everest Re (4.34%) and Munich Re (4.18%) are the top five issuers by size of issues. The individual issuer data for all 101 issuers is given in Appendix A. Table 5.1 gives an example of the similarities and developm
	USAA’s CAT bonds, known as Residential Re, are among the first bonds to have been issued in the market in 1997. Over the years, USAA has issued a minimum of one CAT bond every year, and is one of the most consistent issuers in the market. USAA’s issue characteristics over time show an increase in bond term from one to four years, a decrease in issue ratings (from AAA to B-following the S&P scale), an increase in the number of classes per issue, and an extension of coverage regions and perils. Later deals co
	ultiple losses, e.g., Bay Haven Ltd which covered six events occurring only after the first three events had occurred, effectively covering frequency instead of severity of losses (Lane and Beckwith, 2007). 
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	Table 5.1: Changes in structure and key terms of USAA issues 
	Year No. Size($m) Term Month S&P Global Rating Peril 
	1997 2 477 1 June AAA, BB US Hurricane 1998 1 450 1 June BB US Hurricane 1999 1 200 1 June BB US Hurricane 2000 1 200 1 May BB+ US Hurricane 2001 1 150 3 May BB+ US Hurricane 2002 1 125 3 May BB+ US Hurricane 2003 1 160 3 May BB+ US Hurricane; Earthquake 2004 2 227.5 3 May BB,B US Hurricane; Earthquake 2005 2 176 3 May BB,B US Hurricane; Earthquake 2006 2 122.5 3 June B,BB+ US Hurricane; Earthquake 2007 5 600 3 June BB,B,B,BB+,BB+ US Hurricane; Earthquake 2008 3 350 3 May BB,B,BB+ US Hurricane; Earthquake; 
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	83 
	2016-0 1 50 4.5 March NR US Hurricane; Earthquake; Thunderstorm; Winter storm; Wildfire; Volcanic and Meteorite; ONP2016-1 3 250 4 May NR,NR,BB-US Hurricane; Earthquake; Thunderstorm; Winter storm; Wildfire; Volcanic and Meteorite; ONP2016-2 3 400 1,4,4 Nov NR,B-,B-US Hurricane; Earthquake; Thunderstorm; Winter storm; Wildfire; Volcanic and Meteorite; ONP2017-1 3 425 1,4,4 May NR,NR,BB-US Hurricane; Earthquake; Thunderstorm; Winter storm; Wildfire; Volcanic and Meteorite; ONP2017-2 3 295 1,4,4 Nov NR,NR,B-U
	2019-2 2 160 1,4 Nov NR 
	Note: This table shows the development of USAA’s CAT bond issues over time. Changes in the number of bond issues per year (No.), the issue sizes (in $m), the terms of the issued bonds (in years), the issue month, the rating expressed in the S&P scale at issue and the covered peril can be deduced from the respective columns of the table. The rating abbreviation NR represents bonds that were Non-Rated, while the peril abbreviation ONP represents Other Natural Perils identified as catastrophes by reporting age
	5.3. Data 
	more risk. 
	USAA has developed a reputation for consistency that has accorded the company more leeway in product structuring, leading to more complex products over time. We want to determine whether some issuers are charged higher premiums based purely on their company characteristics or their reputation in the market. If the pricing is similar, then all companies should face a similar trajectory to that of USAA, with earlier deals including more stringent requirements than later deals. Premiums should also be similar 
	To determine whether variations in premiums exist by issuer, we run a two-level model, with issuers as our second-level variables, or random effects. The remaining independent variables are taken as first-level variables, or fixed effects, since their effect on premiums is independent of the issuer characteristics. These concepts are elaborated upon in Section 5.4. 
	5.3.3 Other predictors 
	Table 5.2 presents the remaining characteristics of the data, excluding issuer characteristics. It breaks down key characteristics of CAT bond issues over the observation period. The Size column gives the total issue size of all CAT bonds issued under each classification in millions of US dollars. Obs stands for the total number of observations within each classification, while P is the average CAT bond premium and EL the average expected loss. P/EL is a multiple, derived by dividing the premium by the expe
	-
	-

	5.3. Data given below. 
	5.3. Data 
	5.3. Data 
	5.3. Data 
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	Table 5.2: Summary data characteristics 
	Table 5.2: Summary data characteristics 

	Size ($m) 
	Size ($m) 
	Obs. (No) 
	P(%) 
	EL (%) 
	P/EL 
	EER (%) 
	Term 

	Peril 
	Peril 

	Peak 
	Peak 
	65,718.53 
	460 
	7.89 
	2.60 
	6.54 
	5.29 
	36.00 

	Multiperil 
	Multiperil 
	12,927.30 
	127 
	9.65 
	3.41 
	7.80 
	6.24 
	36.53 

	Non-Peak 
	Non-Peak 
	12,111.42 
	91 
	4.85 
	1.54 
	5.24 
	3.31 
	42.59 

	Diversifying 
	Diversifying 
	6,114.11 
	46 
	5.13 
	2.45 
	2.69 
	2.69 
	37.67 

	Trigger 
	Trigger 

	Hybrid 
	Hybrid 
	2,145.50 
	33 
	13.96 
	5.21 
	3.33 
	8.75 
	33.33 

	Indemnity 
	Indemnity 
	47,801.66 
	307 
	6.71 
	2.37 
	8.11 
	4.34 
	38.19 

	Industry loss 
	Industry loss 
	29,545.90 
	200 
	8.98 
	3.08 
	4.07 
	5.89 
	37.43 

	Modelled loss 
	Modelled loss 
	3,951.10 
	40 
	7.18 
	1.62 
	6.36 
	5.57 
	36.20 

	Parametric 
	Parametric 
	13,427.20 
	144 
	6.46 
	2.10 
	6.45 
	4.36 
	35.06 

	Rating 
	Rating 

	High yield 
	High yield 
	49,571.41 
	396 
	7.47 
	1.86 
	5.04 
	5.60 
	35.34 

	Investment grade 3,199.60 
	Investment grade 3,199.60 
	33 
	2.34 
	0.15 
	49.46 
	2.19 
	35.76 

	Not Rated 
	Not Rated 
	44,100.35 
	295 
	8.47 
	3.87 
	3.29 
	4.60 
	39.43 

	Issue Quarter 
	Issue Quarter 

	Quarter 1 
	Quarter 1 
	20,443.26 
	149 
	7.22 
	2.40 
	7.76 
	4.81 
	38.30 

	Quarter 2 
	Quarter 2 
	41,865.46 
	304 
	7.38 
	2.42 
	6.43 
	4.96 
	36.78 

	Quarter 3 
	Quarter 3 
	8,678.50 
	63 
	7.33 
	2.24 
	7.58 
	5.09 
	35.73 

	Quarter 4 
	Quarter 4 
	25,884.14 
	208 
	8.42 
	3.12 
	4.85 
	5.30 
	36.86 

	Grand Total 
	Grand Total 
	96,871.36 
	724 
	7.64 
	2.60 
	6.35 
	5.04 
	37.02 


	Note: This table summarises the main characteristics of the categorical variables included in our sample. These include the bond peril, the bond trigger, the bond rating at issue, and the issue quarter. For each of these variables, the size of issue (in millions of US dollars), the number of bonds/observations (Obs.No), the expected loss (EL), the premium (P), the multiple of the premium given the expected loss (P/EL), the expected excess return (EER), and the bond term (in months) are given. These values a
	5.3. Data 
	Categorical predictors 
	Peak perils, i.e., US-based earthquakes and hurricanes, represent a major portion of the bonds issued in the market at 63% of the total observations. These are followed by multi-peril bonds, which are bonds covering both US perils and other non-US perils, at 18%. In total, these two classifications alone represent 81% of the market, showing that US-based issues still dominate the market for catastrophe bonds. The non-peak perils of EU wind and Japanese earthquakes represent 13% of the market, while diversif
	 
	1, if peak or multiperil. P eril = (5.1)
	
	0, if non-peak or diversifying. 
	

	Indemnity bonds are a significant proportion of the CAT bond market at 42%, followed by industry loss index bonds (28%) and parametric bonds (20%). Modelled loss and hybrid bonds bring up the rear at 6% and 5%, respectively. It seems that investors still buy indemnity bonds despite some of their previously discussed risks. In fact, since 2013, indemnity bonds have consistently made up over 50% of the total bonds issued (Lane and Beckwith, 2020). On average, the spreads for the hybrid bonds, at 14%, are much
	5.3. Data 
	based on trigger. To determine whether the hybrid trigger affects bond premiums (see Hypothesis 4), we use the dummy variable Trigger as follows: 
	 
	
	1, if hybrid. 
	

	T rigger = (5.2)
	
	0, otherwise. 
	

	The indemnity trigger hypothesis (see Hypothesis 3) is tested by replacing hybrid with indemnity in the above equation. 
	In recent years non-rated bonds have dominated the market, while the number of rated bonds has fallen significantly. Non-rated bonds comprise 41% of our sample, and this number is expected to increase for future issues. Rated bonds make up the remaining 59%, with high-yield bonds representing 55% and investment-grade bonds the other 4%. Investment-grade bonds have the lowest spreads due to their very low expected loss values, while both the non-rated and high-yield bonds have similar spreads. Table 5.3 give
	-
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	5.3. Data 
	Table 5.3: Catastrophe bond ratings 
	Table 5.3: Catastrophe bond ratings 
	Table 5.3: Catastrophe bond ratings 

	Lowest RatingSize ($m) 
	Lowest RatingSize ($m) 
	Obs. (No) 
	P(%) 
	EL (%) 
	P/EL 
	EER (%) 
	Term 

	AA 
	AA 
	256.00 
	1 
	0.66 
	0.01 
	66.00 
	0.65 
	36.00 

	A+ 
	A+ 
	26.50 
	1 
	1.01 
	0.01 
	144.29 
	1.00 
	36.00 

	A 
	A 
	647.60 
	1 
	1.77 
	0.01 
	177.00 
	1.76 
	36.00 

	A
	A
	-

	225.50 
	4 
	2.03 
	0.04 
	64.58 
	2.00 
	29.00 

	BBB+ 
	BBB+ 
	509.50 
	5 
	2.45 
	0.08 
	119.51 
	2.37 
	43.20 

	BBB 
	BBB 
	225.00 
	2 
	2.77 
	0.07 
	82.20 
	2.70 
	36.00 

	BBB
	BBB
	-

	1,599.50 
	20 
	2.49 
	0.22 
	11.77 
	2.28 
	35.80 

	BB+ 
	BB+ 
	13,145.28 
	81 
	4.73 
	0.82 
	6.51 
	3.90 
	39.73 

	BB 
	BB 
	12,038.68 
	77 
	5.96 
	1.06 
	6.26 
	4.89 
	33.45 

	BB
	BB
	-

	9,244.05 
	103 
	6.67 
	1.43 
	4.98 
	5.25 
	36.01 

	B+ 
	B+ 
	5,226.00 
	35 
	9.01 
	2.22 
	4.18 
	6.79 
	35.14 

	B 
	B 
	6,906.00 
	60 
	10.57 
	3.44 
	3.28 
	7.14 
	30.97 

	B
	B
	-

	2,721.40 
	39 
	12.23 
	4.07 
	3.04 
	8.16 
	34.72 

	NR 
	NR 
	44,100.35 
	295 
	8.47 
	3.87 
	3.29 
	4.60 
	39.43 

	Grand Total 
	Grand Total 
	96,871.36 
	724 
	7.64 
	2.60 
	6.35 
	5.04 
	37.02 


	Note: This table summarises the CAT bond ratings (at issue) for the bonds included in the sample. The ratings are standardised to the Standard & Poors (S&P) scale, and can be split into three main groups. These are the investment-grade bonds (those with a BBB-rating and above); high-yield bonds (those with a B-rating and above, up to BB+); and the non-rated (NR) bonds. For each of the ratings displayed, the size of issue (in millions of US dollars), the number of bonds/observations (Obs.No), the expected lo
	5.3. Data 
	For the rating variable we test the effect of having either an investment-grade rating or having no rating on the premium as given by Hypotheses 5 and 6, respectively. 
	Q2 is the most dominant issue period, with 42% of all the bonds issued in this quarter, followed by Q4 at 29% and the first quarter(Q1) at 20%. The third quarter(Q3), which represents the hurricane season, has the least number of issues at approximately 9%. Average spreads, however, seem to be within a similar range. This introduces the possibility that the issues might not be affected by the issue date. The suggestion from the literature is that Q2 has higher spreads because it falls before the hurricane s
	-

	 
	1, if issued in the second quarter. Quarter = (5.3)
	
	0, otherwise. 
	

	Continuous predictors 
	The Guy Carpenter Global Property Catastrophe Rate on Line Index (GC RoL Index) is used as a representative of the reinsurance cycle (see Hypothesis 9). This is an index of global property catastrophe reinsurance rate-on-line movements covering all major global catastrophe reinsurance markets. Since most CAT bonds cover property-related risks, this index is assumed to be a good representative of the state of the property reinsurance market. The state of the competing financial environment (see Hypothesis 
	10) is proxied by the ICE Bank of America Merrill Lynch BB US High Yield Option-Adjusted Spread Index (BB Spread Index). This index tracks the performance of US-dollar-denominated BB-rated corporate debt, publicly issued in the US domestic market. A majority of the rated CAT bonds carry a BB rating. Therefore, this index contains securities that compete with the CAT bond market for investments. 
	Figure 5.2 summarises the GC RoL Index and the Corporate BB Spread Index, respectively. From the GC Rol Index graph, we can pick out the key hard market periods due to their increased spreads. Spikes in the index are observed after the 
	5.3. Data 
	9/11 attacks in 2001, after Hurricane Katrina in 2005, during the financial crisis, and after the 2017 Atlantic hurricane season that saw Hurricanes Irma, Harvey and Maria, This shows that premiums increase following major catastrophes or in periods of extreme economic turmoil. The BB Spread chart further reinforces this point, with notable spikes in the index after 9/11 and during the financial crisis. One of the most notable differences between the two graphs is the effect of natural catastrophes, which d
	among others, cause widespread losses.
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	Table 5.4 gives a summary of the characteristics of the remaining continuous variables. 
	-

	According to Swiss Re (2018), global insured losses from catastrophes in 2017 were estimated at US$136bn. 
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	5.3. Data 
	Figure
	Figure 5.2: The Reinsurance cycle and State of the Financial Market 
	Figure 5.2: The Reinsurance cycle and State of the Financial Market 


	(a) the reinsurance cycle (b) state of financial market 
	Note: The line graphs above display developments in the reinsurance cycle and the competing financial environment over the period of analysis. The reinsurance cycle is represented by the Guy Carpenter Global Property Catastrophe Rate on Line Index (GC Rate-on-Line Index), and is given annually for the period beginning January 1997 (for 1996) and ending January 2020 (for 2019). The competing financial environment is represented by the ICE Bank of America Merrill Lynch BB US High-Yield Option Adjusted Spread 
	-
	-
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	5.3. Data 
	Table 5.4: Summary descriptive statistics 
	Table 5.4: Summary descriptive statistics 
	Table 5.4: Summary descriptive statistics 

	Variable 
	Variable 
	Mean 
	Median 
	Std.Dev. 
	Minimum 
	Maximum 

	Size ($m) 
	Size ($m) 
	133.800 
	100.000 
	117.371 
	1.800 
	1500.000 

	EER (%) 
	EER (%) 
	5.000 
	4.100 
	3.500 
	0.650 
	41.100 

	EL (%) 
	EL (%) 
	2.600 
	1.600 
	2.600 
	0.007 
	17.400 

	Premium(%) 
	Premium(%) 
	7.600 
	6.100 
	5.100 
	0.660 
	49.900 

	Term (months) 
	Term (months) 
	37.025 
	36.000 
	12.067 
	5.000 
	69.000 


	Note: This table summarises descriptive statistics of the continuous variables in our sample, excluding the reinsurance cycle and the competing financial environment, which are separately displayed. These variables include the bond issue size (in millions of US dollars), the expected loss (EL), the bond premium (P), the expected excess return (EER) (calculated as the difference between the premium and the expected loss), and the bond term (in months). The mean, median, standard deviation, and minimum and ma
	-
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	The average spread in the CAT bond market is 7.6% while the median spread is 6.1%, showing that there might be outliers in the dataset that are weighted more heavily in determining the mean spreads. This is against an average expected loss of 2.6%, representing the low probability of most catastrophic events. In fact, the minimum expected loss of 0.007% is so low it is close to zero. This would be the expected loss allocated to a very remote event, or a covered loss layer that is highly unlikely to be hit. 
	The linear relationship between the above variables is displayed in the correlation matrix of Table 5.5. 
	5.3. Data 
	Table 5.5: Correlation matrix of continuous variables 
	Table 5.5: Correlation matrix of continuous variables 
	Table 5.5: Correlation matrix of continuous variables 

	Variable 
	Variable 
	Premium 
	EL 
	GCIndex 
	BBSpread 
	Term 
	Size 

	Premium 
	Premium 
	1.0000 

	EL 
	EL 
	0.7792*** 
	1.0000 

	GCIndex 
	GCIndex 
	0.2585*** 
	-0.0822** 
	1.0000 

	BBSpread 0.1387*** Term -0.2563*** 
	BBSpread 0.1387*** Term -0.2563*** 
	0.0770** -0.1361*** 
	0.2477*** -0.2123*** 
	1.0000 0.0494 
	1.0000 

	Size 
	Size 
	-0.2454*** 
	-0.1968*** 
	-0.2329*** 
	-0.1299*** 
	0.1746*** 
	1.0000 


	Note: This table displays the pairwise correlations of the continuous variables included in our sample. These include the CAT bond premium, the expected loss (EL), the reinsurance cycle (represented by the Guy Carpenter Index, GCIndex), the competing financial environment (represented by the BB Corporate Bond Index, BBSpread), the bond term (in months) and the bond size (in millions of US dollars). The significance of each of these values is also indicated. Significance at 90%, 95%, and 99% confidence level
	The bond premium is significantly correlated with all the other continuous variables. It is positively correlated with the expected loss, the reinsurance cycle and the competing financial market, and negatively correlated with the bond term and issue size. The largest positive linear relationship is between the expected loss and the premium, providing support for the deduction from the literature that the expected loss is the main factor applied in the determination of CAT bond premiums. Term and size have 
	-
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	5.4. Empirical Analysis 
	factors will be analysed in more detail in a multilevel model to determine causality. 
	5.4 Empirical Analysis 
	5.4.1 Model specification 
	Our issuance datahas shown that most CAT bonds are sold by the same issuers yearon-year, and multiple bonds can be sold by a given issuer within a given year. The bonds are therefore nested within groups, which in this case represent the issuers. Table 
	16 
	-

	5.1 also shows that there are major similarities in characteristics for bonds issued by the same issuer over time. The question of the issuer effect, arising from this hierarchical structure and the similarities in bond characteristics, on pricing, is the focus of this research. For this purpose, we will be applying multilevel modelling techniques,in particular, a two-level random intercept model, since we will be assuming that only the intercept varies for the issuers, while the slope remains the same for 
	17 

	Furthermore, before running the regression models, we first determine the independent variables to be included. We analyse all the factors included in the hypotheses in initial multi-level regressions. To test the model’s fit and determine its suitabil
	-
	-

	the summary of all analysed issuer characteristics. 
	16
	See Appendix .1 for more details on 

	Multilevel modelling techniques have mainly been used in educational and psychological research in the past, to model hierarchical structures (see, e.g., Nezlek (2012), Bryk and Raudenbush (1987), Kreft and Leeuw (1998), and Raudenbush and Bryk (2010)). However, their application is not only limited to the aforementioned fields, as researchers studying CAT bond pricing, e.g. Major (2019), have proposed that the CAT bond hierarchical structure be taken into account through multi-level models. Appendix .2 pre
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	5.4. Empirical Analysis 
	ity for the data, goodness-of-fit tests based on the log-likelihood ratio (LLR) and the Akaike Information Criterion (AIC) (Akaike, 1974) are We will therefore be comparing the more complex model, the one with the random effects, against the simpler model without random effects. A lower AIC value will support the two-level model’s superiority over the single-level model. 
	conducted.
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	The final factors are chosen based on their significance, with the requirement being at least a 90% confidence level. The final model includes the following eight factors: expected loss, peril, reinsurance cycle, competing financial environment, term, investment-grade rating, hybrid trigger and issuer. The indemnity trigger, the impact of a lack of credit rating, and the issue quarter representing Hypotheses 3, 6 and 7 respectively, are all insignificant and therefore excluded from the model. Table 5.6 summ
	-
	-

	y to compare the model with the random effect term (the two-level model) against one without the random effect term based on their likelihoods and determine whether the two are significantly different. The AIC, on the other hand, gives a measure of the information lost as the model’s complexity increases by considering the estimated residual variance and the complexity of the model as additive terms (Chen and Li, 2017). The AIC equation is represented below (Akaike, 1974): 
	18
	Likelihood ratio tests provide a wa

	AIC = −2 ∗ ln(L)+2k 
	where L represents the maximum likelihood and k represents the number of estimated model parameters. 
	-

	5.4. Empirical Analysis 
	when compared to the indemnity trigger. The proposed novel two-level model displays superior performance in goodness-of-fit tests, i.e., a lower AIC and significant LRT. 
	5.4. Empirical Analysis 
	Table 5.6: Model factor specification 
	Table 5.6: Model factor specification 
	Table 5.6: Model factor specification 

	TR
	Final model 
	Hypothesis 3 (Indemnity) 
	Hypothesis 6 (Not Rated) 
	Hypothesis 7 (Issue Quarter 2) 

	Marginal R2 Conditional R2 ICC 
	Marginal R2 Conditional R2 ICC 
	0.8172 0.8369 0.1078 
	0.8135 0.8377 0.1297 
	0.8040 0.8182 0.0725 
	0.817 0.8368 0.1082 

	AIC LRT 
	AIC LRT 
	2837.5 12.71*** 
	2840.9 14.58*** 
	2899.1 7.90*** 
	2841.5 12.75*** 


	Note: This table summarises the explanatory and fit properties of the final model in comparison to models that include the excluded (insignificant) factors from the hypotheses. The respective models’ equations are given below: 
	Final model 
	P = β+ βEL + βP eakMultiperil + βGCIndex + βBBSpread + βT erm + βIG 
	0 
	1
	2
	3
	4
	5
	6

	(5.4) 
	+ βHybrid + uij + εij 
	7

	Hypothesis 3 (Indemnity trigger) 
	P = β+ βEL + βP eakMultiperil + βGCIndex + βBBSpread + βT erm + βIG 
	0 
	1
	2
	3
	4
	5
	6

	(5.5) 
	+ βIndemnity + uij + εij 
	7

	Hypothesis 6 (Lack of a Credit Rating) 
	P = β+ βEL + βP eakMultiperil + βGCIndex + βBBSpread + βT erm + βNon − Rated 
	0 
	1
	2
	3
	4
	5
	6

	(5.6) 
	+ βHybrid + uij + εij 
	7

	Hypothesis 7 (Issue Quarter 2) 
	P = β+ βEL + βP eakMultiperil + βGCIndex + βBBSpread + βT erm + βIG 
	0 
	1
	2
	3
	4
	5
	6

	(5.7) 
	+ βHybrid + βQuarter + uij + εij 
	7
	8

	In the equations above, EL represents the expected loss, PeakMultiperil represents all peak and multiperil bonds, Term represents the bond term in months, IG represents an investment-grade rating, while Non-Rated represents bonds without a credit rating, Hybrid represents the hybrid trigger, Indemnity denotes the indemnity trigger, Quarter is the second quarter of the year, BBSpread is the high yield corporate bond index and GCIndex represents the reinsurance cycle index. The conditional and marginal R-squa
	5.4. Empirical Analysis 
	The proposed two-level model is given by Eq. (5.8), where EL represents the expected loss, PeakMultiperil represents all peak and multiperil bonds, Term represents the bond term in months, IG represents an investment-grade rating, Hybrid represents the trigger, BBSpread is the high yield corporate bond index and GCIndex represents the reinsurance cycle index. The random intercept accounts for the issuer effect. uj is the variation due to the issuer (level 2) while εij is the level 1 unexplained variation. 
	P = β+ βEL + βP eakMultiperil + βGCIndex + βBBSpread + βT erm + βIG 
	0 
	1
	2
	3
	4
	5
	6

	+ βHybrid + uij + εij 
	7

	(5.8) Note that Eq.(5.8) also includes an intercept term. Some researchers propose the inclusion of the intercept term to account for very low expected-loss bonds (Lane, 2018), while others propose exclusion, since a bond with an expected loss of zero would probably not be issued (see, e.g., Braun, 2016). We include the intercept term to avoid creating artificial steepness or flatness of the slope arising as a result of forcing the intercept to begin at zero. For this intercept to make logical sense though,
	19 
	-
	-

	non-US, non-indemnity, non-Swiss Re, high yield catastrophe bond with expected loss of 0.007% issued when both the GC Index and the BB Spread Index were at their lowest over the estimation period (i.e., at 151.8 and 1.4783 respectively) and issued before the month of April or after the month of June in a given year. 
	19
	This would be a 6 month USD 1.8m 

	5.4. Empirical Analysis 
	(1977)’s distance follows a similar process, and considers both residuals and leverage, i.e., both the independent and dependent variables. We only exclude those bonds that were identified as outliers by both the studentized residual plots and Cook (1977)’s distance. 20 bonds are therefore excluded from the original sample of 724, leaving 704 
	bonds in the dataset.
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	5.4.2 Assumptions 
	The goodness-of-fit test results (see Table 5.7) show that the model with random effects (i.e., our two-level model) is a better fit for the data than a model without the random effects. In addition, the LRT is significant at the 99.9% confidence level, favouring the 10-parameter (i.e., two-level) over the 9-parameter (i.e., the single-level) model. 
	Most of the excluded issues covered bonds with unique underlying structures or covering unique property. The Swiss Re Successor Series, for example, from which six of the excluded bonds originated, were priced at extremely high premiums, different from any other bond ever issued. This was a shelf programme that allowed flexibility of model structure and had unique pay-out characteristics (MMC Securities, 2007; Lane and Beckwith, 2007). 
	20

	5.4. Empirical Analysis 
	Table 5.7: ANOVA-like Table for Random Effects : Single term deletions 
	Deleted Variable 
	Deleted Variable 
	Deleted Variable 
	Parameters (No.) 
	logLik 
	AIC 
	LRT 
	Dof 
	Pr(>Chisq) 

	None 
	None 
	10 
	-1408.7 
	2837.5 

	Random effect (issuer) 
	Random effect (issuer) 
	9 
	-1415.1 
	2848.2 
	12.71 
	1 
	0.0004*** 


	Note: This table displays the goodness-of-fit test results for our two-level model when compared to a single-level model for our data. The random effect term (the issuer effect) is removed in the second model, and the two models then compared to determine which of the two provides the best fit for the distribution of the data. The model with a superior fit will have a lower Akaike information criterion (AIC) and a significant likelihood ratio test (LRT) statistic. The table also displays the number of param
	-

	A multilevel model applies maximum likelihood to estimate its parameters. This technique assumes a large sample size and that the standard errors are normally distributed (Wang et al., 2011). For the sample to be considered large, both the number of groups and number of observations should be large. Our sample size of 704 CAT bonds and 101 issuers is assumed large enough to meet the first assumption, based on sample size recommendations by Maas and Hox (2005). To test for normality in standard errors, we ge
	-

	5.4. Empirical Analysis 
	Figure 5.3: QQ-Plot of Residuals 
	Note: The figure above displays the distribution of residuals (sample quantiles) against theoretical normal residuals for our sample. For the normality of residuals assumption to hold, the plotted residuals should lie close to the diagonal line. 
	-

	For the normality assumption to hold, the majority of the data points should lie close to the straight line in the QQ plot. Even though most of our data points do lie on the straight line, they are still skewed to the right. If maximum likelihood were applied, the fixed effects (level 1 estimates) would not necessarily be biased, but standard errors and other variance components would be biased downward (Leeden et al., 2007; Busing, 1993). For this reason, we apply the restricted maximum likelihood (REML) e
	Other assumptions include linearity (Galeotti et al., 2013), and homogeneity of the variance for individual observations, which is assumed to hold based on the figure 
	Figure
	5.4. Empirical Analysis 
	104 
	5.4.3 EM Algorithm for Variance Components Analysis 
	The following algorithmic steps are taken in order to arrive at the within issuer variation estimates, via the Expectation-Maximization algorithm. The underlying mathematical derivations can be found in the Appendices section (see Appendix .3) 
	1. 
	1. 
	1. 
	Initialization: Assign some initial values for γ,γk0,σe, and σu0. 
	00
	2 
	2 


	2. 
	2. 
	The Expectation Step: Evaluate the expected log-likelihood for complete data given observed data in the final iteration, i.e., 


	Q(δ, δ)= E[l(δ; y, u)|y; δ] (5.9) 
	(k−1)
	(k−1)

	3. The Maximization Step: Update δ through 
	δ= argmax Q(δ, δ) (5.10) 
	ˆ 
	(k−1)

	δ 
	4. Repeat the Expectation and Maximization steps above until convergence is achieved. 
	5.4.4 Fixed effects 
	All of the fixed effects are significant based on Table 5.8. In addition to the expected loss, the peril hypothesis (see Hypothesis 2) is supported. The results summarised in Table 5.8 show that, on average, premiums on peak and multi-peril bonds are about 2.25% higher than those on non-peak or diversifying bonds. This could be a result of the frequency of occurrence of the peak perils in the specified regions, which generates more volatility in expected loss estimates over time. 
	Of the two trigger hypotheses analysed, the hybrid trigger is included in the final model while the indemnity trigger is excluded. This is because we cannot confirm the indemnity hypothesis based on the evidence, while the hybrid trigger is significant at the 95% confidence level. In support of Hypothesis 5, hybrid triggered bonds seem to demand 0.71% more in premiums at the 95% confidence level. The findings on the 
	5.4. Empirical Analysis 
	indemnity trigger are in line with findings from previous studies (see, e.g., Braun, 2016; Gürtler et al., 2016), while those on the hybrid trigger are not. In fact, none of the existing studies identifies the hybrid trigger as a factor to be considered. This might be due to the smaller sample sizes that limit analysis of the hybrid trigger. 
	The bond rating hypotheses lead to different conclusions. Only the investment grade rating seems to have a major impact on premiums, while the effect of a lack of rating cannot be confirmed as this factor is not significant. Highly rated bonds receive lower premiums when compared to either lower or non-rated bonds. With a difference of about 2.67% on average, these results confirm Hypothesis 5. In addition to the rating, both the reinsurance cycle (see Hypothesis 9) and the state of the competing financial 
	The maturity factor (see Hypothesis 6) leads to some unexpected results; the bond term is significant, but this term is inversely related to the premiums. We hypothesised that the longer-term bonds might lead to higher premiums, but we get the opposite result instead. Increasing the bond term by one more month leads to a 0.02% decrease in premiums on average. This might be because the longer term allows investors to earn interest for a longer period than the shorter term. It is also worth noting that the te
	To analyse effect size, we use a variation of the Cohen (1992)’s fincluded in Selya et al. (2012) that measures the local effect size, i.e., the magnitude of the effect of each independent variable on the variation in the dependent variable. According to Cohen (1992), the effect size is considered large at 0.35, medium at 0.15 and small at 
	2 

	0.02. From the results in Table 5.8, it is evident that the expected loss, peril and the reinsurance cycle have the greatest effect on the variation in the premiums. The state 
	5.4. Empirical Analysis 
	of the competing financial environment has a small-to-medium effect, and the term and bond rating have a small effect. Finally, the bond trigger has a very small effect. The effect of the expected loss is exceedingly large, in line with theoretical deductions that the expected loss is the main factor driving CAT bond premiums (see, e.g., Lane, 2018). The reinsurance cycle and peril are the second-and third-largest factors, respectively. These factors are all identified in initial studies by Lane and Beckwit
	5.4.5 Random effects 
	In Table 5.9, the random effect term represented by σu, the variability introduced by the issuers, is significant at the 95% confidence level. This implies that an issuer effect exists, confirming Hypothesis 1a, i.e., that there are similarities in premiums on bonds issued by the same issuer, and differences in premiums on bonds issued by different issuers with similar characteristics. To determine the size of this effect, we use the ICC. This can be interpreted as the amount of variation arising due to the
	We also assess whether the two-level model is a better fit for the data than a single-level model through the LRT. A significant LRT would indicate that the model with random effects (the issuer effect, in this case) was a better model for this type of data than a model without random effects. Our LRT is significant, proving that the multilevel model is a better model for this data type than a single-level model. A comparison of the largest and smallest issuers by total issue size gives the results reported
	5.4. Empirical Analysis 
	Table 5.8: Fixed effect estimates 
	Table 5.8: Fixed effect estimates 
	Table 5.8: Fixed effect estimates 

	Estimate 
	Estimate 
	Standard error 
	Effect size 

	Fixed effects Intercept Expected Loss PeakandMultiperil GCIndex BBSpread Term IG Hybrid 
	Fixed effects Intercept Expected Loss PeakandMultiperil GCIndex BBSpread Term IG Hybrid 
	-0.5907∗ 1.3986∗∗∗ 2.2520∗∗∗ 0.0377∗∗∗ 0.4613∗∗∗ -0.0239∗∗∗ -2.6742∗∗∗ 0.7057∗∗ 
	0.3440 0.0314 0.1932 0.0023 0.0471 0.0064 0.3312 0.3415 
	3.0141 0.1984 0.3845 0.1283 0.0166 0.0994 0.0035 


	Issuers 101 Observations 704 
	Note: This table provides estimates of the relationship between CAT bond premiums and factors believed to affect those premiums, excluding the effect of the bond issuer. The factors include the expected loss, the underlying peril, the reinsurance cycle (represented by the Guy Carpenter Index), the competing financial market environment (represented by the BB Spread Index), the bond term, the bond rating (Investment-Grade), and the bond trigger (Hybrid). The data covers all CAT bonds issued in the primary ma
	-
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	Table 5.9: Hypothesis 1a: Random (issuer) effect estimates 
	Table 5.9: Hypothesis 1a: Random (issuer) effect estimates 
	Table 5.9: Hypothesis 1a: Random (issuer) effect estimates 

	Estimate 
	Estimate 
	Standard error 

	Random effects σu σe LRT ICC 
	Random effects σu σe LRT ICC 
	0.5922** 1.7042*** 12.7100*** 0.1087 
	0.1593 0.1663 


	Issuers 101 Observations 704 
	Note: This table summarises the effect of issuer variability on CAT bond premiums for all 101 issuers. The σu estimate gives the volatility introduced due to differences in pricing between issuers, while the σe term represents the level of unexplained volatility. To determine whether the multi-level model provides a better fit for the data than a single-level model, we use the likelihood ratio test (LRT). A significant LRT would indicate that the multilevel model was indeed better than the single-level mode
	-

	5.4. Empirical Analysis 
	5.4.6 Extended random effect analysis 
	After establishing the significance of the issuer effect for the full sample, we now focus on specific issuer characteristics. To establish issuer-specific characteristics with the greatest impact on the issuer effect, we analyse three main characteristics. These include the number of years for which the issuer has issued bonds in the primary CAT bond market, the issuer’s total issue size since the inception of the CAT bond market, and the issuer’s line of business. 
	In each of the tables below, the full dataset consisting of 704 CAT bonds issued by 101 issuers is split into sub-samples that represent a classification of each issuer characteristic being tested. The explanatory variables, in addition to the issuer, include the expected loss, the underlying peril, the reinsurance cycle (represented by the Guy Carpenter Index), the competing financial market environment (represented by the BB Spread Index), the bond term, the bond rating (Investment-Grade), and the bond tr
	By issue size 
	To generate the results in Table 5.10, issuers are classified based on the total size of their bond issues in the CAT bond market since inception. The issuer sample is then split into three equal sub-samples based on the number of issuers, resulting in three sub-samples, each with approximately one-third of the total issuer population. The results displayed in Table 5.10 show that the effect of issuer differences on premiums is larger for those issuers with a smaller issue size than for those with a larger 
	Most of the fixed effects, excluding the term and the trigger (Hybrid), remain significant, with the confidence levels increasing for larger and medium issuers. This might signify the decreasing effect of the issuer differences and the increasing effect of 
	Most of the fixed effects, excluding the term and the trigger (Hybrid), remain significant, with the confidence levels increasing for larger and medium issuers. This might signify the decreasing effect of the issuer differences and the increasing effect of 
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	other variables in explaining premiums as the issue size increases. The term variable is insignificant for medium issuers, while the trigger is insignificant for both large and small issuers, implying that these factors’ influence on premiums is yet to stabilise enough to enable any long-term inferences to be made about them. 
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	Table 5.10: Hypothesis 1b: Random effects by total issue size 
	Table 5.10: Hypothesis 1b: Random effects by total issue size 
	Table 5.10: Hypothesis 1b: Random effects by total issue size 

	Larger issuers 
	Larger issuers 
	Medium issuers 
	Smaller issuers 

	Estimate 
	Estimate 
	Standard error 
	Estimate 
	Standard error 
	Estimate 
	Standard error 

	Fixed effects 
	Fixed effects 

	Intercept 
	Intercept 
	-1.3757*** 
	0.4447 
	-1.8549** 
	0.8143 
	2.2975** 
	0.9146 

	Expected loss 
	Expected loss 
	1.4175*** 
	0.0352 
	1.3171*** 
	0.0861 
	1.2636*** 
	0.0617 

	PeakandMultiperil 2.5655*** 
	PeakandMultiperil 2.5655*** 
	0.2277 
	1.8337*** 
	0.4001 
	1.2350* 
	0.6079 

	GCIndex 
	GCIndex 
	0.0428*** 
	0.0029 
	0.0310*** 
	0.0049 
	0.0135** 
	0.0048 

	BBSpread 
	BBSpread 
	0.4211*** 
	0.0508 
	1.1445*** 
	0.1847 
	0.3892* 
	0.1868 

	Term 
	Term 
	-0.0151** 
	0.0075 
	0.0043 
	0.0180 
	-0.0378* 
	0.0179 

	IG 
	IG 
	-2.8340*** 
	0.3952 
	-1.9867*** 
	0.7303 
	-2.8524*** 
	0.4926 

	Hybrid 
	Hybrid 
	0.6058 
	0.4010 
	1.7397*** 
	0.6234 
	-0.3627 
	1.5218 


	Random effects 
	σu 0.6200** 0.1914 0.00000.4115 1.3408*** 0.5374 σe 1.7440*** 0.1896 1.4799*** 0.5058 0.5803*** 0.1140 ICC 0.1122 0.0000 0.8423 Issuers 34 33 34 Observations 558 92 54 
	† 

	† In this instance, the variation associated with the issuer effect is so small compared to the background 
	noise that this volatility is assumed to be zero. Note: This table displays estimates of the factors affecting CAT bond premiums for different total issue sizes. The bond issue size is aggregated for all the bonds sold by the respective issuer to determine the issuer’s sub-group. The data are then split equally over the three main sub-samples to ensure each subsample contains an equal number of issuers. Larger issuers represent the top one-third of all issuers, while the smaller issuers represent the bottom
	-

	5.4. Empirical Analysis 
	By number of years in the primary market 
	The number of years for which the issuer has been issuing bonds in the primary CAT bond market is used here as a proxy for the issuer’s reputation in the market. We assume that the longer the issuer stays in the market, the better their terms of issue (see Hypothesis 1c). This follows from deductions from Spry (2009) that major issuers could be rewarded with better pricing terms, since multiple issues over a longer period display their consistency to the bond market investors. Table 5.11 supports Hypothesis
	5.11 as the number of years in the market increases. Though the random effects are significant in each instance, they are significant at a a higher confidence level (99%) for one-time issuers than for those issuers that have been in the market for longer (90%). 
	In addition, fixed effects are stronger for those companies that have established a reputation than for those that have not, further supporting the deduction that issuer characteristics tend to have less of an impact over time, as other factors take precedence. The effect of the hybrid trigger is insignificant in all sub-samples, indicating that this might not be a very stable covariate, while the effect of the bond term and the competing financial environment is only insignificant for the shorter-period is
	-
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	Table 5.11: Hypothesis 1c: Random effects by years in primary CAT market (reputation) 
	Table 5.11: Hypothesis 1c: Random effects by years in primary CAT market (reputation) 
	Table 5.11: Hypothesis 1c: Random effects by years in primary CAT market (reputation) 

	One year 
	One year 
	Two to three Years 
	Four years or more 

	Estimate 
	Estimate 
	Standard error 
	Estimate 
	Standard error 
	Estimate 
	Standard error 

	Fixed effects 
	Fixed effects 

	Intercept 
	Intercept 
	1.0147 
	0.7524 
	0.0741 
	0.7033 
	-1.4230*** 
	0.4893 

	Expected Loss 
	Expected Loss 
	1.2545*** 
	0.0671 
	1.3221*** 
	0.0705 
	1.4303*** 
	0.0377 

	PeakandMultiperil 1.4077*** 
	PeakandMultiperil 1.4077*** 
	0.4615 
	2.1600*** 
	0.4992 
	2.4751*** 
	0.2448 

	GCIndex 
	GCIndex 
	0.0200*** 
	0.0048 
	0.0450*** 
	0.0074 
	0.0431*** 
	0.0030 

	BBSpread 
	BBSpread 
	0.2167 
	0.1898 
	0.2616* 
	0.1549 
	0.4542*** 
	0.0534 

	Term 
	Term 
	-0.0093 
	0.0155 
	-0.0309** 
	0.0141 
	-0.0155* 
	0.0081 

	IG 
	IG 
	-2.1645*** 
	0.4203 
	-4.6744*** 
	1.0843 
	-2.7844*** 
	0.4069 

	Hybrid 
	Hybrid 
	-0.4610 
	1.3704 
	0.3734 
	0.6783 
	0.5959 
	0.4121 


	Random effects 
	σu 1.0964*** 0.3836 1.0150* 0.5393 0.6139* 0.0140 σe 0.7387*** 0.1527 1.3154*** 0.2801 1.7906*** 0.2086 ICC 0.6878 0.3732 0.1052 Issuers 44 30 27 Observations 72 121 511 
	Note: This table provides estimates of the relationship between CAT bond premiums and factors believed to affect these premiums based on the issuer’s longevity in the CAT bond market. The number of years for which the respective issuer has been issuing bonds in the primary CAT bond market is aggregated and each issuer allocated according to this length of time. Issuers who have only issued bonds in one year fall within the first class, those who have been issuing for two or three years fall into the second 
	5.4. Empirical Analysis 
	By issuer’s line of business 
	To estimate the effect of the issuer’s line of business on issuer premium volatility, the data are split into three sets of observations based on each specific issuer’s main line of business. Table 5.12 provides the estimates and standard errors of the multilevel regressions on the three sub-samples. From this table, we can see that the random effects are significant only for those issuers operating mainly as insurers, and insignificant for both reinsurers and multi-line businesses, in line with Hypothesis 
	-
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	Table 5.12: Hypothesis 1d: Random effects by issuer’s line of business 
	Insurers Reinsurers Multiline/Others Estimate Standard error Estimate Standard error Estimate Standard error 
	Fixed effects 
	Intercept 0.2833 0.7799 -0.4213 0.7526 1.3377** 0.4616 Expected Loss 1.3330*** 0.0747 1.3549*** 0.0619 1.4195*** 0.0427 PeakandMultiperil 1.3725*** 0.4660 2.5580*** 0.4546 2.6479*** 0.2332 GCIndex 0.0258*** 0.0041 0.0377*** 0.0049 0.0408*** 0.0031 BBSpread 0.5643*** 0.0890 0.6000*** 0.1023 0.3638*** 0.0662 Term -0.0209 0.0146 -0.0316** 0.0151 -0.0137* 0.0079 IG -1.4306** 0.6087 -1.9646*** 0.7060 -3.4174*** 0.4575 Hybrid 0.2551 1.6248 0.8084 0.7004 0.4566 0.4100 
	Random effects 
	σu 0.7892** 0.2538 0.6116 0.3981 0.00000.0293 σe 1.3947*** 0.2243 1.5628*** 0.3371 1.8432*** 0.2253 ICC 0.2425 0.1328 0.0000 Issuers 47 27 27 Observations 194 144 366 
	† 

	† In this instance, the variation associated with the issuer effect is so small compared to the background 
	noise that this volatility is assumed to be zero. Note: This table displays estimates of the factors affecting CAT bond premiums based on the issuer’s main line of business. ‘Insurers’ include those businesses that primarily conduct insurance business; ‘Reinsurers’ include those businesses that primarily conduct reinsurance business or are syndicates; and ‘Mul-tiline/Others’ includes all other companies, including those that conduct both insurance and reinsurance business, investment managers, or insurance 
	-
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	5.4. Empirical Analysis 
	By market cycle 
	The CAT bond market has been shown to follow reinsurance cycles (Lane and Mahul, 2008; Lane and Beckwith, 2008), with rising premiums during periods of high losses, and lower premiums in periods of low losses and capital inflows. Hard markets are observed in periods of increasing losses, especially following major catastrophic events, and are characterised by higher-than-expected premiums. Soft markets, on the other hand, represent periods of low losses and capital inflows, and are characterised by lower-th
	Table 5.13 displays the results of the multilevel regressions on each of the subsamples. The results show that random effects are significant only in the soft or neutral market periods, but not in the hard market. This could be because other factors, particularly the fixed effects, have a larger impact on premium variability in hard market periods than the issuer, evidenced by higher estimates for the fixed effects in hard markets. The proportion of variability based on the ICC is therefore higher in soft o
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	Table 5.13: Robustness by state of market cycle at issue 
	Table 5.13: Robustness by state of market cycle at issue 
	Table 5.13: Robustness by state of market cycle at issue 

	Hard market 
	Hard market 
	Soft or neutral market 

	Estimate 
	Estimate 
	Standard error 
	Estimate 
	Standard error 

	Fixed effects Intercept Expected Loss PeakandMultiperil GCIndex BBSpread Term IG Hybrid 
	Fixed effects Intercept Expected Loss PeakandMultiperil GCIndex BBSpread Term IG Hybrid 
	-0.2640 1.4192*** 2.7479*** 0.0337*** 0.5808*** -0.0297*** -2.2472*** 0.7559 
	0.4936 0.0506 0.2793 0.0032 0.0604 0.0097 0.5815 0.5834 
	-1.5230*** 1.3858*** 1.9092*** 0.0395*** 0.3760*** 0.0034 -2.7234*** 0.7356** 
	0.4011 0.0314 0.2126 0.0027 0.0725 0.0069 0.3213 0.3392 


	Random effects 
	σu 0.4780 0.2797 0.5751** 0.1439 σe 1.8942*** 0.3268 1.2406*** 0.1235 ICC 0.0603 0.1769 Issuers 78 65 Observations 329 375 
	Note: This table provides estimates of the extent to which the chosen independent variables impact CAT bond premiums over the state of the market cycle. The data are split according to the state of the cycle prevailing at issue. This results in two sub-samples, one representing hard market issues where premiums are assumed to be higher than expected and the other representing soft or neutral market issues where premiums are assumed to be lower or stable respectively (According to Lane and Beckwith (2020), a
	5.4. Empirical Analysis 
	By time 
	Based on Table 5.14, in both samples, the random effects and most of the fixed effects are significant, at least at a 90% confidence level. Random effects are significant at 90% confidence, with around 12% of the total variation in premiums being explained by issuer differences. Fixed effects including the expected loss, the underlying bond peril, the reinsurance cycle and the competing financial environment are significant at a 99% confidence level in both time periods, while the term and trigger variables
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	Table 5.14: Robustness by time period 
	Table 5.14: Robustness by time period 
	Table 5.14: Robustness by time period 

	1997-2010 
	1997-2010 
	2011-2020 

	Estimate 
	Estimate 
	Standard error 
	Estimate 
	Standard error 

	Fixed effects Intercept Expected Loss PeakandMultiperil GCIndex BBSpread Term IG Hybrid 
	Fixed effects Intercept Expected Loss PeakandMultiperil GCIndex BBSpread Term IG Hybrid 
	0.9287** 1.8603*** 2.1222*** 0.0156*** 0.3416*** -0.0125 -2.1723*** -0.1225 
	0.4548 0.0581 0.2409 0.0032 0.0522 0.0084 0.3434 0.3991 
	-1.9594*** 1.3127*** 2.2988*** 0.0530*** 0.3727*** -0.0003 -2.0310 -0.1759 
	0.4514 0.0329 0.2560 0.0037 0.0941 0.0089 1.4696 0.5796 


	Random effects 
	σu 0.5822* 0.1969 0.5281* 0.1469 σe 1.6237*** 0.2206 1.4415*** 0.1672 ICC 0.1139 0.1183 Issuers 53 72 Observations 323 381 
	Note: This table provides estimates of the extent to which the chosen independent variables impact CAT bond premiums over two (almost) equal time periods. The data are divided into two sub-samples: one representing the early CAT bond issues (1997-2010), and the other representing more recent CAT bond issues (2011-2020). The data is split almost exactly in half to ensure the retention of a sufficient number of issuers (the level two variable) in each sample to aid comparison. Both the fixed effects and the r
	5.5. Implications for Issuers and CAT Market Participants 
	5.5 Implications for Issuers and CAT Market Participants 
	-

	This study confirms that premium variability introduced by issuer differences does indeed exist, despite the risk of a CAT bond arising from the underlying catastrophe, which occurs independently of the state of the issuer (Cummins, 2008). In addition, the bankruptcy-remote SPV that issues the bond ensures that bond payouts are not related to the issuer. Despite these indicators of the independence of risks, investors, it seems, still take into account issuer-specific factors when pricing CAT bonds. In part
	Other options include issuance through other types of markets that could prove to have better terms, e.g., reinsurance markets, the corporate bond markets, derivatives markets, or through private issues of insurance-linked securities. These avenues all have their disadvantages though, since most do not price catastrophic risks as their main risks. Their pricing terms could prove even more expensive and standardised for the issuer than the CAT market. Creating a customised disaster-risk-financing instrument 
	5.5. Implications for Issuers and CAT Market Participants 
	CAT bonds, which are better customised for catastrophic risks (Cummins, 2008). The less established issuer could also set aside reserve funds, effectively retaining the risk instead of transferring it. In addition to the uncertainty in estimating such reserves, this could prove to be an inefficient use of funds, since the same funds could be assigned to more productive uses and better risk management options applied. Issuers will therefore have to establish the opportunity cost of issuing through the CAT bo
	Existing issuers, on the other hand, seek to renew their deals. Our results show that they could receive better terms over time, as the variability introduced by their characteristics reduces over time. This could motivate existing issuers to continue using the primary CAT market as their source of funding, and increase market liquidity. Existing issuers could also gain access to more unique instruments, including better terms through private placements, as their issues increase. This could further increase
	Whether the increase in issues for existing issuers is enough to offset the potential decrease from the loss of new issuers can only be determined over time based on how the CAT market develops. The Covid-19 pandemic could have motivated new issuers to acquire protection from the CAT market, but this may not be sustainable, especially if a pandemic of this magnitude is viewed as a short-lived one-time event. The types of new issuers could also be limited to those exposed to pandemic risks. To attract a dive
	5.6. Conclusion 
	5.6 Conclusion 
	This study set out to establish the existence and significance of the issuer effect in the primary catastrophe (CAT) bond market by applying two-level analysis techniques to the data. The novel random intercept model produces reliable estimates and more robust standard errors for the fixed effects due to its ability to pick out the second level of variability arising from issuer-specific variables, as it incorporates the premium variations by issuer at the second level and the remaining independent variable
	The key explanatory variables included, in addition to the issuers, are the expected loss, peril, term, trigger, rating, reinsurance cycle and state of the competing financial environment. These factors are similar to those identified in previous studies (e.g., Braun, 2016; Gürtler et al., 2016; Lane, 2018) on CAT bond pricing, with the exception of the term and trigger variables. These two factors are included due to their significant effect on the premium, an effect attributed to the larger sample size th
	From the results, we establish that the issuer effect exists, and that the variation introduced by issuers is significant. We report that around 11% of the total variation in CAT bond premiums is due to differences between issuers, based on the intra-class correlation coefficient (ICC). Classifications of issuers based on length of time in the primary market, total issue size and line of business further enable us to determine that the issuers introducing the greatest variability are those with a smaller to
	These results support deductions that, all else constant, within-issuer CAT bond similarities introduce between-issuer differences in premiums. These differences are 
	5.6. Conclusion 
	attributable to issuer reputation, issuer characteristics and total size of issues. Issuers with smaller total issue sizes and a shorter period (lower consistency) in the primary market tend to exhibit more variability, with stability in pricing increasing as the issuer’s presence within the CAT bond market increases. Issuers conducting mainly insurance business also experience higher volatility in premiums than those in reinsurance or multi-line businesses, an observation that could be attributed to the re
	-

	Even though the issuer effect has been established to have an impact on variability in the baseline premium, and the main issuer characteristics impacting this volatility identified, the nature of the data limited further analysis into more issuer-specific factors. CAT bond data are unbalanced with regards to the number of observations per issuer. Some issuers have as many as 173 observations while others have only 1 or 2 observations. This is controlled for by the use of a shrinkage estimator in the multi-
	Finally, this study is able to identify that variations in CAT bond premiums as a result of issuer differences do, in fact, exist. This implies that the primary CAT bond market is still inefficient, and might provide an opportunity for issuers to exploit these inefficiencies by using the platform with the least amount of volatility. Based on 
	5.6. Conclusion 
	issue size and consistency of issues in the primary market, larger and more seasoned issuers experience less volatility in premiums than smaller, less consistent issuers. In addition, insurers experience more volatility than reinsurers or multi-line companies. New issuers and insurers may therefore need to take into consideration the fact that direct issuance may cost them more than indirect issuance. The opportunity cost of direct versus indirect issuance will therefore need to be established when assessin
	Chapter 6 
	A Compound Poisson Flexible Mixture Model (CPFMM) for Catastrophic Loss Modelling and Valuation using Expectation Maximization(EM) Algorithms 
	Catastrophe bonds are financial securities that provide insurance against the risk of extreme events. Since these bonds functions as both financial securities and an insurance products, valuation techniques usually involve the determination of expected losses and the frequency of such losses through insurance pricing techniques and thereafter incorporating this information into a bond pay-off function derived through financial modelling assumptions. Each stage of the valuation process includes multiple assu
	-
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	6.1. Introduction 
	data based on Expectation-Maximization (EM) optimization techniques. Individual loss models, optimised as flexible mixture models through EM algorithms, are fitted to both loss frequency and loss severity data from the US’s Property Claims Services to establish the most optimal models. Thereafter, the optimal loss models’ performance and fit are compared with that of similar mixture-type models optimized via the more popular Newton-Raphson algorithms, as opposed to Expectation Maximisation (EM) algorithms, 
	-
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	6.1 Introduction 
	For the past twenty years, the catastrophe (CAT) bond market has provided funding for extreme events that had previously proved difficult to insure through traditional means. It has therefore been a useful source of alternative financing and investing, especially when traditional financing tools have been unattractive due to their correlations with financial market risks. The market continues growing and expanding each year, with total cumulative issuance of about US $145 billion since inception. Improvemen
	-
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	This figure is retrieved from the Insurance Linked Securities’(ILS) website on the 14th of June 2021 
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	6.1. Introduction 
	dedicated their studies to proposing new valuation techniques that could improve the efficiency of this system and enable valuers determine fair prices as the market evolved. 
	The catastrophe bond valuation process in the past has involved the merging of financial and actuarial modelling assumptions to determine price estimates; including interest rate assumptions, bond valuation assumptions, and aggregate claims modelling assumptions. As the catastrophe bond market is incomplete, the probability distribution of the expected losses has to be incorporated into the pay-off function to establish the final expected pay-offs under all available loss possibilities (Cox and Pedersen, 20
	-

	Early studies in catastrophe bond valuation aimed at introducing the catastrophe bond structure and the financial and insurance theories underlying this instrument. Most of the theoretical foundations underlying catastrophe bond valuation were developed at this stage, including the incomplete markets framework and equilibrium pricing techniques of Cox and Pedersen (2000) and the arbitrage pricing framework of Vaugirard (2003b). Insurance pricing techniques were also formalized for extreme events through the
	-
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	Among the first areas of improvement after the establishment of theoretical foundations was the modelling the aggregate claims process. Studies focused on developing the claim distribution process, especially through Poisson processes and its extensions. These include the compound doubly stochastic Poisson process (e.g., Burnecki and Kukla, 2003; Burnecki et al., 2005) and the Poisson shot noise process (e.g., Albrecher 
	-
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	et al., 2004). The non-homogenous Poisson process for claim arrivals was also proposed to model claim frequency distributions. These processes continue to be applied over time to model aggregate loss distributions for catastrophic events (e.g., Härdle and Cabrera, 2010; Ma and Ma, 2013; Shao et al., 2017; Burnecki et al., 2019). In addition, alternative valuation methods e.g. transformation techniques of Wang (2000) were developed to further improve the claim modelling process. 
	-

	Other valuation-based studies focused on modelling the financial processes underlying valuations, especially the interest rate process and the equilibrium pricing techniques. Nowak and Romaniuk (2013), in developing their valuation framework, compared the different interest rate processes to establish their applicability and suitability for CAT bond modelling. Their work was an extension of the arbitrage pricing framework developed by Vaugirard (2003b), and has subsequently been expanded upon in Nowak and R
	-
	-
	-
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	(e.g. Deng et al. (2020) for global drought CATs,); or value bonds with specific unique structures (e.g. Burnecki et al. (2019) for index-linked convertible CATs). Other extensions include incorporating the effect of dependencies between risks through Markov chains (Shao et al., 2017) and copulas (Chao and Zou, 2018), among others. 
	-

	Having established the state of current valuation research, and its key developments and contributions, we now focus on one specific element of these valuation frameworks, that is, the solution-seeking processes of the proposed models and their valuation equations. More specifically, we look at the process of numerical integration of the catastrophe bond valuation equations. Numerical integration techniques for catastrophe bond valuation were also developed in line with other model assumptions, with an emph
	-
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	complex. Despite its advantages, the integration process can still be computationally expensive, especially as the number of dimensions is increased (Caflisch, 1998). Given the complex nature of the CAT valuation equations due to the multiple assumptions taken into account when pricing catastrophic risks, this could limit the exploration of more complex valuation techniques that might be better representations of the catastrophe bond market, especially as climate change and demographic trends continue to ch
	-
	-
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	To this effect, this chapter proposes a valuation model that optimizes functions through the Expectation Maximisation (EM)’s (Dempster et al., 1977) flexible-mixture class of algorithms, for both catastrophe loss frequency and catastrophe loss severity modelling. These techniques have the advantage of creating both analytically tractable distribution functions (Miljkovic and Grün, 2016), limiting over-smoothing of the tails of the distribution which are the focus of extreme event modelling (Embrechts et al.
	To accomplish this, we fit individual loss models optimised through the EM algorithms to both the loss frequency and loss severity data from the US’s Property Claims Services’ catastrophe industry loss data. Thereafter, we compare the loss severity’s individual loss model’s performance and fit with that of similar mixture-type models created via the use of a more common and popular optimization method, the Newton
	-
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	Raphson algorithm, as opposed to the Expectation Maximisation (EM) algorithms, including General Composite Models (GCMs) and Composite Mixture Models(CMMs). The results indicate that the EM-based finite mixture model provides the most optimal fit for such heavy-tailed data, while retaining computational efficiency and robustness when compared to the Newton-Raphson (NR)-based models. We then create an aggregate loss model, the Compound Poisson Flexible Mixture Model (CPFMM) for heavy-tailed catastrophic loss
	-
	-
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	The results of the proposed Compound Poisson Flexible Mixture Model (CPFMM), optimized through the Expectation-Maximisation (EM) algorithm, and applied in this chapter, prove the efficiency and applicability of EM-type algorithms to heavy-tailed problems, with improved fit statistics and stability of estimates when compared to similar Newton-Raphson based models. These results are of particular impact to extreme loss risk modellers and other market pricing experts who generate the required models underlying
	-
	-
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	The rest of this article is structured as follows: Section 6.2 introduces the valuation framework, the problem set-up, and the methodology. Section 6.3 describes the sample selection, empirical analysis and results, while Section 6.5 concludes the article. 
	6.2. Valuation Framework 
	6.2 Valuation Framework 
	6.2.1 Assumptions 
	Similar to previous literature (e.g., Cox and Pedersen, 2000; Ma and Ma, 2013; Shao et al., 2017; Burnecki et al., 2019) we assume the following modelling assumptions: 
	1) financial market events are independent of catastrophic events; 2) it is possible to diversify risks posed by catastrophic events by diversifying the insured locations and perils; and 3) the financial market is arbitrage free with equivalent martingale measure. 
	6.2.2 General pricing formula 
	Suppose we have the probability space (Ω, F, P), where Ω is the sample space, F is a σ-algebra representing a set of all possible events while P is a probability measure. Following from Burnecki and Giuricich (2017), and assuming an arbitrage free financial market, the value Vt of a contingent claim CT at time t ≥ 0 is given by the following equation 
	Vt = e E[CT |Ft] (6.1) 
	−r(T −t)
	P 

	under the real-world probability measure P. In equation (6.1), r represents a constant rate of interest,Ft the number of events till time t, and Edenotes the expectation under the real world probability measure P. 
	P 

	6.2.3 Interest rate process 
	To model the interest rate process for the short rate {r(t): t ∈ [0,T ]}, we apply the equilibrium interest rate model of Cox, Ingersoll and Ross (CIR) (Cox et al., 1985). In the CIR model, interest rates are assumed to display mean-reversion, with a standard deviation proportional to r (Hull, 2017). This model ensures that the possibility of negative interest rates is eliminated. The interest rate process under the risk-neutral 
	√ 
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	measure Q is then given as; 
	dr(t)= a(b − rt)dt + σ rtdWt (6.2) 
	√ 

	where a, b and σ are non-negative constants; and 2ab > σ.(Wt)t∈[0,T ] denotes a 
	2

	Brownian motion. Under the real-world measure P, we assume the spot interest rate follows the form; 
	dr(t)=[ab − (a + λr)r(t)]dt + σ rtdW(6.3) 
	√ 
	t 
	∗ 

	∗ tλr rs
	where W= Wt + ds denotes a Brownian motion under the real world measure 
	t 
	 
	0 
	√ 
	σ 

	P and λr is a constant (Ma and Ma, 2013). Assuming P and Q are equivalent measures, we can obtain the Radon-Nikodym derivative of Q with respect to P i.e.  √ 
	dQ 1 λrsλr rs
	t 
	2 
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	= exp(− ds + dW(6.4)
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	dP 0 σ 
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	The stochastic form of the market price of risk process λ(t) is given by 
	∗ 
	r 

	λr √ 
	λ (t)= rt (6.5)
	∗ 
	r

	σ 
	The price of a principal-at-risk bond at time t can be determined from the following equalities (Brigo and Mercurio, 2007); 
	−B(t,T )rt
	BCIR(t, T )= A(t, T )e, (6.6) 
	where 
	+h)(T −t)/2 σ2
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	6.2.4 Aggregate claims process 
	In the collective risk model (Cramer-Lundberg model), the stochastic process Nt represents the number of claims occurring until time t. This is modelled as a Poisson 
	-
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	process with intensity λ> 0 (Korn et al., 2010). The size of the individual claims is denoted by the non-negative random variables Xi,i =1, ..., Nt with the distribution 
	function F (x)= P {Xi <x}. 
	In this model, we assume 1) the number of claims is independent of the claim sizes; and 2) the individual claims are independent and identically distributed. We also assume the aggregate loss process {Lt : t ∈ [0,T ]} follows a compound Poisson process and is defined as; 
	Nt
	 
	Lt = Xi (6.10) 
	i=1 and Lt=0 when Nt = 0. 
	6.2.5 CAT Bond Pricing Model 
	Consider two index-linked CAT bonds; a principal-at-risk CAT bond and a principaland-coupon-at-risk CAT with both the coupons and principal at risk if a catastrophe occurs. First consider the principal-at-risk CAT bond with pay-off (PCAT ) and ma
	2
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	turity T> 0. The payoff structure can be defined as; 
	 
	
	1, if LT < D. 
	

	PCAT = (6.11) 
	(1) 

	
	ρ, if LT ≥ D. 
	

	where LT represents the aggregate claims at time T , D is the threshold level that triggers a payout, and ρ(0 ≤ ρ< 1) represents the proportion of principal recovered by the investor at time T if the bond is triggered. The value of this bond at time t given the catastrophe loss distribution F (x) and the claim arrival process Nt is then given by (see e.g., Ma and Ma (2013) and Burnecki and Giuricich (2017)); 
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	= BCIR(t, T ) ρ + (1 − ρ) × eF (D) (6.12) n=0 
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	an index linked CAT pays out to the issuer if the losses from the pre-specified event exceed losses on a certain catastrophe loss index 
	2
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	under the risk-neutral probability measure Q.F (D)= Pr(X+ X+ ... + Xn ≤ D 
	∗n
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	Now consider the principal-and-coupon-at-risk CAT bond with a constant coupon c> 0 
	and the payoff structure; 
	 
	c +1, if LT < D. PCAT = (6.14)
	(2) 

	
	ρ(c + 1), if LT ≥ D. 
	

	where LT represents the aggregate claims at time T , D is the threshold level that 
	triggers a payout, and ρ(0 ≤ ρ< 1) represents the proportion of coupon and principal 
	recovered by the investor at time T if the CAT bond is triggered. Similarly, the value 
	of this bond at time t given the catastrophe loss distribution F (x) and the claim arrival 
	process Nt is then given by; 
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	6.2.6 The EM Algorithm and Flexible Mixtures 
	Assuming claim arrivals Nt follow a time-inhomogeneous Poisson process and a claim severity variable Xi ≥ 0 with distribution F (x)= P (Xi <x), the aggregate loss (Lt) 
	distribution is given as (see e.g., Ma and Ma (2013)); 
	∞
	 (λt)F (x, t)= exp{−λtt} F (x), x> 0 (6.17) 
	t
	n 
	∗n

	n=0 
	n! 

	= exp{−λtt},x =0 
	since the convolution function F (x) is analytically intractable, approximation methods including the normal approximation, the inverse gaussian approximation and the gamma approximation have been applied instead (Burnecki and Giuricich, 2017). Burnecki and Giuricich (2017) also show that few approximations exist for very heavy-tailed distributional assumptions. Since we assume catastrophe loss data is assumed to be heavy-tailed, heavy-tailed probability distributions are often applied to fit the data and e
	∗n
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	In this study, we propose an approximation method based on the Expectation Maximization (EM) Algorithm (the EM Approximation). The EM Algorithm is used to generate maximum likelihood estimates for incomplete data or latent/hidden variables. We will therefore be artificially formulating our problem as an incomplete data problem to facilitate maximum likelihood estimation (Ng et al., 2011). 
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	Problem Set-up 
	Assume X = {X,X, ..., Xn} is a sample of independently and identically distributed random variables derived from an M-component finite mixture of probability distributions. The density function f of the mixture distribution is the weighted average 
	1
	2
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	of the M-component densities with mixing weights ωm (ωm ≥ 0, m =1, ..., M, and 
	M 
	ωm = 1) (Sitek, 2016) 
	m=1 

	M
	 
	f(x|ϑ)= ωmfm(x|θm), (6.18) 
	m=1 
	where ϑ =(ω ,θ )=(ω,ω, ..., ωm, ..., ωm−1,θ,θ, ..., θ, ..., θ ) is the vector of un-
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	known parameters .The density functions fm are assumed to be absolutely continuous with respect to the Lesbegue measure and to be derived from the same univariate parametric family with d-dimensional parameter vector θm, F = {fm(.|θm),θm ∈ Θ ⊂ R} (Miljkovic and Grün, 2016; Sitek, 2016)). For purposes of analysis, we consider five heavy-tailed distributions; Gamma, Burr, Weibull, Lognormal and Birnbaum-Saunders. Most of these distributions have been tested for extreme event modelling in previous literature (
	-
	d

	The Classical EM Algorithm 
	Assume the complete data is given by Z =(X, Y ) where X is observed but Y is hidden (or unobserved). The log-likelihood for this complete data can then be represented by l(ϑ; X, Y ), where ϑ represents an unknown parameter vector for which we would like to find the maximum likelihood estimate. The EM Algorithm accomplishes this through two steps. The Expectation Step (E-step) computes the expected value of l(ϑ; X, Y ) given the observed data X and an initial estimate for the parameter vector 
	-

	ϑ i.e. ϑinitial. 
	The E-Step 
	Q(ϑ, ϑinitial) = E[l(ϑ; X, Y )|X, ϑinitial]
	:

	 
	= l(ϑ; X, y)p(y|X, ϑinitial)dy (6.19) 
	where p(.|X, ϑinitial) represents the conditional density of Y given X, assuming ϑ = 
	ϑinitial. 
	The Maximization step (M-step) then maximizes the expectation derived in the E-step 
	6.2. Valuation Framework 
	over ϑ. 
	The M-Step 
	We therefore set 
	ϑnew := max Q(ϑ, ϑinitial) (6.20)
	ϑ 
	The new ϑinitial is then set to equal ϑnew, and the process repeated until convergence. 
	The EM Algorithm and Flexible Mixtures 
	For the complete data Z =(X, Y ) defined above, Y =(Yim ∈{0, 1},i =1, ..., n, m = 1, ..., M) is the hidden variable that allocates each observation to their specific component. Y is assumed to consist of M vectors y =(y,y, ..., yn) for m =1, ..., M, where 
	-
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	1 if observation xi originates from component m yim = (6.21)
	
	
	0 otherwise 
	The complete data likelihood function for the finite mixture is then defined as; 
	nM
	 
	L(x,x, ..., xn|ϑ, ω)= (ωmfm(xi|θm))(6.22) 
	1
	2
	y
	im 

	i=1 m=1 
	The complete data log-likelihood can then be expressed as 
	nM
	 
	l(x,x, ..., xn|ϑ, ω)= yim[log(ωm)+ log(fm(xi|θm))] (6.23) i=1 m=1 
	1
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	In numerical simulation, the expected complete data log-likelihood (E-step) is determined by replacing hidden values with their expected values given the observed values X and the parameter estimates from the most recent iteration i.e. the k −1’th iteration for the k’th simulation. This expected value is then given by; 
	-
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	where ωis the posterior probability that xi originates from the m’th mixture for 
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	the kth iteration of the EM Algorithm (Ng et al., 2011). The EM Algorithm then 
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	iteratively maximizes the following operator; 
	nM
	 
	Q(ϑ|ϑ)= ω[[log(ωm)+ log(fm(xi|θm))] (6.25)
	(k−1)
	(s)

	im i=1 m=1 
	The E-step is the same for all distributions considered as it is independent of parametric form in F. The M-step generates new estimates for the unknown parameters ω and θ by maximization of the Q-operator. The ω estimates are updated in the kth iteration by 
	-
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	n
	1 
	(k)(k)
	ωm = ω(6.26) 
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	n 
	i=1 
	By solving a weighted maximum likelihood estimation problem for each of the component distributions with the posterior probabilities as weights, we can generate new estimates for θm. This can be solved analytically if possible, or by numerical optimization. In the distributions that follow, θk is obtained in the M-step as follows (Miljkovic and Grün, 2016); 
	-
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	Gamma:X ∼ G(λ, θ) The Gamma distribution has the form 
	1 
	λ−1 −x/θ
	f(x; λ, θ)= xe (6.27)
	where λ> 0 denotes the shape parameter, θ> 0 the scale parameter, and Γ(λ)= (λ − 1)!. M-step maximization of the Q-operator with respect to θ given λ gives the following closed form solution 
	Γ(λ)θ
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	= (6.28)
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	Marginal weighted log-likelihood, with θm as a function of λm; and numerical optimization are used to generate an estimate for λ. 
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	Burr:X ∼ Burr (λ, θ, γ) 
	6.2. Valuation Framework 
	The Burr distribution has the form; 
	λγ(x/θ)
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	f(x; λ, θ, γ) = (6.29) 
	x(1 + (x/θ)
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	γ 
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	where λ> 0,γ > 0 denote the shape parameters while θ> 0 denotes the scale parameter. The M-step maximization the Q-operator with respect to λ given θ and γ gives the closed form solution; 
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	θm 
	Marginal weighted log-likelihood, with λm as a function of θm and γm; and numerical optimization are used to generate estimates for θ and γ. 
	 
	 

	Weibull:X ∼ W(λ, α) The Weibull distribution with shape parameter α> 0 and scale parameter λ> 0 has a density function of the form 
	α−1 −(x/λ)
	(
	x
	)
	α 

	f(x; λ, α)= e (6.31)
	α

	λλ 
	Weighted log-likelihoods and numerical optimization are used to obtain estimates for α and θ. 
	Log-normal:X ∼ W(µ, σ) The log-normal density function is given as 
	2

	1(logx − µ)
	2 

	f(x; µ, σ)= √ exp(− (6.32)
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	xσ 2σwhere µ denotes the location parameter, σ> 0 denotes the scale parameter, and x> 0. M-step maximization the Q-operator with respect to µ and σ given µ gives the closed form solutions; 
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	Birnbaum-Saunders:X ∼ B-S(γ, µ, β) The Birnbaum-Saunders distribution with shape parameter γ> 0, location parameter µ, and scale parameter β> 0 has the form 
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	f(x; γ, µ, β)= 
	(6.35)
	ϕ
	2γ(x − µ) 
	γ 
	where x>µ. Weighted log-likelihoods and numerical optimization are used to obtain estimates for γ, µ and β. 
	Model selection and goodness-of-fit 
	To identify the optimal m-component mixture for a given dataset under each of the considered distributions, goodness-of-fit tests based on the Akaike Information Criterion (AIC) and the Bayesian Information Criterion(BIC) are conducted. 
	-

	The Akaike Information Criterion (AIC) (Akaike, 1974) provides a measure of the information lost when the specified model if fitted to a given dataset. It is calculated as follows; 
	AIC = −2ln(L)+2k (6.36) 
	where L is the maximum likelihood while k denotes the number of estimated model parameters. 
	The Bayesian Information Criterion (BIC) (Schwarz, 1978) performs the same function as the AIC, and considers both the parameters and the number of observations in 
	-
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	determining the information lost. The BIC is calculated as; 
	BIC = −2ln(L)+ kln(n) (6.37) 
	where L is the maximum likelihood, k is the number of parameters, and n represents the total number of observations. The lower the value of either the AIC or BIC, therefore, the better the model. However, since the BIC penalizes model complexity more heavily than the AIC, it is prioritized in cases where the two values lead to inconsistent conclusions on the choice of distribution. 
	6.3 Model Application 
	6.3.1 Data 
	Pricing an index-linked catastrophe bond requires specification of the respective loss index, since these bonds’ payoff are determined by the losses recorded by the underlying index. One of the most popular underlying indices is created by the US’s Property Claims Services (PCS), which records property losses from natural catastrophes in the USA and its associated territories. This data is used by industry catastrophe risk modellers and valuers to represent the underlying catastrophic loss processes. For th
	3

	The data is only used for application purposes. The timeline from January 1985 to March 2014 is a result of data unavailability due to extreme data costs for individual researchers after this period. The data was deemed acceptable to use as it was only used to fit the model and prove that the model could efficiently be applied to heavy-tailed data. Other recent studies have applied even older datasets, for example the Danish Fire data that spans the period beginning January 1980 and ending December 1990 for
	3
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	then adjusted for inflation to their 2014 values using the US Consumer Price Index. A time series plot of the data is displayed below; 
	6.3. Model Application 
	Figure
	Figure 6.1: Full PCS Data Histogram 
	Figure 6.1: Full PCS Data Histogram 


	Note: This figure displays a summary of catastrophe industry loss estimates from the Property Claims Services (PCS). The data covers the periods beginning January 1985 and ending March 2014, and comprises loss estimates from a majority natural perils, including hurricanes, earthquakes, tornadoes, wildfires, and winter storms. The displayed figures are inflation-adjusted estimates to 2014, using the US consumer price index. The losses are displayed in millions of US dollars, with the y-axis displaying loss e
	-
	-
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	6.3. Model Application 
	From the time series plot, key periods with the most severe losses can be identified. The year 1989 saw the occurrence of Hurricane Hugo; and the interval between the years 1992 and 1994 the occurrence of Hurricane Andrew and the Northridge Earthquake respectively. The year 2001 coincides with Tropical Storm Allison, while the time interval between 2004 and 2006 coincides with Hurricanes Frances, Jeanne, Katrina and Wilma. Hurricane Ike led to increased losses in 2008; while several extreme Wind and Thunder
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	Figure
	(a) Catastrophic Loss Severity (b) Catastrophic Loss Frequency 
	Note: The two plots above summarize the catastrophic loss severity values (left), and the catastrophic loss frequency (right) values for the PCS data spanning the period beginning January 1985 and ending March 2014. The Loss Severity plot displays aggregate loss estimates in millions of US dollars per year, while the Loss Frequency plot displays the annual loss frequencies per year. 
	The data’s summary descriptive statistics are given in the following table 
	This PCS data is focused on the US and its associated territories, but this is not an issue for CAT bond valuation, as most of these bonds are currently issued with US-based underlying perils. 
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	6.3. Model Application 
	Table 6.1: Summary Statistics for PCS Catastrophe Industry Loss Data 
	Table 6.1: Summary Statistics for PCS Catastrophe Industry Loss Data 
	Table 6.1: Summary Statistics for PCS Catastrophe Industry Loss Data 

	Statistic 
	Statistic 
	Value (USDm) 

	Minimum 
	Minimum 
	1.07 

	Maximum 
	Maximum 
	30630.28 

	Mean 
	Mean 
	128.46 

	Median 
	Median 
	28.90 

	Skewness 
	Skewness 
	22.45 

	Kurtosis 
	Kurtosis 
	581.61 


	Note: The table gives a summary of the PCS data descriptive statistics. These descriptive statistics relate to data spanning the period beginning January 1985 and ending March 2014, with the specific statistic displayed in the ‘Statistic’ column and its exact value displayed in the ‘Value’ column in millions of US dollars. The statistics assessed include the data’s range, given by the minimum and maximum values, its measures of location, including its mean and median, and finally the data’s measures of shap
	-

	From the table above, we can infer that the mean is approximately 4 times the median, suggesting that PCS data is right skewed, with a longer tail on the right. This assumption is justified by a maximum loss value that is about 239 times the mean, and skewness and kurtosis values of 22.45 and 581.61 respectively. These statistics suggest that the data is heavy-tailed, and this will be further confirmed by the following diagnostic tests, which are based on extreme value theory. 
	6.3.2 Further Heavy Tail Diagnostics based on Extreme Value Theory (EVT) 
	6.3. Model Application 
	Figure
	Figure 6.3: Exploratory QQ plot of PCS data for extreme value analysis 
	Figure 6.3: Exploratory QQ plot of PCS data for extreme value analysis 


	Note: The figure displays an exploratory quantile-quantile plot, used to test and further confirm the heavy-tailed characteristics of the PCS data. Departures from the medium-tailed distribution, which in this case is the exponential distribution, indicate either heavy-tailed data for convex departures, or lighter-tailed data for concave departures. 
	-
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	6.3. Model Application 
	The exploratory QQ plot is used for the identification of any departures from a medium-tailed distribution, with the medium-tailed distribution in this case being the exponential distribution. Convex departures are an indication of thinner-tailed data, while concave departures, similar to our case, serve as proof of the heavy-tailed nature of the data. This heavy-tailed observation is further supported by the sample mean excess plot, whose upward trend is an indication of heavy-tailed behaviour. It is there
	Figure
	Figure 6.4: Sample Mean Excess plot of PCS data 
	Figure 6.4: Sample Mean Excess plot of PCS data 


	Note: This plot represents the sample mean excess plot for the PCS data, used to further assess the heavy tail characteristics of the data. An approximately straight line indicates Pareto heavy-tailed behaviour, while a flat line indicates medium-tailed behaviour like that of the exponential distribution. 
	-

	6.4. Finite Mixture Model Fitting 
	6.4 Finite Mixture Model Fitting 
	Once the heavy-tailed nature of the data has been established, we now turn our attention to the fitting of the previously defined (see Sub-section 6.2.6) flexible mixture distributions to the data. These include the gamma, burr, weibull, lognormal, and the birnbaum-saunders distributions for the loss severity, and the poisson distribution for the loss frequency. The optimal mixture model under each distribution is chosen based on a low BIC value, and then compared with the other previously defined distribut
	-
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	6.4.1 Loss Frequency Model 
	For the loss frequency model we consider the Poisson distribution, a popular distribution for claim frequency modelling in actuarial applications (see e.g., Burnecki and Kukla (2003), Burnecki et al. (2005), and Albrecher et al. (2004)). 
	-

	Poisson:X ∼ G(λ) The Poisson distribution function is 
	f(x; λ)= (6.38) 
	λ
	x 
	−λ 
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	x! 
	e 

	where λ> 0 denotes the rate parameter. 
	M-step maximization of the Q-operator with respect to λ gives the closed form solution 
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	6.4. Finite Mixture Model Fitting 
	Table 6.2: EM-based Flexible Mixture Modelling: Loss Frequency 
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	Table 6.2: EM-based Flexible Mixture Modelling: Loss Frequency 

	Distribution 
	Distribution 
	M 
	NLL 
	AIC 
	BIC 

	Poisson 
	Poisson 
	1 2 3 4 
	2688.82 2221.83 2159.40 2159.40 
	5379.64 4449.66 4328.8 4332.8 
	5384.4 4463.95 4352.61 4366.13 


	Note: The table provides results of the flexible mixture model fits to the loss frequency data, via the R packages flexmix, ForestFit, and gendist. In the table, M represents the number of components of the distribution that make up the mixture; NLL represents the Negative Log-Likelihood value; and AIC and BIC display the Akaike Information Criterion and the Bayesian Information Criterion respectively, which are used to identify the distribution and components that provide the most optimal fit for the data.
	6.4.2 Loss Severity Model 
	For the loss severity model, we use the distributions previously defined in section 6.2. 
	Table 6.3: EM-based Flexible Mixture Modelling: Loss Severity 
	Table 6.3: EM-based Flexible Mixture Modelling: Loss Severity 
	Table 6.3: EM-based Flexible Mixture Modelling: Loss Severity 

	Distribution 
	Distribution 
	M 
	NLL 
	AIC 
	BIC 

	Lognormal Gamma Birnbaum-Saunders Weibull Burr 
	Lognormal Gamma Birnbaum-Saunders Weibull Burr 
	1 2 3 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 1 2 
	74881.06 74745.59 74738.78 77159.21 75267.19 75183.76 75033.71 74936.04 74877.15 74840.70 74788.23 74780.15 75725.19 75002.98 74933.42 74845.65 74785.21 74751.00 74749.97 75830.63 75283.79 75237.39 75132.79 75033.06 74950.18 74886.95 74822.72 74834.14 83590.17 83590.51 
	149766.1 149501.2 149493.6 154322.4 150544.4 150383.5 150089.4 149900.1 149788.3 149721.4 149622.5 149612.3 151454.4 150016 149882.8 149713.3 149598.4 149536.0 149539.9 151665.3 150577.6 150490.8 150287.6 150094.1 149934.4 149813.9 149691.4 149720.3 167184.3 167191.0 
	149778.7 149532.6 149543.8 154335.0 150575.8 150433.8 150158.5 149988.0 149895.1 149847.0 149766.9 149775.6 151466.9 150047.4 149933.1 149782.4 149686.4 149642.8 149665.6 151677.8 150609.0 150541.0 150356.7 150182.1 150041.2 149939.5 149835.9 149883.6 167196.9 167222.4 


	Note: The table provides results of the flexible mixture model fits to the loss severity data. Here M represents the number of components of the distribution that make up the mixture; NLL represents the Negative Log-Likelihood value; and AIC and BIC display the Akaike Information Criterion and the Bayesian Information Criterion respectively, used to identify the distribution and components that provide the most optimal fit for the data. The components with the lowest BIC value are highlighted in bold font. 
	-

	6.4. Finite Mixture Model Fitting 
	The optimisation functions were tested on the Poisson distribution for the loss frequency data; and on five pre-specified distributions for the loss severity data, including the log-normal, gamma, birnbaum-saunders, weibull, and burr distributions. Each category of mixture model was tested, by increasing the mixture components within each distribution until the best fitting mixture was established for each distribution category. The best fitting mixture for a distribution was determined as the mixture that 
	-
	-
	-
	-
	-

	The following table (Table 6.4) displays a comparison of the flexible mixture model fit with other comparable types of mixture models not based on the EM algorithm. The distributions tested are those that have been proposed in previous literature studying such composite models, including Cooray and Ananda (2005); Miljkovic and Grun (2016); and Grun and Miljkovic (2019), among others. We test General Composite Models (GCMs) that model mixtures as truncated distributions, and composite mixture models (CMMs) t
	-
	-

	6.4. Finite Mixture Model Fitting 
	Flexible Mixture Model (EM) 
	Table 6.4: Model Comparisons: Loss Severity 
	Table 6.4: Model Comparisons: Loss Severity 
	Table 6.4: Model Comparisons: Loss Severity 

	Distribution 
	Distribution 
	NLL 
	AIC 
	BIC 

	2-Component Log-normal mixture 
	2-Component Log-normal mixture 
	74745.59 
	149501.2 
	149532.6 

	General Composite Models (Newton-Raphson based) 
	General Composite Models (Newton-Raphson based) 

	Distribution 
	Distribution 
	NLL 
	AIC 
	BIC 

	Weibull-Loglogistic 
	Weibull-Loglogistic 
	80905.25 
	161818.5 
	161824.9 

	Weibull-Burr 
	Weibull-Burr 
	81376.64 
	162763.3 
	162771.3 

	Weibull-Pareto 
	Weibull-Pareto 
	82317.72 
	164643.4 
	164649.8 

	Weibull-Paralogistic 
	Weibull-Paralogistic 
	80050.61 
	160109.2 
	160115.6 

	Lognormal-Pareto 
	Lognormal-Pareto 
	83128.42 
	166264.8 
	166271.2 

	Composite Mixture Models (Newton-Raphson based) 
	Composite Mixture Models (Newton-Raphson based) 

	Distribution 
	Distribution 
	NLL 
	AIC 
	BIC 

	Weibull-Loglogistic 
	Weibull-Loglogistic 
	82943.89 
	165897.8 
	165905.8 

	Weibull-Burr 
	Weibull-Burr 
	80849.74 
	161711.5 
	161721.1 

	Weibull-Pareto 
	Weibull-Pareto 
	81098.48 
	162207.0 
	162214.9 

	Weibull-Paralogistic 
	Weibull-Paralogistic 
	81541.83 
	163093.6 
	163101.6 

	Lognormal-Pareto 
	Lognormal-Pareto 
	81098.48 
	162207.0 
	162214.9 


	Note: The table gives comparisons between the fit characteristics of the flexible mixture models optimized via the EM algorithm, when compared to other mixture-type models based on Newton-Raphson algorithms, including general composite models and composite mixture models. The columns display the distributions analysed (Distribution), the Negative Log-Likelihood (NLL), and the Akaike Information Criterion (AIC) and Bayesian Information Criterion(BIC) which determine the most optimal models by fit. 
	6.4. Finite Mixture Model Fitting 
	Performance analytics for the best models chosen under each mixture type are further analysed and displayed in the table below, with factors including the model’s estimate stability and reliability; its computational time; and finally its flexibility and adaptability characteristics. 
	Table 6.5: Comparable Model Performance Analytics 
	Mixture type 
	Mixture type 
	Estimate stability and relia-
	Computational time 

	Modelflexibility and adaptabilbility 
	-

	ity 
	ity 
	2-Component Log-Monotone: Stable and reli
	-

	0.06876183 seconds 

	Flexible, and the analysis of normal Finite Mix-able estimates 
	one distribution type per model ture Model (EM) 
	ensures ease of distributional additions Composite Weibull-Non-monotone: Reliability 
	1.30968 seconds 
	Flexible, but adding more dis-Burr Mixture Model and stability of estimates 
	tributions to mixture model (Newton-Raphson) 
	not guaranteed 
	can be comparatively more complicated Composite Weibull-Non-monotone: Reliability 
	1.231683 seconds 
	Flexible, but adding more dis-Paralogistic Model and stability of estimates 
	tributions to mixture model (Newton-Raphson) 
	not guaranteed 
	can be comparatively more complicated 
	Note: The models derived from Table 6.4 are further compared in terms of their efficiency, reliability, andflexibility in this Table. Thefirst column displays the type of mixture model, while the remaining three columns display the performance assessment factor, including the model estimates’ stability and reliability characteristics, the model’s computational time which represents the model’s efficiency, andfinally the model’sflexibility and reliability. 
	6.4. Finite Mixture Model Fitting 
	6.4. Finite Mixture Model Fitting 
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	From these two tables it is evident that the EM-based flexible mixture model possesses favourable performance statistics when compared to the other Newton-Raphsonbased composite models. We therefore progress with the chosen flexible mixture models to the next section, that is, catastrophe bond valuation and pricing. 
	-
	-

	6.4.3 Model Application to Catastrophe Bond Valuation 
	Following the valuation framework detailed in section 2, the claim severity and the claim frequency models are applied to generate the final compound distribution for the underlying aggregate claims process. The parameters generated from the flexible mixture fitting processes in Table 6.2 and Table 6.3 above are displayed below for the overall best mixture models based on the BIC, for the respective loss frequency and loss severity distributions. The matrices display the weights and parameters of the indivi
	For the loss frequency model i.e., the 3-component Poisson mixture 
	
	 
	 
	 

	component weight parameter 
	1 
	1 
	1 
	0.5913 
	0.7951 

	2 
	2 
	0.3468 
	1.8683 

	3 
	3 
	0.1230 
	2.7973 


	 
	And for the 2-component log-normal mixture loss severity model, the parameters 
	are;
	
	 
	 
	 
	 

	component 
	component 
	component 
	weight 
	µ 
	σ 

	1 
	1 
	0.9760 
	17.2173 
	1.1095 

	2 
	2 
	0.0240 
	21.3226 
	0.9164 


	The aggregate distribution is a Compound Poisson Flexible Mixture Model (CPFMM), and this is used to represent the aggregate claims process {Lt : t ∈ [0,T ]} (defined in sub-section 6.2.4) in the pricing equation. The CIR model (as defined in sub-section 
	6.2.3) is applied to represent the interest rate process used to generate the discount factors. 
	6.4. Finite Mixture Model Fitting 
	The catastrophe bond valuation equation, previously defined in sub-section 6.2.5, is given as 
	 T 
	Vt = e t E[PCAT |Ft] 
	− 
	r
	s
	ds
	Q
	(1)

	∞
	 
	(λt(T − t))
	−λ
	t
	(T −t) 
	n 

	= BCIR(t, T ) ρ + (1 − ρ) × eF (D) (6.40) n=0 
	∗n
	n! 

	for the principal-at-risk bond, given the catastrophe loss distribution F (x) and the 
	claim arrival process Nt, where F (D)= Pr(X+ X+ ... + Xn ≤ D is the n-
	∗n
	1 
	2 

	fold convolution of F and BCIR represents the CIR discount rates. If ρ(0 ≤ ρ< 1) represents the proportion of principle recovered by the investor at maturity time T if the bond is triggered, then this bond is assumed have a payoff of 1 if it fails to trigger and a payoff of ρ if the bond is triggered. The bond value is then given by Vt, where T is the time to maturity and D is the triggering threshold. 
	On the other hand, the valuation equation for the principal-and-coupon-at-risk CAT bond, also previously defined in sub-section 6.2.5 is given as 
	 T 
	Vt = e t E[PCAT |Ft] 
	− 
	r
	s
	ds
	Q
	(2)

	∞
	 
	(λt(T − t))
	−λ
	t
	(T −t) 
	n 

	= BCIR(t, T ) ρ(c + 1) + (1 − ρ(c + 1)) × eF (D) (6.41) n=0 
	∗n
	n! 

	given the catastrophe loss distribution F (x) and the claim arrival process Nt. Similar to 
	the principal-at-risk CAT bond equation above, F (D)= Pr(X+X+...+Xn ≤ D is 
	∗n
	1 
	2 

	the n-fold convolution of F and BCIR represents the CIR discount rates. ρ(0 ≤ ρ< 1) represents the proportion of principle and coupon recovered by the investor at maturity time T if the bond is triggered, and now there is the introduction of a fixed coupon c.This bond is thus assumed have a payoff of c + 1 if it fails to trigger and a payoff of ρ(c + 1) if the bond is triggered. The bond value is also given by Vt, where T is the time to maturity and D is the triggering threshold. 
	We now assume an index-linked catastrophe bond with face value Z = US$1, proportion ρ =0.7 and coupon c =0.1 at time t = 0. The prices are determined at different thresholds D, based on the annual average loss interval, with the lowest 
	6.4. Finite Mixture Model Fitting 
	threshold representing a quarter of the average loss and the highest threshold representing three times the average loss; and for different terms to maturity T , ranging from 0.25 to 2.25 years. The the 3D plot of final CAT bond prices assuming the log-normal mixture model are given in figures 6.5a and 6.5b, for the principal-at-risk and the principal-and-coupon-at-risk catastrophe bonds respectively. 
	-

	Figure
	(a) Principal-at-risk CAT bond prices (b) Principal-and-Coupon-at-risk CAT bond prices 
	Note: The figures represent the 3D plots of final CAT bond prices assuming the compound Poisson-log-normal flexible mixture model. Final catastrophe bond prices for the pay-off structures considered are given in figure 6.5a, for the principal-at-risk CAT bond; and figure 6.5b for the principal-andcoupon-at-risk CAT bond. The plot includes the value of the bond in dollars (V($)), the bond term in years (T(yrs)), and the trigger threshold in millions of dollars (D($m)). 
	-
	-

	Final catastrophe bond prices for the pay-off structures considered are given in figure 6.5a, for the principal-at-risk CAT bond; and figure 6.5b for the principal-andcoupon-at-risk CAT bond. From these figures we can make the following general deductions; index-linked principal-at-risk CAT bond prices fall (higher risk for investors) with an increase in the term of the bond and a decrease in the threshold. This is because as the term increases, the amount of time available for the bond to be triggered also
	-
	-
	-

	6.5. Conclusion 
	could be triggered much faster (at a lower loss value) than an equivalent bond with a higher threshold. A decrease in the threshold therefore increases the risk of loss for an investor. The coupon bond’s higher prices also imply that the penalty for risk is lower when investors receive higher interest payments. These figures prove that EM algorithm-based mixture processes can be efficiently applied to the modelling of catastrophic loss processes for their subsequent use as input to catastrophe bond valuatio
	-

	The significant improvement in computational efficiency, flexibility, and robustness, as detailed in sub-section 6.4.2, also proves this model’s superiority over other similar models for the modelling of heavy-tailed data. In addition, the model’s flexibility in incorporating heavy-tail characteristics of catastrophic loss data without over-smoothing the tails of the distributions and losing vital information about the specific extreme value processes under consideration, and ensuring better modelling accur
	-
	-

	6.5 Conclusion 
	This study set out to assess the suitability of the EM Algorithm in improving computational efficiency for catastrophe bond valuation. By formulating the convolution problem as an incomplete data problem, the EM Algorithm could be applied to the data to generate parameters for respective finite mixtures that could then be used to 
	-

	6.5. Conclusion 
	approximate the complex convolution function. The best-fitting mixture distribution based on the BIC, the 2-component log-normal mixture for loss severities; and the 3component Poisson mixture for loss frequencies, were chosen and used to construct the final aggregate loss distribution model, a Compound Poisson Flexible Mixture Model (CPFMM). This claims process was then used to approximate expected payoffs under different catastrophic loss observations. Finally, these expected payoffs are applied to estima
	-

	This study has confirmed that the EM Algorithm is a viable alternative for approximating the claim size distribution for heavy-tailed data, therefore contributing to the sparse literature on approximating heavy-tailed distributions. The approximation is also flexible in terms of weight distributions, as the practitioner can reallocate weights if their future assumptions differ form current catastrophic risk assumptions. The EM algorithm is also a numerically stable and fast machine learning technique, and t
	-
	-

	Even though this study has successfully applied the EM algorithm in approximating the convolution function, it was only conducted for five heavy-tailed distributions; the Burr, the log-normal, the gamma, the Birnbaum-Saunders and the Weibull. The EM Algorithm does not always converge for all distributions, and further tests still need to be conducted to assess such distributions further and propose extensions to the classical EM Algorithm that can improve the algorithm’s convergence properties. Some of thes
	6.5. Conclusion 
	In conclusion, this study has been able to recommend an alternative efficient technique for approximating the convolution that is both flexible and fast. This is useful especially for those practitioners looking to reduce their computational costs while still retaining flexibility of assumptions. The EM Algorithm also includes numerous extensions that could be alternatively applied if the classical EM fails for a given model, thus providing robust and extensive application options. 
	-
	-

	Chapter 7 
	Moving Beyond ‘Independent and Identically Distributed’ Catastrophe Loss Processes via Hidden Markov Models and the Baum-Welch Algorithm 
	In the recent years, shifting climate and demographic trends have led to a general rise in the occurrence and severity of catastrophe events. This has increased the need for extensive and efficient risk models to aid the risk assessment and decision-making process. Due to the complexity of the catastrophe loss modelling process, however, there has been a heavy reliance on simplifying assumptions, key among these being that observations are independent and identically distributed. Many catastrophe loss proce
	-
	-
	-
	-
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	7.1. Introduction 
	value techniques, and thereafter use hidden markov models to identify the optimal dependent mixture loss models for both loss severity and frequency. A compound markovdependent (CMDMM) mixture model is then generated for the chosen mixtures and used to generate aggregate losses that serve as input for a catastrophe bond valuation process. 
	-
	-

	7.1 Introduction 
	Climate change effects arising chiefly from human-activity-linked global warming and demography-based trends related to economic growth, urbanisation, asset accumulation, and rising population densities, especially in high natural-peril exposure localities have continued to worsen the frequencies and magnitudes of losses stemming from catastrophic events, especially those linked to natural disaster events. According to Swiss Re’s Research Institute Sigma, such effects contributed to record losses within the
	-
	-
	-

	So far, disaster risk insuring and financing institutions have had to bear the brunt of these rising costs, especially in more developed economies where insurance is a popular risk transfer option for individuals and institutions. As insurers generally rely on the pooling and diversification of risks to allow them to take on greater risk (see e.g., Rejda and McNamara, 2005), any extreme concentrations of risk can render such institutions 
	7.1. Introduction 
	insolvent. It is therefore crucial, for their own survival, that institutions in the business of taking on such extreme losses make such decisions only after thorough due diligence and analysis of the risks involved and the costs borne in the worst-case scenarios. In addition, and due to the aforementioned changes in climate and demographics, the need for efficiency in comprehensive risk assessment and modelling in light of these changes and trends is even greater, due to increasing volatility of losses int
	Starting from the late 1980s and early 1990s, theoretical developments in the modelling of univariate time series extremes proposed the most common approaches applied to date in catastrophe loss modelling. The most popular of these include the Fisher-Tippett Theorem for block maxima modelling via the generalized extreme value (GEV) distribution(Fisher and Tippett, 1928; Falk, 1994; Gumbel, 1958) and the PickandsBalkema-de Haan Theorem for the exceedances over thresholds modelling via the generalized pareto 
	-
	-
	-
	-
	-

	The ‘independence and identical distribution’ (IID) assumption was essential to the simplification of the extreme value modelling process, making it straightforward to generate estimates and model heavy-tailed data via extreme value theory (McNeil, 1997) for an otherwise complex process. It is not always the case, however, that catastrophic events generate independent or even identically distributed data (Fawcett, 2013). Recent climate trends and demographic changes, previously discussed in this section’s f
	-
	-

	7.1. Introduction 
	no longer aid in generating models that serve as reliable representations of reality. Assuming independence for dependent data would mean the under-estimation of standard errors for such a process (Davison and Smith, 1990), and assuming non-identically distributed observations possess identical distributions would lead to unreliable and even erroneous estimates. 
	-
	-

	This diversion is especially evident in events that are seasonal by nature e.g., meteorological events like windstorms and hurricanes that lead to the clustering of losses within the time of the year when the event is said to occur most frequently. The Atlantic and the East Pacific seasons in the US, for example, imply higher meteorological event occurrences between June 1st and November 30th of every year, according to the US National Oceanic and Atmospheric Administration (NOAA) (NOAA, 2022). In addition,
	-
	-

	Previously, researchers attempted to address these issues by focusing on the origin of the clustering and developing techniques to model such sources. This means that, of the two main sources of clustering historically identified, i.e., seasonality and temporal dependence (see e.g., Davison and Smith (1990) and Fawcett (2013)), the developed modelling approaches focused only on one or the other. Studies that focused on addressing temporal dependence issues include Davison and Smith (1990) and Simpson et al.
	-
	-

	7.1. Introduction 
	where both sources underly the clustered nature of loss observations, addressing only one aspect leads to an incomplete loss model and subsequently inefficient valuation of disaster risk instruments. This can be costly, not only to the issuer, who then has to pay for the model-based risks that their investors have to take on due to model reliability limitations and any other perceived information asymmetries introduced by incomplete models. 
	Furthermore, since these approaches focused heavily on modelling the tail dependencies in the dataset by assuming this was an independent phenomenon, the possible causalities between tail dependence and main sample dependence were ignored. These dependencies are a real possibility, however, since some of the seasonal characteristics of an event, which we assume are the main cause of in-sample clustering, can magnify its heavier (tail) losses . It is widely understood, for example, that specific events displ
	-
	-

	To adequately address these issues therefore, we would need a more standardized technique that would focus on the typical structure of a non-IID dataset and attempts to adequately model this structure. Thereafter, the assumed origin of the observed structures could be used to explain the clustering structure or distributions observed for different processes, thereby accounting for most of the sources of such phenomena. We accomplish this by applying Hidden Markov Models (HMMs) and the Baum-Welch algorithm (
	-
	-

	7.1. Introduction 
	account for the cluster distributions. Thereafter, the recommended Hidden Markov Models (HMMs) are used to develop a Compound Markov-Dependent Mixture Model (CMDM) for the aggregate catastrophic loss process, whose estimates are then used as inputs in a catastrophe bond valuation model. 
	Hidden Markov models, developed in the 1960s by Baum and Petrie (1966) and Baum and Eagon (1967), are a numerically efficient maximum likelihood optimization technique that have been shown to be reliable for modelling heterogeneous dataset, especially when the heterogeneity is unobserved (Zucchini et al., 2016). Since we assume that each cluster represents a ‘state’ of the loss process, Hidden Markov Models are useful for the identification of a loss process’s underlying states that drive the observed loss 
	Our contribution is therefore as follows. First, we identify and assess the extent of ‘clustering’ in heavy-tailed catastrophe loss data. Thereafter, we apply Hidden Markov models and the Baum-Welch algorithm (a special case of Expectation Maximisation Algorithms) to model these ‘clusters’ and propose fitting dependent mixture models for both the catastrophe loss severity and loss frequency processes. The proposed models, which, in our case are the 4-state Log-normal and the 3-state Poisson HMMs for the los
	The development of a Compound Poisson Markov-Dependent Model (CPMM) for the incorporation of seasonality and time-based dependence is of significant consequence, especially now in the face of developing climate and demographic trends that have led to increased catastrophic loss frequencies and loss severities. Models that are able to incorporate changes introduced by these trends, especially those related 
	-

	7.2. Previous Literature 
	to dependence of losses and more extreme seasonality elements of disaster events are particularly necessary to allow for more comprehensive and fair pricing of disaster risk financing instruments, including catastrophe bonds. 
	This study’s contributions are therefore of particular use to risk and catastrophe loss modellers, who are tasked with the role of incorporating all elements underlying catastrophic risk processes as comprehensively as possible; disaster risk financing security issuers, who use the results of such analysis to determine their disaster risk financing options and estimate market prices; and finally, disaster risk security investors, who then rely on these models to set the prices offered under each security ba
	-

	The rest of this article is structured as follows: Section 7.2 summarises key literature in dependence and non-stationarity modelling, Section 7.3 specifies the model and the algorithms; Section 7.4 details the numerical analysis and model estimation process, including the model application to catastrophe bond valuation; and Section 
	-

	7.5 concludes the study. 
	7.2 Previous Literature 
	Prior to the turn of the century, heavy-tailed losses models had garnered considerable interest due to the increase in severity of high-loss events observed in the early 1990’s, especially, with Hurricane Andrew and the Northridge earthquake . This led to growing need for insurance securities that could address the capital flight from insurance and reinsurance markets due to the increase in event risk. Researchers during this time therefore proposed and applied extreme value models to the available heavy-ta
	1
	-

	earthquakes-in-the-u-s/ 
	1
	https://www.verisk.com/verisk-review/archived-articles/top-10-historical-hurricanes-and
	-
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	data, mainly Danish Fire Insurance data , to provide a reference point for practitioners to base their own risk assessment and quantification models. These extreme value theories were neatly summarized by several authors, including McNeil (1997), Resnick (1997) and Embrechts et al. (1997). 
	2
	-

	Original parametric techniques were heavily based on extreme value theories due to such developments in extreme event modelling theory and its applications. These include the Fisher-Tippett-Gnedenko theorem for Generalized Extreme Value distributions (Fisher and Tippett, 1928; Falk, 1994; Gumbel, 1958) and the Pickands Balkema-De Haan theorem for the Generalised Pareto distributions (GPD)(Gnedenko, 1943; Balkema and Haan, 1974; Pickands, 1975). These theories all relied on the assumption that data was indep
	-
	-
	-

	To address these issues, past researchers focused on addressing each source of deviation separately. One of these sources; temporal dependencies as a result of serial correlation, has received considerable attention compared to other sources like seasonality. Leadbetter et al. (1983) addressed extreme dependent processes by developing a theory to derive the maxima of dependent, but stationary extremes. The Leadbetter’s condition allowed the long-range dependence of an extreme process to be weak 
	-
	-
	-

	This data comprises of loss observations describing large fire insurance claims in Denmark between 3rd January 1980 and 31st December 1990 (see e.g., McNeil (1997) ) 
	2
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	enough, thus lessening its impact on the asymptotics of an extreme value analysis (Fawcett, 2013). 
	Due to this condition, tail dependence is rarely an issue in the block maxima approaches (Charpentier, 2016). This is because in most cases, we can comfortably assume that long-range dependence is weak and model the process as independent (Fawcett, 2013). Block maxima, however, wastes a lot of data in an already data-scarce process, and is therefore a less preferred approach when compared to the threshold exceedances approaches (Charpentier, 2016). 
	-
	-

	For threshold exceedances, however, serial correlation is a major challenge, and the data would require modifications to allow the application of Generalised Pareto Models for parameter estimation. This is because serial correlation is mainly observed in threshold exceedances, due to the structure of this approach; while the underlying theory assumes independent observations. This can be addressed through a number of techniques summarized in Fawcett (2013) and listed below. 
	The first approach involves extracting an approximately independent sample of threshold exceedances through a declustering approach e.g., the runs declustering method (Davison and Smith, 1990). This approach, though popular, has been shown by Fawcett and Walshaw (2012) to be sensitive to the choice of ‘declustering parameter’. The second approach ignores this dependence and fits the Generalised Pareto Distribution, thereafter the estimates are adjusted to reflect the effects of dependence. The third approac
	-

	The second source of deviation; non-stationarity in catastrophe loss processes, arises mainly due to inherent seasonality in catastrophic events; or due to changing climate trends (Davison and Smith, 1990; Smith, 1989). These effects have been shown to affect security valuation and yield volatilities for the respective events (e.g., Herrmann and Hibbeln, 2021). In addition, it has been shown that incorporating this non-stationarity could significantly improve models used in the risk assessment process (Towe
	7.2. Previous Literature 
	Contrary to temporal dependencies; there are no general theories to describe non-stationary extremes. This means that non-stationarity is generally modelled by analysing the seasonal structures of the events under consideration (e.g., Rootzén and Katz, 2013) and most models are therefore specific to the event under consideration. Some approaches have been proposed in literature to address seasonality (Fawcett, 2013), and are summarised below. 
	The first approach involves fitting the model only to the season that displays the most extreme behaviour. This approach assumes that seasonal stationarity holds for these extreme seasons, which can be a limitation. In addition, the approach leads to significant wastage of data. The second approach attempts to ensure that seasonal stationarity holds better by assuming a longer timeline for the seasonal event. This approach picks an ‘extreme time of the year’ e.g., the Atlantic season for meteorological even
	-
	-
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	-

	Alternative approaches (Davison and Smith, 1990) include ‘pre-whitening’ (e.g., Pugh and Vassie, 1980; Tawn et al., 1989), which removes the identified seasonal components before modelling the observations; and the ‘separate seasons’ approach (e.g., 
	-

	https://www.theguardian.com/world/2021/oct/10/wildfire-climate-emergency-us-west 
	https://www.theguardian.com/world/2021/oct/10/wildfire-climate-emergency-us-west 
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	Smith, 1989; Carter and Challenor, 1981); where the year is split into its respective seasons and separate models fitted to each season. This is the approach that is most similar to this study’s, with the exception that this study fits the season-states by optimization, and this fit is accomplished for both temporal dependencies and seasonality. Other approaches include the use of a periodic function in the intensity parameter estimation process to account for seasonality (Hainaut, 2012) and the use of pre-
	-
	-

	Aside from models focusing on the sources of deviation; general ‘clustering’ approaches have also been applied in literature. The main approaches focused on modelling the number of clusters and thereafter determining the underlying cluster distribution. This distribution was then merged with a suitable claim severity distribution and its cluster maxima derived (e.g., Mendes and Lima, 2005; Mendes, 2006). These approaches can be linked to Leadbetter’s approach for deriving cluster maxima (Leadbetter et al., 
	-
	-
	-
	-

	This study adopts a ‘general clustering’ approach as well, but instead of modelling the number of clusters, we assume the clusters are generated from interrelated processes, and can therefore be grouped into descriptive states. These states would be much fewer than the number of clusters, since some clusters are seasonally recurrent. We model these states instead, through maximum likelihood optimization techniques, assuming they are the real drivers of the observed extremes. The next section details the hid
	-

	7.3 Model Specification 
	7.3.1 The Hidden Markov Model 
	A Hidden Markov Model (HMM) is an unsupervised machine learning technique that was developed as a way to handle processes displaying considerable heterogeneity in 
	7.3. Model Specification 
	observations. These include instances of over-dispersion from typically assumed distributions; or cases of serial dependence (Zucchini et al., 2016). In addition, HMMs allowed researchers to model unobserved ‘cycles’ or ‘hidden states’ in cases where observations were assumed to be generated from underlying hidden processes, effectively ensuring all underlying information was incorporated into the final model. Over time, HMMs have found applicability in signal processing, especially in speech recognition (J
	-
	-
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	Under HMMs, observations are assumed to have been generated from an underlying unobserved state process satisfying the Markov property. The observation Xt at time t is stochastically generated, but the state S of this process is hidden, that is, it is not directly observable. The states are only observable through their observations. These hidden state process satisfies the Markov property, meaning that the state St at time t depends only on the previous state St−1 at time t − 1; assuming a first-order Mark
	The joint distribution of the hidden state process and its respective observations process for this first order HMM is expressed as (see e.g., Degirmenci (2014) and Rabiner (1989)); 
	N
	 
	P (S1:N ,X1:N )= P (S)P (X|S) P (St|St−1)P (Xt|St) (7.1) t=2 
	1
	1
	1

	where S1:N = S, ..., SN . Alternatively, Equation 1 can be written as; 
	1

	NN
	 
	P (X1:N ,S1:N )= P (S) P (St|St−1) P (Xt|St) (7.2) t=1 t=2 
	1

	7.3. Model Specification 
	The HMM is characterised by five elements (see e.g., Helske and Helske (2019), Degirmenci (2014), and Rabiner (1989)); 
	-

	1 The observed state sequence X =(X,X, ..., XT ) with distinct observations ω ∈ {1, ..., Ω}. 
	1
	2

	2 The hidden state sequence S =(S,S, ..., ST ) with hidden states k ∈{1, ..., K}. 
	1
	2

	3 The initial state distribution, π, which is a K × 1 vector of probabilities {πk}. πk gives the probability of starting from hidden state k; 
	πk = P (S= k); k ∈{1, ..., K} (7.3) 
	1 

	4 The state transition matrix, A,a K × K matrix {Akj }. Akj is the probability of transitioning from hidden state k at time t − 1 to hidden state j at time t; 
	A{kj} = P (St = j|St−1 = k); k, j ∈{1, ..., K} (7.4) 
	where Akj = 1. 
	j 

	5 The emission matrix, B, an Ω × K matrix {Bk(ω)}. Bk(ω) is the probability of the hidden state k emitting the observed sate ω; 
	Bk(ω)= P (Xt = ω|St = k); k ∈{1, ..., K}; ω ∈{1, ..., Ω} (7.5) 
	7.3.2 Model Considerations 
	Three considerations govern the applicability of HMMs to real-world applications, according to Rabiner (1989). These include 
	-

	The Evaluation Problem 
	Given the model parameters defined above, define the HMM model θ as; θ =(A, B, π) (7.6) 
	7.3. Model Specification 
	Given θ and the sequence of observations X, ..., XN , this problem involves determining the probability that the observation sequence X, ..., XN was generated from the HMM model θ, that is; 
	1
	1

	P (X1:N |θ) (7.7) 
	This problem can also be summarized as; 
	Given θ, X1:N −→ Estimate P (X1:N |θ) (7.8) 
	This can be solved through the Forward Algorithm (see e.g. Murphy (2012), Degirmenci (2014)). 
	-

	The Forward Algorithm 
	In this algorithm, forward filtering is applied to derive filtered marginals P (St|X1:T ) through a two-step process (Degirmenci, 2014). The ‘prediction’ step uses the current computed probability to estimate the probability of the proceeding time step, that is; 
	P (St|X1:t−1)= ... 
	K (7.9)
	 
	= P (St = j|St−1 = i)P (St−1 = i|X1:t−1) i=1 
	This probability then acts as the new prior for time t. The ‘update’ step then applies the Bayes rule to the observations at time t to generate the forward probabilities; 
	αt(j) ≜ P (St = j|X1:t) 
	= P (St = j|Xt,X1:t−1) P (Xt|St = j, X1:t−1)P (St = j|X1:t−1) (7.10)
	= 
	P (Xt|St = j, X1:t−1)P (St = j|X1:t−1) 1 
	j 

	= P (Xt|St = j)P (St = j|X1:t−1)
	Ct 

	where Ct is a normalisation constant, given by; 
	K
	 
	Ct ≜ P (Xt|X1:t−1)= = P (Xt|St = j)P (St = j|X1:t−1) (7.11) j=1 
	αt = P (St|X1:T ) is a K × 1 matrix. 
	7.3. Model Specification 
	The Decoding Problem 
	Given the HMM model θ and observations X, ..., XN , in this problem we would seek to determine the most probable hidden state sequence S, ..., SN which would best explain the observations X, ..., XN . This is solved using the Viterbi algorithm (see e.g. Murphy (2012), Degirmenci (2014)). 
	1
	1
	1

	Viterbi Algorithm The Forward Algorithm calculates P (X1:N |θ) by summing over all state sequences; but the Viterbi Algorithm approximates P (X1:N |θ) with P(X1:N |θ), which uses the most probable state sequence instead of all state sequences. 
	ˆ

	The Viterbi Algorithm finds the most likely state sequence; 
	ˆ
	P (X1:N |θ)= maxS [P (X1:t,S1:t|θ)] (7.12) 
	where S is the most likely state sequence. 
	The probability of the most probable state of length t and ending at state j is given by 
	δj (t)= maxS,...,St−1)[P (X1:t,St = j|θ)] (7.13) 
	1
	(

	Where S, ..., St−1 is the most probable state sequence. As with the forward algorithm, δ can be derived recursively; 
	1


	δj (t)= maxi[δi(t − 1)Aij Bj (Xt)] (7.14) 
	δj (t)= maxi[δi(t − 1)Aij Bj (Xt)] (7.14) 
	The Learning Problem 
	The final problem, and the most important and complex, focuses on adjusting the HMM parameters to optimize P (X1:N |θ). This is solved through the Baum-Welch Algorithm (Baum et al., 1970; Baum, 1972; Welch, 2003), which also requires the forward and backward probabilities α and beta from the Forward-Backward algorithm as inputs. The Baum-Welch Algorithm is a special case of the EM Algorithm (Dempster et al., 1977) for hidden markov models, implying therefore, that this step is essentially completed via the 
	7.3. Model Specification 
	The Forward-Backward Algorithm 
	Using the forward probabilities α from the Forward Algorithm, we can compute the backward probabilities and derive the smoothed marginals. We begin this process by defining the probability that the hidden state at time t is j; 
	P (St = j|X1:N ) ∝ P (St = j.Xt+1:N |X1:t) 
	(7.15) 
	∝ P (St = j|X1:tP (Xt+1:N |Zt = j, X1:t) 
	If we define the smoothed posterior marginal by 
	γt(j) ≜ P (Zt = j|X1:N ) (7.16) 
	Equation 7.3.2 above can then be rewritten as 
	γt(j) ∝ αt(j)βt(j) (7.17) 
	with 
	βt(j) ≜ P (Xt+1:N |St = j) (7.18) 
	representing the conditional likelihood of future observations. Through recursion, β can now be computed as; 
	βt−1(i)= P (Xt:N |St−1 = i) 
	 
	= P (St = j, Xt,Xt+1:N |St−1 = i)...P (St = j, Xt|St−1 = i) j 
	 (7.19)
	= P (Xt+1:N |St = j)P (Xt|St = j, , St−1 = i)...P (St = j|St−1 = i) j 
	 
	= βt(j)ψt(j)A(i, j) j 
	The smoothed posterior γi is then given by 
	αi ⊙ βi
	γi = (7.20) 
	(αi(j) ⊙ βi(j)) 
	j 

	The Baum-Welch Algorithm 
	Given a sequence of observations X, ..., XN we would like to solve 
	1

	 
	argmaxθP (X; θ)= argmaxθ P (X, S; θ) (7.21) 
	S 
	7.3. Model Specification 
	through maximum likelihood estimation. However, the summation function is computationally complex, and the model parameters are therefore estimated through the EM Algorithm instead. This involves two steps; the Expectation Step (E-step) and the Maximisation Step (M-Step). The E-step is expressed as (Murphy, 2012; Degirmenci, 2014); 
	-

	γtk ≜ P (Stk =1|X, θ) 
	old

	(7.22)
	αk(t)βk(t)
	= 
	N j=1 j j 
	α
	(t)β
	(t) 

	ξtjk ≜ P (St−1,j =1,Stk =1|X, θ) 
	old

	(7.23)
	αj (t)Ajkβk(t + 1)Bk(Xt+1)
	= 
	N 
	i=1 iiIn the M-step, the parameters maximising P (X1:N |θ) are determined as follows; E[N] γk
	α
	(t)β
	(t) 
	1
	1

	πˆk = = (7.24)j=1 j 
	k 
	K 
	N 
	γ
	1

	E[Njk] t=2 ξtjk Ajk == (7.25) 
	ˆ 
	K
	N 
	N 

	k jkl=1 t=2 tjl 
	′ 
	E[N
	] 
	ξ

	N
	E[Mjl] t=1 γtlXtj
	ˆ 

	Bjl == (7.26)γtl 
	N 
	E[Nj ] 
	t=1 

	new 
	θ

	=(A,B,θ) (7.27) This algorithm uses, as inputs, the forward and backward probabilities from the Forward-Backward Algorithm. 
	ˆ 
	ˆ 
	ˆ

	Baum-Welch Algorithm (Degirmenci, 2014) 
	1. 
	1. 
	1. 
	Input: X1:N , A, B, α, β 

	2. 
	2. 
	for t =1: N do 

	3. 
	3. 
	γ(:,t)=(α(:,t) ⊙ β(:,t))./sum(α(:,t) ⊙ β(:,t)); 

	4. 
	4. 
	ξ(:, :,t) = ((α(:,t) ⊙ A(t + 1)) ⋆ (β(:,t + 1) ⊙ B(Xt+1)))./sum(α(:,t) ⊙ β(:,t)); 
	T 
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	5. 
	5. 
	5. 
	πˆ= γ(:, 1)./sum(γ(:, 1)); 

	6. 
	6. 
	for j =1: K do 

	7. 
	7. 
	A(j, :) = sum(ξ(2 : N, j, :), 1)./sum(sum(ξ(2 : N, j, :), 1), 2); 
	ˆ


	8. 
	8. 
	B(j, :) = (X(:,j)γ)./sum(γ, 1); 
	ˆ
	T 


	9. 
	9. 
	Return π,ˆ A,B
	ˆ 
	ˆ 



	7.4 Numerical Analysis 
	7.4.1 Exploratory Data Analysis 
	We test Hidden Markov Models on meteorological eventdata from the US’s Property Claim Services (PCS), which provides industry loss estimates of historical catastrophic events. The data, which consists of 3143 observations between 12th January 1985 and 12th April 2014, includes the affected states, the perils, and the loss estimates. This meteorological event data is extracted from a larger dataset of 3951 observations consisting of all major loss events including earthquakes and wildfires. The meteorologica
	4 
	5 
	-
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	As defined by Munich Re in natural-disasters/natural-disasters.html 
	4
	https://www.munichre.com/topics-online/en/climate-change-and
	-

	The data is only used for applicational purposes. The timeline from January 1985 to April 2014 is a result of data unavailability due to extreme data costs for individual researchers after this period. The data was deemed acceptable to use as it was only used to fit the model and prove that the model could be applied to heavy-tailed data. Other recent studies have applied an even older dataset, the Danish Fire data, that spans the period beginning January 1980 and ending December 1990 for similar purposes (
	5

	As defined by Munich Re in natural-disasters/natural-disasters.html 
	6
	https://www.munichre.com/topics-online/en/climate-change-and
	-

	7.4. Numerical Analysis 
	were adjusted for inflation to their 2014 values using the US Consumer Price Index (CPI), range from approximately 1 million US dollars at minimum to over 30 billion US dollars at maximum, showing just how dispersed this dataset is. 
	The time series plot of this dataset is given in Figure 7.1 below; 
	Figure
	Figure 7.1: Time Series Plot of Meteorological Catastrophe Losses 
	Figure 7.1: Time Series Plot of Meteorological Catastrophe Losses 


	Note: This time series plot provides a graphical summary of catastrophic industry loss estimates from meteorological loss events, including hurricanes, tropical storms and other extreme wind and thunderstorm events. The data was provided by the US’s Property Claims Services (PCS) and spans the period from January 1985 to April 2014. The individual loss estimates were adjusted for inflation to their 2014 values using the US Consumer Price Index (CPI). Loss estimates are displayed in millions of US dollars on
	-
	-

	The time series plot allows us to identify the periods of most extreme losses and any signs of data clustering, especially in large losses. From Figure 7.1 we can see 
	7.4. Numerical Analysis 
	that the years 1989, 1992, 2001, 2004-2005, 2008-2009, 2011 and 2012-2013 experienced the most extreme catastrophic events. This periods coincide with the following catastrophic events respectively; Hurricane Hugo, Hurricane Andrew, Tropical Storm Allison, Hurricanes Frances, Jeanne, Katrina and Wilma in the 2004-2005 period, Hurricane Ike in 2008, several extreme Wind and Thunderstorm events in 2011, and finally, Hurricane Sandy in 2012. This is further supported by Figure 7.2a and Figure 7.2b below, that 
	-
	-

	Figure
	(a) Annual Catastrophic Loss Severities (b) Annual Catastrophic Loss Frequencies 
	Note: The two figures above display the aggregate annual loss severity (left) and annual loss frequency (right) estimates for PCS’ meteorological industry loss data, for the period beginning January 1985 and ending April 2014. The Annual Loss Severities plot summarises the annual catastrophic loss severity values, while the Annual Loss Frequencies plot gives a summary of the annual catastrophic loss frequency values. Loss estimates in millions of US dollars are displayed on the y-axis while the x-axis displ
	-
	-

	From these plots, we can also see that some ‘clustering’ is evident. Further tests 
	will prove that this is indeed the case, and provide an estimate of the extent of this 
	clustering. For the moment, we conduct tests on the data to determine that it is indeed a 
	7.4. Numerical Analysis 
	heavy-tailed process. The QQ plot and the plot of the sample mean excess function are used to support the heavy-tailed nature of the data. 
	Figure
	Figure 7.3: Exploratory QQ plot 
	Figure 7.3: Exploratory QQ plot 


	Note: The figure displays the exploratory quantile-quantile plot against the exponential distribution (Exploratory QQ-plot), used to visually test the PCS meteorological data’s heavy-tailed properties. Concave departures from the medium-tailed exponential distribution’s straight line indicate that the data is heavy-tailed while Convex departures indicate shorter-tailed data. 
	The QQplot against the exponential distribution visually examines whether the data is derived from an exponential distribution i.e. a medium-tailed distribution. Any concave departures, as observed in Figure 7.3, indicate that our data is heavy-tailed while convex departures indicate shorter-tailed data. This plot proves that our data is heavy-tailed, and this is further reinforced by the plot of the sample mean excess function. 
	7.4. Numerical Analysis 
	Figure
	Figure 7.4: Sample Mean Excess Plot 
	Figure 7.4: Sample Mean Excess Plot 


	Note: The plot of the sample mean excess function is used to further test and confirm heavy-tailed properties of the PCS meteorological data. As the medium-tailed exponential distribution would give an approximately horizontal line in this case, an upward trend in the line would indicate Pareto heavy-tailed behaviour. 
	-

	7.4. Numerical Analysis 
	In this plot, an upward trend indicates heavy-tailed behaviour, since the exponential data would give an approximately horizontal line. Figure 7.4 proves the heavy-tailed nature of our data through its reasonably straight line with positive gradient. 
	The next set of tests assesses the presence and extent of ‘clustering’ in our data. We apply a variety of tests, including the ACF for serial correlation; the Ljung-Box Test for Independence; and finally the extremal index for clustering extent quantification and plotting. The tests are described below. 
	We first test for independence of observations using the Ljung-Box test for inde
	-

	(−16)
	pendence (Ljung and Box, 1978). The results of this test i.e. a p-value < 2.2e , lead to the rejection of the null hypothesis (independence of observations) in favour of the alternative hypothesis (evidence for dependence) at the 99.9999% confidence level. The presence of serial correlation is then tested through the sample autocorrelation function (ACF), and the results displayed in Figure 7.5. 
	7.4. Numerical Analysis 
	Figure
	Figure 7.5: Sample Autocorrelation Function 
	Figure 7.5: Sample Autocorrelation Function 


	Note: The sample autocorrelation function plot is used to test for serial correlation in the PCS meteorological data, as a preliminary step to determining the presence and extent of ‘clustering’ in the data. A larger number of spike points above the blue confidence band would be proof of serial correlation. Furthermore, the persistence of these spikes over higher and higher lags would also be an indication of long-range dependence as opposed to short-range dependence. 
	-
	-

	7.4. Numerical Analysis 
	The large number of spikes falling above the blue confidence band indicate that the data is serially correlated. In addition, the persistence of the spikes over higher and higher lags is also an indication that we are dealing with long-range dependence as opposed to short-range dependence. This implies that we cannot assume independence by relying on the presence of only short-range dependence; and can only model the data as a dependent non-stationary process. 
	Finally, the extent of clustering is quantified and plotted through the use of the extremal index (Embrechts et al., 1997). Using the Ferro-Segers ‘intervals method’ (Ferro and Segers, 2003), we get an estimated index value of 0.4517447 (Confidence interval: 0.3703886 -0.5610667) at the 95% confidence level. This proves our original deduction that clustering is evident in the data, since an independent dataset would give an extremal index of 1, with this value decreasing with the extent of clustering observ
	7.4. Numerical Analysis 
	Figure
	Figure 7.6: Extremal Index Estimation 
	Figure 7.6: Extremal Index Estimation 


	Note: Once clustering has been established in data, its extent is quantified and plotted through the extremal index above. Three different techniques for extremal index estimation are used to arrive at these values, including the blocks method, the reciprocal mean cluster size method and the runs method (see e.g., Embrechts et al. (1997)). These results are displayed in the extremal index plot above, where the blocks, reciprocal and runs estimates are plotted by the black line, the green triangles, and the 
	-

	7.4. Numerical Analysis 
	7.4.2 Hidden Markov Model Fitting 
	Once the presence and extent of ‘clustering’ has been established, we model this using the hidden markov model and the Baum-Welch algorithm. For this purpose we apply the R packages HiddenMarkov (Harte, 2021) and depmixs4 (Visser and Speekenbrink, 2010). We estimate two models; one representing the loss severity, and the other representing the loss frequency. Table 7.1 displays the model specification and fit results. The columns display the mixture distribution type (Distribution), the number of states of 
	-
	-

	7.4. Numerical Analysis 
	Table 7.1: Hidden Markov Models fitted to Meteorological Loss Data 
	Table 7.1: Hidden Markov Models fitted to Meteorological Loss Data 
	Table 7.1: Hidden Markov Models fitted to Meteorological Loss Data 

	Distribution 
	Distribution 
	No. of states (K) 
	Loss Frequency Model Negative Log-Likelihood 
	AIC 
	BIC 

	Poisson 
	Poisson 
	1 2 3 4 
	2118.067 1805.326 1774.287 1768.954 
	4238.134 3620.653 3570.574 3575.954 
	4242.737 3643.666 3621.202 3663.357 

	Distribution 
	Distribution 
	No. of states (K) 
	Loss Severity Model Negative Log-Likelihood 
	AIC 
	BIC 

	Exponential 
	Exponential 
	1 2 
	16247.96 16333.51 
	32499.91 32673.02 
	32512.02 32674.01 

	Lognormal 
	Lognormal 
	1 2 3 4 5 
	16247.96 15932.00 15779.48 15724.26 15724.26 
	36862.82 31874.00 31574.96 31470.52 31476.52 
	36,868.87 31,870.99 31574.96 31455.51 31455.51 

	Gamma 
	Gamma 
	1 2 3 4 5 
	17607.62 16252.21 15992.87 15934.65 15934.65 
	35219.24 32514.42 32001.74 31891.3 31897.3 
	35231.35 32511.41 31992.73 31876.9 31876.9 


	Note: The table above shows the results of the Hidden Markov Models (HMMs) and the Baum-Welch Algorithm fit to both the loss severity and the loss frequency data via the R software packages HiddenMarkov and depmixs4. The table columns represent the mixture distribution type (Distribution), the number of states of the distribution fitted to the data (No. of states (K)), the Negative Log-Likelihood, and the the Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) to enable the identific
	7.4. Numerical Analysis 
	For the frequency model, we use a Poisson mixture distribution to model the arrival times while for the loss severity model, several medium and heavy-tailed distributions are tested using the available packages, with the top three distributions by fit being included in the table.The final loss frequency and loss severity HMMs are chosen with regards to the best fit characteristics based on the AIC and the BIC. These are the 3-state Poisson hidden markov model and the 4-state lognormal hidden markov model fo
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	For the Loss Frequency Model, that is, the 3-State Poisson HMM, 
	Parameter Estimates 
	Given the Hidden Markov Model as defined in Section 7.3, the model parameters are given as follows; 
	θ =(A, B, π) (7.28) 
	For the 737 loss frequency observations extracted from the individual loss severity data; the initial state probabilities are given by; 
	+00 −86 +00
	π =1.0000e 2.2657e 0.0000e 
	The transition matrix; 
	
	 
	A = 
	 
	0.7076 0.2540 0.0384 
	0.4167 0.4776 0.1057 0.4755 0.4247 0.0999 
	 
	And the state parameters defining the Emission matrix B; 
	
	 
	 
	 

	State1 2 3
	 
	λ 2.1695 6.0853 13.8355 
	Residual Plots 
	The histogram and normal QQ-plots of the loss frequency model are displayed below; 
	This list is not yet exhaustive, and the author plans to extend the hidden markov models to other heavy-tailed distributions not currently included in the available statistical packages. 
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	7.4. Numerical Analysis 
	Figure
	Figure 7.7: Histogram and Normal QQ-plot of residuals for the Loss Frequency model 
	Figure 7.7: Histogram and Normal QQ-plot of residuals for the Loss Frequency model 
	-



	(a) Histogram of Residuals (b) Normal QQ-Plot of Residuals 
	Note: The histogram of residuals and Normal QQplot of residuals plots above are used to assess the fit of the chosen hidden markov model (i.e., the 3-state Poisson HMM) to the PCS loss frequency data. The better fitting models are expected to produce a histogram that is as close to the normal bell-shape as possible, and a normal QQ-plot that is as close to the diagonal line as possible. 
	7.4. Numerical Analysis 
	And for the Loss Severity Model, that is, the 4-State Lognormal HMM 
	Parameter Estimates 
	With the Hidden Markov Model 
	θ =(A, B, π) (7.29) 
	The initial state probabilities are given by; 
	π =0 1 0 0 
	The transition matrix; 
	
	 
	A = 
	 
	9.0052e − 01 7.9756e − 05 0.0046 0.0948 2.6939e − 12 9.8246e − 01 0.0143 0.0033 
	1.7890e − 06 3.8507e − 02 0.6104 0.3511 7.9970e − 02 5.2100e − 03 0.0864 0.8285 
	 
	And the state parameters defining the Emission matrix B; 
	
	 
	 
	 

	State1 2 3 4 µ 3.1476 2.7594 5.3798 3.9922 σ 0.5928 1.1130 1.6622 0.9696 
	 
	Residual Plots 
	The histogram and normal QQ-plot of residuals are displayed below; 
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	Figure
	Figure 7.8: Histogram and Normal QQ-plot of residuals for the Loss Severity model 
	Figure 7.8: Histogram and Normal QQ-plot of residuals for the Loss Severity model 


	(a) Histogram of Residuals (b) Normal QQ-Plot of Residuals 
	Note: The histogram of residuals and Normal QQplot of residuals plots above are used to assess the fit of the chosen hidden markov model (i.e., the 4-state Lognormal HMM) to the PCS loss severity data. The better fitting models are expected to produce a histogram that is as close to the normal bell-shape as possible, and a normal QQ-plot that is as close to the diagonal line as possible. 
	7.4. Numerical Analysis 
	The residual plots for the severity model indicate slightly better fits compared to the residual plots for the frequency model. It should be noted, however, that the multi-state frequency model is still a better fit for the data than a single-state frequency model i.e., the single Poisson distribution. 
	In addition, the multi-state frequency HMM’s residuals were compared to a typical non-homogeneous Poisson process fit for the frequency data based on estimation of Poisson processes resulting from a peak-over-threshold approach (Cebrián et al., 2015), and these non-homogeneous plots found to be of a worse fit compared to the multi-state HMM fit. The multi-state HMM, is also, in its own right, a form of a finite non-homogeneous Poisson process, since its intensity functions are stochastic and state-dependent
	7.4.3 Model Application to Catastrophe Bond Valuation 
	The aggregate claims process 
	Assume the stochastic process N represents the number of claims occurring until time t; and Xn,n =1, ..., N the size of the individual claims to time t. Xn’s have a common distribution function P (x)= P {Xn <x} , which, in our case, represents the HMM distribution. 
	Assuming the number of claims N is independent of the size of claims Xn, the aggregate loss process S can be defined as; 
	N
	 
	S = Xn (7.30) 
	n=0 and S = 0 when N = 0. S is assumed to follow a Compound Poisson Markov-dependent Mixture distribution. These assumptions are based on the Cramer-Lundberg collective risk model (Livshits, 1999; Boikov, 2003). 
	7.4. Numerical Analysis 
	The Compound Poisson Markov-Dependent Mixture Distribution 
	The distribution of the random aggregate loss process S = X+ X+ · + XN is termed 
	1 
	2 

	a compound distribution (Teugels et al., 2004). Compound distributions are used to model aggregate losses, especially in insurance claims models. The distribution of N, also known as the primary distribution, generates the loss frequencies, values which are then used to generate individual losses for each loss frequency. These individual losses (Xn’s), are then summed up to give the final aggregate loss values (S) that are used in pricing applications (Willmot and Lin, 2001). 
	The distribution of S, for the compound Poisson markov-dependent mixture distribution, can be expressed as 
	-

	∞ M
	 ei λFS (x)= wiP (x) (7.31) 
	λ
	n 
	i 
	∗n

	n! 
	n! 

	n=0 i=1 
	where P (x)= Pr(X+ X+ ... + Xn ≤ x. M represents the number of distributions 
	∗n
	1 
	2 

	included in the Markov-dependent mixture model; wi denotes mixture component i’s M
	weight; and wi = 1. 
	i=1 

	We generate this compound distribution using loss frequency observations from the 3-state Poisson HMM and individual loss severity observations from the 4-state Lognormal HMM. These loss severity values are then aggregated at each loss frequency to generate the final aggregate loss values used in the catastrophe bond valuation model. 
	The Catastrophe Bond Pricing Model 
	We consider two index-linked CAT bonds; a zero-coupon CAT bond and a coupon-paying CAT with only the coupons at risk if a catastrophe occurs. The zero-coupon 
	8

	CAT bond with pay-off (Payoff) and maturity T> 0 can be expressed as; 
	CAT 
	(1)

	 
	1, if ST < D. Payoff= (7.32) 
	CAT 
	(1) 

	
	ρ, if ST ≥ D. 
	

	an index linked CAT pays out to the issuer if the losses from the pre-specified event exceed losses on a certain catastrophe loss index 
	8

	7.4. Numerical Analysis 
	where ST represents the aggregate claims at time T , D is the threshold level that triggers a payout, and ρ(0 ≤ ρ< 1) represents the proportion of principal recovered by the investor at time T if the bond is triggered. The value of this bond at time t given the catastrophe loss distribution P (x) and the claim arrival process Nt is then given by (see e.g., Ma and Ma (2013)); 
	 T 
	Vt = e t E[Payoff|Ft] 
	− 
	r
	s
	ds
	Q
	CAT 
	(1)

	= BCIR(t, T )[ρ + (1 − ρ) × FS (D)] ∞ Mλi n
	λ

	 e 
	i ∗n
	(D)

	= BCIR(t, T ) ρ + (1 − ρ) × wi P (7.33) 
	n! 
	n! 

	n=0 i=1 
	Under the risk-neutral probability measure Q, P (D)= Pr(X+X+...+Xn ≤ D 
	∗n
	1 
	2 

	is the n-fold convolution of P ; and 
	−B(t,T )rt
	BCIR(t, T )= A(t, T )e, 
	+h)(T −t)/2 σ2
	2 
	ab 

	2he
	(a+λ
	r 

	A(t, T )= ,
	(T −t)h 
	2h +(a + λr + h)(e
	(T −t)h 
	− 1 
	− 1

	2e 
	B(t, T )= ,
	2h +(a + λr + h)(e
	2h +(a + λr + h)(e
	(T −t)h 
	− 1 

	 
	h =(7.34) 
	(a + λr)
	2 
	+2σ
	2 

	is the Cox-Ingersoll-Ross interest rate process (Cox et al., 1985). Next consider the coupon-paying CAT bond with a constant coupon c> 0 and the pay-off structure; 
	 

	c +1, if ST < D. Payoff= (7.35)
	CAT 
	(2) 

	
	ρ(c)+1, if ST ≥ D. 
	

	where ST represents the aggregate claims at time T , D is the threshold level that triggers a payout, and ρ(0 ≤ ρ< 1) represents the proportion of coupon recovered by the investor at time T if the bond is triggered. The value of this bond at time t given the catastrophe loss distribution P (x) and the claim arrival process Nt is then given 
	7.4. Numerical Analysis 
	by; 
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	BCIR(t, T ) represents the Cox-Ingersoll-Ross discount rates defined above. 
	Bond Valuation 
	Assuming an index-linked CAT bond with face value Z = US$1, proportion ρ =0.7 and coupon c =0.1 at time t = 0. We estimate bond values at different thresholds D, determined on the annual average loss interval, with the lowest threshold representing a quarter of the average loss and the highest threshold representing three times the average loss (see e.g. Shao et al. (2017)); and for different terms to maturity T , ranging from 0.25 to 2.25 years. 
	The resulting 3D plots of final CAT bond values are given in figures 7.9 for the zero-coupon CAT bond (principal-at-risk) and 7.10 for the coupon paying CAT bond (principal-and-coupon-at-risk). 
	7.4. Numerical Analysis 
	Figure
	Figure 7.9: Principal-at-risk CAT bond 
	Figure 7.9: Principal-at-risk CAT bond 


	Note: The figure gives the 3D plot of catastrophe bond prices generated assuming a compound Markov dependent mixture model for the aggregate loss values and the CIR interest rate model for the discount rates. The payoffs are derived for the principal-at-risk catastrophe bond, and the plot displays the catastrophe bond value in US dollars (V($)), the catastrophe bond term in years (T(yrs)), and finally the catastrophe bond triggering threshold in millions of US dollars (D($m)). 
	7.4. Numerical Analysis 
	Figure
	Figure 7.10: Principal-and-coupon-at-risk CAT bond 
	Figure 7.10: Principal-and-coupon-at-risk CAT bond 


	Note: The figure gives the 3D plot of catastrophe bond prices generated assuming a compound Markov dependent mixture model for the aggregate loss values and the CIR interest rate model for the discount rates. The payoffs are derived for the coupon-at-risk catastrophe bond, and the plot displays the catastrophe bond value in US dollars (V($)), the catastrophe bond term in years (T(yrs)), and finally the catastrophe bond triggering threshold in millions of US dollars (D($m)). 
	Figures 7.9 and 7.10 show that higher risk bonds i.e., lower bond prices are characterised by lower thresholds and longer time to maturities. These results are in line with observations from real catastrophe bond price regression models (see e.g. Braun (2016)). These 3D plots serve as proof that Hidden Markov Models and the Baum-Welch algorithm can be applied to incorporate effects of seasonality and temporal dependence in catastrophic loss datasets, especially for events that typically occur seasonally lik
	-
	-

	7.5. Conclusion 
	processes can be efficiently modelled without incurring excessive computational costs or losing model robustness; and that these models can be applied to the valuation of catastrophe-linked securities to ensure completeness. 
	These results are crucial to providing the industry with a way to incorporate unique and often complex elements of dependent catastrophic loss processes into valuation models, in order to ensure that such unique elements are also efficiently priced into the final models used to determine the costs of catastrophic risk processes. This is especially important since, and similar to Chapter 6’s conclusions, model accuracy, completeness, and efficiency, are key factors to ensuring that information asymmetries ar
	7.5 Conclusion 
	This study set out to identify and quantify deviations from the ‘independent and identical distribution’ of observations assumption. This was accomplished through a standardised approach involving the application of Hidden Markov Models (Zucchini et al., 2016) and the Baum-Welch algorithm (Baum et al., 1970; Baum, 1972; Welch, 2003) to data ‘clusters’ in order to generate the best state-dependent distributions. The Hidden Markov Models were applied to both the loss frequency and loss severity data, and the 
	7.5. Conclusion 
	threshold and time to maturity assumptions. 
	The study’s results show that, for extreme meteorological event data covering hurricanes, tropical storms and other related wind and thunderstorm events, individual loss severities can be modelled via a 4-state Log-normal hidden markov model; while loss frequencies can be modelled via a 3-state Poisson hidden markov model. A compound mixture distribution can also then be generated for these model combinations to estimate aggregate losses. The Hidden Markov Model (HMM) has been shown to be reliable for the m
	-
	-

	Future research opportunities include the comparison of seasonal events with nonseasonal events like earthquakes in order to establish the differences in the evolution of loss distributions or pricing factors, and the exploration of multivariate dependencies via ‘correlated clustering’ approaches. These cluster-based dependencies could then be compared to the popular multivariate dependence modelling approaches that focus on copula-based techniques. Other extensions focusing on further automating the HMM op
	-

	In conclusion, this study has proposed a standardised hidden-markov-based approach to modelling both inherently seasonal and non-seasonal but tail dependent processes via the Baum-Welch algorithm. This is useful especially for practitioners looking to improve the precision of estimates used in model prediction, risk assessment and decision-making for events deviating from the ‘independent and identically distributed’ observations assumption. 
	-
	-

	Chapter 8 
	Conclusion 
	Through the application of mathematical optimization i.e., the Expectation-Maximization (EM) algorithm to climate-based catastrophic loss modelling and pricing disaster risk financing instruments i.e., the catastrophe bond, we have shown that these models can be applied to improve efficiency and tractability of current catastrophic loss models, thus improving model reliability for planning and decision making. This can then contribute to better priced financing options, subsequently boosting extreme disaste
	-

	A historical background of disaster occurrence and disaster risk management processes was analysed in Chapters 2 and 3, followed by a background of mathematical optimization and the EM algorithm in Chapter 4. These chapters provided a reference for the fit of this study with previous and present developments within the field, and gave this study a continuation point in the literature. 
	-

	After the background was established, the study then focused on the modelling of catastrophic risk processes with Expectation-Maximization (EM) algorithms. The first of these tests, detailed in Chapter 5, focused on the modelling of volatility in catastrophe bond pricing among issuers whose bonds have similar characteristics. As the catastrophe bond’s underlying risk is unrelated to the state of the issuer but rather dependent on the risk characteristics of the underlying catastrophe, there should not have 
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	been a result of an inefficiency within the market, which could be a consequence of investor-based behavioural factors. The study therefore uses an EM-based random effects model to test for this effect on catastrophe bond prices available since market inception. The model identifies any collective volatility clustering effects between the different classes of data, with the ‘class’ representing a specific issuer, and finally its significance is determined. Our significant results prove that these effects st
	These results are particularly useful to new issuers seeking protection who may need to understand fully the factors that drive their pricing, including factors beyond the logical risk-based factors. In addition, market practitioners could benefit from these results as they give an indication of the state of the market and areas that may require improvement in order to make the market more attractive to both investors and bond issuers. This also gives a possible area for future research, where as time goes 
	Next, in Chapter 6, the study shifts its focus to the actual modelling of the catastrophic loss processes that underly catastrophic risk pricing instruments, including catastrophe bonds. In this second project, analysis is focused on the application of an EM-based finite mixture model (FMM) to the modelling of heavy-tailed catastrophic loss processes, especially those that underly the catastrophic industry loss index provided by Property Claims Services (PCS), a US-based company that collects such claims da
	Next, in Chapter 6, the study shifts its focus to the actual modelling of the catastrophic loss processes that underly catastrophic risk pricing instruments, including catastrophe bonds. In this second project, analysis is focused on the application of an EM-based finite mixture model (FMM) to the modelling of heavy-tailed catastrophic loss processes, especially those that underly the catastrophic industry loss index provided by Property Claims Services (PCS), a US-based company that collects such claims da
	-
	-
	-

	be applied to the data, and reduce computational costs. The finite mixture models tests a number of heavy-tailed distributions to the data and determines the mixture distributions that best explain both the loss severity and the loss frequency observed, which in this case was the 2-component log-normal mixture and the 3-component Poisson mixture respectively. We then use these models to generate a compound distribution for the simulation of a complete dataset, which is then used to value catastrophe bonds w
	-
	-
	-


	Such results are useful for risk modellers looking to boost the efficiency of their recommended models and for market practitioners hoping to better understand or individually model such processes. The study also provides the possibility for further research on EM-type algorithms that can further improve efficiency, including some new algorithms that combine both Newton-based algorithms, Monte Carlo techniques etc., into their functionality to further improve the algorithm’s speed. In addition, other loss f
	Finally in Chapter 7, the study tested the applicability of EM-based algorithms to the modelling of unique factors in catastrophic loss modelling processes, here focusing on the modelling of time-based dependencies in single event catastrophic loss observations. A Baum-Welch Hidden Markov Model (HMM), which relies on the EM algorithm for optimization, was used to accomplish this. The model was fit to meteorological event data from PCS and state-based distributions for the loss frequencies and loss severitie
	Finally in Chapter 7, the study tested the applicability of EM-based algorithms to the modelling of unique factors in catastrophic loss modelling processes, here focusing on the modelling of time-based dependencies in single event catastrophic loss observations. A Baum-Welch Hidden Markov Model (HMM), which relies on the EM algorithm for optimization, was used to accomplish this. The model was fit to meteorological event data from PCS and state-based distributions for the loss frequencies and loss severitie
	-
	-
	-

	and the loss frequency respectively. The model fits were then confirmed through residual models and QQ plots, and the loss frequency model fit further compared with a non-homogeneous Poisson model fit and found superior. The models were then applied to generate a Compound Poisson HMM model for the aggregate data, and this model used to simulate data for the valuation and finally pricing of catastrophe bonds with different payoff functions. 
	-


	This study, like the FMM study above, also provides an efficient model for the analysis of dependencies and effects of seasonality on catastrophic loss observations, and finally pricing. This model is especially useful as it provides a starting point for practitioners seeking a way to incorporate unique elements of extreme event data into their pricing models for more efficient pricing of disaster risk. This also ensures that the previously-observed difficulty in incorporating loss dependencies in catastrop
	The three focused studies have shown that we can model both issuer-specific pricing volatility, tails and dependence structures in catastrophic loss observations with just one class of algorithms, and thus improve the efficiency of extreme loss modelling practices. These deductions are especially useful for catastrophic risk modelling due to the complexity of the models and equations applied to accomplish this process, which then often lead to computationally expensive solutions with little real-life applic
	As climate change is an ongoing process, the field of climate modelling keeps expanding (see e.g., Froot, 1999a; Cummins, 2008; SOQS, 2019; Crutzen and Stoermer, 2021; Quéré et al., 2021), and this has increased the need for both practitioners and academics to find techniques that are better suited to adapt to new trends and observations in loss processes, as static models easily become obsolete with time. The EM provides a class of algorithms with significant adaptability potential (Dempster et al., 1977; 
	As climate change is an ongoing process, the field of climate modelling keeps expanding (see e.g., Froot, 1999a; Cummins, 2008; SOQS, 2019; Crutzen and Stoermer, 2021; Quéré et al., 2021), and this has increased the need for both practitioners and academics to find techniques that are better suited to adapt to new trends and observations in loss processes, as static models easily become obsolete with time. The EM provides a class of algorithms with significant adaptability potential (Dempster et al., 1977; 
	-
	-

	2010) and can therefore be a good option for modelling the dynamism of climate processes. It can also be easily modified and used in combination with other optimization algorithms including Monte Carlo and Quasi-Monte Carlo techniques in special-case situations, further boosting its potential. 
	-


	Future studies will therefore focus on this ‘boost of potential’, aiming at introducing further possible applications, trends and special-case scenarios to make the EM algorithm a truly versatile optimization option for climate risk modelling and disaster risk financing. In addition, modified structures of disaster finance instruments better suited for specific disaster scenarios will also be created and modelled with such techniques to provide more financing and insurance options, especially for vulnerable
	-
	-
	-
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	APPENDICES .1 Summary of Issuer Characteristics 
	Table 1: Catastrophe bonds by issuer 
	Table
	TR
	Issuer 
	Size ($m) 
	% Size 
	Obs. (No) 
	% Obs. 
	Premium (%) 
	EL (%) 
	P/EL 
	EER (%) 
	Term 

	Achmea Re 
	Achmea Re 
	54.70 
	0.06% 
	1 
	0.14% 
	3.30% 
	1.29% 
	2.56 
	2.01% 
	36.00 

	AGF 
	AGF 
	129.00 
	0.13% 
	2 
	0.28% 
	4.29% 
	0.69% 
	8.56 
	3.60% 
	60.00 

	AIG 
	AIG 
	1,325.00 
	1.37% 
	8 
	1.10% 
	6.53% 
	1.72% 
	4.03 
	4.81% 
	29.25 

	Aioi Nissay Dowa Insurance 
	Aioi Nissay Dowa Insurance 
	167.90 
	0.17% 
	2 
	0.28% 
	3.00% 
	0.83% 
	4.00 
	2.17% 
	41.50 

	Allianz SE 
	Allianz SE 
	1,755.00 
	1.81% 
	16 
	2.21% 
	10.36% 
	3.24% 
	4.80 
	7.12% 
	37.50 

	Allstate Insurance Company 
	Allstate Insurance Company 
	2,725.00 
	2.81% 
	12 
	1.66% 
	5.30% 
	1.04% 
	5.06 
	4.27% 
	46.58 

	Am Family Mutual 
	Am Family Mutual 
	200.00 
	0.21% 
	2 
	0.28% 
	7.48% 
	2.72% 
	3.04 
	4.76% 
	37.50 

	Am Re 
	Am Re 
	176.80 
	0.18% 
	2 
	0.28% 
	4.24% 
	0.40% 
	13.14 
	3.84% 
	17.00 

	American Coastal Insurance 
	American Coastal Insurance 
	383.00 
	0.40% 
	2 
	0.28% 
	4.19% 
	0.46% 
	9.29 
	3.73% 
	21.00 

	American Modern Insurance 
	American Modern Insurance 
	75.00 
	0.08% 
	1 
	0.14% 
	3.55% 
	0.57% 
	6.23 
	2.98% 
	36.00 

	American Re 
	American Re 
	116.40 
	0.12% 
	1 
	0.14% 
	5.58% 
	0.75% 
	7.44 
	4.83% 
	12.00 

	American Strategic Insurance 
	American Strategic Insurance 
	600.00 
	0.62% 
	4 
	0.55% 
	5.07% 
	1.85% 
	2.98 
	3.22% 
	38.25 

	Amlin AG 
	Amlin AG 
	500.00 
	0.52% 
	3 
	0.41% 
	10.06% 
	3.63% 
	2.91 
	6.42% 
	44.00 

	AmTrust Financial Services 
	AmTrust Financial Services 
	100.00 
	0.10% 
	1 
	0.14% 
	3.80% 
	1.19% 
	3.19 
	2.61% 
	47.00 

	Argo Re 
	Argo Re 
	372.00 
	0.38% 
	5 
	0.69% 
	13.44% 
	5.25% 
	2.82 
	8.19% 
	39.60 

	Arrow Re 
	Arrow Re 
	162.80 
	0.17% 
	3 
	0.41% 
	3.95% 
	0.59% 
	34.68 
	3.37% 
	12.00 

	Arrow Re/St Farm 
	Arrow Re/St Farm 
	52.20 
	0.05% 
	1 
	0.14% 
	4.62% 
	0.63% 
	7.33 
	3.99% 
	12.00 

	Aspen Insurance Holdings 
	Aspen Insurance Holdings 
	325.00 
	0.34% 
	2 
	0.28% 
	5.83% 
	2.29% 
	2.64 
	3.54% 
	30.00 

	Assicurazioni Generali 
	Assicurazioni Generali 
	486.60 
	0.50% 
	2 
	0.28% 
	2.66% 
	1.66% 
	1.73 
	1.00% 
	42.00 

	Assurant 
	Assurant 
	605.00 
	0.62% 
	9 
	1.24% 
	8.82% 
	2.06% 
	4.78 
	6.76% 
	36.00 
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	TR
	Issuer 
	Size ($m) 
	% Size 
	Obs. 
	% Obs. 
	Premium (%) 
	EL (%) 
	P/EL 
	EER (%) 
	Term 

	Avatar P&C 
	Avatar P&C 
	100.00 
	0.10% 
	3 
	0.41% 
	8.45% 
	4.68% 
	2.66 
	3.77% 
	35.00 

	AXA Global Re 
	AXA Global Re 
	1,105.30 
	1.14% 
	4 
	0.55% 
	3.32% 
	1.28% 
	2.68 
	2.04% 
	41.75 

	AXIS Re 
	AXIS Re 
	915.00 
	0.94% 
	4 
	0.55% 
	7.53% 
	3.73% 
	2.22 
	3.80% 
	41.25 

	Balboa Insurance Company. Bayview Opp Fd Brit Insurance Holdings plc California Earthquake Authority (CEA) California State Compensation Insurance Fund Castle Key Insurance & Indemnity Catlin Group Central Re Corp Centre Solutions (Bermuda) Ltd (Zurich Group) Chubb Group Citizen’s Property Insurance Converium 
	Balboa Insurance Company. Bayview Opp Fd Brit Insurance Holdings plc California Earthquake Authority (CEA) California State Compensation Insurance Fund Castle Key Insurance & Indemnity Catlin Group Central Re Corp Centre Solutions (Bermuda) Ltd (Zurich Group) Chubb Group Citizen’s Property Insurance Converium 
	50.00 225.00 140.00 3,725.00 660.00 700.00 1,041.80 100.00 113.15 1,745.00 3,350.00 100.00 
	0.05% 0.23% 0.14% 3.85% 0.68% 0.72% 1.08% 0.10% 0.12% 1.80% 3.46% 0.10% 
	1 2 2 13 3 2 6 1 2 12 6 1 
	0.14% 0.28% 0.28% 1.80% 0.41% 0.28% 0.83% 0.14% 0.28% 1.66% 0.83% 0.14% 
	3.04% 4.57% 4.57% 5.14% 2.75% 4.44% 7.48% 4.11% 3.75% 7.60% 8.48% 5.48% 
	0.82% 1.75% 0.78% 2.09% 0.25% 0.78% 2.42% 0.73% 0.80% 1.78% 2.47% 1.07% 
	3.71 3.16 12.60 2.80 11.90 5.89 6.91 5.63 4.69 4.90 3.33 5.12 
	2.22% 2.82% 3.79% 3.05% 2.51% 3.67% 5.06% 3.38% 2.95% 5.81% 6.00% 4.41% 
	36.00 35.00 36.00 37.85 45.33 41.50 36.50 34.00 12.00 44.00 33.67 60.00 

	Dominion Resources 
	Dominion Resources 
	50.00 
	0.05% 
	1 
	0.14% 
	20.78% 
	1.54% 
	13.49 
	19.24% 
	7.00 

	Electricite de France 
	Electricite de France 
	232.50 
	0.24% 
	2 
	0.28% 
	2.74% 
	0.28% 
	41.66 
	2.46% 
	60.00 

	Endurance Specialty Holdings Equator Re Ltd Everest Re 
	Endurance Specialty Holdings Equator Re Ltd Everest Re 
	125.00 250.00 4,200.00 
	0.13% 0.26% 4.34% 
	1 1 19 
	0.14% 0.14% 2.62% 
	8.11% 3.80% 8.58% 
	1.13% 1.34% 4.78% 
	7.18 2.84 1.99 
	6.98% 2.46% 3.80% 
	18.00 36.00 52.32 

	First Mutual Transportation Assurance (MTA) 
	First Mutual Transportation Assurance (MTA) 
	325.00 
	0.34% 
	2 
	0.28% 
	4.16% 
	2.07% 
	2.12 
	2.09% 
	35.50 
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	TR
	Issuer 
	Size ($m) 
	% Size 
	Obs. 
	% Obs. 
	Premium (%) 
	EL (%) 
	P/EL 
	EER (%) 
	Term 

	Flagstone Re FM Global 
	Flagstone Re FM Global 
	489.00 300.00 
	0.50% 0.31% 
	7 1 
	0.97% 0.14% 
	12.07% 3.17% 
	3.37% 0.71% 
	4.74 4.46 
	8.69% 2.45% 
	36.00 36.00 

	FONDEN, Mexico 
	FONDEN, Mexico 
	315.00 
	0.33% 
	3 
	0.41% 
	7.86% 
	3.71% 
	2.23 
	4.15% 
	38.00 

	Frontline 
	Frontline 
	350.00 
	0.36% 
	2 
	0.28% 
	9.51% 
	5.77% 
	1.70 
	3.74% 
	47.00 

	Gerling Glacier Re 
	Gerling Glacier Re 
	180.00 255.00 
	0.19% 0.26% 
	2 4 
	0.28% 0.55% 
	4.41% 10.05% 
	0.60% 2.80% 
	7.77 3.87 
	3.81% 7.25% 
	48.00 36.00 

	Great American Insurance Co. 
	Great American Insurance Co. 
	285.00 
	0.29% 
	3 
	0.41% 
	4.99% 
	1.67% 
	3.24 
	3.32% 
	39.00 

	Groupama Gulfstream Ins.(for Vivendi) Hannover Re 
	Groupama Gulfstream Ins.(for Vivendi) Hannover Re 
	292.00 175.00 5,081.20 
	0.30% 0.18% 5.25% 
	1 2 26 
	0.14% 0.28% 3.59% 
	3.65% 6.64% 7.51% 
	0.89% 1.18% 3.11% 
	4.10 6.35 3.03 
	2.76% 5.46% 4.40% 
	36.00 43.00 40.81 

	Hartford Fire Insurance 
	Hartford Fire Insurance 
	915.00 
	0.94% 
	7 
	0.97% 
	5.88% 
	0.93% 
	6.99 
	4.95% 
	45.00 

	Heritage P&C Hiscox Syndicate IBRD -Chile 
	Heritage P&C Hiscox Syndicate IBRD -Chile 
	852.50 33.00 500.00 
	0.88% 0.03% 0.52% 
	8 1 1 
	1.10% 0.14% 0.14% 
	6.56% 6.84% 2.53% 
	3.22% 1.14% 0.86% 
	2.38 6.00 2.94 
	3.34% 5.70% 1.67% 
	42.00 36.00 36.00 

	IBRD -Colombia 
	IBRD -Colombia 
	400.00 
	0.41% 
	1 
	0.14% 
	3.04% 
	1.56% 
	1.95 
	1.48% 
	36.00 

	IBRD -Mexico 
	IBRD -Mexico 
	1,105.00 
	1.14% 
	9 
	1.24% 
	6.70% 
	4.11% 
	1.98 
	2.58% 
	36.44 

	IBRD -Peru 
	IBRD -Peru 
	200.00 
	0.21% 
	1 
	0.14% 
	6.08% 
	5.00% 
	1.22 
	1.08% 
	36.00 

	IBRD -Philippines ICAT Syndicate 4242 Kemper Lehman Re 
	IBRD -Philippines ICAT Syndicate 4242 Kemper Lehman Re 
	225.00 164.50 80.00 499.50 
	0.23% 0.17% 0.08% 0.52% 
	2 2 1 3 
	0.28% 0.28% 0.14% 0.41% 
	5.66% 5.07% 3.74% 4.39% 
	2.97% 2.89% 0.50% 0.49% 
	1.90 2.03 7.48 10.20 
	2.69% 2.19% 3.24% 3.83% 
	36.00 37.00 37.00 18.67 
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	Issuer 
	Size ($m) 
	% Size 
	Obs. 
	% Obs. 
	Premium (%) 
	EL (%) 
	P/EL 
	EER (%) 
	Term 

	Liberty Mutual Louisiana Citizens 
	Liberty Mutual Louisiana Citizens 
	1,175.00 565.00 
	1.21% 0.58% 
	7 5 
	0.97% 0.69% 
	9.46% 6.13% 
	1.53% 2.23% 
	7.04 2.62 
	7.93% 3.90% 
	34.29 38.40 

	Markel Bermuda 
	Markel Bermuda 
	100.00 
	0.10% 
	1 
	0.14% 
	2.79% 
	0.14% 
	19.93 
	2.65% 
	37.00 

	Mitsui Sumitomo 
	Mitsui Sumitomo 
	640.00 
	0.66% 
	5 
	0.69% 
	2.69% 
	0.97% 
	2.81 
	1.72% 
	52.80 

	MMM IARD SA+ 
	MMM IARD SA+ 
	239.22 
	0.25% 
	3 
	0.41% 
	6.64% 
	5.31% 
	1.28 
	1.33% 
	48.33 

	Montpelier Re Munich Re 
	Montpelier Re Munich Re 
	150.00 4,051.40 
	0.15% 4.18% 
	2 30 
	0.28% 4.14% 
	13.31% 7.12% 
	3.51% 1.99% 
	3.80 4.26 
	9.80% 5.14% 
	36.00 39.50 

	National Union Fire Insurance 
	National Union Fire Insurance 
	1,850.00 
	1.91% 
	8 
	1.10% 
	9.19% 
	1.86% 
	5.38 
	7.33% 
	34.50 

	Nationwide Mutual 
	Nationwide Mutual 
	2,640.00 
	2.73% 
	18 
	2.49% 
	6.58% 
	2.40% 
	3.34 
	4.18% 
	38.78 

	Natixis SA 
	Natixis SA 
	214.60 
	0.22% 
	2 
	0.28% 
	7.36% 
	3.56% 
	2.09 
	3.80% 
	57.00 

	NC Insurance Underwriting Association Nephila Capital Ltd. Oak Tree Assurance 
	NC Insurance Underwriting Association Nephila Capital Ltd. Oak Tree Assurance 
	550.00 240.00 400.00 
	0.57% 0.25% 0.41% 
	2 3 1 
	0.28% 0.41% 0.14% 
	5.58% 3.85% 2.79% 
	2.02% 0.65% 0.80% 
	2.79 29.30 3.49 
	3.56% 3.21% 1.99% 
	35.00 32.00 39.00 

	OCIL (Oil Casualty Insurance Ltd.) Oriental Land 
	OCIL (Oil Casualty Insurance Ltd.) Oriental Land 
	405.00 100.00 
	0.42% 0.10% 
	3 1 
	0.41% 0.14% 
	4.55% 3.14% 
	0.89% 0.42% 
	16.17 7.48 
	3.66% 2.72% 
	36.00 60.00 

	Palomar Specialty Ins. Passenger Railroad Ins. Platinum 
	Palomar Specialty Ins. Passenger Railroad Ins. Platinum 
	166.00 275.00 200.00 
	0.17% 0.28% 0.21% 
	3 1 1 
	0.41% 0.14% 0.14% 
	4.39% 4.56% 4.82% 
	2.49% 1.99% 0.56% 
	1.92 2.29 8.61 
	1.90% 2.57% 4.26% 
	36.00 38.00 36.00 

	PXRE 
	PXRE 
	550.00 
	0.57% 
	4 
	0.55% 
	7.10% 
	1.18% 
	7.33 
	5.92% 
	48.00 

	Renaissance Re 
	Renaissance Re 
	550.00 
	0.57% 
	3 
	0.41% 
	7.70% 
	2.95% 
	2.73 
	4.75% 
	39.33 

	Safepoint Insurance 
	Safepoint Insurance 
	435.00 
	0.45% 
	7 
	0.97% 
	7.71% 
	3.68% 
	3.08 
	4.04% 
	35.86 
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	Issuer 
	Size ($m) 
	% Size 
	Obs. 
	% Obs. 
	Premium (%) 
	EL (%) 
	P/EL 
	EER (%) 
	Term 

	SCOR 
	SCOR 
	2,716.60 
	2.80% 
	21 
	2.90% 
	9.00% 
	2.47% 
	8.15 
	6.53% 
	39.43 

	Sempra En, SD G&E, S C 
	Sempra En, SD G&E, S C 
	125.00 
	0.13% 
	1 
	0.14% 
	4.06% 
	0.21% 
	19.33 
	3.85% 
	36.00 

	Sompo Japan Nipponkoa 
	Sompo Japan Nipponkoa 
	878.00 
	0.91% 
	4 
	0.55% 
	2.53% 
	0.88% 
	3.02 
	1.65% 
	48.25 

	Sorema 
	Sorema 
	34.00 
	0.04% 
	2 
	0.28% 
	5.07% 
	0.43% 
	16.30 
	4.66% 
	24.00 

	State Farm 
	State Farm 
	3,158.60 
	3.26% 
	10 
	1.38% 
	2.37% 
	0.28% 
	51.80 
	2.09% 
	35.90 

	Swiss Re 
	Swiss Re 
	10,868.00 
	11.22% 
	173 
	23.90% 
	9.51% 
	2.96% 
	8.07 
	6.56% 
	29.56 

	Texas Windstorm Insurance Association (TWIA) 
	Texas Windstorm Insurance Association (TWIA) 
	600.00 
	0.62% 
	2 
	0.28% 
	3.93% 
	1.89% 
	2.07 
	2.04% 
	36.00 

	Tokio Marine 
	Tokio Marine 
	985.00 
	1.02% 
	6 
	0.83% 
	2.53% 
	0.62% 
	6.95 
	1.91% 
	49.67 

	Tokio Millenium Re 
	Tokio Millenium Re 
	630.00 
	0.65% 
	3 
	0.41% 
	5.66% 
	1.47% 
	4.94 
	4.19% 
	43.33 

	Transatlantic Re 
	Transatlantic Re 
	500.00 
	0.52% 
	3 
	0.41% 
	6.00% 
	2.49% 
	2.59 
	3.51% 
	47.00 

	Travellers Group 
	Travellers Group 
	2,350.00 
	2.43% 
	7 
	0.97% 
	4.72% 
	1.01% 
	5.03 
	3.70% 
	39.29 

	Turkish Cat Ins Pool 
	Turkish Cat Ins Pool 
	500.00 
	0.52% 
	2 
	0.28% 
	2.92% 
	1.23% 
	2.40 
	1.69% 
	36.00 

	UnipolSai Assicurazioni 
	UnipolSai Assicurazioni 
	276.11 
	0.29% 
	2 
	0.28% 
	3.37% 
	0.38% 
	8.58 
	2.99% 
	39.50 

	United P&C & affiliates 
	United P&C & affiliates 
	300.00 
	0.31% 
	5 
	0.69% 
	8.60% 
	5.02% 
	2.22 
	3.58% 
	19.40 

	US Fidelity and Guaranty 
	US Fidelity and Guaranty 
	65.30 
	0.07% 
	3 
	0.41% 
	6.88% 
	2.00% 
	5.22 
	4.88% 
	12.00 

	USAA 
	USAA 
	8,199.18 
	8.46% 
	74 
	10.22% 
	9.24% 
	3.62% 
	4.69 
	5.61% 
	38.30 

	Validus Re 
	Validus Re 
	400.00 
	0.41% 
	3 
	0.41% 
	9.21% 
	5.01% 
	1.85 
	4.20% 
	48.00 

	Vesta Fire Ins. 
	Vesta Fire Ins. 
	41.50 
	0.04% 
	1 
	0.14% 
	4.16% 
	0.70% 
	5.94 
	3.46% 
	36.00 

	XL Insurance (Bermuda) 
	XL Insurance (Bermuda) 
	2,200.00 
	2.27% 
	18 
	2.49% 
	9.09% 
	4.97% 
	2.11 
	4.12% 
	41.50 

	Zenkyoren (Japan) 
	Zenkyoren (Japan) 
	3,445.00 
	3.56% 
	15 
	2.07% 
	2.68% 
	0.69% 
	4.93 
	1.99% 
	56.13 

	Zurich Insurance Group 
	Zurich Insurance Group 
	842.00 
	0.87% 
	5 
	0.69% 
	6.70% 
	1.33% 
	5.33 
	5.38% 
	34.40 
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	Issuer Size ($m) % Size Obs. % Obs. Premium (%) EL (%) P/EL EER (%) Term 
	Grand Total 100.00% 724 100.00% 7.64% 2.60% 6.35 5.04% 37.02 
	96,871.36 

	Note: This table shows the aggregate characteristics of CAT bonds issued by all the issuers in the CAT bond market since inception. The table displays the total issue size (in millions of US dollars), total number of issues (Obs), the average premium, average expected loss (EL), the average multiple of the premium with respect to the expected loss (P/EL), the expected excess return (EER) and the average bond term in months for each issuer. In addition, the total issue size and number of observations for eac
	.2 Multilevel Analysis 
	Multilevel models are an extension of linear or generalised linear models (Gelman and Hill, 2007) that are used to assess the extent of grouping in a sample. With multilevel models, however, the assumption of independent observations applied to ordinary least squares models no longer holds. Depending on the dependence structure, we can vary either the intercept, the slope, or both the intercept and the slope. The choice of this random effect depends on the underlying theoretical support. In the random inter
	p
	 
	Yij = βj + βkj Xijk + εij (1) k=1 
	0

	βj = γ+ uj , 
	0
	00 
	0

	βkj = γk0, 
	with εij ∼ N(0,σe) and uj ∼ N(0,σu0), assuming the error terms are random and 
	2 
	0
	2 

	uncorrelated (Tolmie et al., 2011). The additional level, representing the group (the issuers), is introduced by the subscript j. With a random slope model, only the slope varies while the intercept and other predictor effects remain fixed. The assumption is that the group effect only affects the strength of the relationship between the other predictors and the dependent variable, but the mean or base value of the dependent variable remains fixed. The structure is given by Eq. (1) with 
	βj = γ, 
	0
	00

	βkj = γk0 + ukj , 
	and ukj ∼ N(0,σuk). When we allow both intercept and slope to vary by group, then we get Eq. (1) with 
	2 

	βj = γ+ uj , 
	0
	00 
	0

	βkj = γk0 + ukj , 
	and ukj ∼ N(0,σuk). In all three cases, the overall equation remains the same, but 
	2 

	the parameters are either fixed or random depending on the model assumption. 
	.3 EM Algorithm for Multilevel Analysis 
	Following from the equations in Appendix .2, we get the following linear mixed effects 
	model for a random intercept model; 
	Yij = γ+ uj + xijk γk0 + εij (2) 
	00 
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	with εij ∼ N(0,σe) and uj ∼ N(0,σu0), assuming the error terms are random and 
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	uncorrelated; and j represents the additional level introduced by issuer variance. In 
	this case, the unknown parameters are given by δ =(γ,γk0,σe,σu0), and their joint 
	00
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	This joint likelihood can now be written as 
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	252 The maximum likelihood estimator of δ is therefore; δ= argmax L(δ) (5) 
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	δ 
	The complete data is then given by (yi,uoj), and the observed data is (yi). The complete data log-likelihood is then; 
	m mni ni
	1  m 1  1  
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	00
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	i=1 ei=1 j=1 uj=1 
	(6) 
	.4 ANOVA Test for Homogeneity of Variance 
	Table 2: ANOVA Table for Homoscedasticity 
	Dof Sum Sq. Mean Sq. F value Pr(>F) 
	Issuers 100 2388.3 23.883 0.6977 0.9867 Residuals 603 20640.7 34.23 
	Note: This table displays the results of the Analysis of Variance (ANOVA) test for homoscedasticity of level 1 (individual catastrophe bonds) residual variance. The columns dis-pay the degrees of freedom applied in the test (Dof), the sum of squares (Sum Sq.) and mean square (Mean Sq.) values, and finally the F value and its corresponding p-value (Pr(>F)). The significance of each of these values is also indicated. Significance at 90%, 95%, and 99% confidence levels are indicated by *, **, and ***, respecti
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